MSP430G2232IPW14 [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430G2232IPW14
型号: MSP430G2232IPW14
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器和处理器 外围集成电路 光电二极管 时钟
文件: 总55页 (文件大小:908K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
MIXED SIGNAL MICROCONTROLLER  
1
FEATURES  
Low Supply Voltage Range: 1.8 V to 3.6 V  
Universal Serial Interface (USI) Supporting SPI  
and I2C  
Ultra-Low Power Consumption  
10-Bit 200-ksps Analog-to-Digital (A/D)  
Converter With Internal Reference,  
Sample-and-Hold, and Autoscan  
(MSP430G2x32 Only)  
Active Mode: 220 µA at 1 MHz, 2.2 V  
Standby Mode: 0.5 µA  
Off Mode (RAM Retention): 0.1 µA  
Five Power-Saving Modes  
Brownout Detector  
Ultra-Fast Wake-Up From Standby Mode in  
Less Than 1 µs  
Serial Onboard Programming,  
No External Programming Voltage Needed,  
Programmable Code Protection by Security  
Fuse  
16-Bit RISC Architecture, 62.5-ns Instruction  
Cycle Time  
Basic Clock Module Configurations  
On-Chip Emulation Logic With Spy-Bi-Wire  
Interface  
Internal Frequencies up to 16 MHz With  
Four Calibrated Frequencies  
Family Members are Summarized in Table 1  
Package Options  
Internal Very-Low-Power Low-Frequency  
(LF) Oscillator  
TSSOP: 14 Pin, 20 Pin  
PDIP: 20 Pin  
32-kHz Crystal  
External Digital Clock Source  
QFN: 16 Pin  
One 16-Bit Timer_A With Three  
Capture/Compare Registers  
For Complete Module Descriptions, See the  
MSP430x2xx Family Users Guide (SLAU144)  
Up to 16 Touch-Sense Enabled I/O Pins  
DESCRIPTION  
The Texas Instruments MSP430family of ultra-low-power microcontrollers consist of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low-power  
modes is optimized to achieve extended battery life in portable measurement applications. The device features a  
powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency.  
The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 µs.  
The MSP430G2x32 and MSP430G2x02 series of microcontrollers are ultra-low-power mixed signal  
microcontrollers with built-in 16-bit timers, and up to 16 I/O touch sense enabled pins and built-in communication  
capability using the universal serial communication interface. The MSP430G2x32 series have a 10-bit A/D  
converter. For configuration details see Table 1. Typical applications include low-cost sensor systems that  
capture analog signals, convert them to digital values, and then process the data for display or for transmission  
to a host system.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 20102011, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 1. Available Options(1)  
Flash  
(KB)  
RAM  
(B)  
ADC10  
Channel  
Package  
Type(2)  
Device  
EEM  
Timer_A  
USI  
CLOCK  
I/O  
MSP430G2432IN20  
MSP430G2432IPW20  
MSP430G2432IRSA16  
MSP430G2432IPW14  
MSP430G2332IN20  
MSP430G2332IPW20  
MSP430G2332IRSA16  
MSP430G2332IPW14  
MSP430G2232IN20  
MSP430G2232IPW20  
MSP430G2232IRSA16  
MSP430G2232IPW14  
MSP430G2132IN20  
MSP430G2132IPW20  
MSP430G2132IRSA16  
MSP430G2132IPW14  
MSP430G2402IN20  
MSP430G2402IPW20  
MSP430G2402IRSA16  
MSP430G2402IPW14  
MSP430G2302IN20  
MSP430G2302IPW20  
MSP430G2302IRSA16  
MSP430G2302IPW14  
MSP430G2202IN20  
MSP430G2202IPW20  
MSP430G2202IRSA16  
MSP430G2202IPW14  
MSP430G2102IN20  
MSP430G2102IPW20  
MSP430G2102IRSA16  
MSP430G2102IPW14  
16  
16  
10  
10  
16  
16  
10  
10  
16  
16  
10  
10  
16  
16  
10  
10  
16  
16  
10  
10  
16  
16  
10  
10  
16  
16  
10  
10  
16  
16  
10  
10  
20-PDIP  
20-TSSOP  
16-QFN  
1
8
256  
256  
256  
128  
256  
256  
256  
128  
1x TA3  
8
8
8
8
-
1
LF, DCO, VLO  
14-TSSOP  
20-PDIP  
20-TSSOP  
16-QFN  
1
1
1
1
1
1
1
4
2
1
8
4
2
1
1x TA3  
1x TA3  
1x TA3  
1x TA3  
1x TA3  
1x TA3  
1x TA3  
1
1
1
1
1
1
1
LF, DCO, VLO  
LF, DCO, VLO  
LF, DCO, VLO  
LF, DCO, VLO  
LF, DCO, VLO  
LF, DCO, VLO  
LF, DCO, VLO  
14-TSSOP  
20-PDIP  
20-TSSOP  
16-QFN  
14-TSSOP  
20-PDIP  
20-TSSOP  
16-QFN  
14-TSSOP  
20-PDIP  
20-TSSOP  
16-QFN  
14-TSSOP  
20-PDIP  
20-TSSOP  
16-QFN  
-
14-TSSOP  
20-PDIP  
20-TSSOP  
16-QFN  
-
14-TSSOP  
20-PDIP  
20-TSSOP  
16-QFN  
-
14-TSSOP  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
2
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
Device Pinout  
PW PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
DVCC  
P1.0/TA0CLK/ACLK/A0  
P1.1/TA0.0/A1  
DVSS  
XIN/P2.6/TA0.1  
XOUT/P2.7  
TEST/SBWTCK  
P1.2/TA0.1/A2  
RST/NMI/SBWTDIO  
P1.7/SDI/SDA/A7/TDO/TDI  
P1.6/TA0.1/SDO/SCL/A6/TDI/TCLK  
P1.3/ADC10CLK/A3/VREF-/VEREF-  
P1.4/TA0.2/SMCLK/A4/VREF+/VEREF+/TCK  
P1.5/TA0.0/SCLK/A5/TMS  
8
NOTE: ADC10 pin functions are available only on MSP430G2x32.  
NOTE: The pulldown resistors of port pins P2.0, P2.1, P2.2, P2.3, P2.4, and P2.5 should be enabled by setting P2REN.x = 1.  
RSA PACKAGE  
(TOP VIEW)  
16 15 14 13  
P1.0/TA0CLK/ACLK/A0  
P1.1/TA0.0/A1  
1
2
3
4
12 XIN/P2.6/TA0.1  
11 XOUT/P2.7  
P1.2/TA0.1/A2  
10 TEST/SBWTCK  
P1.3/ADC10CLK/A3/VREF-/VEREF-  
9
RST/NMI/SBWTDIO  
5
6 7 8  
NOTE: ADC10 pin functions are available only on MSP430G2x32.  
NOTE: The pulldown resistors of port pins P2.0, P2.1, P2.2, P2.3, P2.4, and P2.5 should be enabled by setting P2REN.x = 1.  
N OR PW PACKAGE  
(TOP VIEW)  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
DVCC  
DVSS  
P1.0/TA0CLK/ACLK/A0  
XIN/P2.6/TA0.1  
3
P1.1/TA0.0/A1  
XOUT/P2.7  
4
P1.2/TA0.1/A2  
TEST/SBWTCK  
5
P1.3/ADC10CLK/VREF-/VEREF-/A3  
RST/NMI/SBWTDIO  
6
P1.4/TA0.2/SMCLK/A4/VREF+/VEREF+/TCK  
P1.7/SDI/SDA/A7/TDO/TDI  
7
P1.6/TA0.1/SDO/SCL/A6/TDI/TCLK  
P1.5/TA0.0/A5/TMS  
8
P2.0  
P2.1  
P2.2  
P2.5  
P2.4  
P2.3  
9
10  
NOTE: ADC10 pin functions are available only on MSP430G2x32.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
Functional Block Diagram, MSP430G2x32  
XIN XOUT  
DVCC  
DVSS  
P1.x  
8
P2.x  
up to 8  
ACLK  
Port P2  
Port P1  
Flash  
RAM  
ADC  
Clock  
System  
SMCLK  
up to 8 I/O  
Interrupt  
8 I/O  
Interrupt  
8KB  
4KB  
2KB  
1KB  
256B  
256B  
256B  
128B  
10-Bit  
8 Ch.  
capability  
pullup/down  
resistors  
capability  
pullup/down  
resistors  
Autoscan  
1 ch DMA  
MCLK  
16MHz  
CPU  
MAB  
incl. 16  
Registers  
MDB  
Emulation  
2BP  
USI  
Watchdog Timer0_A3  
WDT+  
3 CC  
Brownout  
Protection  
Universal  
Serial  
JTAG  
Interface  
15-Bit  
Registers  
Interface  
SPI, I2C  
Spy-Bi  
Wire  
RST/NMI  
Note: Port P2. Two pins are available on the 14/16-pin package options. Eight pins are available on the 20-pin package options.  
Functional Block Diagram, MSP430G2x02  
XIN XOUT  
DVCC  
DVSS  
P1.x  
8
P2.x  
up to 8  
ACLK  
Port P2  
Port P1  
Flash  
RAM  
Clock  
System  
SMCLK  
up to 8 I/O  
Interrupt  
8 I/O  
Interrupt  
8KB  
4KB  
2KB  
1KB  
256B  
256B  
256B  
128B  
capability  
pull-up/down  
resistors  
capability  
pull-up/down  
resistors  
MCLK  
16MHz  
CPU  
MAB  
incl. 16  
Registers  
MDB  
Emulation  
2BP  
USI  
Watchdog Timer0_A3  
WDT+  
3 CC  
Brownout  
Protection  
Universal  
Serial  
JTAG  
Interface  
15-Bit  
Registers  
Interface  
SPI, I2C  
Spy-Bi  
Wire  
RST/NMI  
Note: Port P2. Two pins are available on the 14/16-pin package options. Eight pins are available on the 20-pin package options.  
4
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
Table 2. Terminal Functions  
TERMINAL  
14  
NO.  
