MSP430I2041 [TI]

具有 4 个 24 位 Σ-Δ ADC、2 个 16 位计时器、32KB 闪存和 2KB RAM 的 16MHz 计量 AFE;
MSP430I2041
型号: MSP430I2041
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 4 个 24 位 Σ-Δ ADC、2 个 16 位计时器、32KB 闪存和 2KB RAM 的 16MHz 计量 AFE

闪存
文件: 总81页 (文件大小:3119K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
MSP430i204xMSP430i203xMSP430i202x 混合信号微控制器内部版本  
– 具有可编程电平检测功能的电源电压监控器  
– 欠压检测器  
1 特性  
– 内置的电压基准  
– 温度传感器  
• 电源电压范围2.2V 3.6V  
• 高性能模拟  
• 时钟系统  
MSP430i204x四个具有差PGA 输入24  
Σ-Δ数转换(ADC)  
MSP430I203x三个具有差PGA 输入24  
Σ-Δ数转换(ADC)  
MSP430I202x两个具有差PGA 输入24  
Σ-Δ数转换(ADC)  
16.384MHz 内部数控振荡(DCO)  
– 采用内部或外部电阻器DCO 运行  
– 外部数字时钟源  
11.3 开发工具与软件另请参阅工具与软件)  
EVM430-I2040S 评估模(EVM)用于计量  
MSP-TS430RHB32A 100 引脚目标开发板  
MSP430Ware 代码示例  
• 超低功耗  
– 激活模(AM):  
1µs 内从待机模式唤醒  
所有系统时钟激活16.384MHz3.0V 且闪存  
程序执行时275µA/MHz典型值)  
– 待机模(LPM3):  
看门狗计时器激活RAM 3.0V 时为  
210µA典型值)  
– 关闭模(LPM4):  
16 RISC 架构, 16.384MHz 系统时钟  
• 串行板上编程无需外部编程电压  
• 提28 TSSOP (PW) 封装32 VQFN  
(RHB) 封装  
6 器件比较汇总了可用的产品系列成员  
• 特色软件和参考设计  
RAM 3.0V 70µA典型值)  
– 关断模(LPM4.5):  
– 适用MSP430 MCU 应用软件和框架的电能测  
量设计中心  
– 适用MSP430 微控制器软件库的数字信号处  
(DSP) 库  
– 单相和直流嵌入式计量参考设计  
– 三路输出智能电源板参考设计  
3.0V 75nA典型值)  
• 智能数字外设  
– 两16 位计时器每个计时器具有三个捕捉/比  
较寄存器  
– 硬件乘法器支16 位运算  
• 增强型通用串行通信接(eUSCI)  
2 应用  
eUSCI_A0  
• 计量  
• 分项计量  
• 电源监控和控制  
• 工业传感器  
• 单相交流和直流电源监控  
• 两相电子计量表  
• 智能插头  
• 智能电源板  
• 医参数患者监护  
• 具有自动波特率检测功能的增强型通用异步  
收发(UART)  
• 红外数据通(IrDA) 编码器和解码器  
• 同SPI  
eUSCI_B0  
• 同步串行外设接(SPI)  
I2C  
• 灵活的电源管理系统  
– 具1.8V 稳压内核电源电压的集成LDO  
3 说明  
德州仪器 (TI) MSP430i204xMSP430I203x MSP430I202x 微控制器 (MCU) 属于 MSP430 计量和监控产品  
系列。该架构和集成外设与五种低功耗模式相结合并经过优化可在便携式和电池供电测量应用中延长电池寿  
命。该器件具有功能强大的 16 RISC CPU16 位寄存器和常数发生器有助于实现最大编码效率。数控振荡  
(DCO) 可以让器件在不5µs 的时间内从低功耗模式唤醒至激活模式。  
MSP430i204x MCU 包括四个高性能 24 位 Σ-Δ ADC两个 eUSCI一个 eUSCI_A 模块和一个 eUSCI_B 模  
),16 位计时器一个硬件乘法器和多16 I/O 引脚。  
MSP430I203x MCU 包括三个高性能 24 位 Σ-Δ ADC两个 eUSCI一个 eUSCI_A 模块和一个 eUSCI_B 模  
),16 位计时器一个硬件乘法器和多16 I/O 引脚。  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLAS887  
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
MSP430I202x MCU 包括两个高性能 24 位 Σ-Δ ADC两个 eUSCI一个 eUSCI_A 模块和一个 eUSCI_B 模  
),16 位计时器一个硬件乘法器和多16 I/O 引脚。  
这些器件的典型应用包括电能测量、模拟和数字传感器系统、LED 照明、数字电源、电机控制、远程控制、温  
度调节装置、数字计时器和手持式仪表。  
MSP430i204xMSP430I203x MSP430I202x MCU 由广泛的硬件和软件生态系统提供支持随附参考设计和  
代码示例便于您快速开始设计。 开发套件包括用于计量的 EVM430-I2040S 估模块 (EVM) MSP-  
TS430RHB32A 100 引脚目标开发板。提供适用于 MSP430 MCU 的电能测量设计中心作为快速开发工具可测  
量这些器件的电能。TI 还提供免费MSP430Ware 软件该软件Code Composer Studio IDE 桌面和云版  
本组件的形式提供位于 TI Resource Explorer TI E2E 支持论坛还为 MSP430 MCU 提供广泛的在线配  
套资料、培训和在线支持。  
SLAU335 如需完整的模块说明请参阅《MSP430i2xx 系列用户指南》。  
器件信息  
封装  
器件型号  
MSP430i2041TPW  
封装尺寸  
9.7mm x 4.4mm  
5mm x 5mm  
TSSOP (28)  
VQFN (32)  
MSP430i2041TRHB  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
4 Functional Block Diagram  
4-1 shows the functional block diagram for the MSP430i204x devices in the RHB package. For the functional  
block diagrams of all device variants and packages, see 9.2.  
ROSC  
VCC DVSS AVSS VCORE RST/NMI  
P1.x  
P2.x  
8
8
ACLK  
Clock  
System  
TA0  
TA1  
Port P1  
Port P2  
RAM  
Flash  
Timer_A  
3 CC  
Registers  
Timer_A  
3 CC  
Registers  
8 I/Os,  
Interrupt  
capability  
8 I/Os,  
Interrupt  
capability  
SMCLK  
2KB  
1KB  
32KB  
16KB  
MCLK  
MAB  
MDB  
16.384-MHz  
CPU  
with 16  
registers  
Emulation  
2BP  
Hardware  
Multiplier  
(16x16)  
SD24  
Power  
Management  
JTAG  
Interface  
eUSCI_A0  
Watchdog  
WDT  
eUSCI_B0  
SPI, I2C  
4
Sigma-Delta  
Analog-to-  
Digital  
LDO  
REF  
VMON  
Brownout  
MPY,  
MPYS,  
MAC,  
UART,  
IrDA, SPI  
15 or 16 bit  
Spy-Bi-  
Wire  
Converters  
MACS  
4-1. Functional Block Diagram RHB Package MSP430i204x  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
Table of Contents  
9.3 CPU.......................................................................... 38  
9.4 Instruction Set...........................................................39  
9.5 Operating Modes...................................................... 40  
9.6 Interrupt Vector Addresses....................................... 41  
9.7 Special Function Registers....................................... 42  
9.8 Flash Memory........................................................... 42  
9.9 JTAG Operation........................................................ 43  
9.10 Peripherals..............................................................45  
9.11 Input/Output Diagrams............................................49  
9.12 Device Descriptor....................................................56  
9.13 Memory...................................................................57  
9.14 Identification............................................................60  
10 Applications, Implementation, and Layout............... 61  
11 Device and Documentation Support..........................62  
11.1 Getting Started and Next Steps.............................. 62  
11.2 Device Nomenclature..............................................62  
11.3 Tools and Software..................................................63  
11.4 Documentation Support.......................................... 64  
11.5 支持资源..................................................................65  
11.6 Trademarks............................................................. 65  
11.7 静电放电警告...........................................................65  
11.8 术语表..................................................................... 66  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Functional Block Diagram.............................................. 3  
5 Revision History.............................................................. 5  
6 Device Comparison.........................................................6  
6.1 Related Products........................................................ 6  
7 Terminal Configuration and Functions..........................7  
7.1 Pin Diagrams.............................................................. 7  
7.2 Signal Descriptions................................................... 10  
7.3 Pin Multiplexing.........................................................12  
7.4 Connection of Unused Pins...................................... 12  
8 Specifications................................................................ 13  
8.1 Absolute Maximum Ratings...................................... 13  
8.2 ESD Ratings............................................................. 13  
8.3 Recommended Operating Conditions.......................13  
8.4 Active Mode Supply Current (Into VCC  
Excluding External Current .........................................14  
8.5 Low-Power Mode Supply Currents (Into VCC  
)
)
Excluding External Current .........................................15  
8.6 Thermal Resistance Characteristics......................... 15  
8.7 Timing and Switching Characteristics....................... 16  
9 Detailed Description......................................................32  
9.1 Overview...................................................................32  
9.2 Functional Block Diagrams....................................... 32  
Information.................................................................... 67  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
5 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from revision B to revision C  
Changes from March 4, 2020 to March 16, 2021  
Page  
• 更新了整个文档的表、图和交叉参考的编号格式................................................................................................ 1  
1 更新的“精选软件和参考设计”..................................................................................................1  
Changes from revision A to revision B  
Changes from May 3, 2018 to March 3, 2020  
Page  
• 更新.........................................................................................................................................................1  
• 更新.........................................................................................................................................................1  
Added 2 and 4 to the SD24GAINx options in the test conditions of the "Gain error" parameter in 8.7.7.5,  
SD24 Performance, Internal Reference (SD24REFS = 1, SD24OSRx = 256) ................................................23  
Added 2 and 4 to the SD24GAINx options in the test conditions of the "Gain error" parameter in 8.7.7.6,  
SD24 Performance, External Reference (SD24REFS = 0, SD24OSRx = 256) ...............................................24  
Changed the MIN values for the tHD,STA, tSU,STA, tHD,DAT, tSU,DAT, and tSU,STO parameters in 8.7.8.6, eUSCI  
(I2C Mode) Timing ............................................................................................................................................30  
Updated descriptions and links in 10, Applications, Implementation, and Layout .......................................61  
Changes from the initial release to revision A  
Changes from August 31, 2014 to May 2, 2018  
Page  
2 更改的应用列表...........................................................................................................................1  
Added 6.1, Related Products ........................................................................................................................ 6  
Added typical conditions statements at the beginning of 8, Specifications .................................................13  
Added SD24 input pins and AUXVCCx pins to exception list on "Voltage applied to pins" parameter, and  
added SD24 input pin limits in "Diode current at pins" parameter in 8.1, Absolute Maximum Ratings .......13  
Added 8.2, ESD Ratings ............................................................................................................................. 13  
Added 8.6, Thermal Resistance Characteristics .........................................................................................15  
Changed the MAX value of the tWAKE-UP-LPM4 parameter from 35 µs to 45 µs in 8.7.3.1, Wake-up Times  
From Low Power Modes ..................................................................................................................................17  
Added the CAUTION that begins "The CPU will lock up if..." in 9.3, CPU .................................................. 38  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
6 Device Comparison  
6-1 summarizes the available family members.  
6-1. Device Comparison  
eUSCI_A:  
UART, IrDA,  
SPI  
FLASH  
(KB)  
SRAM  
(KB)  
SD24  
CONVERTERS  
eUSCI_B:  
SPI, I2C  
DEVICE(1)  
MULTIPLIER  
Timer_A(2)  
I/O  
PACKAGE  
16  
12  
16  
12  
16  
12  
16  
12  
16  
12  
16  
12  
32 RHB  
28 PW  
32 RHB  
28 PW  
32 RHB  
28 PW  
32 RHB  
28 PW  
32 RHB  
28 PW  
32 RHB  
28 PW  
MSP430i2041  
MSP430i2040  
MSP430i2031  
MSP430i2030  
MSP430i2021  
MSP430i2020  
32  
16  
32  
16  
32  
16  
2
1
2
1
2
1
4
4
3
3
2
2
1
1
1
1
1
1
3, 3  
3, 3  
3, 3  
3, 3  
3, 3  
3, 3  
1
1
1
1
1
1
1
1
1
1
1
1
(1) For the most current part, package, and ordering information for all available devices, see the Package Option Addendum in 12, or  
see the TI website at www.ti.com.  
(2) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and  
PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first  
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.  
6.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
TI 16-bit and 32-bit microcontrollers  
High-performance, low-power solutions to enable the autonomous future  
MSP430 ultra-low-power sensing and measurement microcontrollers  
One platform. One ecosystem. Endless possibilities.  
Reference designs for MSP430i2041  
Find reference designs leveraging the best in TI technology to solve your system-level challenges. All designs  
include a schematic, test data and design files.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
7 Terminal Configuration and Functions  
7.1 Pin Diagrams  
32-Pin RHB Package (Top View) MSP430i2041, MSP430i2040 shows the pin assignments for the  
MSP430i2041 and MSP430i2040 devices in the RHB package.  
32 31 30 29 28 27 26 25  
A0.0+  
A0.0-  
A1.0+  
A1.0-  
A2.0+  
A2.0-  
A3.0+  
A3.0-  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
P1.7/UCB0SDA/UCB0SIMO/TA1CLK  
P1.6/UCB0SCL/UCB0SOMI/TA0.2  
P1.5/UCB0CLK/TA0.1  
MSP430i2041TRHB  
MSP430i2040TRHB  
P1.4/UCB0STE/TA0.0  
P1.3/UCA0TXD/UCA0SIMO/TA0CLK/TDO/TDI  
P1.2/UCA0RXD/UCA0SOMI/ACLK/TDI/TCLK  
P1.1/UCA0CLK/SMCLK/TMS  
P1.0/UCA0STE/MCLK/TCK  
9
10 11 12 13 14 15 16  
NOTE: TI recommends connecting the thermal pad on the RHB package to DVSS.  
7-1. 32-Pin RHB Package (Top View) MSP430i2041, MSP430i2040  
7-2 shows the pin assignments for the MSP430i2041 and MSP430i2040 devices in the PW package.  
A0.0+  
A0.0-  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
P2.3/VMONIN  
P2.2/TA1.2  
A1.0+  
A1.0-  
3
P2.1/TA1.1  
4
P2.0/TA1.0/CLKIN  
A2.0+  
A2.0-  
5
P1.7/UCB0SDA/UCB0SIMO/TA1CLK  
P1.6/UCB0SCL/UCB0SOMI/TA0.2  
P1.5/UCB0CLK/TA0.1  
6
MSP430i2041TPW  
MSP430i2040TPW  
A3.0+  
A3.0-  
7
8
P1.4/UCB0STE/TA0.0  
VREF  
AVSS  
ROSC  
DVSS  
VCC  
9
P1.3/UCA0TXD/UCA0SIMO/TA0CLK/TDO/TDI  
P1.2/UCA0RXD/UCA0SOMI/ACLK/TDI/TCLK  
P1.1/UCA0CLK/SMCLK/TMS  
P1.0/UCA0STE/MCLK/TCK  
TEST/SBWTCK  
10  
11  
12  
13  
14  
VCORE  
RST/NMI/SBWTDIO  
7-2. 28-Pin PW Package (Top View) MSP430i2041, MSP430i2040  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
32-Pin RHB Package (Top View) MSP430i2031, MSP430i2030 shows the pin assignments for the  
MSP430i2031 and MSP430i2030 devices in the RHB package.  
32 31 30 29 28 27 26 25  
A0.0+  
A0.0-  
A1.0+  
A1.0-  
A2.0+  
A2.0-  
NC  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
P1.7/UCB0SDA/UCB0SIMO/TA1CLK  
P1.6/UCB0SCL/UCB0SOMI/TA0.2  
P1.5/UCB0CLK/TA0.1  
MSP430i2031TRHB  
MSP430i2030TRHB  
P1.4/UCB0STE/TA0.0  
P1.3/UCA0TXD/UCA0SIMO/TA0CLK/TDO/TDI  
P1.2/UCA0RXD/UCA0SOMI/ACLK/TDI/TCLK  
P1.1/UCA0CLK/SMCLK/TMS  
NC  
P1.0/UCA0STE/MCLK/TCK  
9
10 11 12 13 14 15 16  
NOTE: TI recommends connecting the thermal pad on the RHB package to DVSS.  
NOTE: TI recommends connecting NC pins to AVSS.  
7-3. 32-Pin RHB Package (Top View) MSP430i2031, MSP430i2030  
28-Pin PW Package (Top View) MSP430i2031, MSP430i2030 shows the pin assignments for the  
MSP430i2031 and MSP430i2030 devices in the PW package.  
A0.0+  
A0.0-  
A1.0+  
A1.0-  
A2.0+  
A2.0-  
NC  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
P2.3/VMONIN  
P2.2/TA1.2  
3
P2.1/TA1.1  
4
P2.0/TA1.0/CLKIN  
5
P1.7/UCB0SDA/UCB0SIMO/TA1CLK  
P1.6/UCB0SCL/UCB0SOMI/TA0.2  
P1.5/UCB0CLK/TA0.1  
6
MSP430i2031TPW  
MSP430i2030TPW  
7
NC  
8
P1.4/UCB0STE/TA0.0  
VREF  
AVSS  
ROSC  
DVSS  
VCC  
9
P1.3/UCA0TXD/UCA0SIMO/TA0CLK/TDO/TDI  
P1.2/UCA0RXD/UCA0SOMI/ACLK/TDI/TCLK  
P1.1/UCA0CLK/SMCLK/TMS  
P1.0/UCA0STE/MCLK/TCK  
TEST/SBWTCK  
10  
11  
12  
13  
14  
VCORE  
RST/NMI/SBWTDIO  
NOTE: TI recommends connecting NC pins to AVSS.  
7-4. 28-Pin PW Package (Top View) MSP430i2031, MSP430i2030  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
32-Pin RHB Package (Top View) MSP430i2021, MSP430i2020 shows the pin assignments for the  
MSP430i2021 and MSP430i2020 devices in the RHB package.  
32 31 30 29 28 27 26 25  
A0.0+  
A0.0-  
A1.0+  
A1.0-  
NC  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
P1.7/UCB0SDA/UCB0SIMO/TA1CLK  
P1.6/UCB0SCL/UCB0SOMI/TA0.2  
P1.5/UCB0CLK/TA0.1  
P1.4/UCB0STE/TA0.0  
MSP430i2021TRHB  
MSP430i2020TRHB  
P1.3/UCA0TXD/UCA0SIMO/TA0CLK/TDO/TDI  
P1.2/UCA0RXD/UCA0SOMI/ACLK/TDI/TCLK  
P1.1/UCA0CLK/SMCLK/TMS  
NC  
NC  
NC  
P1.0/UCA0STE/MCLK/TCK  
9
10 11 12 13 14 15 16  
NOTE: TI recommends connecting the thermal pad on the RHB package to DVSS.  
TI recommends connecting NC pins to AVSS.  
7-5. 32-Pin RHB Package (Top View) MSP430i2021, MSP430i2020  
28-Pin PW Package (Top View) MSP430i2021, MSP430i2020 shows the pin assignments for the  
MSP430i2021 and MSP430i2020 devices in the PW package.  
A0.0+  
A0.0-  
A1.0+  
A1.0-  
NC  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
P2.3/VMONIN  
P2.2/TA1.2  
3
P2.1/TA1.1  
4
P2.0/TA1.0/CLKIN  
5
P1.7/UCB0SDA/UCB0SIMO/TA1CLK  
P1.6/UCB0SCL/UCB0SOMI/TA0.2  
P1.5/UCB0CLK/TA0.1  
NC  
6
NC  
7
MSP430i2021TPW  
MSP430i2020TPW  
NC  
8
P1.4/UCB0STE/TA0.0  
VREF  
AVSS  
ROSC  
DVSS  
VCC  
9
P1.3/UCA0TXD/UCA0SIMO/TA0CLK/TDO/TDI  
P1.2/UCA0RXD/UCA0SOMI/ACLK/TDI/TCLK  
P1.1/UCA0CLK/SMCLK/TMS  
P1.0/UCA0STE/MCLK/TCK  
TEST/SBWTCK  
10  
11  
12  
13  
14  
VCORE  
RST/NMI/SBWTDIO  
TI recommends connecting NC pins to AVSS.  
7-6. 28-Pin PW Package (Top View) MSP430i2021, MSP430i2020  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
7.2 Signal Descriptions  
7.2 describes the signals for all device variants and package options.  
7-1. Signal Descriptions  
TERMINAL  
NO.(2)  
I/O(1)  
DESCRIPTION  
NAME  
PW  
RHB  
1
A0.0+  
A0.0-  
1
2
I
I
I
I
I
I
I
I
I
SD24 positive analog input A0.0(3)  
2
SD24 negative analog input A0.0(3)  
SD24 positive analog input A1.0(3)  
SD24 negative analog input A1.0(3)  
SD24 positive analog input A2.0(3) (4)  
SD24 negative analog input A2.0(3) (4)  
SD24 positive analog input A3.0 (3) (4) (5)  
SD24 negative analog input A3.0 (3) (4) (5)  
SD24 external reference voltage input  
Analog supply voltage, negative terminal  
External resistor pin for DCO.  
A1.0+  
A1.0-  
3
3
4
4
A2.0+  
A2.0-  
5
5
6
6
A3.0+  
A3.0-  
7
7
8
8
VREF(6)  
9
9
AVSS  
10  
10  
Connect recommended resistor between ROSC and AVSS for DCO operation  
in external resistor mode. Connect ROSC to AVSS while operating DCO in  
internal resistor mode.  
ROSC  
11  
11  
DVSS  
12  
13  
14  
12  
13  
14  
Digital supply voltage, negative terminal  
VCC  
Analog and digital supply voltage, positive terminal  
Regulated core power supply (internal use only, no external current loading)  
VCORE (7)  
Reset or nonmaskable interrupt input.  
Spy-Bi-Wire test data input/output for device programming and test.  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
15  
16  
15  
16  
I/O  
I
Selects test mode for JTAG pins on P1.0 to P1.3.  
Spy-Bi-Wire test clock input for device programming and test.  
General-purpose digital I/O pin.  
eUSCI_A0 SPI slave transmit enable (direction controlled by eUSCI).  
P1.0/UCA0STE/MCLK/TCK  
P1.1/UCA0CLK/SMCLK/TMS  
17  
18  
17  
18  
I/O  
I/O  
MCLK output.  
JTAG test clock. TCK is the clock input port for device programming and test.  
General-purpose digital I/O pin.  
eUSCI_A0 clock input/output (direction controlled by eUSCI).  
SMCLK output.  
JTAG test mode select. TMS is used as an input port for device programming  
and test.  
General-purpose digital I/O pin.  
eUSCI_A0 UART receive data or eUSCI_A0 SPI slave out/master in (direction  
P1.2/UCA0RXD/UCA0SOMI/  
ACLK/TDI/TCLK  
controlled by eUSCI).  
19  
19  
I/O  
ACLK output.  
JTAG test data input or test clock input for device programming and test.  
General-purpose digital I/O pin.  
eUSCI_A0 UART transmit data or eUSCI_A0 SPI slave in/master out (direction  
controlled by eUSCI).  
P1.3/UCA0TXD/UCA0SIMO/  
TA0CLK/TDO/TDI  
20  
21  
20  
21  
I/O  
I/O  
Timer external clock input TACLK for TA0.  
JTAG test data output port. TDO/TDI data output or programming data input  
terminal.  
General-purpose digital I/O pin.  
eUSCI_B0 SPI slave transmit enable (direction controlled by eUSCI).  
P1.4/UCB0STE/TA0.0  
Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
7-1. Signal Descriptions (continued)  
TERMINAL  
NAME  
NO.(2)  
I/O(1)  
DESCRIPTION  
PW  
RHB  
General-purpose digital I/O pin.  
eUSCI_B0 clock input/output (direction controlled by eUSCI).  
Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output.  
P1.5/UCB0CLK/TA0.1  
22  
22  
I/O  
General-purpose digital I/O pin.  
eUSCI_B0 I2C clock or eUSCI_B0 SPI slave out/master in (direction controlled  
P1.6/UCB0SCL/UCB0SOMI/  
TA0.2  
23  
23  
I/O  
by eUSCI).  
Timer TA0 CCR2 capture: CCI2A input, compare: Out2 output.  
General-purpose digital I/O pin.  
eUSCI_B0 I2C data or eUSCI_B0 slave input/master output (direction  
P1.7/UCB0SDA/UCB0SIMO/  
TA1CLK  
24  
25  
24  
25  
I/O  
I/O  
controlled by eUSCI).  
Timer external clock input TACLK for TA1.  
General-purpose digital I/O pin.  
Timer TA1 CCR0 capture: CCI0A input, compare: Out0 output.  
P2.0/TA1.0/CLKIN  
DCO bypass clock input.  
General-purpose digital I/O pin.  
Timer TA1 CCR1 capture: CCI1A input, compare: Out1 output.  
P2.1/TA1.1  
26  
27  
26  
27  
28  
29  
30  
31  
32  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O pin.  
Timer TA1 CCR2 capture: CCI2A input, compare: Out2 output.  
P2.2/TA1.2  
General-purpose digital I/O pin.  
Voltage monitor input.  
P2.3/VMONIN  
P2.4/TA1.0(8)  
P2.5/TA0.0(8)  
P2.6/TA0.1(8)  
P2.7/TA0.2(8)  
28  
General-purpose digital I/O pin.  
Timer TA1 CCR0 capture: CCI0B input, compare: Out0 output.  
N/A  
N/A  
N/A  
N/A  
General-purpose digital I/O pin.  
Timer TA0 CCR0 capture: CCI0B input, compare: Out0 output.  
General-purpose digital I/O pin.  
Timer TA0 CCR1 compare: Out1 output.  
General-purpose digital I/O pin.  
Timer TA0 CCR2 compare: Out2 output.  
(1) I = input, O = output  
(2) N/A = not available  
(3) Short unused analog input pairs and connect them to analog ground (see 7.4 for recommendations on all unused pins).  
(4) Not available on MSP430i2021 and MSP430i2020 devices.  
(5) Not available on MSP430i2031 and MSP430i2030 devices.  
(6) When the SD24 operates with the internal reference (SD24REFS = 1), the VREF pin must not be loaded externally. Connect only the  
recommended capacitor value (CVREF) from the VREF pin to AVSS (see 8.7.7.2).  
(7) VCORE is for internal use only. No external current loading is possible. Connect VCORE to only the recommended capacitor value  
(CVCORE) (see 8.3).  
(8) These pins are not available on the 28-pin PW package. Program these four pins to output direction and drive value 0 in software.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
 
 
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
7.3 Pin Multiplexing  
Pin multiplexing for these devices is controlled by both register settings and operating modes (for example, if the  
device is in test mode). For details of the settings for each pin and schematics of the multiplexed ports, see 节  
9.11.  
7.4 Connection of Unused Pins  
7-2 lists the correct termination of all unused pins.  
7-2. Connection of Unused Pins  
PIN(1)  
AVCC  
POTENTIAL  
DVCC  
COMMENT  
AVSS  
DVSS  
VREF  
Open  
ROSC  
AVSS  
Connect the ROSC pin to AVSS when the DCO is used in internal resistor mode.  
Set to port function, output direction.  
Px.0 to Px.7  
Ax.0+ and Ax.0-  
RST/NMI  
TEST  
Open  
AVSS  
Short unused analog input pairs and connect them to analog ground.  
47-kΩpullup with 10 nF (or 2.2 nF(2)) pulldown  
DVCC or VCC  
Open  
This pin always has an internal pulldown enabled.  
P1.3/TDO  
P1.2/TDI  
P1.1/TMS  
P1.0/TCK  
The JTAG pins are shared with general-purpose I/O function (P1.x). If these pins are not  
used, set them to port function and output direction. When used as JTAG pins, leave these  
pins open.  
Open  
(1) For any unused pin with a secondary function that is shared with general-purpose I/O, follow the guidelines for the Px.0 to Px.7 unused  
pin connection.  
(2) The pulldown capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire  
JTAG mode with TI tools like FET interfaces or GANG programmers.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
8 Specifications  
All graphs in this section are for typical conditions, unless otherwise noted.  
Typical (TYP) values are specified at VCC = 3.3 V and TA = 25°C, unless otherwise noted.  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
MAX  
UNIT  
Supply voltage applied at VCC  
Voltage applied to pins  
4.1  
V
0.3  
0.3  
All pins except VCORE(3), ROSC(4), and SD24 input pins  
(A0.0+, A0.0-, A1.0+, A1.0-, A2.0+, A2.0-, A3.0+, A3.0-)(5)  
VCC + 0.3  
±2  
V
All pins except SD24 input pins (A0.0+, A0.0-, A1.0+, A1.0-,  
A2.0+, A2.0-, A3.0+, A3.0-)  
Diode current at pins  
mA  
A0.0+, A0.0-, A1.0+, A1.0-, A2.0+, A2.0-, A3.0+, A3.0-(6)  
2
115  
150  
Maximum junction temperature, TJ,MAX  
°C  
°C  
(7)  
Storage temperature, Tstg  
55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are referenced to VSS  
.
(3) VCORE is for internal device use only. Do not apply external DC loading or voltage at VCORE.  
(4) Do not apply external DC loading or voltage at ROSC. Connect the recommended resistor at ROSC using the DCO in external resistor  
mode. Connect ROSC to AVSS when operating the DCO in internal resistor mode.  
(5) See 8.7.7.1 for SD24 specifications.  
(6) A protection diode is connected to VCC for the SD24 input pins. No protection diode is connected to VSS  
.
(7) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
8.2 ESD Ratings  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD) Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as  
±250 V may actually have higher performance.  
8.3 Recommended Operating Conditions  
MIN  
NOM  
MAX UNIT  
VCC  
VSS  
TA  
Supply voltage during program execution and flash programming or erase (VCC = VCC  
)
2.2  
3.6  
V
V
Supply voltage (AVSS = DVSS = VSS  
Operating free-air temperature  
)
0
T temperature range  
T temperature range  
105  
105  
°C  
°C  
nF  
40  
40  
TJ  
Operating junction temperature  
Recommended capacitor at VCORE  
CVCORE  
470  
CVCC  
CVCORE  
/
Capacitor ratio of VCC to VCORE  
10  
0
fSYSTEM  
Processor frequency (maximum MCLK frequency) (1) (2)  
16.384 MHz  
(1) The MSP430i CPU is clocked directly with MCLK.  
(2) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
16.384  
0
2.2  
3.6  
Supply Voltage (V)  
8-1. Maximum System Frequency  
8.4 Active Mode Supply Current (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
fDCO = 16.384 MHz, fMCLK = fSMCLK = 1.024 MHz,  
fACLK = 32 kHz,  
Program executes from flash,  
Active mode  
IAM, 1.024MHz current at  
1.024 MHz  
3 V  
1.6  
mA  
CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0  
fDCO = 16.384 MHz, fMCLK = fSMCLK = 8.192 MHz,  
fACLK = 32 kHz,  
Program executes from flash,  
Active mode  
IAM, 8.192MHz current at  
8.192 MHz  
3 V  
3 V  
3.0  
4.5  
mA  
mA  
CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0  
fDCO = fMCLK = fSMCLK = 16.384 MHz,  
fACLK = 32 kHz,  
Program executes from flash,  
Active mode  
IAM, 16.384MHz current at  
16.384 MHz  
CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0  
(1) All inputs are tied to 0 V or VCC. Outputs do not source or sink any current.  
(2) All peripherals are inactive.  
4.5  
4
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
TA = 25°C, VCC = 2.2 V  
TA = 25°C, VCC = 3 V  
TA = 105°C, VCC = 2.2 V  
TA = 105°C, VCC = 3 V  
fMCLK = 1.024 MHz  
fMCLK = 2.048 MHz  
fMCLK = 4.096 MHz  
fMCLK = 8.192 MHz  
fMCLK = 16.348 MHz  
1.5  
1
0.5  
0
2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
3 3.1 3.2 3.3 3.4 3.5 3.6  
0
2
4
6
8
10  
12  
fMCLK - Frequency (MHz)  
14  
16  
18  
VCC - Supply Voltage (V)  
D007  
D008  
8-2. Active Mode Current vs Supply Voltage  
8-3. Active Mode Current vs MCLK Frequency  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
8.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN TYP MAX UNIT  
fDCO = 16.384 MHz, fMCLK = fSMCLK = 0 MHz,  
fACLK = 32 kHz,  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0  
Low-power mode 3  
(LPM3) current (2)  
ILPM3  
ILPM4  
ILPM4.5  
25°C  
3 V  
210  
70  
µA  
µA  
Low-power mode 4  
(LPM4) current (3)  
fDCO = fMCLK = fSMCLK = fACLK = 0 MHz,  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1  
25°C  
3 V  
3 V  
fDCO = fMCLK = fSMCLK = fACLK = 0 MHz,  
REGOFF = 1, CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 1  
25°C  
75  
nA  
nA  
Low-power mode 4.5  
(LPM4.5) current (3)  
105°C  
325  
(1) All inputs are tied to 0 V or VCC. Outputs do not source or sink any current.  
(2) Current for watchdog timer clocked by ACLK included. All other peripherals are inactive.  
(3) All peripherals are inactive.  
8.6 Thermal Resistance Characteristics  
THERMAL METRIC(1)  
PACKAGE  
VALUE(2) (3)  
UNIT  
Junction-to-ambient thermal resistance, still air  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
35.9  
25.5  
8.6  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA  
RθJC(TOP)  
RθJB  
QFN-32 (RHB)  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-case (bottom) thermal resistance  
Junction-to-ambient thermal resistance, still air  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
8.6  
ΨJB  
0.3  
ΨJT  
1.4  
RθJC(BOTTOM)  
RθJA  
77.5  
18.2  
35.5  
35.0  
0.5  
RθJC(TOP)  
RθJB  
TSSOP-28 (PW)  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJB  
ΨJT  
N/A  
RθJC(BOTTOM)  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC package thermal metrics.  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RθJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment and application. For more information, see these EIA/JEDEC  
standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(3) N/A = Not applicable  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
 
 
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
8.7 Timing and Switching Characteristics  
8.7.1 Reset Timing  
8.7.1.1 Reset Timing  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
tRESET  
Pulse duration required at the RST/NMI pin to accept a reset  
4
µs  
8.7.2 Clock Specifications  
8.7.2.1 DCO in External Resistor Mode  
recommended resistor at ROSC pin: 20 kΩ, 0.1%, ±50 ppm/°C)(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
µA  
IDCO  
DCO current consumption  
DCO frequency calibrated  
DCO absolute tolerance calibrated  
DCO frequency temperature drift  
85  
16.384  
MHz  
fDCO  
VCC = 3 V, TA = 25°C  
±0.25%  
dfDCO/dT  
±20 ppm/°C  
dfDCO/dVCC DCO frequency supply voltage drift  
200  
50%  
40  
600  
ppm/V  
DCDCO  
Tdcoon  
Duty cycle  
DCO start-up time  
µs  
(1) The maximum parasitic capacitance at ROSC pin should not exceed 5 pF to ensure the specified DCO start-up time.  
8.7.2.2 DCO in Internal Resistor Mode  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
µA  
IDCO  
DCO current consumption  
DCO frequency calibrated  
DCO absolute tolerance calibrated  
DCO frequency temperature drift  
85  
16.384  
MHz  
fDCO  
VCC = 3 V, TA = 25°C  
±0.9%  
dfDCO/dT  
±200 ppm/°C  
dfDCO/dVCC DCO frequency supply voltage drift  
200  
50%  
40  
600  
ppm/V  
DCDCO  
Tdcoon  
Duty cycle  
DCO start-up time  
µs  
8.7.2.3 DCO Overall Tolerance Table  
over operating free-air temperature range (unless otherwise noted)  
OVERALL  
ACCURACY  
(%)  
TEMPERATURE  
CHANGE  
TEMPERATURE  
DRIFT (%)  
VOLTAGE  
CHANGE  
VOLTAGE  
DRIFT (%)  
OVERALL  
DRIFT (%)  
RESISTOR OPTION  
±2.9  
0
2.2 V to 3.6 V  
2.2 V to 3.6 V  
0 V  
±0.084  
±0.084  
0
±2.984  
±0.084  
±2.9  
±3.884  
±0.984  
±3.8  
40°C to 105 °C  
0°C  
Internal resistor  
±2.9  
±0.29  
0
40°C to 105 °C  
40°C to 105 °C  
0°C  
2.2 V to 3.6 V  
2.2 V to 3.6 V  
0 V  
±0.084  
±0.084  
0
±0.374  
±0.084  
±0.29  
±0.624  
±0.334  
±0.54  
External resistor with  
50-ppm TCR  
±0.29  
40°C to 105 °C  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
8.7.2.4 DCO in Bypass Mode Recommended Operating Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Frequency in DCO bypass mode(1)  
MIN  
MAX  
UNIT  
fDCOBYP  
0
16.384  
MHz  
(1) External digital clock frequency in DCO bypass mode must be 16.384 MHz for the SD24 module to meet the specified performance.  
8.7.3 Wake-up Characteristics  
8.7.3.1 Wake-up Times From Low Power Modes  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
µs  
tWAKE-UP-LPM3  
tWAKE-UP-LPM4  
Wake-up time from LPM3 to active mode MCLK = SMCLK = 1.024 MHz  
Wake-up time from LPM4 to active mode MCLK = SMCLK = 1.024 MHz  
1
45  
µs  
Wake-up time from LPM4.5 to active  
CVCORE = 470 nF  
tWAKE-UP-LPM4.5-IO  
0.45  
0.45  
ms  
ms  
mode upon I/O event(1)  
tWAKE-UP-LPM4.5-  
Wake-up time from LPM4.5 to active  
CVCORE = 470 nF  
mode upon external reset ( RST)(1)  
RESET  
(1) This value represents the time from the wake-up event to the reset vector execution by CPU.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
8.7.4 I/O Ports  
8.7.4.1 Schmitt-Trigger Inputs General-Purpose I/O  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.5 VCC  
1.50  
TYP  
MAX UNIT  
0.7 VCC  
VIT+  
Positive-going input threshold voltage  
V
V
3 V  
2.10  
0.55 VCC  
1.65  
0.25 VCC  
0.75  
VIT-  
Negative-going input threshold voltage  
3 V  
3 V  
Vhys  
CI  
0.4  
1.1  
V
Input voltage hysteresis (VIT+ VIT-  
)
Input capacitance  
VIN = VSS or VCC  
5
pF  
8.7.4.2 Inputs Ports P1 and P2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Port P1, P2: P1.x to P2.x, External trigger pulse  
duration to set interrupt flag  
t(int)  
External interrupt timing(1)  
3 V  
20  
ns  
(1) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
8.7.4.3 Leakage Current General-Purpose I/O  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
See (1) (2)  
VCC  
MIN  
MAX UNIT  
±50 nA  
Ilkg(Py.x)  
High-impedance leakage current  
3 V  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input.  
8.7.4.4 Outputs General-Purpose I/O  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
High-level output voltage  
Low-level output voltage  
TEST CONDITIONS  
I(OHmax) = 6 mA(1)  
I(OLmax) = 6 mA(1)  
VCC  
3.0 V  
3.0 V  
MIN  
VCC 0.60  
VSS  
MAX UNIT  
VOH  
VOL  
VCC  
VSS + 0.60  
V
V
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
8.7.4.5 Output Frequency General-Purpose I/O  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Py.x, CL = 20 pF, RL = 3.2 k(1) (2)  
Py.x, CL = 20 pF(2)  
VCC  
3 V  
3 V  
TYP UNIT  
16.384 MHz  
16.384 MHz  
fPy.x  
Port output frequency (with load)  
fPort_CLK Clock output frequency  
(1) A resistive divider with two times 1.6 kbetween VCC and VSS is used as load. The output is connected to the center tap of the divider.  
(2) The output voltage reaches at least 10% and 90% of VCC at the specified toggle frequency.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
8.7.4.6 Typical Characteristics Outputs  
One output loaded at a time.  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
6
4
6
2
4
2
0
TA = 25°C  
TA = 105°C  
TA = 25°C  
TA = 105°C  
0
-2  
-2  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
VOL - Low-Level Output Voltage (V)  
2
2.25  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
VOL - Low Output Voltage (V)  
3
D004  
D003  
VCC = 2.2 V Measured at P1.3  
VCC = 3 V Measured at P1.3  
8-4. Typical Low-Level Output Current vs Low- 8-5. Typical Low-Level Output Current vs Low-  
Level Output Voltage  
Level Output Voltage  
0
0
-2  
TA = 25°C  
TA = 105°C  
TA = 25°C  
TA = 105°C  
-2  
-4  
-6  
-4  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-6  
-8  
-10  
-12  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
VOH - High-Level Output Voltage (V)  
2
2.2  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
VOH - High-Level Output Voltage (V)  
3
D006  
D005  
VCC = 2.2 V Measured at P1.3  
VCC = 3 V Measured at P1.3  
8-6. Typical High-Level Output Current vs High- 8-7. Typical High-Level Output Current vs High-  
Level Output Voltage  
Level Output Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
8.7.5 Power Management Module  
8.7.5.1 PMM, High-Side Brownout Reset (BORH)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
| dVCC/dt | < 3 V/s  
| dVCC/dt | < 3 V/s  
MIN  
TYP  
1.08  
1.18  
100  
MAX UNIT  
BORH on voltage, VCC falling level  
BORH off voltage, VCC rising level  
BORH hysteresis  
V
V
V(VCC_BOR_IT)  
V(VCC_BOR_IT+)  
V(VCC_BOR_hys)  
mV  
(1)  
tPOWERUP  
Cold power-up time  
0.75  
ms  
(1) This is the time duration between application of VCC and execution of reset vector by CPU.  
8.7.5.2 PMM, Low-Side SVS (SVSL)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
1.70  
14  
MAX UNIT  
V(SVSL)  
SVSL trip voltage on VCORE  
V
V(SVSL_hys) SVSL hysteresis  
mV  
µA  
I(SVSL)  
SVSL current consumption  
3
8.7.5.3 PMM, Core Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX UNIT  
VCORE  
Core voltage  
1.83  
V
8.7.5.4 PMM, Voltage Monitor (VMON)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.17  
2.32  
2.62  
2.82  
6
MAX UNIT  
VMONIN trip level  
VMONLVLx = 111b  
VMONLVLx = 001b  
VMONLVLx = 010b  
VMONLVLx = 011b  
VCC trip level 1  
VCC trip level 2  
VCC trip level 3  
VMON current consumption  
VMON settling time  
VMONtrip_level  
V
IVMON  
tVMON  
µA  
µs  
0.5  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
8.7.6 Reference Module  
8.7.6.1 Voltage Reference (REF)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VCC  
VBG  
Supply voltage range  
2.2  
3.6  
V
V
Bandgap output voltage calibrated  
VCC = 3 V  
1.146 1.158  
50  
1.17  
PSRR_DC Power supply rejection ratio (DC)  
VCC = 2.2 V to 3.6 V  
µV/V  
VCC = 2.2 V to 3.6 V, f = 1 kHz,  
ΔVpp = 100 mV  
PSRR_AC Power supply rejection ratio (AC)  
0.35  
10  
mV/V  
dVBG/dT  
Bandgap reference temperature coefficient  
VCC = 3 V  
50 ppm/°C  
8.7.6.2 Temperature Sensor  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC = 3 V, TA = 30°C  
VCC = 3 V, TA = 105°C  
MIN  
610  
765  
TYP  
650  
805  
3
MAX UNIT  
690  
mV  
845  
Vsensor  
Temperature sensor output voltage  
Isensor  
Temperature sensor quiescent current consumption  
Temperature coefficient of sensor  
µA  
TCsensor  
1.96  
2.07  
2.17 mV/°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
8.7.7 SD24  
8.7.7.1 SD24 Power Supply and Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VCC  
Supply voltage range  
AVSS = DVSS = 0 V  
2.2  
3.6  
V
GAIN: 1, 2, 4, 8, 16  
GAIN: 1, 16  
3 V  
3 V  
190  
Analog plus digital supply current per  
converter (reference current not included)  
ISD24  
SD24OSRx = 256  
µA  
250  
8.7.7.2 SD24 Internal Voltage Reference  
over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VSD24REF  
CVREF  
SD24 internal reference voltage  
Recommended capacitor at VREF  
SD24REFS = 1  
3 V  
1.146 1.158  
1.17  
V
100  
200  
nF  
µs  
tSD24REF_settle SD24 reference buffer settling time  
SD24REFS = 0 1, CVREF = 100 nF  
(1) When SD24 operates with internal reference (SD24REFS = 1), the VREF pin must not be loaded externally. Only the recommended  
capacitor value, CVREF must be connected at the VREF pin to AVSS.  
8.7.7.3 SD24 External Voltage Reference  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Input voltage range  
Input current  
TEST CONDITIONS  
VCC  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
VREF(I)  
IREF(I)  
SD24REFS = 0  
SD24REFS = 0  
1.0  
1.2  
1.5  
50  
V
nA  
8.7.7.4 SD24 Input Range  
over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Differential full-scale input voltage  
range  
+VREF  
GAIN  
/
VREF  
GAIN  
/
VID,FSR  
V
VID = VI,A+ VI,A–  
SD24GAINx = 1  
±928  
±464  
±232  
±116  
±58  
SD24GAINx = 2  
SD24GAINx = 4  
SD24GAINx = 8  
SD24GAINx = 16  
Differential input voltage range for  
specified performance(2)  
VID  
SD24REFS = 1  
mV  
Input impedance  
(pin A+ or A- to AVSS  
ZI  
SD24GAINx = 1, 16  
SD24GAINx = 1, 16  
3 V  
3 V  
200  
400  
kΩ  
kΩ  
(3)  
)
Differential input impedance (pin A+  
to pin A-)(3)  
ZID  
300  
VI  
Absolute input voltage range  
VCC  
VCC  
V
V
AVSS 1  
AVSS 1  
VIC  
Common-mode input voltage range  
(1) All parameters pertain to each SD24 channel.  
(2) The full-scale range is defined by VFSR+ = +VREF/GAIN and VFSR= VREF/GAIN; FSR = VFSR+ VFSR= 2xVREF/GAIN. If VREF is  
sourced externally, the analog input range should not exceed 80% of VFSR+ or VFSR; that is, VID = 0.8 VFSRto 0.8 VFSR+. If VREF is  
sourced internally, the given VID ranges apply.  
(3) Applicable for SD24 modulator OFF as well as ON conditions.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
8.7.7.5 SD24 Performance, Internal Reference (SD24REFS = 1, SD24OSRx = 256)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
89  
MAX UNIT  
SD24GAINx = 1  
SD24GAINx = 2  
SD24GAINx = 4  
SD24GAINx = 8  
SD24GAINx = 16  
SD24GAINx = 1  
84  
89  
Signal-to-noise +  
distortion ratio  
SINAD  
THD  
fIN = 50 Hz(1)  
3 V  
87  
dB  
83  
77  
100  
95  
Total harmonic distortion SD24GAINx = 8  
SD24GAINx = 16  
fIN = 50 Hz(1)  
3 V  
dB  
90  
SD24GAINx = 1  
Spurious-free dynamic  
SD24GAINx = 8  
range  
100  
95  
SFDR  
INL  
fIN = 50 Hz(1)  
3 V  
3 V  
dB  
SD24GAINx = 16  
90  
Integral nonlinearity,  
SD24GAINx: 1, 8, 16  
end-point fit  
0.003 % FSR  
0.003  
SD24GAINx = 1  
SD24GAINx = 2  
1
2
G
Nominal gain  
SD24GAINx = 4  
SD24GAINx = 8  
SD24GAINx = 16  
3 V  
4
8
16  
EG  
Gain error  
SD24GAINx: 1, 2, 4, 8, 16  
SD24GAINx: 1, 8, 16  
3 V  
3 V  
2%  
2%  
Gain error temperature  
coefficient  
50 ppm/°C  
ΔEG/ ΔT  
SD24GAINx = 1  
SD24GAINx = 16  
SD24GAINx = 1  
SD24GAINx = 16  
4
EOS  
Offset error  
3 V  
3 V  
mV  
2
±5  
±3  
±25  
Offset error temperature  
coefficient  
ppm  
FSR/°C  
ΔEOS/ΔT  
±10  
SD24GAINx = 1, Common-mode input signal:  
VID = 928 mV, fIN = 50 Hz  
55  
60  
90  
95  
95  
Common-mode rejection  
ratio at 50 Hz  
CMRR,50Hz  
AC PSRR  
3 V  
dB  
dB  
SD24GAINx = 16, Common-mode input signal:  
VID = 58 mV, fIN = 50 Hz  
SD24GAINx: 1, VCC = 3 V ±50 mV × sin(2π× fVCC × t), fVCC  
50 Hz, Inputs grounded (no analog signal applied)  
=
=
3 V  
3 V  
3 V  
AC power supply  
rejection ratio  
SD24GAINx: 8, VCC = 3 V ±50 mV × sin(2π× fVCC × t), fVCC  
50 Hz, Inputs grounded (no analog signal applied)  
SD24GAINx: 16, VCC = 3 V ±50 mV × sin(2π× fVCC × t), fVCC  
50 Hz, Inputs grounded (no analog signal applied)  
=
Crosstalk source: SD24GAINx = 1, Sine-wave with maximum  
possible VPP, fIN = 50 Hz or 100 Hz, Converter under test:  
SD24GAINx = 1  
120  
110  
110  
Crosstalk source: SD24GAINx = 1, Sine-wave with maximum  
possible VPP, fIN = 50 Hz or 100 Hz, Converter under test:  
SD24GAINx = 8  
Crosstalk between  
converters  
XT  
3 V  
dB  
Crosstalk source: SD24GAINx = 1, Sine-wave with maximum  
possible VPP, fIN = 50 Hz or 100 Hz, Converter under test:  
SD24GAINx = 16  
(1) The following voltages are applied to the SD24 inputs:  
VI,A+(t) = 0 V + VPP/2 × sin(2π× fIN × t)  
VI,A(t) = 0 V VPP/2 × sin(2π× fIN × t)  
resulting in a differential voltage of VID = VIN,A+(t) VIN,A(t) = VPP × sin(2π× fIN × t) with VPP being selected as the maximum value  
allowed for a given range (according to SD24 input range).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
8.7.7.6 SD24 Performance, External Reference (SD24REFS = 0, SD24OSRx = 256)  
external reference voltage is 1.2 V., over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
91  
MAX UNIT  
SD24GAINx = 1  
SD24GAINx = 2  
SD24GAINx = 4  
SD24GAINx = 8  
SD24GAINx = 16  
SD24GAINx = 1  
SD24GAINx = 8  
SD24GAINx = 16  
SD24GAINx = 1  
SD24GAINx = 8  
SD24GAINx = 16  
90  
Signal-to-noise + distortion  
ratio  
SINAD  
THD  
fIN = 50 Hz(1)  
3 V  
88  
dB  
83  
77  
100  
95  
Total harmonic distortion  
fIN = 50 Hz(1)  
3 V  
dB  
90  
100  
95  
Spurious-free dynamic  
range  
SFDR  
INL  
fIN = 50 Hz(1)  
3 V  
3 V  
dB  
90  
Integral nonlinearity, end-  
point fit  
SD24GAINx: 1, 8, 16  
0.003 % FSR  
0.003  
SD24GAINx = 1  
SD24GAINx = 2  
SD24GAINx = 4  
SD24GAINx = 8  
SD24GAINx = 16  
1
2
G
Nominal gain  
3 V  
4
8
16  
EG  
Gain error  
SD24GAINx: 1, 2, 4, 8, 16  
SD24GAINx: 1, 8, 16  
3 V  
3 V  
+1%  
1%  
Gain error temperature  
coefficient  
10 ppm/°C  
ΔEG/ ΔT  
SD24GAINx = 1  
SD24GAINx = 16  
SD24GAINx = 1  
SD24GAINx = 16  
4
EOS  
Offset error  
3 V  
3 V  
mV  
2
±5  
±3  
±25  
Offset error temperature  
coefficient  
ppm  
FSR/°C  
ΔEOS/ΔT  
±10  
SD24GAINx = 1, Common-mode input signal:  
VID = 928 mV, fIN = 50 Hz  
55  
60  
90  
95  
95  
Common-mode rejection  
ratio at 50 Hz  
CMRR,50Hz  
AC PSRR  
3 V  
dB  
dB  
SD24GAINx = 16, Common-mode input signal:  
VID = 58 mV, fIN = 50 Hz  
SD24GAINx: 1, VCC = 3 V ±50 mV × sin(2π× fVCC × t), fVCC  
50 Hz, Inputs grounded (no analog signal applied)  
=
=
3 V  
3 V  
3 V  
AC power supply rejection  
ratio  
SD24GAINx: 8, VCC = 3 V ±50 mV × sin(2π× fVCC × t), fVCC  
50 Hz, Inputs grounded (no analog signal applied)  
SD24GAINx: 16, VCC = 3 V ±50 mV × sin(2π× fVCC × t), fVCC  
= 50 Hz, Inputs grounded (no analog signal applied)  
Crosstalk source: SD24GAINx = 1, Sine-wave with maximum  
possible VPP, fIN = 50 Hz or 100 Hz, Converter under test:  
SD24GAINx = 1  
120  
110  
110  
Crosstalk source: SD24GAINx = 1, Sine-wave with maximum  
possible VPP, fIN = 50 Hz or 100 Hz, Converter under test:  
SD24GAINx = 8  
Crosstalk between  
converters  
XT  
3 V  
dB  
Crosstalk source: SD24GAINx = 1, Sine-wave with maximum  
possible VPP, fIN = 50 Hz or 100 Hz, Converter under test:  
SD24GAINx = 16  
(1) The following voltages are applied to the SD24 inputs:  
VI,A+(t) = 0 V + VPP/2 × sin(2π× fIN × t)  
VI,A(t) = 0 V VPP/2 × sin(2π× fIN × t)  
resulting in a differential voltage of VID = VIN,A+(t) VIN,A(t) = VPP × sin(2π× fIN × t) with VPP being selected as the maximum value  
allowed for a given range (according to SD24 input range).  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
8.7.7.7 Typical Characteristics  
90  
87  
84  
81  
78  
75  
72  
69  
66  
63  
60  
57  
90  
85  
80  
75  
70  
65  
60  
55  
0
0.2  
0.4  
0.6  
VPP (V)  
0.8  
1
1.2  
25  
50  
75 100 125 150 175 200 225 250 275  
OSR  
D002  
D001  
A.fSD24 = 1.024 MHz  
OSR = 256  
SD24REFS = 1  
SD24GAINx = 1  
A.fSD24 = 1.024 MHz  
SD24REFS = 1  
SD24GAINx = 1  
8-8. SINAD vs OSR  
8-9. SINAD vs VPP  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
8.7.8 eUSCI  
8.7.8.1 eUSCI (UART Mode) Clock Frequency  
PARAMETER  
TEST CONDITIONS  
Internal: SMCLK or ACLK,  
MIN  
MAX UNIT  
feUSCI  
eUSCI input clock frequency  
External: UCLK  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
BITCLK clock frequency  
(equals baud rate in MBaud)  
fBITCLK  
4
MHz  
8.7.8.2 eUSCI (UART Mode) Deglitch Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
UCGLITx = 0  
8
15  
20  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
30  
50  
70  
50  
60  
ns  
tt  
UART receive deglitch time(1)  
2.2 V, 3 V  
70  
100  
100  
150  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized their width should exceed the maximum specification of the deglitch time.  
8.7.8.3 eUSCI (SPI Master Mode) Clock Frequency  
PARAMETER  
TEST CONDITIONS  
Internal: SMCLK or ACLK,  
Duty cycle = 50% ±10%  
MIN  
MAX UNIT  
feUSCI  
eUSCI input clock frequency  
fSYSTEM MHz  
8.7.8.4 eUSCI (SPI Master Mode) Timing  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V  
MIN  
150  
200  
MAX UNIT  
tSTE,LEAD  
tSTE,LAG  
STE lead time, STE active to clock  
STE lag time, Last clock to STE inactive  
UCSTEM = 1, UCMODEx = 01 or 10  
UCSTEM = 1, UCMODEx = 01 or 10  
ns  
ns  
40  
ns  
30  
STE access time, STE active to SIMO  
data out  
tSTE,ACC  
UCSTEM = 0, UCMODEx = 01 or 10  
UCSTEM = 0, UCMODEx = 01 or 10  
3 V  
2.2 V  
40  
ns  
30  
STE disable time, STE inactive to SIMO  
high impedance  
tSTE,DIS  
3 V  
2.2 V  
50  
30  
0
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
SIMO output data valid time(2)  
SIMO output data hold time(3)  
ns  
ns  
3 V  
tHD,MI  
2.2 V, 3 V  
2.2 V  
7
tVALID,MO  
tHD,MO  
UCLK edge to SIMO valid, CL = 20 pF  
CL = 20 pF  
ns  
5
3 V  
2.2 V, 3 V  
0
ns  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)  
)
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), refer to the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. Refer to the timing  
diagrams in 8-10 and 8-11.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. Refer to the timing diagrams in 图  
8-10 and 8-11.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
UCMODEx = 01  
UCMODEx = 10  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,ACC  
tSTE,DIS  
8-10. SPI Master Mode, CKPH = 0  
UCMODEx = 01  
STE  
tSTE,LEAD  
tSTE,LAG  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,DIS  
tSTE,ACC  
8-11. SPI Master Mode, CKPH = 1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
8.7.8.5 eUSCI (SPI Slave Mode) Timing  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V  
MIN  
MAX UNIT  
tSTE,LEAD  
tSTE,LAG  
STE lead time, STE active to clock  
STE lag time, Last clock to STE inactive  
3
ns  
ns  
0
35  
ns  
25  
tSTE,ACC  
STE access time, STE active to SOMI data out  
3 V  
STE disable time, STE inactive to SOMI high  
impedance  
tSTE,DIS  
2.2 V, 3 V  
35  
ns  
tSU,SI  
tHD,SI  
SIMO input data setup time  
SIMO input data hold time  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V  
1
5
ns  
ns  
35  
25  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO  
SOMI output data valid time(2)  
SOMI output data hold time(3)  
ns  
ns  
3 V  
2.2 V  
35  
25  
tHD,SO  
CL = 20 pF  
3 V  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)  
)
For the master parameters tSU,MI(Master) and tVALID,MO(Master), refer to the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. Refer to the timing  
diagrams in 8-12 and 8-13.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. Refer to the timing diagrams in 图  
8-12 and 8-13.  
UCMODEx = 01  
tSTE,LEAD  
tSTE,LAG  
STE  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tSU,SI  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
8-12. SPI Slave Mode, CKPH = 0  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
UCMODEx = 01  
UCMODEx = 10  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
tSU,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
8-13. SPI Slave Mode, CKPH = 1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
8.7.8.6 eUSCI (I2C Mode) Timing  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see 8-14)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: UCLK,  
feUSCI  
eUSCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
fSCL  
SCL clock frequency  
2.2 V, 3 V  
2.2 V, 3 V  
0
4.8  
1.2  
4.9  
1.26  
0.12  
4.7  
1.08  
4.9  
1.18  
75  
400  
kHz  
µs  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
tSU,STA  
tHD,DAT  
tSU,DAT  
Setup time for a repeated START  
Data hold time  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
µs  
µs  
µs  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
UCGLITx = 0  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
UCCLTOx = 1  
UCCLTOx = 2  
UCCLTOx = 3  
Data setup time  
tSU,STO  
Setup time for STOP  
2.2 V, 3 V  
2.2 V, 3 V  
µs  
ns  
110  
50  
25  
15  
33  
37  
41  
160  
80  
35  
Pulse duration of spikes suppressed  
by input filter  
tSP  
15  
40  
10  
20  
tTIMEOUT  
Clock low timeout  
2.2 V, 3 V  
ms  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
tLOW  
tHIGH  
tSP  
SCL  
tSU,DAT  
tSU,STO  
tHD,DAT  
8-14. I2C Mode Timing  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
8.7.9 Timer_A  
8.7.9.1 Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK  
External: TACLK  
fTA  
Timer_A input clock frequency  
3.0 V  
16.384 MHz  
All capture inputs, Minimum pulse  
duration required for capture  
tTA,cap  
Timer_A capture timing  
3.0 V  
20  
ns  
8.7.10 Flash  
8.7.10.1 Flash Memory  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST  
CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VCC(PGM/ERASE) Program and erase supply voltage  
2.2  
3.6  
476  
8
V
kHz  
mA  
fFTG  
Flash timing generator frequency  
Supply current from VCC during program  
Supply current from VCC during erase  
Cumulative program time(1)  
257  
IPGM  
IERASE  
tCPT  
2.2 V, 3.6 V  
2.2 V, 3.6 V  
2.2 V, 3.6 V  
13  
8
mA  
ms  
Program and erase endurance  
Data retention duration  
20000  
100  
cycles  
years  
tRetention  
tWord  
TJ = 25°C  
(2)  
Word or byte program time  
25  
20  
(2)  
tBlock, 0  
Block program time for first byte or word  
Block program time for each additional byte or  
word  
(2)  
tBlock, 1-63  
11  
tFTG  
(2)  
(2)  
(2)  
tBlock, End  
tMass Erase  
tSeg Erase  
Block program end-sequence wait time  
Mass erase time  
6
10593  
9628  
Segment erase time  
(1) The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word-write mode, individual byte-write mode, and block-write mode.  
(2) These values are hardwired into the state machine of the flash controller (tFTG = 1/fFTG).  
8.7.11 Emulation and Debug  
8.7.11.1 JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VCC  
MIN  
TYP  
MAX UNIT  
fSBW  
Spy-Bi-Wire input frequency  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
0
20 MHz  
tSBW,Low  
tSBW, En  
tSBW,Rst  
fTCK  
Spy-Bi-Wire low clock pulse duration  
0.025  
15  
1
μs  
μs  
μs  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge)(1)  
Spy-Bi-Wire return to normal operation time  
TCK input frequency, 4-wire JTAG(2)  
15  
0
100  
10 MHz  
80  
Rinternal  
Internal pulldown resistance on TEST  
45  
60  
kΩ  
(1) Tools that access the Spy-Bi-Wire interface must wait for the minimum tSBW,En time after pulling the TEST/SBWTCK pin high before  
applying the first SBWTCK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The MSP430i204x, MSP430i203x, MSP430i202x devices consist of a powerful 16-bit RISC CPU, a DCO-based  
clock system that generates system clocks, a power-management module (PMM) with built-in voltage reference  
and voltage monitor, two to four 24-bit sigma-delta analog-to-digital converters (ADCs), a temperature sensor, a  
16-bit hardware multiplier, two 16-bit timers, one eUSCI-A module and one eUSCI-B module, a watchdog timer  
(WDT), and up to 16 I/O pins.  
9.2 Functional Block Diagrams  
9-1 shows the functional block diagram for the MSP430i2041 and MSP430i2040 in the RHB package.  
ROSC  
VCC DVSS AVSS VCORE RST/NMI  
P1.x  
P2.x  
8
8
ACLK  
Clock  
System  
TA0  
TA1  
Port P1  
Port P2  
RAM  
Flash  
Timer_A  
3 CC  
Registers  
Timer_A  
3 CC  
Registers  
8 I/Os,  
Interrupt  
capability  
8 I/Os,  
Interrupt  
capability  
SMCLK  
2KB  
1KB  
32KB  
16KB  
MCLK  
MAB  
MDB  
16.384-MHz  
CPU  
with 16  
registers  
Emulation  
2BP  
Hardware  
Multiplier  
(16x16)  
SD24  
Power  
Management  
JTAG  
Interface  
eUSCI_A0  
Watchdog  
WDT  
eUSCI_B0  
SPI, I2C  
4
Sigma-Delta  
Analog-to-  
Digital  
LDO  
REF  
VMON  
Brownout  
MPY,  
MPYS,  
MAC,  
UART,  
IrDA, SPI  
15 or 16 bit  
Spy-Bi-  
Wire  
Converters  
MACS  
9-1. Functional Block Diagram RHB Package MSP430i2041, MSP430i2040  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9-2 shows the functional block diagram for the MSP430i2041 and MSP430i2040 in the PW package.  
ROSC  
VCC DVSS AVSS VCORE RST/NMI  
P1.x  
P2.x  
4
8
ACLK  
Clock  
System  
TA0  
TA1  
Port P1  
Port P2  
RAM  
Flash  
Timer_A  
3 CC  
Registers  
Timer_A  
3 CC  
Registers  
8 I/Os,  
Interrupt  
capability  
4 I/Os,  
Interrupt  
capability  
SMCLK  
2KB  
1KB  
32KB  
16KB  
MCLK  
16.384-MHz  
CPU  
MAB  
MDB  
with 16  
registers  
Emulation  
2BP  
Hardware  
Multiplier  
(16x16)  
SD24  
Power  
Management  
JTAG  
Interface  
eUSCI_A0  
Watchdog  
WDT  
eUSCI_B0  
SPI, I2C  
4
Sigma-Delta  
Analog-to-  
Digital  
LDO  
REF  
VMON  
Brownout  
UART,  
IrDA, SPI  
MPY,  
MPYS,  
MAC,  
15 or 16 bit  
Spy-Bi-  
Wire  
Converters  
MACS  
9-2. Functional Block Diagram PW Package MSP430i2041, MSP430i2040  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9-3 shows the functional block diagram for the MSP430i2031 and MSP430i2030 in the RHB package.  
ROSC  
VCC DVSS AVSS VCORE RST/NMI  
P1.x  
P2.x  
8
8
ACLK  
Clock  
System  
TA0  
TA1  
Port P1  
Port P2  
RAM  
Flash  
Timer_A  
3 CC  
Registers  
Timer_A  
3 CC  
Registers  
8 I/Os,  
Interrupt  
capability  
8 I/Os,  
Interrupt  
capability  
SMCLK  
2KB  
1KB  
32KB  
16KB  
MCLK  
16.384-MHz  
CPU  
MAB  
MDB  
with 16  
registers  
Emulation  
2BP  
Hardware  
Multiplier  
(16x16)  
SD24  
Power  
Management  
JTAG  
Interface  
eUSCI_A0  
Watchdog  
WDT  
eUSCI_B0  
SPI, I2C  
3
Sigma-Delta  
Analog-to-  
Digital  
LDO  
REF  
VMON  
Brownout  
UART,  
IrDA, SPI  
MPY,  
MPYS,  
MAC,  
15 or 16 bit  
Spy-Bi-  
Wire  
Converters  
MACS  
9-3. Functional Block Diagram RHB Package MSP430i2031, MSP430i2030  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9-4 shows the functional block diagram for the MSP430i2031 and MSP430i2030 in the PW package.  
ROSC  
VCC DVSS AVSS VCORE RST/NMI  
P1.x  
P2.x  
4
8
ACLK  
Clock  
System  
TA0  
TA1  
Port P1  
Port P2  
RAM  
Flash  
Timer_A  
3 CC  
Registers  
Timer_A  
3 CC  
Registers  
8 I/Os,  
Interrupt  
capability  
4 I/Os,  
Interrupt  
capability  
SMCLK  
2KB  
1KB  
32KB  
16KB  
MCLK  
16.384-MHz  
CPU  
MAB  
MDB  
with 16  
registers  
Emulation  
2BP  
Hardware  
Multiplier  
(16x16)  
SD24  
Power  
Management  
JTAG  
Interface  
eUSCI_A0  
Watchdog  
WDT  
eUSCI_B0  
SPI, I2C  
3
Sigma-Delta  
Analog-to-  
Digital  
LDO  
REF  
VMON  
Brownout  
UART,  
IrDA, SPI  
MPY,  
MPYS,  
MAC,  
15 or 16 bit  
Spy-Bi-  
Wire  
Converters  
MACS  
9-4. Functional Block Diagram PW Package MSP430i2031, MSP430i2030  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9-5 shows the functional block diagram for the MSP430i2021 and MSP430i2020 in the RHB package.  
ROSC  
VCC DVSS AVSS VCORE RST/NMI  
P1.x  
P2.x  
8
8
ACLK  
Clock  
System  
TA0  
TA1  
Port P1  
Port P2  
RAM  
Flash  
Timer_A  
3 CC  
Registers  
Timer_A  
3 CC  
Registers  
8 I/Os,  
Interrupt  
capability  
8 I/Os,  
Interrupt  
capability  
SMCLK  
2KB  
1KB  
32KB  
16KB  
MCLK  
16.384-MHz  
CPU  
MAB  
MDB  
with 16  
registers  
Emulation  
2BP  
Hardware  
Multiplier  
(16x16)  
SD24  
Power  
Management  
JTAG  
Interface  
eUSCI_A0  
Watchdog  
WDT  
eUSCI_B0  
SPI, I2C  
2
Sigma-Delta  
Analog-to-  
Digital  
LDO  
REF  
VMON  
Brownout  
UART,  
IrDA, SPI  
MPY,  
MPYS,  
MAC,  
15 or 16 bit  
Spy-Bi-  
Wire  
Converters  
MACS  
9-5. Functional Block Diagram RHB Package MSP430i2021, MSP430i2020  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9-6 shows the functional block diagram for the MSP430i2021 and MSP430i2020 in the PW package.  
ROSC  
VCC DVSS AVSS VCORE RST/NMI  
P1.x  
P2.x  
4
8
ACLK  
Clock  
System  
TA0  
TA1  
Port P1  
Port P2  
RAM  
Flash  
Timer_A  
3 CC  
Registers  
Timer_A  
3 CC  
Registers  
8 I/Os,  
Interrupt  
capability  
4 I/Os,  
Interrupt  
capability  
SMCLK  
2KB  
1KB  
32KB  
16KB  
MCLK  
16.384-MHz  
CPU  
MAB  
MDB  
with 16  
registers  
Emulation  
2BP  
Hardware  
Multiplier  
(16x16)  
SD24  
Power  
Management  
JTAG  
Interface  
eUSCI_A0  
Watchdog  
WDT  
eUSCI_B0  
SPI, I2C  
2
Sigma-Delta  
Analog-to-  
Digital  
LDO  
REF  
VMON  
Brownout  
UART,  
IrDA, SPI  
MPY,  
MPYS,  
MAC,  
15 or 16 bit  
Spy-Bi-  
Wire  
Converters  
MACS  
9-6. Functional Block Diagram PW Package MSP430i2021, MSP430i2020  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9.3 CPU  
The MSP430i CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations,  
other than program-flow instructions, are performed as register operations in conjunction with seven addressing  
modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register  
operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant  
generator respectively. The remaining registers are general-purpose registers (see 9-7).  
Peripherals are connected to the CPU using data, address, and control buses and can be handled with all  
instructions.  
Program Counter  
PC/R0  
Stack Pointer  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
9-7. CPU Registers  
CAUTION  
The CPU will lock up if the device enters a low-power mode (CPU off) within 64 cycles after reset.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9.4 Instruction Set  
The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can  
operate on word and byte data. 9-1 gives examples of the three types of instruction formats; 9-2 lists the  
address modes.  
9-1. Instruction Word Formats  
INSTRUCTION FORMAT  
EXAMPLE  
ADD R4,R5  
CALL R8  
JNE  
OPERATION  
Dual operands, source and destination  
Single operands, destination only  
Relative jump, unconditional or conditional  
R4 + R5 R5  
PC (TOS), R8 PC  
Jump-on-equal bit = 0  
9-2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S (1) D (2)  
SYNTAX  
EXAMPLE  
OPERATION  
MOV Rs,Rd  
MOV R10,R11  
R10 R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV &MEM,&TCDAT  
MOV @Rn,Y(Rm)  
MOV 2(R5),6(R6)  
M(2+R5) M(6+R6)  
M(EDE) M(TONI)  
M(MEM) M(TCDAT)  
M(R10) M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
Indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
M(R10) R11  
R10 + 2 R10  
Indirect autoincrement  
Immediate  
MOV @Rn+,Rm  
MOV #X,TONI  
#45 M(TONI)  
(1) S = source  
(2) D = destination  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9.5 Operating Modes  
MSP430i204x, MSP430i203x, MSP430i202x devices have one active mode and four software-selectable low-  
power modes. An interrupt event can wake up the device from the low-power modes LPM0 to LPM4, service the  
request, and restore back to the low-power mode on return from the interrupt program.  
The following five operating modes can be configured by software:  
Active mode (AM)  
All clocks are active.  
Low-power mode 0 or low-power mode 1 (LPM0 = LPM1)  
CPU is disabled  
Internal regulator remains enabled  
DCO remains enabled  
MCLK is disabled  
ACLK and SMCLK remain active  
Low-power mode 2 or low-power mode 3 (LPM2 = LPM3)  
CPU is disabled  
Internal regulator remains enabled  
DCO remains enabled  
MCLK and SMCLK are disabled  
ACLK remains active  
Low-power mode 4 (LPM4)  
CPU is disabled  
Internal regulator remains enabled  
DCO is disabled  
MCLK, SMCLK, and ACLK are disabled  
Low-power mode 4.5 (LPM4.5)  
Internal regulator is disabled  
No RAM retention  
I/O pad state retention  
Wake from RST/NMI, ports pins P2.1 or P2.2  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9.6 Interrupt Vector Addresses  
The interrupt vectors and the power-up starting address are in the address range 0FFFFh to 0FFE0h. The vector  
contains the 16-bit address of the appropriate interrupt handler instruction sequence.  
If the reset vector (located at address 0FFFEh) contains 0FFFFh (for example, flash is not programmed), the  
CPU goes into LPM4 immediately after power up.  
9-3. Interrupt Vector Addresses  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT WORD ADDRESS  
PRIORITY  
Power up  
External reset  
Watchdog  
BORIFG  
RSTIFG  
WDTIFG  
Reset  
0FFFEh  
15, highest  
Flash key violation  
KEYV  
PC out-of-range (1)  
(2)  
NMI  
Oscillator fault  
Flash memory access violation  
NMIIFG  
OFIFG  
(Non)maskable,  
(Non)maskable,  
(Non)maskable  
0FFFCh  
0FFFAh  
0FFF8h  
14  
13  
12  
ACCVIFG (2) (4)  
Timer TA1  
TA1CCR0 CCIFG (3)  
Maskable  
TA1CCR1 CCIFG,  
TA1CCR2 CCIFG,  
TA1CTL TAIFG (2) (3)  
Timer TA1  
Maskable  
Voltage monitor  
Watchdog timer  
VMONIFG  
WDTIFG  
Maskable  
Maskable  
Maskable  
Maskable  
0FFF6h  
0FFF4h  
0FFF2h  
0FFF0h  
11  
10  
9
eUSCI_A0 receive or transmit  
eUSCI_B0 receive or transmit  
UCA0RXIFG, UCA0TXIFG  
UCB0RXIFG, UCB0TXIFG  
8
SD24CCTLx SD24OVIFG,  
SD24CCTLx SD24IFG(2) (3)  
SD24  
Maskable  
Maskable  
0FFEEh  
0FFECh  
7
6
Timer TA0  
TA0CCR0 CCIFG (3)  
TA0CCR1 CCIFG,  
TA0CCR2 CCIFG,  
TA0CTL TAIFG (2) (3)  
Timer TA0  
I/O port P1  
Maskable  
Maskable  
0FFEAh  
5
P1IFG.0 to P1IFG.7 (2) (3)  
0FFE8h  
0FFE6h  
0FFE4h  
0FFE2h  
0FFE0h  
4
3
2
1
I/O port P2  
P2IFG.0 to P2IFG.7 (2) (3)  
Maskable  
0, lowest  
(1) A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from  
within unused address range.  
(2) Multiple source flags  
(3) Interrupt flags are in the module.  
(4) (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9.7 Special Function Registers  
Some interrupt enable and interrupt flag bits are collected into the lowest address space. Special function  
register bits not allocated to a functional purpose are not physically present in the device. Simple software  
access is provided with this arrangement.  
Legend  
rw  
Bit can be read and written.  
rw-0, rw-1  
rw-(0), rw-(1)  
rw-[0], rw-[1]  
Bit can be read and written. It is Reset or Set by PUC.  
Bit can be read and written. It is Reset or Set by POR.  
Bit can be read and written. It is Reset or Set by BOR.  
SFR bit is not present in device.  
9-4. Interrupt Enable 1 (Address = 00h)  
7
6
5
4
3
2
1
0
ACCVIE  
rw-0  
NMIIE  
rw-0  
OFIE  
rw-0  
WDTIE  
rw-0  
WDTIE  
Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval timer  
mode.  
OFIE  
Oscillator fault interrupt enable  
(Non)maskable interrupt enable  
Flash access violation interrupt enable  
NMIIE  
ACCVIE  
9-5. Interrupt Flag Register 1 (Address = 02h)  
7
6
5
4
3
2
1
0
NMIIFG  
rw-0  
RSTIFG  
rw-[0]  
BORIFG  
rw-[1]  
OFIFG  
rw-0  
WDTIFG  
rw-(0)  
WDTIFG Set on watchdog timer overflow (in watchdog mode) or security key violation.  
Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode.  
OFIFG  
Flag set on oscillator fault. This flag can be cleared by software when the oscillator runs free of fault.  
Brown out reset flag. This bit is set after VCC power up and can be cleared by software.  
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power up.  
Set by the RST/NMI pin in NMI configuration.  
BORIFG  
RSTIFG  
NMIIFG  
9.8 Flash Memory  
The flash memory can be programmed through the Spy-Bi-Wire or JTAG port, or in-system by the CPU. The  
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory:  
Flash memory has n segments of main memory and one segment of information memory.  
Segment size is 1KB for both main memory and information memory.  
Segments 0 to n in main memory can be erased in one step, or each segment may be individually erased.  
Information memory segment can be erased separately or as a group with main memory segments 0 to n.  
Information memory segment contains calibration data. After reset, information memory segment is protected  
against programming and erasing. It can be unlocked but care should be taken not to erase this segment if  
the device-specific calibration data is required.  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9.9 JTAG Operation  
9.9.1 JTAG Standard Interface  
The MSP430i family supports the standard JTAG interface which requires four signals for sending and receiving  
data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the  
JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430i  
development tools and device programmers. 9-6 lists the JTAG pin requirements. For further details on  
interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide.  
9-6. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
P1.0/UCA0STE/MCLK/TCK  
P1.1/UCA0CLK/SMCLK/TMS  
P1.2/UCA0RXD/UCA0SOMI/ACLK/TDI/TCLK  
P1.3/UCA0TXD/UCA0SIMO/TA0CLK/TDO/TDI  
TEST/SBWTCK  
DIRECTION  
FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input/TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
IN  
IN  
IN  
OUT  
IN  
RST/NMI/SBWTDIO  
IN  
VCC  
Power supply  
DVSS  
Ground supply  
9.9.2 Spy-Bi-Wire Interface  
In addition to the standard JTAG interface, the MSP430i family supports the 2-wire Spy-Bi-Wire interface. Spy-  
Bi-Wire can be used to interface with MSP430i development tools and device programmers. 9-7 lists the Spy-  
Bi-Wire interface pin requirements. For further details on interfacing to development tools and device  
programmers, see the MSP430 Hardware Tools User's Guide.  
9-7. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
DIRECTION  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input/output  
Power supply  
IN  
IN, OUT  
DVSS  
Ground supply  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9.9.3 JTAG Disable Register  
The SYSJTAGDIS register can disable the JTAG port to provide code protection and device security. JTAG is  
disabled when software writes the value 0xA5A5 to this register within 64 MCLK clock cycles after a BOR or  
POR reset; otherwise, the JTAG port is enabled. Any writes to this register after the first 64 MCLK clock cycles  
are ignored. Reads from this register at any time return the JTAG enable or disable status. The value 0xA5A5  
indicates that JTAG is disabled, and 0x9696 indicates that JTAG is enabled. The SYSJTAGDIS register is  
mapped to address 01FEh.  
Note  
Application programming the device to any of the low power modes within first 64 MCLK clock cycles  
after a BOR or POR reset will lock the device for any JTAG/SBW access.  
9-8. SYSJTAGDIS Register  
15  
14  
13  
12  
11  
10  
9
8
JTAGKEY  
rw-[1]  
7
rw-[0]  
6
rw-[1]  
5
rw-[0]  
4
rw-[0]  
3
rw-[1]  
2
rw-[0]  
1
rw-[1]  
0
JTAGKEY  
rw-[1]  
rw-[0]  
rw-[1]  
rw-[0]  
rw-[0]  
rw-[1]  
rw-[0]  
rw-[1]  
JTAGKEY  
0xA5A5 indicates JTAG is disabled and 0x9696 indicates JTAG is enabled.  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9.10 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. The peripherals can be  
managed using all instructions. For complete module descriptions, see the MSP430i2xx Family User's Guide.  
9.10.1 Clock System  
The clock system consists of a fixed 16.384-MHz frequency internal DCO. The DCO can operate in internal  
resistor mode or external resistor mode. The DCO clock accuracy is higher when operating in external resistor  
mode especially upon variation in operating temperature. This feature can be useful in applications like utility  
metering in which accurate clock is necessary under varying operating temperature. When external resistor  
mode is selected by application, the resistor of recommended value must be connected to ROSC pin of the  
device. Refer to 8.7.2.1 for the recommended value of the resistor at the ROSC pin. TI recommends  
connecting the ROSC pin to AVSS when operating the DCO in internal resistor mode. When a resistor fault is  
detected in the external resistor mode, the DCO automatically switches to the internal resistor mode as a fail-  
safe mechanism to keep the system clocks active.  
The DCO can be completely bypassed and the system clocks can be sourced by an external digital clock. The  
clock system generates MCLK, SMCLK, and ACLK. MCLK is used by the CPU, while SMCLK and ACLK are  
used by the peripheral modules. There are programmable clock dividers for MCLK and SMCLK. ACLK runs at a  
fixed 32-kHz frequency. The clock system supports active mode and four low-power modes.  
9.10.2 Power-Management Module (PMM)  
The PMM consists of voltage regulator that generates 1.8-V regulated core voltage. There is a brownout reset  
(BOR) circuit on the high-voltage domain, and a supply voltage supervisor (SVS) module on the low-voltage  
domain. The BOR and SVS provide the proper internal reset signal to the device during power on and power off.  
A built-in voltage reference is used by submodules of the PMM and by the analog modules on the device. A  
temperature sensor is also available in the built-in voltage reference.  
The voltage monitor (VMON) on the high-voltage domain can monitor external voltage on the VMONIN pin  
against the internal reference voltage or by comparing the on-chip VCC to one of three programmable threshold  
voltages. During the LPM4.5 mode, the reference, voltage regulator, temperature sensor, and voltage monitor  
are turned off, and only the high-side brownout circuit is active.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9.10.3 Digital I/O  
Two 8-bit I/O ports (P1 and P2) are implemented on the MSP430i204x, MSP430i203x, MSP430i202x devices.  
On 32-pin RHB devices, ports P1 and P2 are complete, and 16 I/Os are available. On 28-pin PW devices, port  
P2 is reduced to 4 bits, and 12 I/Os are available. On 28-pin PW devices, the unavailable pins (P2.4 to P2.7)  
must be programmed to port function, output direction, and be driven with value 0.  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt condition is possible.  
Edge-selectable interrupt input capability for all 8 bits of port P1 and P2  
LPM4.5 wake-up capability for Port pins P2.1 and P2.2  
Read and write access to port-control registers is supported by all instructions.  
9.10.4 Watchdog Timer (WDT)  
The primary function of the WDT module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the module can be disabled or configured as an interval timer and can generate interrupts at  
selected time intervals.  
9.10.5 Timer TA0  
Timer TA0 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA0 can support  
multiple capture/compares, PWM outputs, and interval timing (see 9-9). TA0 also has extensive interrupt  
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/  
compare registers.  
9-9. TA0 Signal Connections  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
OUTPUT SIGNAL  
DEVICE OUTPUT OUTPUT PORT  
INPUT PORT PIN  
MODULE BLOCK  
SIGNAL  
PIN  
P1.3  
TA0CLK  
ACLK (internal)  
SMCLK (internal)  
TA0CLK  
TA0.0  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
NA  
TA0  
TA1  
NA  
P1.3  
P1.4  
P2.5  
P1.4  
P2.5  
TA0.0  
CCR0  
CCR1  
TA0.0  
TA0.1  
DVSS  
VCC  
VCC  
P1.5  
P1.6  
TA0.1  
CCI1A  
CCI1B  
GND  
P1.5  
P2.6  
ACLK (internal)  
DVSS  
VCC  
VCC  
TA0.2  
CCI2A  
P1.6  
P2.7  
TA0.2  
TA1 CCR2 output  
(internal)  
CCI2B  
CCR2  
TA2  
DVSS  
VCC  
GND  
VCC  
TA1 CCI2B input  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9.10.6 Timer TA1  
Timer TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 can support  
multiple capture/compares, PWM outputs, and interval timing (see 9-10). TA1 also has extensive interrupt  
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/  
compare registers.  
9-10. TA1 Signal Connections  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
OUTPUT SIGNAL  
DEVICE OUTPUT OUTPUT PORT  
INPUT PORT PIN  
MODULE BLOCK  
SIGNAL  
PIN  
P1.7  
TA1CLK  
ACLK (internal)  
SMCLK (internal)  
TA1CLK  
TA1.0  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
NA  
TA0  
TA1  
NA  
P1.7  
P2.0  
P2.4  
P2.0  
P2.4  
TA1.0  
CCR0  
CCR1  
TA1.0  
TA1.1  
DVSS  
VCC  
VCC  
P2.1  
P2.2  
TA1.1  
CCI1A  
CCI1B  
GND  
P2.1  
P2.2  
ACLK (internal)  
DVSS  
VCC  
VCC  
TA1.2  
CCI2A  
TA1.2  
TA0 CCR2 output  
(internal)  
CCI2B  
CCR2  
TA2  
DVSS  
VCC  
GND  
VCC  
TA0 CCI2B input  
9.10.7 Enhanced Universal Serial Communication Interface (eUSCI)  
The eUSCI module is used for serial data communication. The eUSCI module supports synchronous  
communication protocols such as SPI (3-pin or 4-pin) and I2C, and asynchronous communication protocols such  
as UART, enhanced UART with automatic baudrate detection, and IrDA.  
The eUSCI_An module provides support for SPI (3-pin or 4-pin), UART, enhanced UART, and IrDA.  
The eUSCI_Bn module provides support for SPI (3-pin or 4-pin) and I2C.  
One eUSCI_A and one eUSCI_B module are implemented on MSP430i20xx devices.  
9.10.8 Hardware Multiplier  
The multiplication operation is supported by a dedicated peripheral module. The module performs 16×16-bit,  
16×8-bit, 8×16-bit, and 8×8-bit operations. The module supports signed and unsigned multiplication as well as  
signed and unsigned multiply-and-accumulate operations. The result of an operation can be accessed  
immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are  
required.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9.10.9 SD24  
There are up to four independent 24-bit sigma-delta ADCs. Each converter is designed with a fully differential  
analog input pair and programmable gain amplifier input stage. Also the converters are based on second-order  
oversampling sigma-delta modulators and digital decimation filters. The decimation filters are comb-type filters  
with selectable oversampling ratios of up to 256.  
The SD24 converters can operate with internal reference (SD24REFS = 1) or with external reference  
(SD24REFS = 0). When SD24 operates with internal reference the VREF pin must not be loaded externally.  
Connect only the recommended capacitor value (CVREF) at VREF pin to AVSS (see 8.7.7.2).  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9.11 Input/Output Diagrams  
9.11.1 Port P1, P1.0 to P1.3, Input/Output With Schmitt Trigger  
Py.x/Mod1/Mod2/JTAG Pin Diagram shows the pin diagram. 9-11 summarizes the selection of the pin  
function.  
JTAG enable  
From JTAG  
From JTAG  
Pad Logic  
Direction  
0: Input  
1: Output  
0 0  
0 1  
1 0  
1 1  
PyDIR.x  
1
0
From module 1  
0 0  
0 1  
1 0  
1 1  
PyOUT.x  
From module 1  
From module 2  
DVSS  
1
0
Py.x/Mod1/Mod2/JTAG  
PySEL1.x  
PySEL0.x  
PyIN.x  
EN  
D
To modules  
and JTAG  
Functional representation only.  
9-8. Py.x/Mod1/Mod2/JTAG Pin Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9-11. Port P1 (P1.0 to P1.3) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x JTAG Enable  
P1.0/UCA0STE/MCLK/TCK  
0
P1.0 (I/O)(2)  
UCA0STE  
N/A  
I: 0; O: 1  
0
0
0
1
0
0
X(3)  
0
1
1
0
1
0
0
MCLK  
1
N/A  
0
DVSS  
1
TCK(4)  
X
X
0
0
X
0
1
1
0
0
P1.1/UCA0CLK/SMCLK/TMS  
1
2
3
P1.1 (I/O)(2)  
UCA0CLK  
N/A  
I: 0; O: 1  
X(3)  
0
1
1
0
1
0
0
SMCLK  
N/A  
1
0
DVSS  
1
TMS(4)  
P1.2 (I/O)(2)  
X
X
0
0
X
0
1
1
0
0
P1.2/UCA0RXD/UCA0SOMI/  
ACLK/TDI/TCLK  
I: 0; O: 1  
UCA0RXD/UCA0SOMI  
X(3)  
N/A  
0
1
1
0
1
0
0
ACLK  
1
N/A  
0
DVSS  
1
TDI/TCLK(4)  
P1.3 (I/O)(2)  
UCA0TXD/UCA0SIMO  
TA0CLK  
DVSS  
X
X
0
0
X
0
1
1
0
0
P1.3/UCA0TXD/UCA0SIMO/  
TA0CLK/TDO/TDI  
I: 0; O: 1  
X(3)  
0
1
0
0
1
N/A  
0
1
1
0
1
DVSS  
1
TDO/TDI(4)  
X
X
X
(1) X = Don't care  
(2) Default condition  
(3) Direction is controlled by eUSCI_A0 module.  
(4) The pin direction is controlled by the JTAG module. The JTAG mode selection is made through the Spy-Bi-Wire 4-wire entry sequence.  
Neither P1SEL0.x and P1SEL1.x nor P1DIR.x have an effect in these cases.  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9.11.2 Port P1, P1.4 to P1.7, Input/Output With Schmitt Trigger  
Py.x/Mod1/Mod2 Pin Schematic shows the pin diagram. 9-12 summarizes the selection of the pin function.  
Pad Logic  
Direction  
0: Input  
1: Output  
0 0  
0 1  
1 0  
1 1  
PyDIR.x  
From module 1  
0 0  
0 1  
1 0  
1 1  
PyOUT.x  
From module 1  
From module 2  
DVSS  
Py.x/Mod1/Mod2  
PySEL1.x  
PySEL0.x  
PyIN.x  
EN  
D
To module  
Functional representation only.  
9-9. Py.x/Mod1/Mod2 Pin Schematic  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9-12. Port P1 (P1.4 to P1.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
P1.4/UCB0STE/TA0.0  
4
P1.4 (I/O)  
UCB0STE  
TA0.CCI0A  
TA0.0  
I: 0; O: 1  
0
0
0
1
X(2)  
0
1
1
0
1
1
N/A  
0
DVSS  
1
P1.5/UCB0CLK/TA0.1  
5
6
7
P1.5 (I/O)  
UCB0CLK  
TA0.CCI1A  
TA0.1  
I: 0; O: 1  
0
0
0
1
X(2)  
0
1
1
0
1
1
N/A  
0
DVSS  
1
P1.6/UCB0SCL/UCB0SOMI/  
TA0.2  
P1.6 (I/O)  
I: 0; O: 1  
0
0
0
1
UCB0SCL/UCB0SOMI  
X(2)  
TA0.CCI2A  
TA0.2  
0
1
1
0
1
1
N/A  
0
DVSS  
1
P1.7/UCB0SDA/UCB0SIMO/  
TA1CLK  
P1.7 (I/O)  
UCB0SDA/UCB0SIMO  
TA1CLK  
DVSS  
I: 0; O: 1  
0
0
0
1
X(2)  
0
1
1
0
1
1
N/A  
0
DVSS  
1
(1) X = Don't care  
(2) Direction is controlled by eUSCI_B0 module.  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9.11.3 Port P2, P2.0 to P2.2 and P2.4 to P2.7, Input/Output With Schmitt Trigger  
Py.x/Mod1/Mod2 Pin Schematic shows the pin diagram. 9-13 summarizes the selection of the pin function.  
Pad Logic  
Direction  
0: Input  
1: Output  
0 0  
0 1  
1 0  
1 1  
PyDIR.x  
0 0  
0 1  
1 0  
1 1  
PyOUT.x  
From module  
DVSS  
Py.x/Mod1/Mod2  
DVSS  
PySEL1.x  
PySEL0.x  
PyIN.x  
EN  
D
To module  
Functional representation only.  
9-10. Py.x/Mod1/Mod2 Pin Schematic  
9-13. Port P2 (P2.0 to P2.2 and P2.4 to P2.7) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P2.x)  
P2.0/TA1.0/CLKIN  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
0
P2.0 (I/O)  
TA1.CCI0A  
TA1.0  
I: 0; O: 1  
0
0
0
0
1
1
1
CLKIN (DCO bypass clock)  
0
0
DVSS  
N/A  
1
0
1
0
0
1
0
1
DVSS  
P2.1 (I/O)  
TA1.CCI1A  
TA1.1  
N/A  
1
P2.1/TA1.1  
1
I: 0; O: 1  
0
1
0
1
0
1
1
1
0
1
DVSS  
N/A  
DVSS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9-13. Port P2 (P2.0 to P2.2 and P2.4 to P2.7) Pin Functions (continued)  
CONTROL BITS OR SIGNALS  
PIN NAME (P2.x)  
P2.2/TA1.2  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
2
P2.2 (I/O)  
TA1.CCI2A  
TA1.2  
N/A  
I: 0; O: 1  
0
0
0
0
1
1
0
1
0
DVSS  
N/A  
1
0
1
0
0
1
0
1
DVSS  
P2.4 (I/O)  
TA1.CCI0B  
TA1.0  
N/A  
1
P2.4/TA1.0(1)  
P2.5/TA0.0(1)  
P2.6/TA0.1(1)  
P2.7/TA0.2(1)  
4
5
6
7
I: 0; O: 1  
0
1
0
1
0
DVSS  
N/A  
1
0
1
0
0
1
0
1
DVSS  
P2.5 (I/O)  
TA0.CCI0B  
TA0.0  
N/A  
1
I: 0; O: 1  
0
1
0
1
0
DVSS  
N/A  
1
0
1
0
0
1
0
1
DVSS  
P2.6 (I/O)  
N/A  
1
I: 0; O: 1  
0
TA0.1  
N/A  
1
0
1
0
DVSS  
N/A  
1
0
1
0
0
1
0
1
DVSS  
P2.7 (I/O)  
N/A  
1
I: 0; O: 1  
0
1
0
1
0
1
TA0.2  
N/A  
1
1
0
1
DVSS  
N/A  
DVSS  
(1) Available only on 32-pin RHB devices.  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9.11.4 Port P2, P2.3, Input/Output With Schmitt Trigger  
Py.x/VMONIN Pin Schematic shows the pin diagram. 9-14 summarizes the selection of the pin function.  
Pad Logic  
To VMON  
From VMON  
Direction  
0: Input  
1: Output  
0 0  
0 1  
1 0  
1 1  
PyDIR.x  
0 0  
0 1  
1 0  
1 1  
PyOUT.x  
DVSS  
DVSS  
Py.x/VMONIN  
DVSS  
PySEL1.x  
PySEL0.x  
PyIN.x  
Bus  
Keeper  
EN  
D
No connect  
Functional representation only.  
9-11. Py.x/VMONIN Pin Schematic  
9-14. Port P2 (P2.3) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P2.x)  
P2.3/VMONIN  
x
FUNCTION  
P2DIR.x  
I: 0; O: 1  
P2SEL1.x  
P2SEL0.x  
3
P2.3 (I/O)  
N/A  
0
0
0
1
0
1
X
0
1
DVSS  
N/A  
1
1
0
1
DVSS  
VMONIN(2)  
(1) X = Don't care  
(2) Setting P2SEL1.3 and P2SEL0.3 disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying voltage at VMONIN pin. To enable the VMONIN function, VMONLVLx bits must be set to 3'b111 in the VMONCTL register.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9.12 Device Descriptor  
9-15 lists the contents of the tag-length-value (TLV) device descriptor structure for the MSP430i204x,  
MSP430i203x, and MSP430i202x devices.  
9-15. MSP430i204x, MSP430i203x, MSP430i202x TLV  
SIZE  
(BYTES)  
DESCRIPTION  
ADDRESS  
VALUE  
Checksum  
Die Record  
TLV checksum  
013C0h  
013C2h  
013C3h  
013C4h  
013C8h  
013CAh  
013CCh  
013CEh  
013CFh  
013D0h  
013D1h  
013D2h  
013D3h  
013D4h  
013D5h  
013D6h  
013D7h  
013D8h  
013D9h  
013DAh  
013DBh  
013DCh  
013DDh  
013DEh  
2
1
1
4
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
34  
Per unit  
01h  
Die Record Tag  
Die Record Length  
0Ah  
Lot/Wafer ID  
Per unit  
Per unit  
Per unit  
Per unit  
02h  
Die X position  
Die Y position  
Test results  
REF Calibration Tag  
REF Calibration Length  
Calibrate REF for REFCAL1 register  
Calibrate REF for REFCAL0 register  
DCO Calibration Tag  
02h  
REF Calibration  
DCO Calibration  
Per unit  
Per unit  
03h  
DCO Calibration Length  
Calibrate DCO for CSIRFCAL register  
Calibrate DCO for CSIRTCAL register  
Calibrate DCO for CSERFCAL register  
Calibrate DCO for CSERTCAL register  
SD24 Calibration Tag  
SD24 Calibration Length  
Calibrate SD24 for SD24TRIM register  
Empty  
04h  
Per unit  
Per unit  
Per unit  
Per unit  
04h  
02h  
SD24 Calibration  
Empty  
Per unit  
FFh  
Tag Empty  
FEh  
Empty Length  
22h  
Empty  
FFh  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9.13 Memory  
9-16 lists the memory organization for the specified devices.  
9-16. Memory Organization  
MSP430i2040  
MSP430i2030  
MSP430i2020  
MSP430i2041  
MSP430i2031  
MSP430i2021  
Memory  
Size  
Flash  
16KB  
32KB  
Main: interrupt vector  
Main: code memory  
0xFFFF to 0xFFE0  
0xFFFF to 0xC000  
1KB  
0xFFFF to 0xFFE0  
0xFFFF to 0x8000  
1KB  
Flash  
Size  
Information memory  
RAM  
Flash  
0x13FFh to 0x1000  
1KB  
0x13FFh to 0x1000  
2KB  
Size  
Address  
16-bit  
0x05FF to 0x0200  
0x01FF to 0x0100  
0x00FF to 0x0010  
0x000F to 0x0000  
0x09FF to 0x0200  
0x01FF to 0x0100  
0x00FF to 0x0010  
0x000F to 0x0000  
Peripherals  
8-bit  
8-bit SFR  
9.13.1 Peripheral File Map  
9-17 lists the peripherals that support word access, and 9-18 lists the peripherals that support byte access.  
Peripherals that support both access types are listed in both tables.  
9-17. Peripherals With Word Access  
MODULE  
REGISTER DESCRIPTION  
ACRONYM  
SYSJTAGDIS  
TA1CCR2  
TA1CCR1  
TA1CCR0  
TA1R  
ADDRESS  
0x01FE  
0x0196  
0x0194  
0x0192  
0x0190  
0x0186  
0x0184  
0x0182  
0x0180  
0x011E  
0x0176  
0x0174  
0x0172  
0x0170  
0x0166  
0x0164  
0x0162  
0x0160  
0x012E  
SYS  
JTAG disable register  
Capture/compare register 2  
Capture/compare register 1  
Capture/compare register 0  
Timer_A register  
Timer TA1  
Capture/compare control 2  
Capture/compare control 1  
Capture/compare control 0  
Timer_A control  
TA1CCTL2  
TA1CCTL1  
TA1CCTL0  
TA1CTL  
Timer_A interrupt vector  
Capture/compare register 2  
Capture/compare register 1  
Capture/compare register 0  
Timer_A register  
TA1IV  
TA0CCR2  
TA0CCR1  
TA0CCR0  
TA0R  
Timer TA0  
Capture/compare control 2  
Capture/compare control 1  
Capture/compare control 0  
Timer_A control  
TA0CCTL2  
TA0CCTL1  
TA0CCTL0  
TA0CTL  
Timer_A interrupt vector  
TA0IV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9-17. Peripherals With Word Access (continued)  
MODULE  
REGISTER DESCRIPTION  
ACRONYM  
UCA0CTLW0  
UCA0CTLW1  
UCA0BR0  
UCA0BR1  
UCA0MCTLW  
UCA0STAT  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRTCTL  
UCA0IRRCTL  
UCA0IE  
ADDRESS  
0x0140  
0x0142  
0x0146  
0x0147  
0x0148  
0x014A  
0x014C  
0x014E  
0x0150  
0x0152  
0x0153  
0x015A  
0x015C  
0x015E  
0x01C0  
0x01C2  
0x01C6  
0x01C7  
0x01C8  
0x01CA  
0x01CC  
0x01CE  
0x01D4  
0x01D6  
0x01D8  
0x01DA  
0x01DC  
0x01DE  
0x01E0  
0x01EA  
0x01EC  
0x01EE  
0x013E  
0x013C  
0x013A  
0x0138  
0x0136  
0x0134  
0x0132  
0x0130  
0x012C  
0x012A  
0x0128  
0x0120  
USCI_A control word 0  
USCI _A control word 1  
USCI_A baud rate 0  
USCI_A baud rate 1  
USCI_A modulation control  
USCI_A status  
USCI_A receive buffer  
USCI_A transmit buffer  
USCI_A LIN control  
eUSCI_A0  
USCI_A IrDA transmit control  
USCI_A IrDA receive control  
USCI_A interrupt enable  
USCI_A interrupt flags  
USCI_A interrupt vector word  
USCI_B control word 0  
USCI_B control word 1  
USCI_B bit rate 0  
UCA0IFG  
UCA0IV  
UCB0CTLW0  
UCB0CTLW1  
UCB0BR0  
UCB0BR1  
UCB0STATW  
UCB0TBCNT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA0  
UCB0I2COA1  
UCB0I2COA2  
UCB0I2COA3  
UCB0ADDRX  
UCB0ADDMASK  
UCB0I2CSA  
UCB0IE  
USCI_B bit rate 1  
USCI_B status word  
USCI_B byte counter threshold  
USCI_B receive buffer  
USCI_B transmit buffer  
USCI_B I2C own address 0  
USCI_B I2C own address 1  
USCI_B I2C own address 2  
USCI_B I2C own address 3  
USCI_B received address  
USCI_B address mask  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
eUSCI_B0  
UCB0IFG  
USCI interrupt vector word  
Sum extend  
UCB0IV  
SUMEXT  
Result high word  
RESHI  
Result low word  
RESLO  
Second operand  
OP2  
Hardware Multiplier  
Multiply signed + accumulate/operand 1  
Multiply + accumulate/operand 1  
Multiply signed/operand 1  
Multiply unsigned/operand 1  
Flash control 3  
MACS  
MAC  
MPYS  
MPY  
FCTL3  
Flash Memory  
Flash control 2  
FCTL2  
Flash control 1  
FCTL1  
Watchdog Timer  
Watchdog/timer control  
WDTCTL  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9-17. Peripherals With Word Access (continued)  
MODULE  
REGISTER DESCRIPTION  
ACRONYM  
ADDRESS  
0x01F0  
0x0116  
0x0114  
0x0112  
0x0110  
0x0108  
0x0106  
0x0104  
0x0102  
0x0100  
SD24 interrupt vector word register  
SD24IV  
Channel 3 conversion memory(1) (2)  
Channel 2 conversion memory(2)  
Channel 1 conversion memory  
Channel 0 conversion memory  
Channel 3 control(1) (2)  
SD24MEM3  
SD24MEM2  
SD24MEM1  
SD24MEM0  
SD24CCTL3  
SD24CCTL2  
SD24CCTL1  
SD24CCTL0  
SD24CTL  
SD24  
(also see 9-18)  
Channel 2 control(2)  
Channel 1 control  
Channel 0 control  
General Control  
(1) Not available on MSP430i2031 and MSP430i2030 devices.  
(2) Not available on MSP430i2021 and MSP430i2020 devices.  
9-18. Peripherals With Byte Access  
MODULE  
REGISTER DESCRIPTION  
REGISTER NAME  
SD24TRIM  
SD24PRE3  
SD24PRE2  
SD24PRE1  
SD24PRE0  
SD24INCTL3  
SD24INCTL2  
SD24INCTL1  
SD24INCTL0  
REFCAL1  
REFCAL0  
VMONCTL  
LPM45CTL  
CSERTCAL  
CSERFCAL  
CSIRTCAL  
CSIRFCAL  
CSCTL1  
ADDRESS  
0x00BF  
0x00BB  
0x00BA  
0x00B9  
0x00B8  
0x00B3  
0x00B2  
0x00B1  
0x00B0  
0x0063  
0x0062  
0x0061  
0x0060  
0x0055  
0x0054  
0x0053  
0x0052  
0x0051  
0x0050  
0x002D  
0x002B  
0x0029  
0x002E  
0x001D  
0x001B  
0x0015  
0x0013  
0x0011  
SD24 trim  
Channel 3 preload(1) (2)  
Channel 2 preload(2)  
Channel 1 preload  
SD24  
Channel 0 preload  
(also see 9-17)  
Channel 3 input control(1) (2)  
Channel 2 input control(2)  
Channel 1 input control  
Channel 0 input control  
Reference calibration 1  
Reference calibration 0  
PMM  
Voltage monitor control  
LPM4.5 control  
Clock system external resistor temperature calibration  
Clock system external resistor frequency calibration  
Clock system internal resistor temperature calibration  
Clock system internal resistor frequency calibration  
Clock system control 1  
Clock System  
Clock system control 0  
CSCTL0  
Port P2 interrupt flag  
P2IFG  
Port P2 interrupt enable  
Port P2 interrupt edge select  
Port P2 interrupt vector word  
Port P2 selection 1  
P2IE  
P2IES  
P2IV  
Port P2  
P2SEL1  
Port P2 selection 0  
P2SEL0  
Port P2 direction  
P2DIR  
Port P2 output  
P2OUT  
Port P2 input  
P2IN  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
9-18. Peripherals With Byte Access (continued)  
MODULE  
REGISTER DESCRIPTION  
REGISTER NAME  
P1IFG  
P1IE  
ADDRESS  
0x002C  
0x002A  
0x0028  
0x001E  
0x001C  
0x001A  
0x0014  
0x0012  
0x0010  
0x0002  
0x0000  
Port P1 interrupt flag  
Port P1 interrupt enable  
Port P1 interrupt edge select  
Port P1 interrupt vector word  
Port P1 selection 1  
Port P1 selection 0  
Port P1 direction  
P1IES  
P1IV  
Port P1  
P1SEL1  
P1SEL0  
P1DIR  
P1OUT  
P1IN  
Port P1 output  
Port P1 input  
SFR interrupt flag 1  
SFR interrupt enable 1  
IFG1  
Special Function  
IE1  
(1) Not available on MSP430i2031 or MSP430i2030 devices.  
(2) Not available on MSP430i2021 or MSP430i2020 devices.  
9.14 Identification  
9.14.1 Device Identification  
The device type can be identified from the top-side marking on the device package. See the packaging  
information page or the device errata sheets listed in 11.4 for help.  
9.14.2 JTAG Identification  
Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in detail in  
the MSP430 Programming With the JTAG Interface.  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
10 Applications, Implementation, and Layout  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
The following resources provide application guidelines and best practices when designing with the MSP430i20xx  
devices.  
Implementation of a One- or Two-Phase Electronic Watt-Hour Meter Using MSP430i20xx application  
report  
This application report describes the implementation of a low-cost 1- or 2-phase electronic electricity meter that  
uses the TI MSP430i20xx metering processor. This application report includes information on metrology software  
and hardware procedures for this single-chip implementation.  
Single-Phase and DC Embedded Metering Power Using MSP430i2040 application report  
This application report describes an EVM that uses the MSP430i2040 microcontroller for embedded metering  
(submetering). In this application, the electricity measuring device is embedded in the end application and gives  
the user information about the voltage, current, and power consumption of the device. In addition, the EVM can  
compensate for line resistance and EMI filter capacitance.  
Single Phase and DC Embedded Metering (Server Power Monitor) reference design  
This reference design implements a high-accuracy single-phase embedded meter using an MSP430 MCU. This  
EVM has built-in support to measure AC voltage, current, active power, reactive power, apparent power,  
frequency, power factor, voltage THD, current THD, fundamental voltage, fundamental current, fundamental  
power and DC voltage, DC current, DC active power. It can detect the input voltage to work in DC or AC mode. It  
can also compensate for the effects of the wire resistance and the EMI filter capacitance so that the reading of  
voltage and power matches the reading of an external meter when EMI filter is connected to the input.  
Three Output Smart Power Strip reference design  
This reference design implements a high-accuracy single-phase embedded metering smart power strip using an  
MSP430 MCU. This design supports measurement of AC voltage, current, active power, reactive power,  
apparent power, frequency, and power factor with 3 sockets measured individually. Additional hardware is added  
to provide futher development like relay control and wired or wireless communication.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Getting Started and Next Steps  
For more information on the MSP430family of devices and the tools and libraries that are available to help with  
your development, visit the MSP430™ ultra-low-power sensing & measurement MCUs overview.  
11.2 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP  
MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These  
prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully  
qualified production devices (MSP).  
XMS Experimental device that is not necessarily representative of the final device's electrical specifications  
MSP Fully qualified production device  
XMS devices are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated  
fully. TI's standard warranty applies.  
Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices.  
TI recommends that these devices not be used in any production system because their expected end-use failure  
rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature  
range, package type, and distribution format. 11-1 provides a legend for reading the complete device name.  
T
MSP 430  
i
2
041  
PW  
R
Processor Family  
MCU Platform  
Tape and Reel  
Packaging  
Device Type  
Series  
Temperature Range  
Feature Set  
Processor Family  
MSP = Mixed-Signal Processor  
XMS = Experimental Silicon  
MCU Platform  
Device Type  
430 = TI’s MSP430 Microcontroller Platform  
Specialized Application  
i = Flash Industrial  
Series  
2 = Flash 2 series up to 16.384 MHz  
Feature Set  
Various levels of integration within a series  
Temperature Range  
Packaging  
T = –40°C to 105°C  
http://www.ti.com/packaging  
Tape and Reel  
T = Small Reel  
R = Large Reel  
No markings = Tube or tray  
11-1. Device Nomenclature  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
11.3 Tools and Software  
All MSP microcontrollers are supported by a wide variety of software and hardware development tools. Tools are  
available from TI and various third parties. See them all at MSP430 ultra-low-power MCUs Design &  
development.  
Design Kits and Evaluation Modules  
32-pin target development board and MSP-FET programmer bundle for MSP430i2x MCUs  
The MSP-FET430U32A is a stand-alone ZIF socket target board used to program and debug the MSP430 MCU  
in-system through the JTAG interface or the Spy-Bi-Wire (2-wire JTAG) protocol.  
MSP430 LaunchPadValue Line Development Kit  
The MSP-EXP430G2 LaunchPad development kit is an easy-to-use microcontroller development board for the  
low-power and low-cost MSP430G2x MCUs. It has on-board emulation for programming and debugging and  
features a 14/20-pin DIP socket, on-board buttons and LEDs and BoosterPack plug-in module pinouts that  
support a wide range of modules for added functionality such as wireless, displays, and more.  
MSP430i2040 Submetering EVM  
This embedded metering (sub-meter or e-meter) EVM is designed based on the MSP430i2040. The EVM can be  
connected to the mains (or to DC) and the load directly. The EVM measures the electrical parameters of the load  
and the result of measurement can be read from the UART port. This EVM provided with built-in power supply  
and isolated serial connect to facilitate user quick start to the evaluation of the MSP430i2040 in embedded  
metering application.  
Software  
MSP430WareSoftware  
MSP430Ware software is a collection of code examples, data sheets, and other design resources for all  
MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing  
MSP430 MCU design resources, MSP430Ware software also includes a high-level API called MSP Driver  
Library. This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a  
component of CCS or as a stand-alone package.  
MSP430i20xx Code Examples  
C code examples are available for every MSP device that configures each of the integrated peripherals for  
various application needs.  
Floating Point Math Library for MSP430  
Leveraging the intelligent peripherals of TI devices, this floating point math library of scalar functions brings you  
up to 26x better performance. Mathlib is easy to integrate into your designs. This library is free and is integrated  
in both Code Composer Studio and IAR IDEs.  
Fixed Point Math Library for MSP  
The TI MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical  
functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and  
MSP432 devices. These routines are typically used in computationally intensive real-time applications where  
optimal execution speed, high accuracy and ultra-low energy are critical. By using the IQmath and Qmath  
libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably  
lower than equivalent code written using floating-point math.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
Development Tools  
Code Composer StudioIntegrated Development Environment for MSP Microcontrollers  
Code Composer Studio (CCS) integrated development environment (IDE) supports all MSP microcontroller  
devices. CCS comprises a suite of embedded software utilities used to develop and debug embedded  
applications. CCS includes an optimizing C/C++ compiler, source code editor, project build environment,  
debugger, profiler, and many other features.  
MSP Flasher - Command Line Programmer  
MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET  
programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary  
files (.txt or .hex) directly to the MSP microcontroller without an IDE.  
MSP MCU Programmer and Debugger  
The MSP-FET is a powerful emulation development tool often called a debug probe which lets users  
quickly begin application development on MSP low-power MCUs. Creating MCU software usually requires  
downloading the resulting binary program to the MSP device for validation and debugging.  
MSP-GANG Production Programmer  
The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight  
identical MSP430 or MSP432 flash or FRAM devices at the same time. The MSP Gang Programmer connects to  
a host PC using a standard RS-232 or USB connection and provides flexible programming options that let the  
user fully customize the process.  
11.4 Documentation Support  
The following documents describe the MSP430i20xx MCUs. Copies of these documents are available on the  
Internet at www.ti.com.  
Receiving Notification of Document Updates  
To receive notification of documentation updatesincluding silicon erratago to the product folder for your  
device on ti.com (for example, MSP430i2041). In the upper right corner, click the "Alert me" button. This  
registers you to receive a weekly digest of product information that has changed (if any). For change details,  
check the revision history of any revised document.  
Errata  
MSP430i2041 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
MSP430i2040 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
MSP430i2031 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
MSP430i2031 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
MSP430i2021 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
MSP430i2021 Device Erratasheet  
Describes the known exceptions to the functional specifications.  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
User's Guides  
MSP430i2xx Family User's Guide  
Detailed description of all modules and peripherals available in this device family.  
MSP430™ Flash Device Bootloader (BSL) User's Guide  
The MSP430 bootloader (BSL) lets users communicate with embedded memory in the MSP430 microcontroller  
during the prototyping phase, final production, and in service. Both the programmable memory (flash memory)  
and the data memory (RAM) can be modified as required. Do not confuse the bootloader with the bootstrap  
loader programs found in some digital signal processors (DSPs) that automatically load program code (and data)  
from external memory to the internal memory of the DSP.  
MSP430 Programming With the JTAG Interface  
This document describes the functions that are required to erase, program, and verify the memory module of the  
MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition,  
it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This  
document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG  
interface, which is also referred to as Spy-Bi-Wire (SBW).  
MSP430 Hardware Tools User's Guide  
This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the  
program development tool for the MSP430 ultra-low-power microcontroller. Both available interface types, the  
parallel port interface and the USB interface, are described.  
Application Reports  
MSP430 32-kHz Crystal Oscillators  
Selection of the correct crystal, correct load circuit, and proper board layout are important for a stable crystal  
oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the  
correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout  
are given. The document also contains detailed information on the possible oscillator tests to ensure stable  
oscillator operation in mass production.  
MSP430 System-Level ESD Considerations  
System-level ESD has become increasingly demanding with silicon technology scaling towards lower voltages  
and the need for designing cost-effective and ultra-low-power components. This application report addresses  
different ESD topics to help board designers and OEMs understand and design robust system-level designs.  
11.5 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.6 Trademarks  
, MSP430, LaunchPad, MSP430Ware, Code Composer Studio, and TI E2Eare trademarks of Texas  
Instruments.  
所有商标均为其各自所有者的财产。  
11.7 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
 
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
11.8 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
MSP430I2041, MSP430I2040  
MSP430I2031, MSP430I2030  
MSP430I2021, MSP430I2020  
ZHCSI49C SEPTEMBER 2014 REVISED MARCH 2021  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: MSP430I2041 MSP430I2040 MSP430I2031 MSP430I2030 MSP430I2021 MSP430I2020  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430I2020TPW  
MSP430I2020TPWR  
MSP430I2020TRHBR  
MSP430I2020TRHBT  
MSP430I2021TPW  
MSP430I2021TPWR  
MSP430I2021TRHBR  
MSP430I2021TRHBT  
MSP430I2030TPW  
MSP430I2030TPWR  
MSP430I2030TRHBR  
MSP430I2030TRHBT  
MSP430I2031TPW  
MSP430I2031TPWR  
MSP430I2031TRHBR  
MSP430I2031TRHBT  
MSP430I2040TPW  
MSP430I2040TPWR  
MSP430I2040TRHBR  
MSP430I2040TRHBT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
VQFN  
PW  
PW  
28  
28  
32  
32  
28  
28  
32  
32  
28  
28  
32  
32  
28  
28  
32  
32  
28  
28  
32  
32  
50  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
I2020T  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
I2020T  
I2020T  
I2020T  
I2021T  
I2021T  
I2021T  
I2021T  
I2030T  
I2030T  
I2030T  
I2030T  
I2031T  
I2031T  
I2031T  
I2031T  
I2040T  
I2040T  
I2040T  
I2040T  
RHB  
RHB  
PW  
VQFN  
250  
50  
RoHS & Green  
RoHS & Green  
TSSOP  
TSSOP  
VQFN  
PW  
2000 RoHS & Green  
3000 RoHS & Green  
RHB  
RHB  
PW  
VQFN  
250  
50  
RoHS & Green  
RoHS & Green  
TSSOP  
TSSOP  
VQFN  
PW  
2000 RoHS & Green  
3000 RoHS & Green  
RHB  
RHB  
PW  
VQFN  
250  
50  
RoHS & Green  
RoHS & Green  
TSSOP  
TSSOP  
VQFN  
PW  
2000 RoHS & Green  
3000 RoHS & Green  
RHB  
RHB  
PW  
VQFN  
250  
50  
RoHS & Green  
RoHS & Green  
TSSOP  
TSSOP  
VQFN  
PW  
2000 RoHS & Green  
3000 RoHS & Green  
RHB  
RHB  
VQFN  
250  
RoHS & Green  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430I2041TPW  
MSP430I2041TPWR  
MSP430I2041TRHBR  
MSP430I2041TRHBT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
VQFN  
PW  
PW  
28  
28  
32  
32  
50  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
I2041T  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
I2041T  
I2041T  
I2041T  
RHB  
RHB  
VQFN  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2021  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430I2020TPWR  
MSP430I2020TRHBR  
MSP430I2020TRHBT  
MSP430I2021TPWR  
MSP430I2021TRHBR  
MSP430I2021TRHBT  
MSP430I2030TPWR  
MSP430I2030TRHBR  
MSP430I2030TRHBT  
MSP430I2031TPWR  
MSP430I2031TRHBR  
MSP430I2031TRHBT  
MSP430I2040TPWR  
MSP430I2040TRHBR  
MSP430I2040TRHBT  
MSP430I2041TPWR  
TSSOP  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
TSSOP  
PW  
RHB  
RHB  
PW  
28  
32  
32  
28  
32  
32  
28  
32  
32  
28  
32  
32  
28  
32  
32  
28  
2000  
3000  
250  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
16.4  
12.4  
12.4  
16.4  
12.4  
12.4  
16.4  
12.4  
12.4  
16.4  
12.4  
12.4  
16.4  
12.4  
12.4  
16.4  
6.9  
5.3  
5.3  
6.9  
5.3  
5.3  
6.9  
5.3  
5.3  
6.9  
5.3  
5.3  
6.9  
5.3  
5.3  
6.9  
10.2  
5.3  
1.8  
1.1  
1.1  
1.8  
1.1  
1.1  
1.8  
1.1  
1.1  
1.8  
1.1  
1.1  
1.8  
1.1  
1.1  
1.8  
12.0  
8.0  
16.0  
12.0  
12.0  
16.0  
12.0  
12.0  
16.0  
12.0  
12.0  
16.0  
12.0  
12.0  
16.0  
12.0  
12.0  
16.0  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
Q2  
Q2  
Q1  
5.3  
8.0  
2000  
3000  
250  
10.2  
5.3  
12.0  
8.0  
RHB  
RHB  
PW  
5.3  
8.0  
2000  
3000  
250  
10.2  
5.3  
12.0  
8.0  
RHB  
RHB  
PW  
5.3  
8.0  
2000  
3000  
250  
10.2  
5.3  
12.0  
8.0  
RHB  
RHB  
PW  
5.3  
8.0  
2000  
3000  
250  
10.2  
5.3  
12.0  
8.0  
RHB  
RHB  
PW  
5.3  
8.0  
2000  
10.2  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430I2041TRHBR  
MSP430I2041TRHBT  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430I2020TPWR  
MSP430I2020TRHBR  
MSP430I2020TRHBT  
MSP430I2021TPWR  
MSP430I2021TRHBR  
MSP430I2021TRHBT  
MSP430I2030TPWR  
MSP430I2030TRHBR  
MSP430I2030TRHBT  
MSP430I2031TPWR  
MSP430I2031TRHBR  
MSP430I2031TRHBT  
MSP430I2040TPWR  
MSP430I2040TRHBR  
MSP430I2040TRHBT  
MSP430I2041TPWR  
MSP430I2041TRHBR  
MSP430I2041TRHBT  
TSSOP  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
PW  
RHB  
RHB  
PW  
28  
32  
32  
28  
32  
32  
28  
32  
32  
28  
32  
32  
28  
32  
32  
28  
32  
32  
2000  
3000  
250  
350.0  
367.0  
210.0  
367.0  
367.0  
210.0  
350.0  
367.0  
210.0  
350.0  
367.0  
210.0  
350.0  
367.0  
210.0  
350.0  
367.0  
210.0  
350.0  
367.0  
185.0  
367.0  
367.0  
185.0  
350.0  
367.0  
185.0  
350.0  
367.0  
185.0  
350.0  
367.0  
185.0  
350.0  
367.0  
185.0  
43.0  
35.0  
35.0  
38.0  
35.0  
35.0  
43.0  
35.0  
35.0  
43.0  
35.0  
35.0  
43.0  
35.0  
35.0  
43.0  
35.0  
35.0  
2000  
3000  
250  
RHB  
RHB  
PW  
2000  
3000  
250  
RHB  
RHB  
PW  
2000  
3000  
250  
RHB  
RHB  
PW  
2000  
3000  
250  
RHB  
RHB  
PW  
2000  
3000  
250  
RHB  
RHB  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
MSP430I2020TPW  
MSP430I2021TPW  
MSP430I2030TPW  
MSP430I2031TPW  
MSP430I2040TPW  
MSP430I2041TPW  
PW  
PW  
PW  
PW  
PW  
PW  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
28  
28  
28  
28  
28  
28  
50  
50  
50  
50  
50  
50  
530  
530  
530  
530  
530  
530  
10.2  
10.2  
10.2  
10.2  
10.2  
10.2  
3600  
3600  
3600  
3600  
3600  
3600  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
Pack Materials-Page 4  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RHB0032M  
PLASTIC QUAD FLATPACK-NO LEAD  
A
5.1  
4.9  
B
5.1  
4.9  
PIN 1 INDEX AREA  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
ꢀꢀꢀꢁꢂꢃ“ꢄꢂꢃ  
9
16  
28X 0.5  
8
17  
SYMM  
33  
2X  
3.5  
1
24  
0.3  
0.2  
32X  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.1  
0.05  
C A B  
C
0.5  
0.3  
32X  
4223725/A 08/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RHB0032M  
PLASTIC QUAD FLATPACK-NO LEAD  
(4.8)  
2.1)  
(
32  
25  
32X (0.6)  
32X (0.25)  
1
24  
28X (0.5)  
33  
SYMM  
(4.8)  
2X  
(0.8)  
ꢅ‘ꢄꢂꢁꢆ  
VIA TYP  
8
17  
(R0.05) TYP  
9
16  
2X (0.8)  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
EXPOSED  
METAL  
OPENING  
EXPOSED  
METAL UNDER  
SOLDER MASK  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223725/A 08/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RHB0032M  
PLASTIC QUAD FLATPACK-NO LEAD  
(4.8)  
4X ( 0.94)  
32  
25  
32X (0.6)  
32X (0.25)  
1
24  
28X (0.5)  
33  
SYMM  
(4.8)  
2X  
(0.57)  
METAL  
TYP  
8
17  
(R0.05) TYP  
9
16  
2X (0.57)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
80% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4223725/A 08/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY