MSP430P337IPJM [TI]

MIXED SIGNAL MICROCONTROLLERS; 混合信号微控制器
MSP430P337IPJM
型号: MSP430P337IPJM
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLERS
混合信号微控制器

微控制器和处理器 外围集成电路 可编程只读存储器 时钟
文件: 总27页 (文件大小:354K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
PJM or HFD PACKAGE  
(TOP VIEW)  
Low Supply Voltage Range 2.5 V – 5.5 V  
Low Operation Current, 400 A at 1 MHz,  
3 V  
Ultra-Low Power Consumption (Standby  
Mode Down to 0.1 µA)  
Five Power-Saving Modes  
V
1
2
3
4
5
6
7
8
NC  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
CC1  
CIN  
Wake Up from Standby Mode in 6 µS  
S22/O22  
S21/O21  
S20/O20  
S19/O19  
S18/O18  
S17/O17  
S16/O16  
S15/O15  
S14/O14  
S13/O13  
S12/O12  
S11/O11  
S10/O10  
S9/O9  
TP0.0  
TP0.1  
TP0.2  
TP0.3  
TP0.4  
TP0.5  
P0.0  
16-Bit RISC Architecture, 300 ns Instruction  
Cycle Time  
Single Common 32 kHz Crystal, Internal  
System Clock up to 3.8 MHz  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
P0.1/RXD  
P0.2/TXD  
P0.3  
Integrated LCD Driver for up to 120  
Segments  
P0.4  
P0.5  
P0.6  
P0.7  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
P2.0  
P2.1  
P2.2  
Integrated Hardware Multiplier Performs  
Signed, Unsigned, and MAC Operations for  
Operands Up to 16 X 16 Bits  
S8/O8  
S7/07  
S6/O6  
Serial Communication Interface (USART),  
Select Asynchronous UART or  
Synchronous SPI by Software  
S5/O5  
S4/O4  
S3/O3  
S2/O2  
S1  
S0  
COM0  
COM1  
Slope A/D Converter Using External  
Components  
16-Bit Timer With Five Capture/Compare  
Registers  
COM2  
COM3  
V
SS2  
V
V
CC2  
SS3  
P4.7/URXD  
NC  
Programmable Code Protection by Security  
Fuse  
Family Members Include:  
MSP430C336 – 24 KB ROM, 1 KB RAM  
MSP430C337 – 32 KB ROM, 1 KB RAM  
MSP430P337 – 32 KB OTP, 1 KB RAM  
NC – No internal connection  
EPROM Version Available for Prototyping:  
PMS430E337  
Serial On-Board Programming  
Available in 100 Pin Quad Flat-Pack (QFP)  
Package, 100 Pin Ceramic Quad Flat-Pack  
(CFP) package (EPROM Version)  
description  
The Texas Instruments MSP430 series is a ultra low-power microcontroller family consisting of several devices  
whichfeaturesdifferentsetsofmodulestargetedtovariousapplications. Thecontrollerisdesignedtobebattery  
operated for an extended application lifetime. With the 16-bit RISC architecture, 16 integrated registers on the  
CPU, and the constant generator, the MSP430 achieves maximum code efficiency. The digital-controlled  
oscillator, together with the frequency lock loop (FLL), provides a fast wake up from a low-power mode to an  
active mode in less than 6 s. The MSP430x33x series micro-controllers have built in hardware multiplication  
and communication capability using asynchronous (UART) and synchronous protocols.  
Typical applications of the MSP430 family include electronic gas, water, and electric meters and other sensor  
systems that capture analog signals, converts them to digital values, processes, displays, or transmits them to  
a host system.  
Copyright 1998, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
CERAMIC  
QFP  
PLASTIC  
QFP  
T
A
(HFD)  
(PJM)  
MSP430C336IPJM  
MSP430C337IPJM  
MSP430P337IPJM  
40°C to 85°C  
25°C  
PMS430E337HFD  
functional block diagram  
V
V
V
V
SS2  
XIN  
XOut  
XBUF  
RST/NMI  
P4.0  
P4.7  
P2.x  
8
P1.x  
8
P3.0  
P3.7  
P0.0  
P0.7  
CC1  
CC2  
SS1  
24/32 kB ROM  
32 kB OPT or  
EPROM  
Oscillator  
FLL  
System Clock  
ACLK  
MCLK  
1024B  
RAM  
Power-on-  
Reset  
I/O Port  
I/O Port  
I/O Port  
I/O Port  
1x8 Digital  
I/O’s  
2x8 I/O’s All  
Interr. Cap.  
1x8 Digital  
I/O’s  
8 I/O’s, All With  
Interr. Cap.  
C: ROM  
P: OTP  
E: EPROM  
SRAM  
2 Int. Vectors  
3 Int. Vectors  
TDI  
USART  
TimerA  
RXD,  
TXD  
TDO  
MAB, 16 Bit  
MAB, 4 Bit  
CPU  
Test  
MCB  
Incl. 16 Reg.  
JTAG  
MDB, 16 Bit  
MDB, 8 Bit  
Bus  
Conv  
TMS  
TCK  
Multiplier  
MPY  
USART  
LCD  
Watchdog  
timer  
TimerA  
8 Bit  
Timer/Port  
Basic  
Timer1  
Timer/Counter  
Applications  
120 Segments  
1, 2, 3, 4 MUX  
Com0–3  
MPYS  
MAC  
UTXD  
UART or  
16 Bit  
PWM  
A/D Conv.  
Timer, O/P  
S0–28/O2–28  
S29/O29/CMPI  
f
15/16 Bit  
URXD  
UCLK  
SPI Function  
LCD  
16x16 Bit  
8x8 Bit  
CMPI  
TACLK  
TA0–4  
STE  
SIMO  
SOMI  
TXD RXD  
6
TP0.0–0.5  
CIN  
R03 R23  
R13 R33  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
Terminal Functions  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
2
CIN  
I
Input port. CIN is used as an enable for counter TPCNT1 – timer/port  
Common outputs. COMM0-3 are used for LCD backplanes – LCD  
General purpose digital I/O  
COM0–3  
P0.0  
56–53  
9
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P0.1/RXD  
P0.2/TXD  
P0.3–P0.7  
P1.0–P1.7  
P2.0–P2.7  
10  
General purpose digital I/O, receive digital Input port – 8-bit timer/counter  
General purpose digital I/O, transmit data output port – 8-bit timer/counter  
Five general purpose digital I/Os, bit 3-7  
11  
12–16  
17–24  
Eight general purpose digital I/Os, bit 0-7  
25–27,  
31–35  
Eight general purpose digital I/Os, bit 0-7  
P3.0, P3.1  
P3.2/TACLK  
P3.3/TA0  
P3.4/TA1  
P3.5/TA2  
P3.6/TA3  
P3.7/TA4  
P4.0  
36,37  
38  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Two general purpose digital I/Os, bit 0 and bit 1  
General purpose digital I/O, clock input – timer A  
39  
General purpose digital I/O, capture I/O, or PWM output port – Timer_A CCR0  
General purpose digital I/O, capture I/O, or PWM output port – Timer_A CCR1  
General purpose digital I/O, capture I/O, or PWM output port – Timer_A CCR2  
General purpose digital I/O, capture I/O, or PWM output port – Timer_A CCR3  
General purpose digital I/O, capture I/O, or PWM output port – Timer_A CCR4  
General purpose digital I/O, bit 0  
40  
41  
42  
43  
44  
P4.1  
45  
General purpose digital I/O, bit 1  
P4.2/STE  
46  
47  
48  
49  
I/O  
I/O  
I/O  
I/O  
General purpose digital I/O, slave transmit enable – USART/SPI mode  
General purpose digital I/O, slave in/master out – USART/SPI mode  
General purpose digital I/O, master in/slave out – USART/SPI mode  
General purpose digital I/O, external clock input – USART  
P4.3/SIMO  
P4.4/SOMI  
P4.5/UCLK  
P4.6/UTXD  
P4.7/URXD  
R03  
50  
51  
I/O  
I/O  
I
General purpose digital I/O, transmit data out – USART/UART mode  
General purpose digital I/O, receive data in – USART/UART mode  
Input port of fourth positive (lowest) analog LCD level (V5) – LCD  
Input port of third most positive analog LCD level (V3 of V4) – LCD  
Input port of second most positive analog LCD level (V2) – LCD  
Output of most positive analog LCD level (V1) – LCD  
88  
R13  
89  
I
R23  
90  
I
R33  
91  
O
I
RST/NMI  
S0  
96  
Reset input or non-maskable interrupt input port  
57  
O
O
O
O
O
O
O
O
O
Segment line S0 – LCD  
S1  
58  
Segment line S1 – LCD  
S2/O2–S5/O5  
S6/O6–S9/O9  
59–62  
63–66  
67–70  
71–74  
75–78  
79, 81–83  
84–87  
Segment lines S2 to S5 or digital output ports, O2-O5, group 1 – LCD  
Segment lines S6 to S9 or digital output ports O6-O9, group 2 – LCD  
Segment lines S10 to S13 or digital output ports O10-O13, group 3 – LCD  
Segment lines S14 to S17 or digital output ports O14-O17, group 4 – LCD  
Segment lines S18 to S21 or digital output ports O18-O21, group 5 – LCD  
Segment line S22 to S25 or digital output ports O22-O25, group 6 – LCD  
S10/O10–S13/O13  
S14/O14–S17/O17  
S18/O18–S21/O21  
S22/O22–S25/O25  
S26/O26–S29/O29/CMPI  
Segment line S26 to S29 or digital output ports O26-O29, group 7 – LCD. Segment line S29  
can be used as comparator input port CMPI – timer/port  
TCK  
95  
93  
I
I
Test clock. TCK is the clock input port for device programming and test  
TDI/VPP  
Test data input. TDI/VPP is used as a data input port or input for programming voltage  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
Terminal Functions  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
94  
TMS  
I
Test mode select. TMS is used as an input port for device programming and test  
Test data output port. TDO/TDI data output or programming data input terminal  
General purpose 3–state digital output port, bit 0 – timer/port  
General purpose 3–state digital output port, bit 1 – timer/port  
General purpose 3–state digital output port, bit 2 – timer/port  
General purpose 3–state digital output port, bit 3 – timer/port  
General purpose 3–state digital output port, bit 4 – timer/port  
General purpose 3–state digital input/output port, bit 5 – timer/port  
Positive supply voltage  
TDO/TDI  
TP0.0  
TP0.1  
TP0.2  
TP0.3  
TP0.4  
TP0.5  
VCC1  
VCC2  
VSS1  
VSS2  
VSS3  
XBUF  
Xin  
92  
I/O  
O
3
4
O
5
O
6
O
7
O
8
I/O  
1
29  
100  
28  
52  
97  
99  
98  
Positive supply voltage  
Ground reference  
Ground reference  
Ground reference  
O
I
System clock (MCLK) or crystal clock (ACLK) output  
Input port for crystal oscillator  
Xout/TCLK  
I/O  
Output terminal of crystal oscillator or test clock input  
short-form description  
processing unit  
The processing unit is based on a consistent and orthogonal designed CPU and instruction set. This design  
structure results in a RISC-like architecture, highly transparent to the application development and is  
distinguished due to ease of programming. All operations, other than program-flow instructions consequently  
are performed as register operations in conjunction with seven addressing modes for source and four modes  
for destination operand.  
PC/R0  
SP/R1  
SR/CG1/R2  
CG2/R3  
R4  
Program Counter  
cpu registers  
Sixteen registers are located inside the CPU,  
Stack Pointer  
providing reduced instruction execution time. This  
reduces a register-register operation execution  
time to one cycle of the processor frequency.  
Status Register  
Four of the registers are reserved for special use  
as a program counter, a stack pointer, a status  
register and a constant generator. The remaining  
registers are available as general purpose  
registers.  
Constant Generator  
General Purpose Register  
General Purpose Register  
R5  
Peripherals are connected to the CPU using a  
data address and control bus and can be handled  
easily with all instructions for memory manipula-  
tion.  
General Purpose Register  
General Purpose Register  
R14  
R15  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
instruction set  
The instruction set for this register-register architecture provides a powerful and easy-to-use assembly  
language. The instruction set consists of 52 instructions, with three formats and seven addressing modes.  
Table 1 provides a summation and example of the three types of instruction formats; the addressing modes are  
listed in Table 2.  
Table 1. Instruction Word Formats  
Dual operands, source–destination e.g. ADD R4,R5  
R4 + R5 R5  
Single operands, destination only  
Relative jump, un–/conditional  
e.g. CALL R8  
e.g. JNE  
PC (TOS), SR (TOS), R8PC  
Jump-on equal bit = 0  
Instructions that can operate on both word and byte data are differentiated by the suffix ’.B’ when a byte  
operation is required.  
Examples:  
Instructions for word operation:  
Instructions for byte operation:  
MOV  
ede,toni  
#235h,&MEM  
R5  
MOV.B  
ADD.B  
PUSH.B  
–––  
ede,toni  
#35h,&MEM  
R5  
ADD  
PUSH  
SWPB  
R5  
Table 2. Address Mode Descriptions  
ADDRESS MODE  
S
D
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
OPERATION  
R10 R11  
register  
MOV R10,R11  
indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV 2(R5),6(R6)  
M(2+R5) M(6+R6)  
M(EDE) M(TONI)  
M(MEM) M(TCDAT)  
M(R10) M(Tab+R6)  
symbolic (PC relative)  
absolute  
MOV &MEM,&TCDAT  
MOV @Rn,Y(Rm)  
MOV @Rn+,Rm  
indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
indirect autoincrement  
M(R10) R11  
R10 + 2R10  
immediate  
MOV #X,TONI  
MOV #45,TONI  
#45 M(TONI)  
NOTE 1: S = source, D = destination.  
Computedbranches(BR)andsubroutinecalls(CALL)instructionsusethesameaddressingmodesastheother  
instructions. These addressing modes provide indirect addressing, ideally suited for computed branches and  
calls. The full use of this programming capability permits a program structure different from conventional 8- and  
16-bit controllers. For example, numerous routines can easily be designed to deal with pointers and stacks  
instead of using Flag type programs for flow control.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
operation modes and interrupts  
TheMSP430operatingmodessupportvariousadvancedrequirementsforultra-lowpowerandultra-lowenergy  
consumption. This is achieved by the intelligent management of the operations during the different module  
operation modes and CPU states. The requirements are fully supported during interrupt event handling. An  
interrupt event awakens the system from each of the various operating modes and returns with the RETI  
instruction to the mode that was selected before the interrupt event. The clocks used are ACLK and MCLK.  
ACLK is the crystal frequency and MCLK is a multiple of ACLK and is used as the system clock.  
The following five operating modes are supported:  
Active mode (AM). The CPU is enabled with different combinations of active peripheral modules.  
Low power mode 0 (LPM0). The CPU is disabled, peripheral operation continues, ACLK and MCLK signals  
are active, and loop control for MCLK is active.  
Low power mode 1 (LPM1). The CPU is disabled, peripheral operation continues, ACLK and MCLK signals  
are active, and loop control for MCLK is inactive.  
Low power mode 2 (LMP2). The CPU is disabled, peripheral operation continues, ACLK signal is active,  
and MCLK and loop control for MCLK are inactive.  
Low power mode 3 (LMP3). The CPU is disabled, peripheral operation continues, ACLK signal is active,  
MCLKand loop control for MCLK are inactive, and the dc generator for the digital controlled oscillator(DCO)  
(
MCLK generator) is switched off.  
Low power mode 4 (LMP4). The CPU is disabled, peripheral operation continues, ACLK signal is inactive  
(crystal oscillator stopped), MCLK and loop control for MCLK are inactive, and the dc generator for the DCO  
is switched off.  
The special function registers (SFR) include module-enable bits that stop or enable the operation of the specific  
peripheral module. All registers of the peripherals may be accessed if the operational function is stopped or  
enabled. However, some peripheral current-saving functions are accessed through the state of local register  
bits. An example is the enable/disable of the analog voltage generator in the LCD peripheral which is turned  
on or off using one register bit.  
The most general bits that influence current consumption and support fast turn-on from low power operating  
modesarelocatedinthestatusregister(SR). FourofthesebitscontroltheCPUandthesystemclockgenerator:  
SCG1, SCG0, OscOff, and CPUOff.  
15  
Reserved For Future  
Enhancements  
9
8
7
0
V
SCG1  
SCG0  
OscOff  
rw-0  
CPUOff  
GIE  
N
Z
C
interrupts  
Software determines the activation of interrupts through the monitoring of hardware set interrupt flag status bits,  
the control of specific interrupt enable bits in SRs, the establishment of interrupt vectors, and the programming  
of interrupt handlers. The interrupt vectors and the power-up starting address are located in ROM address  
locations 0FFFFh through 0FFE0h. Each vector contains the 16-bit address of the appropriate interrupt handler  
instruction sequence. Table 3 provides a summation of interrupt functions and addresses.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
Table 3. Interrupt Functions and Addresses  
INTERRUPT SOURCE  
INTERRUPT FLAG  
WDTIFG  
SYSTEM INTERRUPT  
WORD ADDRESS  
0FFFEh  
PRIORITY  
15, highest  
14  
Power-up, external reset, Watchdog  
Reset  
NMI,  
NMIIFG (see Note 2)  
OFIFG (see Note 2)  
non-maskable  
(non)-maskable  
0FFFCh  
Oscillator fault  
Dedicated I/O  
Dedicated I/O  
P0IFG.0  
P0IFG.1  
maskable  
maskable  
maskable  
maskable  
maskable  
maskable  
maskable  
maskable  
0FFFAh  
0FFF8h  
0FFF6h  
0FFF4h  
0FFF2h  
0FFF0h  
0FFEEh  
0FFECh  
0FFEAh  
0FFE8h  
0FFE6h  
0FFE4h  
0FFE2h  
0FFE0h  
13  
12  
11  
Watchdog timer  
Timer_A  
WDTIFG  
10  
CCIFG0 (see Note 3)  
TAIFG (see Note 3)  
URXIFG  
9
Timer_A  
8
UART Receive  
UART Transmit  
7
UTXIFG  
6
5
Timer/Port  
See Note 3  
maskable  
maskable  
maskable  
maskable  
maskable  
4
I/O Port P2  
P2IFG.07 (see Note 2)  
P1IFG.07 (see Note 2)  
BTIFG  
3
I/O Port P1  
2
1
Basic Timer  
I/O Port P0  
P0IFG.27 (see Note 2)  
0, lowest  
NOTES: 2. Multiple source flags  
3. Interrupt flags are located in the module  
special function registers  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
that are not allocated to a functional purpose are not physically present in the device. Simple SW access is  
provided with this arrangement.  
interrupt enable 1 and 2  
7
6
5
4
3
2
1
0
Address  
0h  
P0IE.1  
P0IE.0  
OFIE  
WDTIE  
rw-0  
rw-0  
rw-0  
rw-0  
WDTIE:  
OFIE:  
P0IE.0:  
P0IE.1:  
Watchdog timer interrupt enable signal  
Oscillator fault interrupt enable signal  
Dedicated I/O P0.0 interrupt enable signal  
P0.1 or 8-bit timer/counter, RXD interrupt enable signal  
7
6
5
4
3
2
1
0
Address  
01h  
BTIE  
TPIE  
UTXIE  
URXIE  
rw-0  
rw-0  
rw-0  
rw-0  
URXIE:  
UTXIE:  
TPIE:  
USART receive interrupt enable signal  
USART transmit interrupt enable signal  
Timer/Port interrupt enable signal  
Basic Timer interrupt enable signal  
BTIE:  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
interrupt flag registers 1 and 2  
7
6
5
4
3
2
1
0
Address  
02h  
NMIIFG  
P0IFG.1  
P0IFG.0  
OFIFG  
WDTIFG  
rw-0  
rw-0  
rw-0  
rw-1  
rw-0  
WDTIFG:  
Set on overflow or security key violation  
or  
Reset on VCC1 power-on or reset condition at ’RST/NMI-pin  
Flag set on oscillator fault  
OFIFG:  
P0.0IFG:  
P0.1IFG:  
NMIIFG:  
Dedicated I/O P0.0  
P0.1 or 8-bit timer/counter, RXD  
Signal at ’RST/NMI-pin  
7
6
5
4
3
2
1
0
Address  
03h  
BTIFG  
UTXIFG  
URXIFG  
rw  
rw-1  
rw-0  
URXIFG:  
UTXIFG:  
BTIFG:  
USART receive flag  
USART transmit flag  
Basic Timer flag  
module enable registers 1 and 2  
7
6
5
5
4
4
3
3
2
2
1
0
Address  
04h  
7
6
1
0
Address  
05h  
UTXE  
URXE  
rw-0  
rw-0  
UTXE:  
URXE:  
USART transmit enable  
USART receive enable  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
module enable registers 1 and 2 (continued)  
Legend rw:  
rw-0:  
Bit can be read and written  
Bit can be read and written. It is reset by PUC  
SFR bit not present in device  
ROM memory organization  
MSP430C336  
MSP430C337  
MSP430P337  
PMS430E337  
FFFFh  
FFFFh  
FFFFh  
Int. Vector  
24 kB ROM  
Int. Vector  
32 kB ROM  
Int. Vector  
FFE0h  
FFDFh  
FFE0h  
FFDFh  
FFE0h  
FFDFh  
32 kB OTP  
or  
EPROM  
A000h  
8000h  
8000h  
05FFh  
0200h  
05FFh  
0200h  
05FFh  
0200h  
1024B RAM  
16b Per.  
8b Per.  
1024B RAM  
16b Per.  
8b Per.  
1024B RAM  
16b Per.  
8b Per.  
01FFh  
0100h  
00FFh  
0010h  
000Fh  
0000h  
01FFh  
0100h  
00FFh  
0010h  
000Fh  
0000h  
01FFh  
0100h  
00FFh  
0010h  
000Fh  
0000h  
SFR  
SFR  
SFR  
peripherals  
Peripherals are connected to the CPU through a data, address, and control bus and can be handled easily with  
instructions for memory manipulation.  
oscillator and system clock  
Twoclocksareusedinthesystem, thesystem(master)clock(MCLK)andtheauxiliaryclock(ACLK). TheMCLK  
isamultipleoftheACLK. TheACLK runswiththecrystaloscillatorfrequency. Thespecialdesignoftheoscillator  
supports the feature of low current consumption and the use of a 32 768 Hz crystal. The crystal is connected  
across two terminals without any other external components being required.  
The oscillator starts after applying VCC, due to a reset of the control bit (OscOff) in the status register (SR). It  
can be stopped by setting the OscOff bit to a 1. The enabled clock signals ACLK, ACLK/2, ACLK/4, OR MCLK  
are accessible for use by external devices at output terminal XBUF .  
The controller system clocks have to deal with different requirements according to the application and system  
condition. Requirements include:  
High frequency in order to react quickly to system hardware requests or events  
Low frequency in order to minimize current consumption, EMI, etc.  
Stable frequency for timer applications e.g. real time clock (RTC)  
Enable start-stop operation with minimum delay to operation function.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
These requirements cannot all be met with fast frequency high-Q crystals or with RC-type low-Q oscillators. The  
compromise selected for the MSP430 uses a low-crystal frequency which is multiplied to achieve the desired  
nominal operating range:  
f
N
f(crystal)  
(system)  
The crystal frequency multiplication is acheived with a frequency locked loop (FLL) technique. The factor N is  
recommended to be 32, 64, 96, or 128 depending on the maximum clock frequency and the electrical  
characteristics provided by this datasheet. The FLL technique, in combination with a digital controlled oscillator  
(DCO) provides immediate start-up capability together with long term crystal stability. The frequency variation  
of the DCO with the FLL inactive is typically 330 ppm which means that with a cycle time of 1 µs the maximum  
possible variation is 0.33 ns. For more precise timing, the FLL can be used which forces longer cycle times if  
the previous cycle time was shorter than the selected one. This switching of cycle times makes it possible to  
meet the chosen system frequency over a long period of time.  
The start-up operation of the system clock depends on the previous machine state. During a PUC, the DCO  
is reset to its lowest possible frequency. The control logic starts operation immediately after recognition of PUC.  
multiplication  
The multiplication operation is supported by a dedicated peripheral module. The module performs 16x16, 16x8,  
8x16, and 8x8 bit operations. The module is capable of supporting signed and unsigned multiplication as well  
as unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after  
the operands have been loaded into the peripheral registers. No additional clock cycles are required.  
digital I/O  
Five eight-bit I/O ports (P0 thru P4) are implemented. Port P0 has six control registers, P1 and P2 have seven  
control registers, and P3 and P4 modules have four control registers to give maximum flexibility of digital  
input/output to the application:  
Individual I/O bits are independently programable.  
Any combination of input, output, and interrupt conditions is possible.  
Interrupt processing of external events is fully implemented for all eight bits of the P0, P1, and P2 ports.  
Read/write access is available to all registers by all instructions.  
The seven registers are:  
Input register  
contains information at the pins  
contains output information  
Output register  
Direction register  
Interrupt edge select  
Interrupt flags  
controls direction  
contains input signal change necessary for interrupt  
indicates if interrupt(s) are pending  
contains interrupt enable pins  
Interrupt enable  
Function select  
determines if pin(s) used by module or port  
These registers contain eight bits each with the exception of the the interrupt flag register and the interrupt  
enable register which are 6 bits each. The two least significant bit (LSBs) of the interrupt flag and enable  
registers are located in the special function register (SFR). Five interrupt vectors are implemented, one for Port  
P0.0, one for Port P0.1, one commonly used for any interrupt event on Port P0.2 to Port P0.7, one commonly  
used for any interrupt event on Port P1.0 to Port P1.7, and one commonly used for any interrupt event on Port  
P2.0 to Port P2.7.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
LCD drive  
Liquid crystal displays (LCDs) for static, 2-, 3-, and 4-MUX operation can be driven directly. The operation of  
thecontrollerLCDlogicisdefinedbysoftwarethroughmemory-bitmanipulation. LCDmemoryispartoftheLCD  
module, not part of data memory. Eight mode and control bits define the operation and current consumption of  
the LCD drive. The information for the individual digits can be easily obtained using table programming  
techniques combined with the proper addressing mode. The segment information is stored into LCD memory  
using instructions for memory manipulation.  
The drive capability is defined by the external resistor divider that supports analog levels for 2-, 3-, and 4-MUX  
operation. Groups of the LCD segment lines can be selected for digital output signals. The MSP430x33x  
configuration has four common lines, 30 segment lines, and four terminals for adjusting the analog levels.  
basic timer1  
The Basic Timer1 (BT1) divides the frequency of MCLK or ACLK, as selected with the SSEL bit, to provide low  
frequency control signals. This is done within the system by one central divider, the basic timer, to support low  
current applications. The BTCTL control register contains the flags which control or select the different  
operational functions. When the supply voltage is applied or when a reset of the device (RST/NMI pin), a  
watchdog overflow, or a watchdog security key violation occurrs, all bits in the register hold undefined or  
unchanged status. The user software usually configures the operational conditions on the BT during  
initialization.  
The basic timer has two eight bit timers which can be cascaded to a sixteen bit timer. Both timers can be read  
and written by software. Two bits in the SFR address range handle the system control interaction according to  
the function implemented in the basic timer. These two bits are the Basic Timer Interrupt Flag (BTIFG) and the  
Basic Timer Interrupt Enable (BTIE) bit.  
watchdog timer  
The primary function of the Watchdog Timer (WDT) module is to perform a controlled system restart after a S/W  
upset has occurred. If the selected time interval expires, a system reset is generated. If this watchdog function  
is not needed in an application, the module can work as an interval timer, which generates an interrupt after the  
selected time interval.  
The watchdog timer counter (WDTCNT) is a 15/16-bit upcounter which is not directly accessible by software.  
The WDTCNT is controlled using the watchdog timer control register (WDTCTL), which is an 8-bit read/write  
register. Writing to WDTCTL, in both operating modes (watchdog or timer) is only possible by using the correct  
password in the high-byte. The low-byte stores data written to the WDTCTL. The high-byte password is 05Ah.  
If any value other than 05Ah is written to the high-byte of the WDTCTL, a system reset PUC is generated. When  
the password is read its value is 069h that minimizes accidental write operations to the WDTCTL register. A  
read-access to WDTCTL is only possible by writing 05Ah as the password in the high-byte of the WDTCTL. This  
avoids an accidental write-access on the WDTCTL. Additionally to the watchdog timer control bits, there are  
two bits included in the WDTCTL that configure the NMI pin.  
USART  
The universal synchronous/asynchronous interface is a dedicated peripheral module which provides serial  
communications. The USART supports synchronous SPI (3 or 4 pin), and asynchronous UART  
communications protocols, using double buffered transmit and receive channels. Data streams of 7 or 8 bits  
in length can be transferred at a rate determined by the program, or by a rate defined by an external clock. Low  
power applications are optimized by UART mode options which allow for the receipt of only the first byte of a  
complete frame. The applications software then decides if the succeeding data is to be processed. This option  
reduces power consumption.  
Two dedicated interrupt vectors are assigned to the USART module, one for the receive and one for the transmit  
channel.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
timer/port  
The timer/port module has two 8-bit counters, an input that triggers one counter and six digital outputs with  
3-state capability. Both counters have an independent clock selector for selecting an external signal or one of  
the internal clocks (ACLK or MCLK). One of the counters has an extended control capability to halt, count  
continuously, or gate the counter by selecting one of two external signals. This gate signal sets the interrupt flag  
if an external signal is selected and the gate stops the counter.  
Both timers can be read to and written from by software. The two 8-bit counters can be cascaded to form a 16-bit  
counter. A common interrupt vector is implemented. The interrupt flag can be set by three events in the 8-bit  
countermode(gatesignaloroverflowfromthecounters)orbytwoeventsinthe16-bitcountermode(gatesignal  
or overflow from the MSB of the cascaded counter).  
slope A/D conversion  
Slope A/D conversion is accomplished with the timer/port module using external resistor(s) for reference (R ),  
ref  
external resistor(s) to the measured (R  
), and an external capacitor. The external components are driven  
meas  
by software in such a way that the internal counter measures the time that is needed to charge or discharge  
the capacitor.The reference resistor’s (R ) charge or discharge time is represented by N counts. The  
ref  
ref  
unknown resistors (R  
) charge or discharge time is represented by N  
counts. The unknown resistor’s  
meas  
meas  
value R  
is the value of R multiplied by the relative number of counts (N  
/N ). This value determines  
meas  
ref  
meas ref  
resistive sensor values that corresponds to the physical data, for example temperature, when an NTC or PTC  
resistor is used.  
timer_a  
The timer_a module offers one sixteen bit counter and five capture/compare registers. The timer clock source  
can be selected to come from an external source TACLK (SSEL=0), the ACLK (SSEL=1), or MCLK (SSEL=2  
or SSEL=3). The clock source can be divided by one, two, four or eight. The timer can be fully controlled (in word  
mode) since it can be halted, read, and written. It can be stopped, run continuously, count up, or count up/down  
using one compare block to determine the period. The five capture/compare blocks are configured by the  
application software to run in either capture or compare mode.  
The capture mode is primarily used to measure external or internal events with any combination of positive,  
negative, or both edges of the clock. The clock can also be stopped in capture mode by software. One external  
event (CCISx=0) per capture block can be selected. If CCISx=1, the ACLK is the capture signal; and if CCISx=2  
or CCISx=3, software capture is chosen.  
The compare mode is primarily used to generate timing for the software or application hardware or to generate  
pulse-width modulated output signals for various purposes like D/A conversion functions or motor control. An  
individual output module, which can run independently of the compare function or is triggered in several ways,  
is assigned to each of the five capture/compare registers.  
Two interrupt vectors are used by the timer_a module. One individual vector is assigned to capture/compare  
block CCR0 and one common interrupt vector is assigned to the timer and the other four capture/compare  
blocks. The five interrupt events using the common vector are identified by an individual interrupt vector word.  
The interrupt vector word is used to add an offset to the program counter to continue the interrupt handler  
software at the correct location. This simplifies the interrupt handler and gives each interrupt event the same  
interrupt handler overhead of 5 cycles.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
8-bit timer/counter  
The 8-bit interval timer supports three major functions for applications:  
Serial communication or data exchange  
Plus counting or plus accumulation  
Timer  
8-bit timer/counter (continued)  
The 8-bit timer/counter peripheral includes the following major blocks: an 8-bit Up-Counter with preload register,  
an 8-bit Control Register, an Input clock selector, an Edge detection (e.g. Start bit detection for asynchronous  
protocols), and an input and output data latch, triggered by the carry-out-signal from the 8-bit counter.  
The 8-bit counter counts up with an input clock which is selected by two control bits from the control register.  
The four possible clock sources are MCLK, ACLK, the external signal from terminal P0.1, and the signal from  
the logical .AND. of MCLK and terminal P0.1.  
Two counter inputs (load, enable) control the counter operation. The load input controls load operations. A  
write-access to the counter results in loading the content of the preload register into the counter. The software  
writes or reads the preload register with all instructions. The preload register acts as a buffer and can be written  
immediately after the load of the counter is completed. The enable input enables the count operation. When  
the enable signal is set to high, the counter will count-up each time a positive clock edge is applied to the clock  
input of the counter.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
peripheral file map  
Peripherals with byte access  
UART  
Transmit Buffer, UTXBUF  
Receive Buffer, URXBUF  
Baud Rate, UBR1  
077h  
076h  
075h  
074h  
073h  
072h  
071h  
070h  
054h  
053h  
052h  
051h  
050h  
04Fh  
04Eh  
04Dh  
04Ch  
04Bh  
047h  
046h  
040h  
044h  
043h  
042h  
03Fh  
Port P3  
Port P0  
Port P3 Selection, P3SEL  
Port P3 Direction, P3DIR  
Port P3 Output, P3OUT  
Port P3 Input, P3IN  
01Bh  
01Ah  
019h  
018h  
015h  
014h  
013h  
012h  
011h  
010h  
003h  
002h  
001h  
000h  
Baud Rate, UBR0  
Modulation Control, UMCTL  
Receive Control, URCTL  
Transmit Control, UTCTL  
UART Control, UCTL  
Port P0 Interrupt Enable, P0IE  
Port P0 Interrupt Edge Select, P0IES  
Port P0 Interrupt Flag, P0IFG  
Port P0 Direction, P0DIR  
Port P0 Output, P0OUT  
Port P0 Input, P0IN  
EPROM  
EPROM Control, EPCTL  
Crystal Buffer Control, CBCTL  
SCG Frequency Control, SCFQCTL  
SCG Frequency Integrator, SCFI1  
SCG Frequency Integrator, SCFI0  
Timer Port Enable, TPE  
Crystal Buffer  
System Clock  
Special  
SFR Interrupt Flag2, IFG2  
SFR Interrupt Flag1, IFG1  
SFR Interrupt Enable2, IE2  
SFR Interrupt Enable1, IE1  
Function  
Timer/Port  
Timer Port Data, TPD  
Peripherals with word access  
Timer Port Counter2, TPCNT2  
Timer Port Counter1, TPCNT1  
Timer Port Control, TPCTL  
Basic Timer Counter2, BTCNT2  
Basic Timer Counter1, BTCNT1  
Basic Timer Control, BTCTL  
8-bit Timer/Counter Data, TCDAT  
8-bit Timer/Counter Preload, TCPLD  
8-bit Timer/Counter Control, TCCTL  
LCD Memory 15, LCDM15  
:
Multiply  
Sum Extend, SumExt  
013Eh  
013Ch  
013Ah  
0138h  
0136h  
0134h  
0132h  
0130h  
0120h  
012Eh  
0160h  
0162h  
0164h  
0166h  
0168h  
016Ah  
016Ch  
016Eh  
0170h  
0172h  
0174h  
0176h  
0178h  
017Ah  
017Ch  
017Eh  
Result High Word, ResHi  
Result Low Word, ResLo  
Second Operand, OP_2  
Reserved  
Basic Timer  
8-bit T/C  
LCD  
Multiply+Accumulate/Op.1, MAC  
Multiply Signed/Operand1, MPYS  
Multiply Unsigned/Operand1, MPY  
Watchdog/Timer Control, WDTCTL  
Timer_A Interrupt Vector, TAIV  
Timer_A Control, TACTL  
Cap/Com Control, CCTL0  
Cap/Com Control, CCTL1  
Cap/Com Control, CCTL2  
Cap/Com Control, CCTL3  
Cap/Com Control, CCTL4  
Reserved  
Watchdog  
Timer_A  
LCD Memory 1, LCDM1  
031h  
030h  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
01Fh  
01Eh  
01D  
LCD Control & Mode, LCDC  
Port P2 Selection, P2SEL  
Port P2 Interrupt Enable, P2IE  
Port P2 Interrupt Edge Select, P2IES  
Port P2 Interrupt Flag, P2IFG  
Port P2 Direction, P2DIR  
Port P2 Output, P2OUT  
Port P2  
Port P1  
Port P4  
Reserved  
Timer_A Register, TAR  
Cap/Com Register, CCR0  
Cap/Com Register, CCR1  
Cap/Com Register, CCR2  
Cap/Com Register, CCR3  
Cap/Com Register, CCR4  
Reserved  
Port P2 Input, P2IN  
Port P1 Selection, P1SEL  
Port P1 Interrupt Enable, P1IE  
Port P1 Interrupt Edge Select, P1IES  
Port P1 Interrupt Flag, P1IFG  
Port P1 Direction, P1DIR  
Port P1 Output, P1OUT  
Reserved  
Port P1 Input, P1IN  
Port P4 Selection, P4SEL  
Port P4 Direction, P4DIR  
Port P4 Output, P4OUT  
Port P4 Input, P4IN  
01Ch  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
absolute maximum ratings  
Supply voltage range, between V  
Supply voltage range, between V terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 0.3 V  
terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 0.3 V  
CC  
SS  
Input voltage range, V  
Input voltage range, V  
to any VSS terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6 V  
to any VSS terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6 V  
CC1  
CC2  
Input voltage range to any terminal (referenced to VSS) . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V  
+ 0.3 V  
CC  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA  
Storage temperature range, T , (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 150°C  
stg  
Storage temperature range, T , (programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
stg  
V
V
CC1  
CC2  
Common Lines COM0 to COM3, Segment Lines S0 to S29  
Output Drivers O2 to O29  
V
SS1  
V
SS2  
V
CC1  
V
SS1  
Core Logic With  
Core CPU, System, JTAG/Test,  
All Peripheral Modules  
J/X  
T/B  
A/U  
G/F  
V
CC1  
Terminal of Timer/Port  
Input Buffers and Output Drivers of Port P0–P4  
V
SS1  
V
SS3  
Substrate and Ground Potential For Input Inverters/Buffers  
V
SS2  
(see Note A)  
V
SS1  
(see Note B)  
NOTES: A. Ground potential for all port output drivers and input terminals, excluding first inverter/buffer  
B. Ground potential for entire device core logic and peripheral modules  
Figure 1. Supply Voltage Interconnection  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
recommended operating conditions  
PARAMETER  
MIN  
2.5  
2.7  
0
NOM  
MAX  
5.5  
5.5  
0
UNIT  
Supply voltage, V , (MSP430C33x)  
CC  
V
V
V
Supply voltage, V , (MSP430E/P33x)  
CC  
3
0
Supply voltage, VSS  
TMS430C33x, TMS430P33x  
PMS430E33x  
–40  
85  
Operating free-air temperature range T  
°C  
A
25  
XTAL frequency f  
(XTAL)  
(signal ACLK)  
32 768  
HZ  
V
V
= 3 V  
= 5 V  
DC  
DC  
1.65  
3.8  
MHz  
MHz  
CC  
Processor frequency (signal MCLK), f  
system  
CC  
5
4
3
2
1
1.1  
2
0
0
1
3
4
5
6
7
V
CC  
– Supply Voltage – V  
Figure 2. Frequency vs. Supply Voltage  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
supply current (into V ) excluding external current (f  
CC  
= 1 MHz) (see Note 4)  
(system)  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
400  
800  
3
MAX  
500  
900  
6
UNIT  
T = –40°C +85°C,  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
A
C336/7  
P337  
µA  
T = –40°C +85°C,  
A
I
Active Mode  
(AM)  
T = –40°C +85°C,  
A
mA  
µA  
µA  
T = –40°C +85°C,  
10  
12  
A
T = –40°C +85°C,  
50  
70  
A
C336/7  
P337  
T = –40°C +85°C,  
100  
70  
130  
110  
200  
12  
A
I
I
Low power mode, (LPM0,1)  
Low power mode, (LPM2)  
(CPUOff)  
T = –40°C +85°C,  
A
T = –40°C +85°C,  
150  
7
A
T = –40°C +85°C,  
A
(LPM2)  
T = –40°C +85°C,  
18  
25  
A
T = –40°C  
2.0  
2.0  
1.6  
5.2  
4.2  
4.0  
0.1  
0.1  
0.4  
3.5  
3.5  
3.5  
10  
A
T = 25°C  
A
V
V
= 3 V  
CC  
T = 85°C  
A
I
Low power mode, (LPM3)  
Low power mode, (LPM4)  
µA  
(LPM3)  
T = –40°C  
A
T = 25°C  
A
= 5 V  
10  
CC  
T = 85°C  
A
10  
T = –40°C  
A
0.8  
0.8  
1.5  
I
T = 25°C  
A
V
= 3 V/5 V  
µA  
(LPM4)  
CC  
T = 85°C  
A
NOTE 4: All inputs are tied to 0V or VCC2. Outputs do not source or sink any current. The current consumption in LPM2 and LPM3 are measured  
with active Basic Timer1 Module (ACLK selected), LCD Module (f  
selected)  
=1024Hz, 4MUX) and USART module (UART, ACLK, 2400 Baud  
LCD  
Current Consumption of active mode versus system frequency, C versions only  
= I * f [MHz]  
I
AM  
AM[1MHz] system  
Current Consumption of active mode versus supply voltage, C versions only  
= I + 200µA/V * (V –3)  
I
AM  
AM[3V]  
CC  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
schmitt-trigger inputs Port 0 to P4, P0.x to P4.x, Timer/Port, CIN, TP0.0–TP0.5  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
2.1  
3.4  
1.5  
2.3  
1.0  
1.4  
UNIT  
V
Positive-going input threshold voltage  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
1.2  
2.3  
0.7  
1.4  
0.3  
0.6  
IT+  
IT–  
V
Negative-going input threshold voltage  
V
V –V  
Input-output voltage differential, (hysteresis)  
I
O
standard inputs TCK, TMS, TDI, RST/NMI (see Note 5)  
PARAMETER  
Low-level input voltage  
High-level input voltage  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
V
V
V
V
+0.8  
CC  
IL  
SS  
0.7V  
SS  
V
CC  
= 3 V/5 V  
V
V
IH  
CC  
NOTE 5: A serial resistor of 1kOhm to the RST/NMI is recommended to enhance latch–up immunity.  
outputs Port0toP4, P0.xtoP4.x, Timer/Port, TP0.0toTP0.5, LCD:S2/O2toS29/O29, XBUF:XBUF, JTAG:TDO  
PARAMETER  
TEST CONDITIONS  
= – 1.2 mA, See Note 6  
= – 3.5 mA, See Note 7  
= – 1.5 mA, See Note 6  
= – 4.5 mA, See Note 7  
= + 1.2 mA, See Note 6  
= + 3.5 mA, See Note 7  
= + 1.5 mA, See Note 6  
= + 4.5 mA, See Note 7  
MIN NOM  
–0.4  
MAX  
UNIT  
I
I
I
I
I
I
I
I
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
(OHmax)  
(OHmax)  
(OHmax)  
(OHmax)  
(OLmax)  
(OLmax)  
(OLmax)  
(OLmax)  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
–1.0  
V
High-level output voltage  
V
OH  
OL  
–0.4  
–1.0  
V
V
V
V
V
+0.4  
+1.0  
+0.4  
+1.0  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
Low-level output voltage  
V
NOTES: 6. The maximum total current for all outputs combined should not exceed ±9.6 mA to hold the maximum voltage drop specified.  
7. The maximum total current for all outputs combined should not exceed ±28 mA to hold the maximum voltage drop specified.  
leakage current (see Note 8)  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
± 50  
± 50  
± 50  
± 50  
± 50  
± 50  
± 50  
UNIT  
nA  
I
I
I
I
I
I
I
High-impendance leakage current (LTP)  
V
V
, see Note 9  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
(LTP)  
TP0.x, CIN  
= VSS – VCC  
S29  
nA  
(LS29)  
(P0.x)  
(P0.x)  
(P0.x)  
(P0.x)  
(P0.x)  
Port P0: P0.x  
Port P1: P1.x  
Port P2: P2.x  
Port P3: P3.x  
Port P4: P4.x  
0 x 7, see Note 10  
0 x 7, see Note 10  
0 x 7, see Note 10  
0 x 7, see Note 10  
0 x 7, see Note 10  
nA  
nA  
nA  
nA  
nA  
NOTES: 8. The leakage current is measured with V  
SS  
or V  
applied to the corresponding pins(s) – unless otherwise noted.  
CC  
9. All timer/port pins (TP0.0 to TP0.5) are Hi-Z. Pins CIN and TP0.0 to TP0.5 are connected together during leakage current  
measurement. In the leakage measurement mode, the input CIN is included. The input voltage is V or V  
.
CC  
SS  
10. The leakages of the digital port terminals are measured individually. The port terminal must be selected for input and there must  
be no optional pull–up or pull–down resistor.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
optional resistors (see Note 11)  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
4.8  
UNIT  
kΩ  
R
R
V
V
= 3 V/5 V  
= 3 V/5 V  
1.2  
1.8  
2.4  
3.6  
(opt1)  
(opt2)  
CC  
7.2  
kΩ  
CC  
R
R
R
R
R
R
R
R
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
3.6  
5.5  
11  
7.3  
11  
14.6  
22  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
(opt3)  
(opt4)  
(opt5)  
(opt6)  
(opt7)  
(opt8)  
(opt9)  
(opt10)  
Resistors, individually programmable with ROM code, all port  
pins, values applicable for pull-down and pull-up  
22  
44  
22  
44  
88  
33  
66  
132  
220  
310  
400  
55  
110  
154  
200  
77  
100  
NOTE 11: Optional resistors R  
for pull–down or pull–up are not programmed in standard OTP/EPROM devices P/E 337.  
(optx)  
inputs and outputs  
PARAMETER  
CONDITIONS  
Port P0, P1 to P2:  
External trigger signal for the interrupt  
flag (see Notes 12 and 13)  
VCC  
MIN  
NOM  
MAX  
UNIT  
t
External Interrupt  
timing  
3 V/ 5 V  
1.5  
cycle  
(int)  
t
Timer_A, Capture  
timing  
TA0-TA4  
3 V/ 5 V  
250  
ns  
(cap)  
(IN)  
External capture signal (see Note 14)  
f
t
t
Input frequency  
P0.1, CIN, TP.5, UCLK, SIMO, SOMI,  
TACLK, TA0-TA4  
3 V/ 5 V  
3 V  
5 V  
DC  
300  
125  
f
Mhz  
ns  
ns  
(system)  
or t  
(H)  
(H)  
(L)  
(L)  
or t  
f
f
f
Output frequency  
XBUF,  
TA0-4,  
UCLK,  
C
C
C
= 20 pF  
= 20 pF  
= 20 pF  
3 V/ 5 V  
3 V/ 5 V  
3 V/ 5 V  
f
MHz  
MHz  
(XBUF)  
(TAx)  
(UCLK)  
L
L
L
(system)  
DC  
DC  
f
/2  
(system)  
f
(system)  
t
Duty cycle of  
output  
XBUF,  
C
= 20 pF  
(Xdc)  
L
f
f
f
= 1.1 MHz  
= f  
3 V/ 5 V  
3 V/ 5 V  
3 V/ 5 V  
40  
35  
60  
65  
%
%
(MCLK)  
(XBUF) (ACLK)  
= f  
(XBUF) (ACLK/n)  
t
t
t  
(Xdc)  
(Xdc)  
50  
0
TA0..4, C = 20 pF  
(TA)  
L
t
C
= t  
3 V/ 5 V  
3 V/ 5 V  
±100  
±100  
ns  
ns  
(TAH) (TAL)  
t  
UCLK,  
= 15pF  
(L)  
(UC)  
t
= t  
0
(UCH) (UCL)  
t
(τ)  
USART: Deglitch  
time  
See Note 15  
3 V  
5 V  
0.6  
0.3  
2.6  
1.4  
µs  
µs  
NOTES: 12. The external signal sets the interrupt flag every time t  
is met. It may be set even with trigger signals shorter than t  
. The  
(int)  
(int)  
conditions to set the flag must be met independently from this timing constraint. T  
is defined in MCLK cycles.  
(int)  
13. The external interrupt signal cannot exceed the maximum input frequency (f  
)
(in)  
14. The external capture signal triggers the capture event every time t  
is met. It may be triggered even with capture signals shorter  
(cap)  
. The conditions to set the flag must be met independently from this timing constraint.  
than t  
(cap)  
15. ThesignalappliedtotheUSARTreceivesignal/terminal(URXD)shouldmeetthetimingrequirementsoft toensurethattheURXS  
(τ)  
(τ)  
flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum timing condition of t . The operating conditions  
to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on  
the URXD line.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
LCD  
PARAMETER  
TEST CONDITIONS  
Voltage at R33  
MIN  
NOM  
MAX  
UNIT  
V
V
V
V
V
V
2.5  
V
CC  
+0.2  
(33)  
2
Voltage at R23  
Voltage at R13  
Voltage at R03  
(V –V ) ×  
33 03  
/
3
+ V  
(23)  
03  
+ V  
Analog voltage  
V
= 3 V/5 V  
V
CC  
1
–V ) × /  
(33) (03) 3  
(V  
– 2.5  
(33)  
(13)  
(03)  
V
V
+0.2  
(03)  
CC  
Output 1  
Output 0  
I
I
)<= 10 nA  
V
– 0.125  
V
CC  
O(HLCD)  
O(LLCD)  
(R03)  
(R13)  
(R23)  
(HLCD  
(R33)  
V
CC  
= 3 V/5 V  
V
<= 10 nA  
V
SS  
V
+ 0.125  
(LLCD)  
SS  
No load at all  
segment and  
common lines,  
I
I
I
R03 = V  
±20  
SS  
R13 = V /3  
CC  
±20  
Input leakage  
nA  
R23 = 2 × V /3  
±20  
V
CC  
= 3 V/5 V  
CC  
V
V
V
V
V
V
– 0.1  
– 0.1  
– 0.1  
+ 0.1  
(Sxx0)  
(Sxx1)  
(Sxx2)  
(Sxx3)  
(03)  
(13)  
(23)  
(33)  
(03)  
(13)  
(23)  
(33)  
V
V
V
V
V
V
Segment line  
voltage  
I = – 3 µA,  
(Sxx)  
V
CC  
= 3 V/5 V  
V
POR  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
µs  
V
t
Delay  
150  
200  
2.4  
0.4  
(POR)  
V
0.9  
0
(POR)  
V
= 3V/ 5V  
CC  
V
V
(min_POR)  
(reset)  
t
PUC/POR  
Reset is accepted internally  
2
µs  
crystal oscillator, XIN, XOUT  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
pF  
C
C
Integrated capacitance at input  
12  
12  
(XIN)  
(XOUT)  
(INL)  
Integrated capacitance at output  
pF  
V
CC  
= 3V/ 5V  
X
X
VSS  
0.8 x VCC1  
0.2 x VCC1  
VCC1  
Input levels  
V
(INH)  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
N
= 1 A0h  
(DCO)  
FN_4=FN_3=FN_2 = 0  
f
DCO  
V
= 3 V/5 V  
1
MHz  
(NOM)  
(NOM)  
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
0.15  
0.18  
1.25  
1.45  
0.36  
0.39  
2.5  
3
0.6  
0.62  
4.7  
N
= 00 0110 0000  
(DCO)  
FN_4=FN_3=FN_2 = 0  
f
f
f
f
f
f
f
f
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
(DCO3)  
(DCO26)  
(DCO3)  
(DCO26)  
(DCO3)  
(DCO26)  
(DCO3)  
(DCO26)  
f
N
= 11 0100 0000  
(DCO)  
FN_4=FN_3=FN_2 = 0  
5.5  
1.05  
1.2  
N
= 00 0110 0000  
(DCO)  
FN_4=FN_3=0, FN_2 = 1  
2xf  
3xf  
4xf  
(NOM)  
(NOM)  
8.1  
N
= 11 0100 0000  
(DCO)  
FN_4=FN_3=0, FN_2 = 1  
9.9  
0.5  
0.6  
3.7  
4.5  
0.7  
0.8  
4.8  
6
1.5  
N
= 00 0110 0000  
(DCO)  
FN_4=0, FN_3=1, FN_2=X  
1.8  
11  
N
= 11 0100 0000  
(DCO)  
FN_4=0,FN_3 =1, FN_2=X  
13.8  
1.85  
2.4  
N
= 00 0110 0000  
(DCO)  
FN_4=1, FN_3 = FN_2=X  
(NOM)  
13.3  
17.7  
N
= 11 0100 0000  
(DCO)  
FN_4=1, FN_3 = FN_2=X  
f
= f  
(MCLK) (NOM)  
N
S
V
= 3 V/5 V  
= 3 V/5 V  
A0h 1A0h  
1.07  
340h  
1.13  
(DCO)  
CC  
CC  
FN_4=FN_3=FN_2 = 0  
f
= S x f  
(NDCO)  
V
(NDCO)+1  
f
(DCO26)  
4xf  
3xf  
NOM  
f
(DCO26)  
f
(DCO3)  
Legend  
NOM  
f
(DCO26)  
f
(DCO3)  
2xf  
f
NOM  
Tolerance at Tap 26  
f
(DCO26)  
DCO Frequency  
Adjusted by Bits  
2 9–2 5 in SCFI1  
f
(DCO3)  
NOM  
Tolerance at Tap 3  
f
(DCO3)  
FN_2 = 0  
FN_3 = 0  
FN_4 = 0  
FN_2 = 1  
FN_3 = 0  
FN_4 = 0  
FN_2 = X  
FN_3 = 1  
FN_4 = 0  
FN_2 = X  
FN_3 = X  
FN_4 = 1  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
RAM  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
V
CPU halted, See Note 16  
1.8  
V
(RAMh)  
NOTE 16: This parameter defines the minimum supply voltage when the data in the program memory RAM remains unchanged. No program  
execution should happen during this supply voltage condition.  
Timer/Port comparator  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
350  
UNIT  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V  
175  
I
µA  
(CP)  
= 5 V  
600  
V
Comparator, (timer/port)  
CPON = 1  
= 3 V/5 V  
= 3 V  
0.230 × V  
0.260 × V  
CC1  
V
ref(CP)  
CC1  
5
37  
42  
mV  
mV  
V
hys(CP)  
= 5 V  
10  
JTAG, program memory  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
V
V
= 3 V  
= 5 V  
DC  
DC  
5
CC  
f
JTAG/Test  
TCK frequency  
MHz  
(TCK)  
10  
CC  
Pull-up resistors on TMS, TCK, TDI,  
See Note 17  
R
V
CC  
= 3 V/ 5 V  
25  
60  
90  
kΩ  
(test)  
Fuse blow voltage, C versions, See Note 19  
Fuse blow voltage, E/P versions, See Note 19  
Supply current on TDI/VPP to blow fuse  
Time to blow the fuse  
V
V
= 3 V/ 5 V  
= 3 V/ 5 V  
5.5  
6.0  
12.0  
100  
1
CC  
V
(FB)  
11.0  
JTAG/Fuse,  
See Note 18  
CC  
I
t
mA  
ms  
V
(FB)  
(FB)  
V
Programming voltage, applied to TDI/VPP  
Current from programming voltage source  
Programming time, single pulse  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V/ 5 V  
= 3 V/ 5 V  
= 3 V/ 5 V  
= 3 V/ 5 V  
= 3 V/ 5 V  
11.0  
5
11.5  
100  
12.0  
70  
(PP)  
(PP)  
(pps)  
(ppf)  
I
t
t
mA  
ms  
µs  
Programming time, fast algorithm  
EPROM(E) and  
OTP(P) versions only  
P
n
Number of pulses for successful programming  
Erase time wave length 2537 Å @  
4
100  
t
30  
min  
(erase)  
2
2
15 Ws/cm (UV lamp of 12 mW/ cm )  
Write/erase cycles  
1000  
10  
Data retention Tj <55°C  
Year  
NOTES: 17. The TMS and TCK pull-up resistors are implemented in all ROM(C), OTP(P) and EPROM(E) versions. The pull-up resistor on TDI  
is implemented in C versions only.  
18. Once the fuse is blown no further access to the MSP430 JTAG/Test feature is possible.  
19. The voltage supply to blow the fuse is applied to TDI/VPP pin during the fuse blowing procedure.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
APPLICATION INFORMATION  
V
CC  
V
CC  
(see Note A)  
(see Note A)  
(see Note B)  
(see Note B)  
(see Note B)  
(see Note B)  
(see Note A)  
GND  
(see Note A)  
GND  
CMOS INPUT  
CMOS SCHMITT-TRIGGER INPUT  
V
CC  
(see Note A)  
(see Note B)  
(see Note A)  
(see Note B)  
GND  
I/O WITH SCHMITT-TRIGGER INPUT  
CMOS 3-STATE OUTPUT  
TDO_Internal  
V
CC  
TDO_Control  
TDI_Control  
60 k TYP  
TDI_Internal  
MSP430C336/337: TMS, TCK, TDI  
MSP430P336/E337: TMS, TCK  
MSP430C33x: TDO/TDI  
MSP430P/E33x: TDO/TDI  
NOTES: A. Optional selection of pull-up or pull-down resistors available on ROM (masked) versions.  
B. Fuses for the optional pull-up and pull-down resistors can only be programmed at the factory.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
APPLICATION INFORMATION  
VPP_ Internal  
TDI_ Internal  
TDI/VPP  
JTAG  
Fuse  
TDO/TDI_Control  
TDO/TDI  
TMS  
TDO_ Internal  
JTAG Fuse  
Blow  
Control  
From/To JTAG_CBT_SIG_REG  
Figure 3. MSP430P337/E337: TDI/VPP, TDO/TDI  
NOTES: A. During programming activity and when blowing the JTAG fuse, the TDI/VPP terminal is used to apply the correct voltage source.  
The TDO/TDI terminal is used to apply the test input data for JTAG circuitry.  
B. The TDI/VPP terminal of the ’P337 and ’E337 does not have an internal pull-up resistor. An external pull-down resistor is  
recommended to avoid a floating node which could increase the current consumption of the device.  
C. The TDO/TDI terminal is in a high-impedance state after POR. The ’P337 and ’E337 needs a pull-up or a pull-down resistor to avoid  
floating a node which could increase the current consumption of the device.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
MECHANICAL DATA  
PJM (R-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,38  
0,22  
M
0,65  
80  
0,13  
51  
50  
81  
14,20 17,45  
12,35 TYP  
13,80 16,95  
100  
31  
1
30  
0,16 NOM  
18,85 TYP  
20,20  
19,80  
23,45  
22,95  
Gage Plane  
2,90  
2,50  
0,25  
0,25 MIN  
0°7°  
1,03  
0,73  
Seating Plane  
0,10  
3,40 MAX  
4040022/B 03/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-022  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x33x  
MIXED SIGNAL MICROCONTROLLERS  
SLAS163 – FEBRUARY 1998  
MECHANICAL DATA  
HFD (S-GQFP-G100)  
CERAMIC QUAD FLATPACK  
0,65  
80  
0,30 TYP  
51  
81  
50  
14,20  
13,80  
17,45  
16,95  
12,35 TYP  
100  
31  
1
30  
0,15 TYP  
18,85 TYP  
20,20  
19,20  
23,45  
22,95  
3,70 TYP  
0,10 MIN  
0°8°  
1,00  
0,60  
Seating Plane  
0,10  
4,25 MAX  
4081530/A 09/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

MSP430P337PJM

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430TCH5E

Haptics-Enabled Mixed-Signal Microcontroller
TI

MSP430TCH5EPW

Haptics-Enabled Mixed-Signal Microcontroller
TI

MSP430TCH5EPWR

Haptics-Enabled Mixed-Signal Microcontroller
TI

MSP430TCH5ERHB

Haptics-Enabled Mixed-Signal Microcontroller
TI

MSP430TCH5ERHBR

Haptics-Enabled Mixed-Signal Microcontroller
TI

MSP430TCH5ERHBT

Haptics-Enabled Mixed-Signal Microcontroller
TI

MSP430TCH5E_14

Haptics-Enabled Mixed-Signal Microcontroller
TI

MSP430X11X

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430X11X2

MIXED SIGNAL MICROCONTROLLER
TI

MSP430X11X2_08

MIXED SIGNAL MICROCONTROLLER
TI

MSP430X11X2_11

MIXED SIGNAL MICROCONTROLLER
TI