16  
I/O  
DESCRIPTION  
NAME  
20  
N, PW RSA N, PW  
P1.0/  
General-purpose digital I/O pin  
TA0CLK/  
ACLK/  
A0  
Timer0_A, clock signal TACLK input  
ACLK signal output  
ADC10 analog input A0(1)  
2
1
2
I/O  
P1.1/  
General-purpose digital I/O pin  
TA0.0/  
A1  
3
4
2
3
3
4
I/O  
I/O  
Timer0_A, capture: CCI0A input, compare: Out0 output  
ADC10 analog input A1(1)  
P1.2/  
General-purpose digital I/O pin  
TA0.1/  
A2  
Timer0_A, capture: CCI1A input, compare: Out1 output  
ADC10 analog input A2(1)  
P1.3/  
General-purpose digital I/O pin  
ADC10CLK/  
A3/  
ADC10, conversion clock output(1)  
ADC10 analog input A3(1)  
ADC10 negative reference voltage(1)  
5
6
4
5
5
6
I/O  
I/O  
VREF-/VEREF  
P1.4/  
General-purpose digital I/O pin  
TA0.2/  
SMCLK/  
A4/  
Timer0_A, capture: CCI2A input, compare: Out2 output  
SMCLK signal output  
ADC10 analog input A4(1)  
VREF+/VEREF+/  
TCK  
ADC10 positive reference voltage(1)  
JTAG test clock, input terminal for device programming and test  
General-purpose digital I/O pin  
P1.5/  
TA0.0/  
A5/  
Timer0_A, compare: Out0 output  
ADC10 analog input A5(1)  
7
8
9
6
7
8
7
I/O  
I/O  
I/O  
SCLK/  
TMS  
USI: clk input in I2C mode; clk in/output in SPI mode  
JTAG test mode select, input terminal for device programming and test  
General-purpose digital I/O pin  
P1.6/  
TA0.1/  
A6/  
Timer0_A, compare: Out1 output  
ADC10 analog input A6(1)  
SDO/  
SCL/  
14  
15  
USI: Data output in SPI mode  
USI: I2C clock in I2C mode  
TDI/  
JTAG test data input or test clock input during programming and test  
TCLK  
P1.7/  
General-purpose digital I/O pin  
ADC10 analog input A7(1)  
A7/  
SDI/  
USI: Data input in SPI mode  
SDA/  
USI: I2C data in I2C mode  
TDO/TDI(2)  
JTAG test data output terminal or test data input during programming and test  
General-purpose digital I/O pin  
P2.0  
-
-
-
-
-
-
-
-
-
-
-
-
8
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P2.1  
9
General-purpose digital I/O pin  
P2.2  
10  
11  
12  
13  
General-purpose digital I/O pin  
P2.3  
General-purpose digital I/O pin  
P2.4  
General-purpose digital I/O pin  
P2.5  
General-purpose digital I/O pin  
(1) Available only on MSP430G2x32 devices.  
(2) TDO or TDI is selected via JTAG instruction.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
 
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 2. Terminal Functions (continued)  
TERMINAL  
14  
NO.  
16  
I/O  
DESCRIPTION  
NAME  
20  
N, PW RSA N, PW  
XIN/  
Input terminal of crystal oscillator  
General-purpose digital I/O pin  
Timer0_A, compare: Out1 output  
Output terminal of crystal oscillator(3)  
General-purpose digital I/O pin  
Reset  
P2.6/  
TA0.1  
XOUT/  
P2.7  
13  
12  
10  
12  
11  
9
19  
18  
16  
I/O  
I/O  
I
RST/  
NMI/  
Nonmaskable interrupt input  
SBWTDIO/  
TEST/  
Spy-Bi-Wire test data input/output during programming and test  
Selects test mode for JTAG pins on Port 1. The device protection fuse is  
connected to TEST.  
11  
10  
17  
I
SBWTCK  
DVCC  
AVCC  
DVSS  
AVSS  
Spy-Bi-Wire test clock input during programming and test  
1
NA  
14  
NA  
-
16  
15  
14  
13  
-
1
NA  
20  
NA  
-
NA  
NA  
NA  
NA  
NA  
NA  
Supply voltage  
Supply voltage  
Ground reference  
Ground reference  
NC  
Not connected  
QFN Pad  
-
Pad  
-
QFN package pad connection to VSS recommended.  
(3) If XOUT/P2.7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver connection  
to this pad after reset.  
6
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
SHORT-FORM DESCRIPTION  
CPU  
The MSP430CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions, are  
performed as register operations in conjunction with  
seven addressing modes for source operand and four  
addressing modes for destination operand.  
Program Counter  
Stack Pointer  
PC/R0  
SP/R1  
SR/CG1/R2  
CG2/R3  
R4  
Status Register  
The CPU is integrated with 16 registers that provide  
Constant Generator  
reduced  
instruction  
execution  
time.  
The  
register-to-register operation execution time is one  
cycle of the CPU clock.  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
R5  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register, and  
constant generator, respectively. The remaining  
registers are general-purpose registers.  
R6  
R7  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled with  
all instructions.  
R8  
R9  
The instruction set consists of the original 51  
instructions with three formats and seven address  
modes and additional instructions for the expanded  
address range. Each instruction can operate on word  
and byte data.  
R10  
R11  
R12  
R13  
Instruction Set  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 3 shows examples of the three types of  
instruction formats; Table 4 shows the address  
modes.  
R14  
R15  
Table 3. Instruction Word Formats  
FORMAT  
EXAMPLE  
ADD R4,R5  
CALL R8  
JNE  
OPERATION  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
R4 + R5 —> R5  
PC —>(TOS), R8—> PC  
Jump-on-equal bit = 0  
Table 4. Address Mode Descriptions(1)  
ADDRESS MODE  
Register  
S
D
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
R10 – –> R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV &MEM,&TCDAT  
MOV @Rn,Y(Rm)  
M(2+R5) – –> M(6+R6)  
M(EDE) – –> M(TONI)  
M(MEM) – –> M(TCDAT)  
M(R10) – –> M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
Indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
M(R10) – –> R11  
R10 + 2 – –> R10  
Indirect autoincrement  
Immediate  
MOV @Rn+,Rm  
MOV #X,TONI  
#45 – –> M(TONI)  
(1) S = source, D = destination  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
 
 
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
Operating Modes  
The MSP430 devices have one active mode and five software selectable low-power modes of operation. An  
interrupt event can wake up the device from any of the low-power modes, service the request, and restore back  
to the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
Active mode (AM)  
All clocks are active  
Low-power mode 0 (LPM0)  
CPU is disabled  
ACLK and SMCLK remain active, MCLK is disabled  
Low-power mode 1 (LPM1)  
CPU is disabled  
ACLK and SMCLK remain active, MCLK is disabled  
DCO's dc generator is disabled if DCO not used in active mode  
Low-power mode 2 (LPM2)  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO's dc generator remains enabled  
ACLK remains active  
Low-power mode 3 (LPM3)  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO's dc generator is disabled  
ACLK remains active  
Low-power mode 4 (LPM4)  
CPU is disabled  
ACLK is disabled  
MCLK and SMCLK are disabled  
DCO's dc generator is disabled  
Crystal oscillator is stopped  
8
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
Interrupt Vector Addresses  
The interrupt vectors and the power-up starting address are located in the address range 0FFFFh to 0FFC0h.  
The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.  
If the reset vector (located at address 0FFFEh) contains 0FFFFh (for example, if flash is not programmed) the  
CPU goes into LPM4 immediately after power-up.  
Table 5. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
Power-Up  
External Reset  
Watchdog Timer+  
Flash key violation  
PC out-of-range(1)  
PORIFG  
RSTIFG  
WDTIFG  
KEYV(2)  
Reset  
0FFFEh  
31, highest  
NMI  
Oscillator fault  
Flash memory access violation  
NMIIFG  
OFIFG  
(non)-maskable  
(non)-maskable  
(non)-maskable  
0FFFCh  
30  
ACCVIFG(2)(3)  
0FFFAh  
0FFF8h  
0FFF6h  
0FFF4h  
0FFF2h  
29  
28  
27  
26  
25  
Watchdog Timer+  
Timer0_A3  
WDTIFG  
TACCR0 CCIFG(4)  
maskable  
maskable  
Timer0_A3  
TACCR2 TACCR1 CCIFG.  
TAIFGTable 3(4)  
maskable  
0FFF0h  
24  
0FFEEh  
0FFECh  
0FFEAh  
0FFE8h  
0FFE6h  
0FFE4h  
0FFE2h  
0FFE0h  
23  
22  
21  
20  
19  
18  
17  
16  
ADC10(5)  
USI  
ADC10IFG(4)(5)  
maskable  
maskable  
maskable  
maskable  
USIIFG, USISTTIFG(2)(4)  
P2IFG.0 to P2IFG.7(2)(4)  
P1IFG.0 to P1IFG.7(2)(4)  
I/O Port P2 (up to eight flags)  
I/O Port P1 (up to eight flags)  
(6)  
See  
0FFDEh to  
0FFC0h  
15 to 0, lowest  
(1) A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from  
within unused address ranges.  
(2) Multiple source flags  
(3) (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.  
(4) Interrupt flags are located in the module.  
(5) MSP430G2x32 only  
(6) The interrupt vectors at addresses 0FFDEh to 0FFC0h are not used in this device and can be used for regular program code if  
necessary.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
Special Function Registers (SFRs)  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
not allocated to a functional purpose are not physically present in the device. Simple software access is provided  
with this arrangement.  
Legend  
rw:  
Bit can be read and written.  
rw-0,1:  
rw-(0,1):  
Bit can be read and written. It is reset or set by PUC.  
Bit can be read and written. It is reset or set by POR.  
SFR bit is not present in device.  
Table 6. Interrupt Enable Register 1 and 2  
Address  
00h  
7
6
5
4
3
2
1
0
ACCVIE  
rw-0  
NMIIE  
rw-0  
OFIE  
rw-0  
WDTIE  
rw-0  
WDTIE  
Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer is configured in  
interval timer mode.  
OFIE  
Oscillator fault interrupt enable  
(Non)maskable interrupt enable  
Flash access violation interrupt enable  
NMIIE  
ACCVIE  
Address  
7
6
5
4
3
2
1
0
01h  
Table 7. Interrupt Flag Register 1 and 2  
Address  
02h  
7
6
5
4
3
2
1
0
NMIIFG  
rw-0  
RSTIFG  
rw-(0)  
PORIFG  
rw-(1)  
OFIFG  
rw-1  
WDTIFG  
rw-(0)  
WDTIFG  
Set on watchdog timer overflow (in watchdog mode) or security key violation.  
Reset on VCC power-on or a reset condition at the RST/NMI pin in reset mode.  
OFIFG  
Flag set on oscillator fault.  
PORIFG  
RSTIFG  
NMIIFG  
Power-On Reset interrupt flag. Set on VCC power-up.  
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power-up.  
Set via RST/NMI pin  
Address  
03h  
7
6
5
4
3
2
1
0
10  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
Memory Organization  
Table 8. Memory Organization  
MSP430G2102  
MSP430G2132  
MSP430G2202  
MSP430G2232  
MSP430G2302  
MSP430G2332  
MSP430G2402  
MSP430G2432  
Memory  
Size  
Flash  
Flash  
Size  
1kB  
2kB  
4kB  
8kB  
Main: interrupt vector  
Main: code memory  
Information memory  
0xFFFF to 0xFFC0  
0xFFFF to 0xFC00  
256 Byte  
0xFFFF to 0xFFC0  
0xFFFF to 0xF800  
256 Byte  
0xFFFF to 0xFFC0  
0xFFFF to 0xF000  
256 Byte  
0xFFFF to 0xFFC0  
0xFFFF to 0xE000  
256 Byte  
Flash  
Size  
010FFh to 01000h  
128 B  
010FFh to 01000h  
256 B  
010FFh to 01000h  
256 B  
010FFh to 01000h  
256 B  
RAM  
0x027F to 0x0200  
01FFh to 0100h  
0FFh to 010h  
0Fh to 00h  
0x02FF to 0x0200  
01FFh to 0100h  
0FFh to 010h  
0Fh to 00h  
0x02FF to 0x0200  
01FFh to 0100h  
0FFh to 010h  
0Fh to 00h  
0x02FF to 0x0200  
01FFh to 0100h  
0FFh to 010h  
0Fh to 00h  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
Flash Memory  
The flash memory can be programmed via the Spy-Bi-Wire/JTAG port or in-system by the CPU. The CPU can  
perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
64 bytes each. Each segment in main memory is 512 bytes in size.  
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually or as a group with segments 0 to n. Segments A to D are also  
called information memory.  
Segment A contains calibration data. After reset, segment A is protected against programming and erasing. It  
can be unlocked, but care should be taken not to erase this segment if the device-specific calibration data is  
required.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
Peripherals  
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all  
instructions. For complete module descriptions, see the MSP430x2xx Family User's Guide (SLAU144).  
Oscillator and System Clock  
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal  
oscillator, an internal very-low-power low-frequency oscillator and an internal digitally controlled oscillator (DCO).  
The basic clock module is designed to meet the requirements of both low system cost and low power  
consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic  
clock module provides the following clock signals:  
Auxiliary clock (ACLK), sourced either from a 32768-Hz watch crystal or the internal LF oscillator.  
Main clock (MCLK), the system clock used by the CPU.  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.  
The DCO settings to calibrate the DCO output frequency are stored in the information memory segment A.  
Calibration Data Stored in Information Memory Segment A  
Calibration data is stored for both the DCO and for ADC10 organized in a tag-length-value structure.  
Table 9. Tags Used by the ADC Calibration Tags  
NAME  
ADDRESS  
0x10F6  
0x10DA  
-
VALUE  
0x01  
DESCRIPTION  
DCO frequency calibration at VCC = 3 V and TA = 30°C at calibration  
ADC10_1 calibration tag  
TAG_DCO_30  
TAG_ADC10_1  
TAG_EMPTY  
0x08  
0xFE  
Identifier for empty memory areas  
Table 10. Labels Used by the ADC Calibration Tags  
LABEL  
CONDITION AT CALIBRATION / DESCRIPTION  
SIZE  
word  
word  
word  
word  
word  
word  
word  
word  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
ADDRESS OFFSET  
0x0010  
CAL_ADC_25T85  
CAL_ADC_25T30  
INCHx = 0x1010, REF2_5 = 1, TA = 85°C  
INCHx = 0x1010, REF2_5 = 1, TA = 30°C  
0x000E  
0x000C  
0x000A  
0x0008  
CAL_ADC_25VREF_FACTOR  
CAL_ADC_15T85  
REF2_5 = 1, TA = 30°C, I(VREF+) = 1 mA  
INCHx = 0x1010, REF2_5 = 0, TA = 85°C  
CAL_ADC_15T30  
INCHx = 0x1010, REF2_5 = 0, TA = 30°C  
CAL_ADC_15VREF_FACTOR  
CAL_ADC_OFFSET  
CAL_ADC_GAIN_FACTOR  
CAL_BC1_1MHz  
REF2_5 = 0, TA = 30°C, I(VREF+) = 0.5 mA  
0x0006  
External VREF = 1.5 V, f(ADC10CLK) = 5 MHz  
0x0004  
External VREF = 1.5 V, f(ADC10CLK) = 5 MHz  
0x0002  
-
-
-
-
-
-
-
-
0x0009  
CAL_DCO_1MHz  
0x00008  
0x0007  
CAL_BC1_8MHz  
CAL_DCO_8MHz  
0x0006  
CAL_BC1_12MHz  
0x0005  
CAL_DCO_12MHz  
CAL_BC1_16MHz  
0x0004  
0x0003  
CAL_DCO_16MHz  
0x0002  
12  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
Main DCO Characteristics  
All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14  
overlaps RSELx = 15.  
DCO control bits DCOx have a step size as defined by parameter SDCO.  
Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK  
cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal to:  
32 × f  
× f  
DCO(RSEL,DCO+1)  
DCO(RSEL,DCO)  
f
=
average  
MOD × f  
+ (32 – MOD) × f  
DCO(RSEL,DCO+1)  
DCO(RSEL,DCO)  
Brownout  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and  
power off.  
Digital I/O  
There are two 8-bit I/O ports implemented:  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt condition(port P1 and port P2 only) is possible.  
Edge-selectable interrupt input capability for all the eight bits of port P1 and port P2, if available.  
Read/write access to port-control registers is supported by all instructions.  
Each I/O has an individually programmable pullup/pulldown resistor.  
Each I/O has an individually programmable pin-oscillator enable bit to enable low-cost touch sensing.  
WDT+ Watchdog Timer  
The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a  
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog  
function is not needed in an application, the module can be disabled or configured as an interval timer and can  
generate interrupts at selected time intervals.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
Timer0_A3  
Timer0_A3 is a 16-bit timer/counter with three capture/compare registers. Timer0_A3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer0_A3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Table 11. Timer0_A3 Signal Connections(1)  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
NAME  
MODULE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
N20, PW20  
PW14  
RSA16  
N20, PW20  
PW14  
RSA16  
P1.0-2  
P1.0-2  
P1.0-1  
TACLK  
ACLK  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
NA  
SMCLK  
PinOsc  
P1.1-3  
PinOsc  
P1.1-3  
PinOsc  
P1.1-2  
TA0.0  
ACLK  
VSS  
P1.2-4  
P1.5-7  
P1.1-3  
P1.5-7  
P1.1-2  
P1.5-6  
CCR0  
CCR1  
CCR2  
TA0  
TA1  
TA2  
VCC  
VCC  
P1.2-4  
P1.2-4  
P1.2-3  
TA0.1  
VSS  
CCI1A  
GND  
P1.2-4  
P1.2-4  
P1.2-3  
P2.6-19  
P2.6-12  
P2.6-12  
VCC  
VCC  
P1.4-6  
PinOsc  
P1.4-6  
PinOsc  
P1.4-5  
PinOsc  
TA0.2  
TA0.2  
VSS  
CCI2A  
CCI2B  
GND  
P1.4-6  
P1.4-6  
P1.4-5  
VCC  
VCC  
(1) Only one pin-oscillator must be enabled at a time.  
USI  
The universal serial interface (USI) module is used for serial data communication and provides the basic  
hardware for synchronous communication protocols like SPI and I2C.  
ADC10 (MSP430G2x32 only)  
The ADC10 module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR  
core, sample select control, reference generator and data transfer controller, or DTC, for automatic conversion  
result handling, allowing ADC samples to be converted and stored without any CPU intervention.  
14  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
 
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
Peripheral File Map  
Table 12. Peripherals With Word Access  
REGISTER  
NAME  
MODULE  
REGISTER DESCRIPTION  
OFFSET  
01BCh  
ADC10 (MSP430G2x32 devices only) ADC data transfer start address  
ADC10SA  
ADC memory  
ADC10MEM  
ADC10CTL1  
ADC10CTL0  
TACCR2  
TACCR1  
TACCR0  
TAR  
01B4h  
01B2h  
01B0h  
0176h  
0174h  
0172h  
0170h  
0166h  
0164h  
0162h  
0160h  
012Eh  
012Ch  
012Ah  
0128h  
0120h  
ADC control register 1  
ADC control register 0  
Timer0_A3  
Capture/compare register  
Capture/compare register  
Capture/compare register  
Timer_A register  
Capture/compare control  
Capture/compare control  
Capture/compare control  
Timer_A control  
TACCTL2  
TACCTL1  
TACCTL0  
TACTL  
Timer_A interrupt vector  
Flash control 3  
TAIV  
Flash Memory  
FCTL3  
Flash control 2  
FCTL2  
Flash control 1  
FCTL1  
Watchdog Timer+  
Watchdog/timer control  
WDTCTL  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 13. Peripherals With Byte Access  
REGISTER  
NAME  
MODULE  
REGISTER DESCRIPTION  
OFFSET  
04Ah  
ADC10 (MSP430G2x32 devices only) Analog enable 0  
ADC10AE0  
ADC data transfer control register 1  
ADC10DTC1  
ADC10DTC0  
USICTL0  
USICTL1  
USICKCTL  
USICNT  
USISR  
BCSCTL3  
BCSCTL2  
BCSCTL1  
DCOCTL  
P2SEL2  
P2REN  
P2SEL  
P2IE  
049h  
048h  
078h  
079h  
07Ah  
07Bh  
07Ch  
053h  
058h  
057h  
056h  
042h  
02Fh  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
041h  
027h  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
003h  
002h  
001h  
000h  
ADC data transfer control register 0  
USI control 0  
USI  
USI control 1  
USI clock control  
USI bit counter  
USI shift register  
Basic Clock System+  
Basic clock system control 3  
Basic clock system control 2  
Basic clock system control 1  
DCO clock frequency control  
Port P2 selection 2  
Port P2 resistor enable  
Port P2 selection  
Port P2  
Port P2 interrupt enable  
Port P2 interrupt edge select  
Port P2 interrupt flag  
Port P2 direction  
P2IES  
P2IFG  
P2DIR  
Port P2 output  
P2OUT  
P2IN  
Port P2 input  
Port P1  
Port P1 selection 2  
Port P1 resistor enable  
Port P1 selection  
P1SEL2  
P1REN  
P1SEL  
P1IE  
Port P1 interrupt enable  
Port P1 interrupt edge select  
Port P1 interrupt flag  
Port P1 direction  
P1IES  
P1IFG  
P1DIR  
Port P1 output  
P1OUT  
P1IN  
Port P1 input  
Special Function  
SFR interrupt flag 2  
SFR interrupt flag 1  
SFR interrupt enable 2  
SFR interrupt enable 1  
IFG2  
IFG1  
IE2  
IE1  
16  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
Absolute Maximum Ratings(1)  
Voltage applied at VCC to VSS  
Voltage applied to any pin(2)  
0.3 V to 4.1 V  
0.3 V to VCC + 0.3 V  
±2 mA  
Diode current at any device pin  
Unprogrammed device  
Programmed device  
55°C to 150°C  
40°C to 85°C  
(3)  
Storage temperature range, Tstg  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is  
applied to the TEST pin when blowing the JTAG fuse.  
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
Recommended Operating Conditions  
MIN NOM  
MAX UNIT  
During program execution  
1.8  
2.2  
0
3.6  
V
VCC  
Supply voltage  
During flash programming/erase  
3.6  
VSS  
TA  
Supply voltage  
V
Operating free-air temperature  
40  
85  
6
°C  
VCC = 1.8 V,  
Duty cycle = 50% ± 10%  
dc  
dc  
dc  
Processor frequency (maximum MCLK frequency VCC = 2.7 V,  
using the USART module)(1)(2)  
Duty cycle = 50% ± 10%  
fSYSTEM  
12 MHz  
16  
VCC = 3.3 V,  
Duty cycle = 50% ± 10%  
(1) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the  
specified maximum frequency.  
(2) Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
Legend:  
16 MHz  
Supply voltage range,  
during flash memory  
programming  
12 MHz  
Supply voltage range,  
during program execution  
6 MHz  
3.3 V 3.6 V  
2.7 V  
Supply Voltage - V  
1.8 V  
2.2 V  
Note: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC  
of 2.2 V.  
Figure 1. Safe Operating Area  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
Electrical Characteristics  
Active Mode Supply Current Into VCC Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)(2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fDCO = fMCLK = fSMCLK = 1 MHz,  
fACLK = 32768 Hz,  
2.2 V  
220  
Program executes in flash,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
Active mode (AM)  
current (1 MHz)  
IAM,1MHz  
µA  
3 V  
320  
400  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance is chosen to closely match the required 9 pF.  
Typical Characteristics Active Mode Supply Current (Into VCC)  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
4.0  
3.0  
2.0  
1.0  
0.0  
f
= 16 MHz  
DCO  
T
= 85 °C  
= 25 °C  
A
T
A
V
= 3 V  
CC  
f
= 12 MHz  
DCO  
T
= 85 °C  
= 25 °C  
A
T
A
f
= 8 MHz  
DCO  
2.0  
f
= 1 MHz  
V
CC  
= 2.2 V  
DCO  
1.5  
2.5  
3.0  
3.5  
4.0  
0.0  
4.0  
8.0  
12.0  
16.0  
V
CC  
− Supply Voltage − V  
f
DCO  
− DCO Frequency − MHz  
Figure 2. Active Mode Current vs VCC, TA = 25°C  
Figure 3. Active Mode Current vs DCO Frequency  
18  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
Low-Power Mode Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(2)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
fMCLK = 0 MHz,  
fSMCLK = fDCO = 1 MHz,  
fACLK = 32768 Hz,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 1, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
Low-power mode 0  
(LPM0) current(3)  
ILPM0,1MHz  
25°C  
2.2 V  
55  
µA  
fMCLK = fSMCLK = 0 MHz,  
fDCO = 1 MHz,  
fACLK = 32768 Hz,  
Low-power mode 2  
(LPM2) current(4)  
ILPM2  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 1, SCG0 = 0, SCG1 = 1,  
OSCOFF = 0  
25°C  
2.2 V  
22  
µA  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK = 32768 Hz,  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
Low-power mode 3  
(LPM3) current(4)  
ILPM3,LFXT1  
ILPM3,VLO  
ILPM4  
25°C  
25°C  
2.2 V  
2.2 V  
0.7  
0.5  
1.0  
0.7  
µA  
µA  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK from internal LF oscillator (VLO),  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
Low-power mode 3  
current, (LPM3)(4)  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK = 0 Hz,  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 1  
25°C  
85°C  
2.2 V  
2.2 V  
0.1  
0.8  
0.5  
1.5  
µA  
µA  
Low-power mode 4  
(LPM4) current(5)  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF.  
(3) Current for brownout and WDT clocked by SMCLK included.  
(4) Current for brownout and WDT clocked by ACLK included.  
(5) Current for brownout included.  
Typical Characteristics Low-Power Mode Supply Currents  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
2.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VCC = 3.6 V  
VCC = 3.6 V  
VCC = 3 V  
VCC = 3 V  
VCC = 2.2 V  
VCC = 2.2 V  
VCC = 1.8 V  
VCC = 1.8 V  
−40.0 −20.0 0.0 20.0 40.0 60.0 80.0 100.0 120.0  
Temperature −  
−40.0 −20.0 0.0 20.0 40.0 60.0 80.0 100.0 120.0  
T
C
A
T
A
Temperature − °C  
Figure 4. LPM3 Current vs Temperature  
Figure 5. LPM4 Current vs Temperature  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
MAX UNIT  
Schmitt-Trigger Inputs Ports Px(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.45 VCC  
1.35  
TYP  
0.75 VCC  
VIT+  
Positive-going input threshold voltage  
V
V
3 V  
2.25  
0.55 VCC  
1.65  
0.25 VCC  
0.75  
VIT–  
Negative-going input threshold voltage  
3 V  
3 V  
Vhys  
RPull  
CI  
Input voltage hysteresis (VIT+ VIT–  
Pullup/pulldown resistor  
Input capacitance  
)
0.3  
1
V
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
3 V  
20  
35  
5
50  
kΩ  
pF  
VIN = VSS or VCC  
(1) An external signal sets the interrupt flag every time the minimum interrupt pulse width t(int) is met. It may be set even with trigger signals  
shorter than t(int)  
.
Leakage Current Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
±50 nA  
(1) (2)  
Ilkg(Px.x)  
High-impedance leakage current  
3 V  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input, and the pullup/pulldown resistor is  
disabled.  
Outputs Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = 6 mA(1)  
I(OLmax) = 6 mA(1)  
VCC  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
V
CC 0.3  
V
V
VSS + 0.3  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
Output Frequency Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Px.y, CL = 20 pF, RL = 1 kΩ(1) (2)  
Px.y, CL = 20 pF(2)  
VCC  
3 V  
3 V  
MIN  
TYP  
12  
MAX UNIT  
MHz  
fPx.y  
Port output frequency (with load)  
Clock output frequency  
fPort_CLK  
16  
MHz  
(1) A resistive divider with two 0.5-kΩ resistors between VCC and VSS is used as load. The output is connected to the center tap of the  
divider.  
(2) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
20  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
Typical Characteristics Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
V
= 2.2 V  
V
= 3 V  
CC  
CC  
T
= 25°C  
= 85°C  
A
T
= 25°C  
= 85°C  
P1.7  
A
P1.7  
T
A
T
A
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output Voltage − V  
Figure 6.  
Figure 7.  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
0.0  
−5.0  
0.0  
−10.0  
−20.0  
−30.0  
−40.0  
−50.0  
V
= 2.2 V  
V
= 3 V  
CC  
CC  
P1.7  
P1.7  
−10.0  
−15.0  
−20.0  
−25.0  
T
A
= 85°C  
T
= 85°C  
A
T
A
= 25°C  
0.5  
T
= 25°C  
0.5  
A
0.0  
1.0  
1.5  
2.0  
2.5  
0.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OH  
− High-Level Output Voltage − V  
V
OH  
− High-Level Output Voltage − V  
Figure 8.  
Figure 9.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
Pin-Oscillator Frequency Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
1400  
900  
MAX UNIT  
P1.y, CL = 10 pF, RL = 100 kΩ(1)(2)  
P1.y, CL = 20 pF, RL = 100 kΩ(1)(2)  
P2.0 to P2.5, CL = 10 pF, RL = 100 kΩ(1)(2)  
P2.0 to P2.5, CL = 20 pF, RL = 100 kΩ(1)(2)  
foP1.x  
Port output oscillation frequency  
3 V  
kHz  
1800  
1000  
foP2.x  
Port output oscillation frequency  
Port output oscillation frequency  
3 V  
3 V  
kHz  
kHz  
P2.6 and P2.7, CL = 20 pF, RL = 100  
foP2.6/7  
700  
kΩ(1)(2)  
(1) A resistive divider with two 100-kΩ resistors between VCC and VSS is used as load. The output is connected to the center tap of the  
divider.  
(2) The output voltage oscillates with a typical amplitude of 700 mV at the specified toggle frequency.  
Typical Characteristics Pin-Oscillator Frequency  
TYPICAL OSCILLATING FREQUENCY  
vs  
LOAD CAPACITANCE  
TYPICAL OSCILLATING FREQUENCY  
vs  
LOAD CAPACITANCE  
1.50  
1.35  
1.20  
1.05  
0.90  
0.75  
0.60  
0.45  
0.30  
0.15  
0.00  
1.50  
1.35  
1.20  
1.05  
0.90  
0.75  
0.60  
0.45  
0.30  
0.15  
0.00  
V
CC  
= 2.2 V  
V
CC  
= 3.0 V  
P1.y  
P1.y  
P2.0 ... P2.5  
P2.6, P2.7  
P2.0 ... P2.5  
P2.6, P2.7  
10  
50  
100  
10  
50  
100  
C
LOAD  
− External Capacitance − pF  
C
LOAD  
− External Capacitance − pF  
Figure 10.  
Figure 11.  
22  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
POR/Brownout Reset (BOR)(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
See Figure 12  
TEST CONDITIONS  
dVCC/dt 3 V/s  
VCC  
MIN  
TYP  
MAX UNIT  
VCC(start)  
V(B_IT)  
Vhys(B_IT)  
td(BOR)  
0.7 × V(B_IT)  
1.40  
V
V
See Figure 12 through Figure 14  
See Figure 12  
dVCC/dt 3 V/s  
dVCC/dt 3 V/s  
140  
mV  
See Figure 12  
2000  
µs  
Pulse length needed at RST/NMI pin to  
accepted reset internally  
t(reset)  
2.2 V  
2
µs  
(1) The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT)  
+
Vhys(B_IT)is 1.8 V.  
V
CC  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 12. POR/Brownout Reset (BOR) vs Supply Voltage  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
 
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
Typical Characteristics POR/Brownout Reset (BOR)  
V
t
CC  
pw  
2
3 V  
V
= 3 V  
Typical Conditions  
CC  
1.5  
1
V
CC(drop)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
− Pulse Width − µs  
t
− Pulse Width − µs  
t
pw  
pw  
Figure 13. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
V
t
CC  
pw  
2
1.5  
1
3 V  
V
= 3 V  
CC  
Typical Conditions  
V
CC(drop)  
0.5  
t = t  
f
r
0
0.001  
1
1000  
t
t
r
f
t
− Pulse Width − µs  
t
− Pulse Width − µs  
pw  
pw  
Figure 14. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
24  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
DCO Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1.8  
2.2  
3
TYP  
MAX UNIT  
RSELx < 14  
RSELx = 14  
RSELx = 15  
3.6  
3.6  
3.6  
V
V
V
VCC  
Supply voltage  
fDCO(0,0)  
fDCO(0,3)  
fDCO(1,3)  
fDCO(2,3)  
fDCO(3,3)  
fDCO(4,3)  
fDCO(5,3)  
fDCO(6,3)  
fDCO(7,3)  
fDCO(8,3)  
fDCO(9,3)  
fDCO(10,3)  
fDCO(11,3)  
fDCO(12,3)  
fDCO(13,3)  
fDCO(14,3)  
fDCO(15,3)  
fDCO(15,7)  
DCO frequency (0, 0)  
DCO frequency (0, 3)  
DCO frequency (1, 3)  
DCO frequency (2, 3)  
DCO frequency (3, 3)  
DCO frequency (4, 3)  
DCO frequency (5, 3)  
DCO frequency (6, 3)  
DCO frequency (7, 3)  
DCO frequency (8, 3)  
DCO frequency (9, 3)  
DCO frequency (10, 3)  
DCO frequency (11, 3)  
DCO frequency (12, 3)  
DCO frequency (13, 3)  
DCO frequency (14, 3)  
DCO frequency (15, 3)  
DCO frequency (15, 7)  
RSELx = 0, DCOx = 0, MODx = 0  
RSELx = 0, DCOx = 3, MODx = 0  
RSELx = 1, DCOx = 3, MODx = 0  
RSELx = 2, DCOx = 3, MODx = 0  
RSELx = 3, DCOx = 3, MODx = 0  
RSELx = 4, DCOx = 3, MODx = 0  
RSELx = 5, DCOx = 3, MODx = 0  
RSELx = 6, DCOx = 3, MODx = 0  
RSELx = 7, DCOx = 3, MODx = 0  
RSELx = 8, DCOx = 3, MODx = 0  
RSELx = 9, DCOx = 3, MODx = 0  
RSELx = 10, DCOx = 3, MODx = 0  
RSELx = 11, DCOx = 3, MODx = 0  
RSELx = 12, DCOx = 3, MODx = 0  
RSELx = 13, DCOx = 3, MODx = 0  
RSELx = 14, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 7, MODx = 0  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
0.06  
0.07  
0.14 MHz  
0.17 MHz  
MHz  
0.15  
0.21  
0.30  
0.41  
0.58  
MHz  
MHz  
MHz  
MHz  
0.54  
0.80  
1.06 MHz  
1.50 MHz  
MHz  
1.6  
2.3  
MHz  
3.4  
MHz  
4.25  
MHz  
4.30  
6.00  
8.60  
12.0  
16.0  
7.30 MHz  
9.60 MHz  
13.9 MHz  
18.5 MHz  
26.0 MHz  
Frequency step between  
range RSEL and RSEL+1  
SRSEL  
SRSEL = fDCO(RSEL+1,DCO)/fDCO(RSEL,DCO)  
3 V  
1.35  
ratio  
Frequency step between  
tap DCO and DCO+1  
SDCO  
SDCO = fDCO(RSEL,DCO+1)/fDCO(RSEL,DCO)  
Measured at SMCLK output  
3 V  
3 V  
1.08  
50  
ratio  
%
Duty cycle  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
MAX UNIT  
Calibrated DCO Frequencies Tolerance  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
BCSCTL1= CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
calibrated at 30°C and 3 V  
1-MHz tolerance over  
temperature(1)  
0°C to 85°C  
3 V  
-3  
±0.5  
+3  
+3  
+6  
+3  
+3  
+6  
+3  
+3  
+6  
+3  
+3  
+6  
%
%
%
%
%
%
%
%
%
%
%
%
BCSCTL1= CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
calibrated at 30°C and 3 V  
1-MHz tolerance over VCC  
1-MHz tolerance overall  
30°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
3 V  
-3  
-6  
-3  
-3  
-6  
-3  
-3  
-6  
-3  
-3  
-6  
±2  
±3  
BCSCTL1= CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
calibrated at 30°C and 3 V  
-40°C to 85°C  
0°C to 85°C  
30°C  
BCSCTL1= CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
calibrated at 30°C and 3 V  
8-MHz tolerance over  
temperature(1)  
±0.5  
±2  
BCSCTL1= CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
calibrated at 30°C and 3 V  
8-MHz tolerance over VCC  
8-MHz tolerance overall  
2.2 V to 3.6 V  
2.2 V to 3.6 V  
3 V  
BCSCTL1= CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
calibrated at 30°C and 3 V  
-40°C to 85°C  
0°C to 85°C  
30°C  
±3  
BCSCTL1= CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
calibrated at 30°C and 3 V  
12-MHz tolerance over  
temperature(1)  
±0.5  
±2  
BCSCTL1= CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
calibrated at 30°C and 3 V  
12-MHz tolerance over VCC  
12-MHz tolerance overall  
2.7 V to 3.6 V  
2.7 V to 3.6 V  
3.3 V  
BCSCTL1= CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
calibrated at 30°C and 3 V  
-40°C to 85°C  
0°C to 85°C  
30°C  
±3  
BCSCTL1= CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
calibrated at 30°C and 3 V  
16-MHz tolerance over  
temperature(1)  
±0.5  
±2  
BCSCTL1= CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
calibrated at 30°C and 3 V  
16-MHz tolerance over VCC  
16-MHz tolerance overall  
3.3 V to 3.6 V  
3.3 V to 3.6 V  
BCSCTL1= CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
calibrated at 30°C and 3 V  
-40°C to 85°C  
±3  
(1) This is the frequency change from the measured frequency at 30°C over temperature.  
26  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
Wake-Up From Lower-Power Modes (LPM3/4)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
DCO clock wake-up time from  
LPM3/4(1)  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ  
tDCO,LPM3/4  
tCPU,LPM3/4  
3 V  
1.5  
µs  
1/fMCLK  
+
CPU wake-up time from LPM3/4(2)  
tClock,LPM3/4  
(1) The DCO clock wake-up time is measured from the edge of an external wake-up signal (for example, a port interrupt) to the first clock  
edge observable externally on a clock pin (MCLK or SMCLK).  
(2) Parameter applicable only if DCOCLK is used for MCLK.  
Typical Characteristics DCO Clock Wake-Up Time From LPM3/4  
10.00  
RSELx = 0...11  
RSELx = 12...15  
1.00  
0.10  
0.10  
1.00  
DCO Frequency − MHz  
Figure 15. DCO Wake-Up Time From LPM3 vs DCO Frequency  
10.00  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
Crystal Oscillator, XT1, Low-Frequency Mode(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
LFXT1 oscillator crystal  
frequency, LF mode 0, 1  
fLFXT1,LF  
XTS = 0, LFXT1Sx = 0 or 1  
1.8 V to 3.6 V  
32768  
Hz  
LFXT1 oscillator logic level  
fLFXT1,LF,logic  
square wave input frequency, XTS = 0, XCAPx = 0, LFXT1Sx = 3  
LF mode  
1.8 V to 3.6 V 10000  
32768 50000  
Hz  
XTS = 0, LFXT1Sx = 0,  
fLFXT1,LF = 32768 Hz, CL,eff = 6 pF  
500  
200  
Oscillation allowance for  
LF crystals  
OALF  
kΩ  
XTS = 0, LFXT1Sx = 0,  
fLFXT1,LF = 32768 Hz, CL,eff = 12 pF  
XTS = 0, XCAPx = 0  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
1
5.5  
8.5  
11  
Integrated effective load  
capacitance, LF mode(2)  
CL,eff  
pF  
XTS = 0, Measured at P2.0/ACLK,  
fLFXT1,LF = 32768 Hz  
Duty cycle  
fFault,LF  
LF mode  
2.2 V  
2.2 V  
30  
10  
50  
70  
%
Oscillator fault frequency,  
LF mode(3)  
XTS = 0, XCAPx = 0, LFXT1Sx = 3(4)  
10000  
Hz  
(1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.  
(a) Keep the trace between the device and the crystal as short as possible.  
(b) Design a good ground plane around the oscillator pins.  
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
(g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This  
signal is no longer required for the serial programming adapter.  
(2) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup, the effective load capacitance should always match the specification of the used crystal.  
(3) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies in between might set the flag.  
(4) Measured with logic-level input frequency but also applies to operation with crystals.  
Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
TA  
VCC  
3 V  
MIN  
TYP  
12  
MAX UNIT  
20 kHz  
%/°C  
fVLO  
-40°C to 85°C  
-40°C to 85°C  
25°C  
4
dfVLO/dT  
dfVLO/dVCC  
VLO frequency temperature drift  
VLO frequency supply voltage drift  
3 V  
0.5  
4
1.8 V to 3.6 V  
%/V  
Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
SMCLK  
Duty cycle = 50% ± 10%  
fTA  
Timer_A input clock frequency  
Timer_A capture timing  
fSYSTEM  
MHz  
ns  
tTA,cap  
TA0, TA1  
3 V  
20  
28  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
USI, Universal Serial Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
External: SCLK,  
Duty cycle = 50% ± 10%  
fUSI  
USI module clock frequency  
fSYSTEM  
MHz  
f(SCLK)  
VOL,I2C  
Serial clock frequency, slave mode  
Low-level output voltage on SDA and SCL  
SPI slave mode  
3 V  
3 V  
6
MHz  
V
USI module in I2C mode,  
I(OLmax) = 1.5 mA  
VSS  
+ 0.4  
VSS  
Typical Characteristics USI Low-Level Output Voltage on SDA and SCL  
5.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
V
CC  
= 2.2 V  
V
CC  
= 3 V  
T
= 25°C  
A
4.0  
3.0  
2.0  
1.0  
0.0  
T
= 25°C  
A
T
= 85°C  
A
T
= 85°C  
A
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output Voltage − V  
Figure 16. USI Low-Level Output Voltage vs Output  
Current  
Figure 17. USI Low-Level Output Voltage vs Output  
Current  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
MAX UNIT  
10-Bit ADC, Power Supply and Input Range Conditions (MSP430G2x32 Only)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VSS = 0 V  
TA  
VCC  
3 V  
3 V  
MIN  
TYP  
VCC  
VAx  
Analog supply voltage  
2.2  
3.6  
V
V
All Ax terminals, Analog inputs  
selected in ADC10AE register  
Analog input voltage(2)  
ADC10 supply current(3)  
0
VCC  
fADC10CLK = 5.0 MHz,  
ADC10ON = 1, REFON = 0,  
ADC10SHT0 = 1, ADC10SHT1 = 0,  
ADC10DIV = 0  
IADC10  
25°C  
25°C  
0.6  
mA  
mA  
fADC10CLK = 5.0 MHz,  
ADC10ON = 0, REF2_5V = 0,  
REFON = 1, REFOUT = 0  
0.25  
0.25  
Reference supply current,  
reference buffer disabled(4)  
IREF+  
3 V  
fADC10CLK = 5.0 MHz,  
ADC10ON = 0, REF2_5V = 1,  
REFON = 1, REFOUT = 0  
fADC10CLK = 5.0 MHz,  
Reference buffer supply  
ADC10ON = 0, REFON = 1,  
IREFB,0  
25°C  
25°C  
3 V  
3 V  
1.1  
0.5  
mA  
mA  
current with ADC10SR = 0(4) REF2_5V = 0, REFOUT = 1,  
ADC10SR = 0  
fADC10CLK = 5.0 MHz,  
ADC10ON = 0, REFON = 1,  
Reference buffer supply  
IREFB,1  
current with ADC10SR = 1(4) REF2_5V = 0, REFOUT = 1,  
ADC10SR = 1  
Only one terminal Ax can be selected  
CI  
RI  
Input capacitance  
at one time  
25°C  
25°C  
3 V  
3 V  
27  
pF  
Input MUX ON resistance  
0 V VAx VCC  
1000  
(1) The leakage current is defined in the leakage current table with Px.x/Ax parameter.  
(2) The analog input voltage range must be within the selected reference voltage range VR+ to VRfor valid conversion results.  
(3) The internal reference supply current is not included in current consumption parameter IADC10  
.
(4) The internal reference current is supplied via terminal VCC. Consumption is independent of the ADC10ON control bit, unless a  
conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.  
30  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
10-Bit ADC, Built-In Voltage Reference (MSP430G2x32 Only)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VREF+ 1 mA, REF2_5V = 0  
VCC  
MIN  
2.2  
TYP  
MAX UNIT  
I
I
I
I
Positive built-in reference  
analog supply voltage range  
VCC,REF+  
V
VREF+ 1 mA, REF2_5V = 1  
2.9  
VREF+ IVREF+max, REF2_5V = 0  
VREF+ IVREF+max, REF2_5V = 1  
1.41  
2.35  
1.5  
2.5  
1.59  
V
Positive built-in reference  
voltage  
VREF+  
3 V  
3 V  
2.65  
Maximum VREF+ load  
current  
ILD,VREF+  
±1  
±2  
mA  
IVREF+ = 500 µA ± 100 µA,  
Analog input voltage VAx 0.75 V,  
REF2_5V = 0  
VREF+ load regulation  
3 V  
3 V  
LSB  
IVREF+ = 500 µA ± 100 µA,  
Analog input voltage VAx 1.25 V,  
REF2_5V = 1  
±2  
IVREF+ = 100 µA900 µA,  
VAx 0.5 × VREF+,  
Error of conversion result 1 LSB,  
VREF+ load regulation  
response time  
400  
ns  
ADC10SR = 0  
Maximum capacitance at  
pin VREF+  
CVREF+  
TCREF+  
I
VREF+ ≤ ±1 mA, REFON = 1, REFOUT = 1  
3 V  
3 V  
100  
pF  
ppm/  
°C  
Temperature coefficient  
IVREF+ = const with 0 mA IVREF+ 1 mA  
±100  
Settling time of internal  
reference voltage to 99.9%  
VREF  
IVREF+ = 0.5 mA, REF2_5V = 0,  
REFON = 0 1  
tREFON  
3.6 V  
3 V  
30  
2
µs  
µs  
IVREF+ = 0.5 mA,  
REF2_5V = 1, REFON = 1,  
REFBURST = 1, ADC10SR = 0  
Settling time of reference  
buffer to 99.9% VREF  
tREFBURST  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
MAX UNIT  
10-Bit ADC, External Reference(1) (MSP430G2x32 Only)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
VEREF+ > VEREF,  
SREF1 = 1, SREF0 = 0  
1.4  
VCC  
Positive external reference input  
voltage range(2)  
VEREF+  
V
VEREF– ≤ VEREF+ VCC 0.15 V,  
SREF1 = 1, SREF0 = 1  
1.4  
0
3
(3)  
Negative external reference input  
voltage range(4)  
VEREF–  
ΔVEREF  
VEREF+ > VEREF–  
1.2  
V
V
Differential external reference  
input voltage range,  
(5)  
VEREF+ > VEREF–  
1.4  
VCC  
ΔVEREF = VEREF+ VEREF–  
0 V VEREF+ VCC  
SREF1 = 1, SREF0 = 0  
,
±1  
IVEREF+  
Static input current into VEREF+  
3 V  
3 V  
µA  
µA  
0 V VEREF+ VCC 0.15 V 3 V,  
0
SREF1 = 1, SREF0 = 1(3)  
IVEREF–  
Static input current into VEREF–  
0 V VEREF– ≤ VCC  
±1  
(1) The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the  
dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.  
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
(3) Under this condition the external reference is internally buffered. The reference buffer is active and requires the reference buffer supply  
current IREFB. The current consumption can be limited to the sample and conversion period with REBURST = 1.  
(4) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
(5) The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
10-Bit ADC, Timing Parameters (MSP430G2x32 Only)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.45  
0.45  
TYP  
MAX  
6.3  
UNIT  
ADC10SR = 0  
ADC10SR = 1  
ADC10 input clock  
frequency  
For specified performance of  
ADC10 linearity parameters  
fADC10CLK  
fADC10OSC  
3 V  
MHz  
1.5  
ADC10 built-in oscillator ADC10DIVx = 0, ADC10SSELx = 0,  
3 V  
3 V  
3.7  
6.3  
MHz  
µs  
frequency  
fADC10CLK = fADC10OSC  
ADC10 built-in oscillator, ADC10SSELx = 0,  
fADC10CLK = fADC10OSC  
2.06  
3.51  
tCONVERT  
Conversion time  
13 ×  
fADC10CLK from ACLK, MCLK, or SMCLK:  
ADC10DIV ×  
1/fADC10CLK  
ADC10SSELx 0  
Turn-on settling time of  
the ADC  
(1)  
tADC10ON  
100  
ns  
(1) The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already  
settled.  
10-Bit ADC, Linearity Parameters (MSP430G2x32 Only)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Integral linearity error  
Differential linearity error  
Offset error  
TEST CONDITIONS  
VCC  
3 V  
3 V  
3 V  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
±1 LSB  
±1 LSB  
±1 LSB  
±2 LSB  
±5 LSB  
EI  
ED  
EO  
EG  
ET  
Source impedance RS < 100 Ω  
Gain error  
±1.1  
±2  
Total unadjusted error  
32  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
10-Bit ADC, Temperature Sensor and Built-In VMID (MSP430G2x32 Only)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
3 V  
3 V  
3 V  
3 V  
3 V  
MIN  
TYP  
60  
MAX UNIT  
Temperature sensor supply  
current(1)  
REFON = 0, INCHx = 0Ah,  
TA = 25°C  
ISENSOR  
TCSENSOR  
tSensor(sample)  
IVMID  
µA  
mV/°C  
µs  
(2)  
ADC10ON = 1, INCHx = 0Ah  
ADC10ON = 1, INCHx = 0Ah,  
Error of conversion result 1 LSB  
3.55  
Sample time required if channel  
30  
(3)  
10 is selected  
(4)  
Current into divider at channel 11 ADC10ON = 1, INCHx = 0Bh  
µA  
ADC10ON = 1, INCHx = 0Bh,  
VCC divider at channel 11  
VMID  
1.5  
V
V
MID 0.5 × VCC  
Sample time required if channel  
11 is selected  
ADC10ON = 1, INCHx = 0Bh,  
Error of conversion result 1 LSB  
tVMID(sample)  
3 V  
1220  
ns  
(5)  
(1) The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is  
high). When REFON = 1, ISENSOR is included in IREF+. When REFON = 0, ISENSOR applies during conversion of the temperature sensor  
input (INCH = 0Ah).  
(2) The following formula can be used to calculate the temperature sensor output voltage:  
VSensor,typ = TCSensor (273 + T [°C] ) + VOffset,sensor [mV] or  
VSensor,typ = TCSensor T [°C] + VSensor(TA = 0°C) [mV]  
(3) The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time tSENSOR(on)  
(4) No additional current is needed. The VMID is used during sampling.  
.
(5) The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.  
Flash Memory  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.2  
TYP  
MAX UNIT  
3.6  
476 kHz  
VCC(PGM/ERASE)  
fFTG  
Program and erase supply voltage  
Flash timing generator frequency  
Supply current from VCC during program  
Supply current from VCC during erase  
Cumulative program time(1)  
V
257  
IPGM  
2.2 V/3.6 V  
2.2 V/3.6 V  
2.2 V/3.6 V  
2.2 V/3.6 V  
1
1
5
7
mA  
mA  
IERASE  
tCPT  
10  
ms  
tCMErase  
Cumulative mass erase time  
Program/erase endurance  
20  
104  
100  
ms  
105  
cycles  
years  
tFTG  
tFTG  
tRetention  
tWord  
Data retention duration  
TJ = 25°C  
(2)  
Word or byte program time  
30  
25  
(2)  
(2)  
tBlock, 0  
Block program time for first byte or word  
Block program time for each additional  
byte or word  
tBlock, 1-63  
18  
tFTG  
(2)  
(2)  
(2)  
tBlock, End  
tMass Erase  
tSeg Erase  
Block program end-sequence wait time  
Mass erase time  
6
10593  
4819  
tFTG  
tFTG  
tFTG  
Segment erase time  
(1) The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
(2) These values are hardwired into the Flash Controller's state machine (tFTG = 1/fFTG).  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
RAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
CPU halted  
MIN  
MAX  
UNIT  
(1)  
V(RAMh)  
RAM retention supply voltage  
1.6  
V
(1) This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should  
happen during this supply voltage condition.  
JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0
TYP  
MAX  
20  
UNIT  
MHz  
µs  
fSBW  
Spy-Bi-Wire input frequency  
2.2 V  
2.2 V  
tSBW,Low Spy-Bi-Wire low clock pulse length  
0.025  
15  
Spy-Bi-Wire enable time  
tSBW,En  
2.2 V  
1
µs  
(TEST high to acceptance of first clock edge(1)  
)
tSBW,Ret  
fTCK  
Spy-Bi-Wire return to normal operation time  
TCK input frequency(2)  
2.2 V  
2.2 V  
2.2 V  
15  
0
100  
5
µs  
MHz  
kΩ  
RInternal  
Internal pulldown resistance on TEST  
25  
60  
90  
(1) Tools accessing the Spy-Bi-Wire interface need to wait for the maximum tSBW,En time after pulling the TEST/SBWCLK pin high before  
applying the first SBWCLK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
JTAG Fuse(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA = 25°C  
MIN  
2.5  
6
MAX  
UNIT  
V
VCC(FB)  
VFB  
Supply voltage during fuse-blow condition  
Voltage level on TEST for fuse blow  
Supply current into TEST during fuse blow  
Time to blow fuse  
7
100  
1
V
IFB  
mA  
ms  
tFB  
(1) Once the fuse is blown, no further access to the JTAG/Test, Spy-Bi-Wire, and emulation feature is possible, and JTAG is switched to  
bypass mode.  
34  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
PIN SCHEMATICS  
Port P1 Pin Schematic: P1.0 to P1.2, Input/Output With Schmitt Trigger  
To ADC10 *  
INCHx = y *  
ADC10AE0.y *  
PxSEL2.y  
PxSEL.y  
PxDIR.y  
0
1
Direction  
0: Input  
1: Output  
0
2
3
PxSEL2.y  
PxSEL.y  
PxREN.y  
0
1
1
0
1
PxSEL2.y  
PxSEL.y  
DVSS  
DVCC  
0
1
1
PxOUT.y  
0
1
From Module  
2
3
Bus  
Keeper  
EN  
P1.0/TA0CLK/ACLK/A0*  
P1.1/TA0.0/A1*  
P1.2/TA0.1/A2*  
0
TAx.y  
TAxCLK  
PxIN.y  
EN  
To Module  
PxIRQ.y  
D
PxIE.y  
EN  
Set  
Q
PxIFG.y  
PxSEL.y  
PxIES.y  
Interrupt  
Edge  
Select  
* Note: MSP430G2x32 devices only. MSP430G2x02 devices have no ADC10.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 14. Port P1 (P1.0 to P1.2) Pin Functions  
CONTROL BITS / SIGNALS(1)  
PIN NAME  
(P1.x)  
x
FUNCTION  
ADC10AE.x  
(INCH.y=1)(2)  
P1DIR.x  
P1SEL.x  
P1SEL2.x  
P1.0/  
P1.x (I/O)  
TA0.TACLK  
ACLK  
I: 0; O: 1  
0
1
1
X
0
0
1
1
X
0
0
1
1
X
0
0
0
0
X
1
0
0
0
X
1
0
0
0
X
1
0
TA0CLK/  
ACLK/  
0
0
0
1
0
A0(2)  
/
A0  
X
1 (y = 0)  
Pin Osc  
P1.1/  
Capacitive sensing  
P1.x (I/O)  
TA0.0  
x
0
I: 0; O: 1  
0
TA0.0/  
1
0
1
2
TA0.CCI0A  
A1  
0
0
A1(2)  
/
X
1 (y = 1)  
Pin Osc  
P1.2/  
Capacitive sensing  
P1.x (I/O)  
TA0.1  
X
0
I: 0; O: 1  
0
TA0.1/  
1
0
0
TA0.CCI1A  
A2  
0
1 (y = 2)  
0
A2(2)  
Pin Osc  
/
X
X
Capacitive sensing  
(1) X = don't care  
(2) MSP430G2x32 devices only  
36  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
Port P1 Pin Schematic: P1.3, Input/Output With Schmitt Trigger  
SREF2 *  
VSS  
0
1
To ADC10 VREF- *  
To ADC10 *  
INCHx = y *  
ADC10AE0.y *  
PxDIR.y  
PxSEL2.y PxSEL.y  
0,2,3  
1
Direction  
0: Input  
1: Output  
PxSEL2.y  
PxSEL.y  
PxREN.y  
0
1
1
0
1
PxSEL2.y  
PxSEL.y  
DVSS  
DVCC  
0
1
1
PxOUT.y  
0
1
From ADC10 *  
2
3
Bus  
Keeper  
EN  
P1.3/ADC10CLK*/A3*/VREF-*/VEREF-*  
TAx.y  
TAxCLK  
PxIN.y  
EN  
To Module  
PxIRQ.y  
D
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
* Note: MSP430G2x32 devices only. MSP430G2x02 devices have no ADC10.  
Table 15. Port P1 (P1.3) Pin Functions  
CONTROL BITS / SIGNALS(1)  
PIN NAME  
(P1.x)  
x
FUNCTION  
P1DIR.x  
ADC10AE.x  
(INCH.x=1)(2)  
P1SEL.x  
P1SEL2.x  
P1.3/  
ADC10CLK(2)  
A3(2)  
VREF-(2)  
P1.x (I/O)  
ADC10CLK  
A3  
I: 0; O: 1  
0
1
0
0
0
/
1
X
X
X
X
0
/
X
X
X
0
X
X
X
1
1 (y = 3)  
3
/
VREF-  
1
1
0
VEREF-(2)  
/
VEREF-  
Pin Osc  
Capacitive sensing  
(1) X = don't care  
(2) MSP430G2x32 devices only  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
Port P1 Pin Schematic: P1.4, Input/Output With Schmitt Trigger  
From/To ADC10 Ref+ *  
To ADC10 *  
INCHx = y *  
ADC10AE0.y *  
PxSEL.y  
PxDIR.y  
0
1
Direction  
0: Input  
1: Output  
PxSEL2.y  
PxSEL.y  
PxREN.y  
0
1
1
0
1
PxSEL2.y  
PxSEL.y  
DVSS  
DVCC  
0
1
1
PxOUT.y  
SMCLK  
0
1
2
3
Bus  
Keeper  
EN  
P1.4/SMCLK/TA0.2/A4*/VREF+*/VEREF+*/TCK  
from Timer  
TAx.y  
TAxCLK  
PxIN.y  
EN  
D
To Module  
PxIRQ.y  
PxIE.y  
EN  
Q
Set  
PxIFG.y  
PxSEL.y  
PxIES.y  
Interrupt  
Edge  
Select  
From JTAG  
To JTAG  
* Note: MSP430G2x32 devices only. MSP430G2x02 devices have no ADC10.  
Table 16. Port P1 (P1.4) Pin Functions  
CONTROL BITS / SIGNALS(1)  
PIN NAME  
(P1.x)  
x
FUNCTION  
ADC10AE.x  
(INCH.x=1)(2)  
P1DIR.x  
P1SEL.x  
P1SEL2.x  
JTAG Mode  
CAPD.y  
P1.4/  
P1.x (I/O)  
I: 0; O: 1  
0
1
1
1
X
X
X
X
0
0
0
1
1
X
X
X
X
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
SMCLK/  
TA0.2/  
SMCLK  
TA0.2  
1
1
0
0
TA0.CCI2A  
VREF+  
0
0
VREF+(2)  
/
4
X
X
X
X
X
1
VEREF+(2)  
A4(2)  
/
VEREF+  
A4  
1
/
1 (y = 4)  
TCK/  
TCK  
0
0
Pin Osc  
Capacitive sensing  
(1) X = don't care  
(2) MSP430G2x32 devices only  
38  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
Port P1 Pin Schematic: P1.5 to P1.7, Input/Output With Schmitt Trigger  
To ADC10 *  
INCHx = y *  
ADC10AE0.y *  
PxSEL2.y  
PxSEL.y  
PxDIR.y  
0
From Module  
1
Direction  
0: Input  
1: Output  
2
3
PxSEL2.y  
PxSEL.y  
PxREN.y  
0
1
1
0
1
PxSEL2.y  
PxSEL.y  
DVSS  
DVCC  
0
1
1
PxOUT.y  
0
1
From Module  
2
3
Bus  
Keeper  
EN  
P1.5/TA0.0/SCLK/A5*/TMS  
P1.6/TA0.1/SDO/SCL/A6*/TDI/TCLK  
P1.7//SDI/SDA/A7*/TDO/TDI  
0
TAx.y  
TAxCLK  
PxIN.y  
EN  
D
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
PxSEL.y  
PxIES.y  
Interrupt  
Edge  
Select  
From JTAG  
To JTAG  
* Note: MSP430G2x32 devices only. MSP430G2x02 devices have no ADC10.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 17. Port P1 (P1.5 to P1.7) Pin Functions  
CONTROL BITS / SIGNALS(1)  
PIN NAME  
(P1.x)  
x
FUNCTION  
ADC10AE.x  
(INCH.x=1)(2)  
P1DIR.x  
P1SEL.x  
P1SEL2.x  
USIP.x  
JTAG Mode  
P1.5/  
P1.x (I/O)  
I: 0; O: 1  
0
1
1
X
X
0
0
1
1
1
X
X
0
0
1
1
X
X
0
0
0
0
X
X
1
0
0
0
0
X
X
1
0
0
0
X
X
1
0
0
1
0
0
0
0
0
!
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
TA0.0/  
SCLK/  
TA0.0  
1
0
SPI mode  
A5  
from USI  
0
5
A5(2)  
/
X
1 (y = 5)  
TMS/  
TMS  
X
0
Pin Osc  
P1.6/  
Capacitive sensing  
P1.x (I/O)  
TA0.1  
X
0
I: 0; O: 1  
0
TA0.1/  
SDO/  
SCL/  
1
0
SPI mode  
I2C mode  
A6  
from USI  
0
6
from USI  
!
0
A6(2)  
/
X
0
0
0
0
1
1
0
0
0
1 (y = 6)  
TDI/TCLK/  
Pin Osc  
P1.7/  
TDI/TCLK  
Capacitive sensing  
P1.x (I/O)  
SPI mode  
SPI mode  
A7  
X
0
X
0
I: 0; O: 1  
0
SDI/  
from USI  
0
SDO/  
from USI  
0
7
A7(2)  
/
X
X
X
1 (y = 7)  
TDO/TDI/  
Pin Osc  
TDO/TDI  
Capacitive sensing  
0
0
(1) X = don't care  
(2) MSP430G2x32 devices only  
40  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
Port P2 Pin Schematic: P2.0 to P2.5, Input/Output With Schmitt Trigger  
PxSEL.y  
PxDIR.y  
0
1
Direction  
0: Input  
1: Output  
PxSEL2.y  
PxSEL.y  
PxREN.y  
0
1
1
0
1
PxSEL2.y  
PxSEL.y  
DVSS  
DVCC  
0
1
1
PxOUT.y  
0
1
0
2
3
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
0
TAx.y  
TAxCLK  
PxIN.y  
EN  
D
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
Table 18. Port P2 (P2.0 to P2.5) Pin Functions  
CONTROL BITS / SIGNALS(1)  
PIN NAME  
(P2.x)  
x
0
1
2
3
4
5
FUNCTION  
P2DIR.x  
I: 0; O: 1  
P2SEL.x  
P2SEL2.x  
P2.0/  
P2.x (I/O)  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
Pin Osc  
P2.1/  
Capacitive sensing  
P2.x (I/O)  
X
I: 0; O: 1  
Pin Osc  
P2.2/  
Capacitive sensing  
P2.x (I/O)  
X
I: 0; O: 1  
Pin Osc  
P2.3/  
Capacitive sensing  
P2.x (I/O)  
X
I: 0; O: 1  
Pin Osc  
P2.4/  
Capacitive sensing  
P2.x (I/O)  
X
I: 0; O: 1  
X
Pin Osc  
P2.5/  
Capacitive sensing  
P2.x (I/O)  
I: 0; O: 1  
X
Pin Osc  
Capacitive sensing  
(1) X = don't care  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
Port P2 Pin Schematic: P2.6, Input/Output With Schmitt Trigger  
XOUT/P2.7  
LF off  
PxSEL.6 & PxSEL.7  
BCSCTL3.LFXT1Sx = 11  
0
LFXT1CLK  
1
PxSEL.y  
PxDIR.y  
0
1
Direction  
0: Input  
1: Output  
PxSEL2.y  
PxSEL.y  
PxREN.y  
0
1
1
0
1
PxSEL2.y  
PxSEL.y  
DVSS  
DVCC  
0
1
1
PxOUT.y  
0
1
From Module  
2
3
XIN/P2.6/TA0.1  
0
TAx.y  
TAxCLK  
PxIN.y  
EN  
D
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
Table 19. Port P2 (P2.6) Pin Functions  
CONTROL BITS / SIGNALS(1)  
PIN NAME  
(P2.x)  
x
FUNCTION  
P2SEL.6  
P2SEL.7  
P2SEL2.6  
P2SEL2.7  
P2DIR.x  
1
1
0
0
XIN/  
XIN  
0
0
X
0
0
P2.6/  
P2.x (I/O)  
I: 0; O: 1  
6
1
0
0
0
TA0.1/  
Timer0_A3.TA1  
Capacitive sensing  
1
0
X
1
X
Pin Osc  
X
(1) X = don't care  
42  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430G2x32  
MSP430G2x02  
www.ti.com  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
Port P2 Pin Schematic: P2.7, Input/Output With Schmitt Trigger  
XIN/P2.6/TA0.1  
LF off  
PxSEL.6 & PxSEL.7  
BCSCTL3.LFXT1Sx = 11  
0
LFXT1CLK  
1
from P2.6  
PxSEL.y  
PxDIR.y  
0
1
Direction  
0: Input  
1: Output  
PxSEL2.y  
PxSEL.y  
PxREN.y  
0
1
1
0
1
PxSEL2.y  
PxSEL.y  
DVSS  
DVCC  
0
1
1
PxOUT.y  
0
1
From Module  
2
3
XOUT/P2.7  
TAx.y  
TAxCLK  
PxIN.y  
EN  
D
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
Table 20. Port P2 (P2.7) Pin Functions  
CONTROL BITS / SIGNALS(1)  
PIN NAME  
(P2.x)  
x
FUNCTION  
P2SEL.6  
P2SEL.7  
P2SEL2.6  
P2SEL2.7  
P2DIR.x  
1
1
0
0
XOUT/  
XOUT  
X
I: 0; O: 1  
X
0
X
0
0
P2.7/  
7
P2.x (I/O)  
0
X
1
X
Pin Osc  
Capacitive sensing  
(1) X = don't care  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
MSP430G2x32  
MSP430G2x02  
SLAS723B DECEMBER 2010REVISED MARCH 2011  
www.ti.com  
REVISION HISTORY  
REVISION  
DESCRIPTION  
SLAS723  
Initial release  
Page 1, Changed Internal Frequencies up to 16 MHz With One Calibrated Frequency to Internal Frequencies up  
to 16 MHz With Four Calibrated Frequencies  
SLAS723A  
Added note concerning pulldown resistor to PW14 and RSA16 pinout drawings.  
Removed reference to CAOUT from N20, PW20 pinout drawing and Table 11 (there is no comparator module on  
this device).  
SLAS723B  
Added "N20, PW20" to Input Pin Number and Output Pin Number columns in Table 11.  
Corrected pin numbers for P1.0 to P1.3 for PW14 package in Table 2.  
44  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Mar-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
MSP430G2102IN20  
MSP430G2102IPW14  
ACTIVE  
ACTIVE  
PDIP  
N
20  
14  
20  
90  
Pb-Free (RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TSSOP  
PW  
Green (RoHS  
& no Sb/Br)  
MSP430G2102IPW14R  
MSP430G2102IPW20  
MSP430G2102IPW20R  
MSP430G2102IRSA16R  
MSP430G2102IRSA16T  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
QFN  
PW  
PW  
14  
20  
20  
16  
16  
2000  
70  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
Green (RoHS  
& no Sb/Br)  
PW  
2000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
RSA  
RSA  
Green (RoHS  
& no Sb/Br)  
QFN  
Green (RoHS  
& no Sb/Br)  
MSP430G2132IN20  
MSP430G2132IPW14  
ACTIVE  
ACTIVE  
PDIP  
N
20  
14  
20  
90  
Pb-Free (RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TSSOP  
PW  
Green (RoHS  
& no Sb/Br)  
MSP430G2132IPW14R  
MSP430G2132IPW20  
MSP430G2132IPW20R  
MSP430G2132IRSA16R  
MSP430G2132IRSA16T  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
QFN  
PW  
PW  
14  
20  
20  
16  
16  
2000  
70  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
Green (RoHS  
& no Sb/Br)  
PW  
2000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
RSA  
RSA  
Green (RoHS  
& no Sb/Br)  
QFN  
Green (RoHS  
& no Sb/Br)  
MSP430G2202IN20  
MSP430G2202IPW14  
ACTIVE  
ACTIVE  
PDIP  
N
20  
14  
20  
90  
Pb-Free (RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TSSOP  
PW  
Green (RoHS  
& no Sb/Br)  
MSP430G2202IPW14R  
MSP430G2202IPW20  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
14  
20  
2000  
70  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Mar-2011  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
MSP430G2202IPW20R  
MSP430G2202IRSA16R  
MSP430G2202IRSA16T  
TSSOP  
QFN  
PW  
RSA  
RSA  
20  
16  
16  
2000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
QFN  
Green (RoHS  
& no Sb/Br)  
MSP430G2232IN20  
MSP430G2232IPW14  
ACTIVE  
ACTIVE  
PDIP  
N
20  
14  
20  
90  
Pb-Free (RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TSSOP  
PW  
Green (RoHS  
& no Sb/Br)  
MSP430G2232IPW14R  
MSP430G2232IPW20  
MSP430G2232IPW20R  
MSP430G2232IRSA16R  
MSP430G2232IRSA16T  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
QFN  
PW  
PW  
14  
20  
20  
16  
16  
2000  
70  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
Green (RoHS  
& no Sb/Br)  
PW  
2000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
RSA  
RSA  
Green (RoHS  
& no Sb/Br)  
QFN  
Green (RoHS  
& no Sb/Br)  
MSP430G2302IN20  
MSP430G2302IPW14  
ACTIVE  
ACTIVE  
PDIP  
N
20  
14  
20  
90  
Pb-Free (RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TSSOP  
PW  
Green (RoHS  
& no Sb/Br)  
MSP430G2302IPW14R  
MSP430G2302IPW20  
MSP430G2302IPW20R  
MSP430G2302IRSA16R  
MSP430G2302IRSA16T  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
QFN  
PW  
PW  
14  
20  
20  
16  
16  
2000  
70  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
Green (RoHS  
& no Sb/Br)  
PW  
2000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
RSA  
RSA  
Green (RoHS  
& no Sb/Br)  
QFN  
Green (RoHS  
& no Sb/Br)  
MSP430G2332IN20  
MSP430G2332IPW14  
ACTIVE  
ACTIVE  
PDIP  
N
20  
14  
20  
90  
Pb-Free (RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TSSOP  
PW  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Mar-2011  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
MSP430G2332IPW14R  
MSP430G2332IPW20  
MSP430G2332IPW20R  
MSP430G2332IRSA16R  
MSP430G2332IRSA16T  
TSSOP  
TSSOP  
TSSOP  
QFN  
PW  
PW  
14  
20  
20  
16  
16  
2000  
70  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
PW  
2000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
RSA  
RSA  
Green (RoHS  
& no Sb/Br)  
QFN  
Green (RoHS  
& no Sb/Br)  
MSP430G2402IN20  
MSP430G2402IPW14  
ACTIVE  
ACTIVE  
PDIP  
N
20  
14  
20  
90  
Pb-Free (RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TSSOP  
PW  
Green (RoHS  
& no Sb/Br)  
MSP430G2402IPW14R  
MSP430G2402IPW20  
MSP430G2402IPW20R  
MSP430G2402IRSA16R  
MSP430G2402IRSA16T  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
QFN  
PW  
PW  
14  
20  
20  
16  
16  
2000  
70  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
Green (RoHS  
& no Sb/Br)  
PW  
2000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
RSA  
RSA  
Green (RoHS  
& no Sb/Br)  
QFN  
Green (RoHS  
& no Sb/Br)  
MSP430G2432IN20  
MSP430G2432IPW14  
ACTIVE  
ACTIVE  
PDIP  
N
20  
14  
20  
90  
Pb-Free (RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
TSSOP  
PW  
Green (RoHS  
& no Sb/Br)  
MSP430G2432IPW14R  
MSP430G2432IPW20  
MSP430G2432IPW20R  
MSP430G2432IRSA16R  
MSP430G2432IRSA16T  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
QFN  
PW  
PW  
14  
20  
20  
16  
16  
2000  
70  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
Green (RoHS  
& no Sb/Br)  
PW  
2000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
RSA  
RSA  
Green (RoHS  
& no Sb/Br)  
QFN  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Mar-2011  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 4  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY