MSP430TCH5E_14 [TI]

Haptics-Enabled Mixed-Signal Microcontroller;
MSP430TCH5E_14
型号: MSP430TCH5E_14
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Haptics-Enabled Mixed-Signal Microcontroller

微控制器
文件: 总67页 (文件大小:854K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Haptics-Enabled Mixed-Signal Microcontroller  
Check for Samples: MSP430TCH5E  
1
FEATURES  
23  
Haptics-Enabled Device Authenticated to Run  
Immersion TouchSense™ Technology  
Universal Serial Communication Interface  
(USCI)  
Supports 122 Different Haptic Effects  
Enhanced UART With Automatic Baud Rate  
Detection (LIN)  
Supports Wide Range of LRA and ERM  
Actuators Offering Maximum Design  
Flexibility  
IrDA Encoder and Decoder  
Synchronous SPI  
I2C  
Highly Customizable Haptics Effects:  
Multiple-Effect Sequencing, Delays, and  
Repeat Counters  
On-Chip Comparator for Analog Signal  
Compare Function or Slope Analog-to-Digital  
(A/D) Conversion  
Supports Audio Synchronized Haptics  
Playout (Audio-to-Haptics)  
10-Bit 200-ksps Analog-to-Digital Converter  
(ADC) With Internal Reference, Sample-and-  
Hold, and Autoscan  
Supports Programmable Solution Allowing  
Integration With Capacitive Touch and  
Other System Controller Functionality  
Brownout Detector  
With Licenses Included  
Serial Onboard Programming,  
No External Programming Voltage Needed,  
Programmable Code Protection by Security  
Fuse  
Low Supply-Voltage Range: 1.8 V to 3.6 V  
Ultra-Low-Power Consumption  
Active Mode: 230 µA at 1 MHz, 2.2 V  
Standby Mode: 0.5 µA  
On-Chip Emulation Logic With Spy-Bi-Wire  
Interface  
Off Mode (RAM Retention): 0.1 µA  
Family Members are Summarized in Table 1  
Five Power-Saving Modes  
Available in 28-Pin TSSOP and 32-Pin QFN  
(RHB) Packages  
Ultra-Fast Wake Up From Standby Mode in  
Less Than 1 µs  
For Complete Module Descriptions, see the  
MSP430x2xx Family User’s Guide (SLAU144)  
16-Bit RISC Architecture, 62.5-ns Instruction  
Cycle Time  
Basic Clock Module Configurations  
APPLICATIONS  
Internal Frequencies up to 16 MHz With  
Four Calibrated Frequency  
Touch-Enabled Devices That Require Both  
Capacitive Touch and Haptics Solutions  
Integrated  
Internal Very-Low-Power Low-Frequency  
(LF) Oscillator  
Portable Gaming Consoles  
Portable Navigation Devices  
Application Consoles  
Tablets  
32-kHz Crystal  
External Digital Clock Source  
Two 16-Bit Timer_A With Three  
Capture/Compare Registers  
Mobile Phones  
Up to 24 Capacitive Touch I/O Pins  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
MSP430 is a trademark of Texas Instruments.  
TouchSense is a trademark of Immersion Corporation.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
DESCRIPTION  
The MSP430TCH5E device is a haptics-enabled MSP430™ microcontroller that features Immersion TouchSense  
Technology. Haptics technology provides tactile feedback, using mechanical vibrations, dramatically reducing  
user error in touch applications. Haptics can be used in a variety of end equipments, including handsets, tablets,  
digital cameras touch screens, home appliances, computer accessories, automotive products, and more. Haptics  
can also be implemented in portable media players to generate subwoofer-like effects using audio-to-haptics  
technology. Haptics is inexpensive to implement and is also a great way to differentiate products. Immersion is  
the premier haptics technology provider in the market, and MSP430TCH5E device provides a programmable use  
of Immersion TouchSense Technology with no additional fees.  
The MSP430TCH5E device belongs to the Texas Instruments MSP430 family of ultra-low-power  
microcontrollers, which consists of several devices that feature different sets of peripherals targeted for various  
applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life  
in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and  
constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows  
the device to wake up from low-power modes to active mode in less than 1 µs. Peripherals include 16-bit timers,  
up to 24 Capacitive Touch I/O pins, a versatile analog comparator, a 10-bit analog-to-digital converter (ADC),  
and built-in communication capability using the universal serial communication interface (USCI). For configuration  
details, see Table 1.  
Capacitive touch buttons are often paired with haptic feedback to improve user experience. The MSP430TCH5E  
device can support capacitive button, slider, and wheel functionality in conjunction with Immersion TouchSense  
Haptics Technology. Examples are remote controls, gaming accessories, PC accessories, and control panels on  
TVs and home appliances.  
Typical application configurations include:  
Touch-enabled devices where the MSP430TCH5E device is used both as haptics and capacitive touch  
controller. See Figure 1.  
Host-controlled systems where an external host controls the MSP43TCH5E haptics controller device. See  
Figure 2.  
Application consoles where the MSP430TCH5E device is used as an Audio-to-Haptics controller that converts  
the audio input to respective haptics effects. See Figure 3.  
The MSP430TCH5E is not intended for use in Critical Applications. "Critical Application" means a device or  
application where the failure, malfunction, or inaccuracy of the device or application may reasonably be expected  
to cause death or severe bodily injury.  
Touch-sense  
enabled GPIO  
Haptics and  
Capacitive Touch  
Controller  
DRV Enable  
PWM  
OUT+  
OUT-  
DRV2603  
Driver  
Actuators:  
LRA and ERM  
Capacitive Touch  
Inputs  
MSP430TCH5E  
Figure 1. Stand-Alone Application With MSP430TCH5E Device as Haptics and Capacitive Touch  
Controller  
2
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
 
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Host Controller  
I2C  
DRV Enable  
PWM  
OUT+  
OUT-  
Haptics Controller  
MSP430TCH5E  
DRV2603  
Driver  
Actuators:  
LRA and ERM  
Figure 2. Host-Controlled System With an External Host Controlling MSP430TCH5E Device Haptics  
Controller  
Host Controller  
(optional)  
I2C  
Audio-to-Haptics  
Controller  
DRV Enable  
PWM  
OUT+  
OUT-  
ADC  
Input  
DRV2603  
Driver  
Actuators:  
LRA and ERM  
Audio Input  
MSP430TCH5E  
Figure 3. Typical Application Using MSP430TCH5E Device as Audio-to-Haptics Controller  
Table 1. Available Options(1)(2)  
Flash  
(KB)  
RAM  
(B)  
COMP_A+  
Channel  
ADC10  
Channel  
USCI_A,  
USCI_B  
Package  
Type  
Device  
BSL  
EEM  
Timer_A  
Clock  
I/O  
MSP430TCH5ERHB  
MSP430TCH5EPW  
LF,  
DCO,  
VLO  
24  
24  
32-QFN  
1
1
16  
512  
2x TA3  
8
8
1
28-TSSOP  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Device Pinout  
RHB32 PACKAGE  
(TOP VIEW)  
32 31 30 29 28 27 26 25  
1
P1.1/TA0.0/UCA0RXD/UCA0SOMI/A1/CA1  
24 TEST/SBWTCK  
2
3
4
5
6
7
8
23 RST/NMI/SBWTDIO  
P1.2/TA0.1/UCA0TXD/UCA0SIMO/A2/CA2  
P1.7/CAOUT/UCB0SIMO/UCB0SDA/A7/CA7/TDO/TDI  
21 P1.6/TA0.1/UCB0SOMI/UCB0SCL/A6/CA6/TDI/TCLK  
P3.7/TA1CLK/CAOUT  
19 P3.6/TA0.2  
22  
P1.3/ADC10CLK/CAOUT/VREF-/VEREF-/A3/CA3  
P1.4/SMCLK/UCB0STE/UCA0CLK/VREF+/VEREF+/A4/CA4/TCK  
P1.5/TA0.0/UCB0CLK/UCA0STE/A5/CA5/TMS  
20  
P3.1/TA1.0  
P3.0/TA0.2  
NC  
18  
17  
P3.5/TA0.1  
P2.5/TA1.2  
9
10 11 12 13 14 15 16  
PW28 PACKAGE  
(TOP VIEW)  
DVCC  
1
2
3
4
5
6
28  
DVSS  
P1.0/TA0CLK/ACLK/A0/CA0  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
XIN/P2.6/TA0.1  
P1.1/TA0.0/UCA0RXD/UCA0SOMI/A1/CA1  
XOUT/P2.7  
P1.2/TA0.1/UCA0TXD/UCA0SIMO/A2/CA2  
TEST/SBWTCK  
P1.3/ADC10CLK/CAOUT/VREF-/VEREF-/A3/CA3  
RST/NMI/SBWTDIO  
P1.4/SMCLK/UCB0STE/UCA0CLK/VREF+/VEREF+/A4/CA4/TCK  
P1.7/CAOUT/UCB0SIMO/UCB0SDA/A7/CA7/TDO/TDI  
PW28  
(TOP VIEW)  
P1.6/TA0.1/UCB0SOMI/UCB0SCL/A6/CA6/TDI/TCLK  
P1.5/TA0.0/UCB0CLK/UCA0STE/A5/CA5/TMS  
7
8
P3.7/TA1CLK/CAOUT  
P3.6/TA0.2  
P3.1/TA1.0  
P3.0/TA0.2  
P2.0/TA1.0  
P2.1/TA1.1  
P2.2/TA1.1  
P3.2/TA1.1  
P3.3/TA1.2  
9
10  
11  
12  
13  
14  
P3.5/TA0.1  
P2.5/TA1.2  
P2.4/TA1.2  
P2.3/TA1.0  
P3.4/TA0.0  
4
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Functional Block Diagram  
XIN XOUT  
DVCC  
DVSS  
P1.x  
8
P2.x  
P3.x  
8
8
ACLK  
Clock  
Flash  
16KB  
RAM  
512B  
ADC  
Port P1  
Port P2  
Port P3  
8 I/O  
System  
SMCLK  
10-Bit  
8 Ch.  
Autoscan  
1 ch DMA  
8 I/O  
Interrupt  
capability  
pullup/down pullup/down  
resistors resistors  
8 I/O  
Interrupt  
capability  
pullup/  
pulldown  
resistors  
MCLK  
16MHz  
CPU  
MAB  
MDB  
incl. 16  
Registers  
USCI A0  
Emulation  
2BP  
UART/  
LIN, IrDA,  
SPI  
Timer0_A3 Timer1_A3  
3 CC  
3 CC  
Registers  
Registers  
Watchdog  
WDT+  
Comp_A+  
Brownout  
Protection  
JTAG  
Interface  
8
Channels  
USCI B0  
SPI, I2C  
15-Bit  
Spy-Bi-  
Wire  
RST/NMI  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Table 2. Terminal Functions  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
PW28  
RHB32  
P1.0/  
General-purpose digital I/O pin  
TA0CLK/  
Timer0_A, clock signal TACLK input  
ACLK signal output  
ACLK/  
2
3
31  
I/O  
I/O  
A0  
ADC10 analog input A0  
CA0  
Comparator_A+, CA0 input  
P1.1/  
General-purpose digital I/O pin  
Timer0_A, capture: CCI0A input, compare: Out0 output / BSL transmit  
USCI_A0 receive data input in UART mode,  
USCI_A0 slave data out/master in SPI mode  
ADC10 analog input A1  
TA0.0/  
UCA0RXD/  
UCA0SOMI/  
A1/  
1
2
3
CA1  
Comparator_A+, CA1 input  
P1.2/  
General-purpose digital I/O pin  
Timer0_A, capture: CCI1A input, compare: Out1 output  
USCI_A0 transmit data output in UART mode,  
USCI_A0 slave data in/master out in SPI mode,  
ADC10 analog input A2  
TA0.1/  
UCA0TXD/  
UCA0SIMO/  
A2/  
4
5
I/O  
I/O  
CA2  
Comparator_A+, CA2 input  
P1.3/  
General-purpose digital I/O pin  
ADC10, conversion clock output  
ADC10 analog input A3  
ADC10CLK/  
A3/  
VREF-/VEREF-/  
CA3/  
ADC10 negative reference voltage  
Comparator_A+, CA3 input  
CAOUT  
P1.4/  
Comparator_A+, output  
General-purpose digital I/O pin  
SMCLK signal output  
SMCLK/  
UCB0STE/  
UCA0CLK/  
A4/  
USCI_B0 slave transmit enable  
USCI_A0 clock input/output  
6
4
I/O  
ADC10 analog input A4  
VREF+/VEREF+  
/
ADC10 positive reference voltage  
CA4/  
Comparator_A+, CA4 input  
TCK  
JTAG test clock, input terminal for device programming and test  
General-purpose digital I/O pin  
P1.5/  
TA0.0/  
UCB0CLK/  
UCA0STE/  
A5/  
Timer0_A, compare: Out0 output / BSL receive  
USCI_B0 clock input/output,  
7
5
I/O  
USCI_A0 slave transmit enable  
ADC10 analog input A5  
CA5/  
Comparator_A+, CA5 input  
TMS  
JTAG test mode select, input terminal for device programming and test  
General-purpose digital I/O pin  
P1.6/  
TA0.1/  
A6/  
Timer0_A, compare: Out1 output  
ADC10 analog input A6  
CA6/  
22  
21  
I/O  
Comparator_A+, CA6 input  
UCB0SOMI/  
UCB0SCL/  
TDI/TCLK  
USCI_B0 slave out/master in SPI mode,  
USCI_B0 SCL I2C clock in I2C mode  
JTAG test data input or test clock input during programming and test  
6
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Table 2. Terminal Functions (continued)  
TERMINAL  
PW28  
NO.  
I/O  
DESCRIPTION  
NAME  
RHB32  
P1.7/  
General-purpose digital I/O pin  
ADC10 analog input A7  
A7/  
CA7/  
Comparator_A+, CA7 input  
CAOUT/  
UCB0SIMO/  
UCB0SDA/  
TDO/TDI  
P2.0/  
23  
22  
I/O  
Comparator_A+, output  
USCI_B0 slave in/master out in SPI mode  
USCI_B0 SDA I2C data in I2C mode  
JTAG test data output terminal or test data input during programming and test(1)  
General-purpose digital I/O pin  
10  
11  
12  
16  
17  
18  
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TA1.0  
P2.1/  
Timer1_A, capture: CCI0A input, compare: Out0 output  
General-purpose digital I/O pin  
10  
11  
15  
16  
17  
TA1.1  
P2.2/  
Timer1_A, capture: CCI1A input, compare: Out1 output  
General-purpose digital I/O pin  
TA1.1  
P2.3/  
Timer1_A, capture: CCI1B input, compare: Out1 output  
General-purpose digital I/O pin  
TA1.0  
P2.4/  
Timer1_A, capture: CCI0B input, compare: Out0 output  
General-purpose digital I/O pin  
TA1.2  
P2.5/  
Timer1_A, capture: CCI2A input, compare: Out2 output  
General-purpose digital I/O pin  
TA1.2  
XIN/  
Timer1_A, capture: CCI2B input, compare: Out2 output  
Input terminal of crystal oscillator  
P2.6/  
27  
26  
I/O  
General-purpose digital I/O pin  
TA0.1  
XOUT/  
P2.7  
Timer0_A, compare: Out1 output  
Output terminal of crystal oscillator(2)  
26  
9
25  
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O pin  
P3.0/  
General-purpose digital I/O pin  
TA0.2  
P3.1/  
Timer0_A, capture: CCI2A input, compare: Out2 output  
General-purpose digital I/O pin  
8
6
TA1.0  
P3.2/  
Timer1_A, compare: Out0 output  
General-purpose digital I/O pin  
13  
14  
15  
19  
20  
12  
13  
14  
18  
19  
TA1.1  
P3.3/  
Timer1_A, compare: Out1 output  
General-purpose digital I/O  
TA1.2  
P3.4/  
Timer1_A, compare: Out2 output  
General-purpose digital I/O  
TA0.0  
P3.5/  
Timer0_A, compare: Out0 output  
General-purpose digital I/O  
TA0.1  
P3.6/  
Timer0_A, compare: Out1 output  
General-purpose digital I/O  
TA0.2  
P3.7/  
Timer0_A, compare: Out2 output  
General-purpose digital I/O  
TA1CLK/  
CAOUT  
21  
20  
I/O  
Timer1_A, clock signal TACLK input  
Comparator_A+, output  
(1) TDO or TDI is selected via JTAG instruction.  
(2) If XOUT/P2.7 is used as an input, excess current flows until P2SEL.7 is cleared. This is due to the oscillator output driver connection to  
this pad after reset.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Table 2. Terminal Functions (continued)  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
PW28  
RHB32  
RST/  
Reset  
NMI/  
24  
25  
23  
I
I
Nonmaskable interrupt input  
SBWTDIO  
TEST/  
Spy-Bi-Wire test data input/output during programming and test  
Selects test mode for JTAG pins on Port 1. The device protection fuse is  
connected to TEST.  
24  
SBWTCK  
AVCC  
DVCC  
DVSS  
Spy-Bi-Wire test clock input during programming and test  
Analog supply voltage  
NA  
1
29  
30  
NA  
NA  
NA  
NA  
NA  
Digital supply voltage  
28  
NA  
NA  
27, 28  
8, 32  
Pad  
Ground reference  
NC  
Not connected  
QFN Pad  
QFN package pad. Connection to VSS is recommended.  
Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E Community  
TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you  
can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers.  
TI Embedded Processors Wiki  
Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded  
processors from Texas Instruments and to foster innovation and growth of general knowledge about the  
hardware and software surrounding these devices.  
8
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Short-Form Description  
CPU  
The MSP430 CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions, are  
performed as register operations in conjunction with  
seven addressing modes for source operand and four  
addressing modes for destination operand.  
Program Counter  
PC/R0  
SP/R1  
SR/CG1/R2  
CG2/R3  
R4  
Stack Pointer  
Status Register  
Constant Generator  
The CPU is integrated with 16 registers that provide  
reduced instruction execution time. The register-to-  
register operation execution time is one cycle of the  
CPU clock.  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
R5  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register, and  
constant generator, respectively. The remaining  
registers are general-purpose registers.  
R6  
R7  
R8  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled with  
all instructions.  
R9  
R10  
The instruction set consists of the original 51  
instructions with three formats and seven address  
modes and additional instructions for the expanded  
address range. Each instruction can operate on word  
and byte data.  
R11  
R12  
R13  
Instruction Set  
R14  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 3 shows examples of the three types of  
instruction formats; Table 4 shows the address  
modes.  
R15  
Table 3. Instruction Word Formats  
INSTRUCTION FORMAT  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
EXAMPLE  
ADD R4,R5  
CALL R8  
JNE  
OPERATION  
R4 + R5 ---> R5  
PC -->(TOS), R8--> PC  
Jump-on-equal bit = 0  
Table 4. Address Mode Descriptions(1)  
ADDRESS MODE  
Register  
S
D
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
R10 -- --> R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV &MEM,&TCDAT  
MOV @Rn,Y(Rm)  
M(2+R5) -- --> M(6+R6)  
M(EDE) -- --> M(TONI)  
M(MEM) -- --> M(TCDAT)  
M(R10) -- --> M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
Indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
M(R10) -- --> R11  
R10 + 2-- --> R10  
Indirect autoincrement  
Immediate  
MOV @Rn+,Rm  
MOV #X,TONI  
#45 -- --> M(TONI)  
(1) S = source, D = destination  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: MSP430TCH5E  
 
 
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Operating Modes  
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the low-power modes, service the request, and restore back to the  
low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
Active mode (AM)  
All clocks are active  
Low-power mode 0 (LPM0)  
CPU is disabled  
ACLK and SMCLK remain active, MCLK is disabled  
Low-power mode 1 (LPM1)  
CPU is disabled  
ACLK and SMCLK remain active, MCLK is disabled  
DCO's dc generator is disabled if DCO not used in active mode  
Low-power mode 2 (LPM2)  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO's dc generator remains enabled  
ACLK remains active  
Low-power mode 3 (LPM3)  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO's dc generator is disabled  
ACLK remains active  
Low-power mode 4 (LPM4)  
CPU is disabled  
ACLK is disabled  
MCLK and SMCLK are disabled  
DCO's dc generator is disabled  
Crystal oscillator is stopped  
10  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Interrupt Vector Addresses  
The interrupt vectors and the power-up starting address are located in the address range 0FFFFh to 0FFC0h.  
The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.  
If the reset vector (located at address 0FFFEh) contains 0FFFFh (for example, flash is not programmed), the  
CPU goes into LPM4 immediately after power-up.  
Table 5. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
Power-Up  
External Reset  
Watchdog Timer+  
Flash key violation  
PC out-of-range(1)  
PORIFG  
RSTIFG  
WDTIFG  
KEYV(2)  
Reset  
0FFFEh  
31, highest  
NMI  
Oscillator fault  
Flash memory access violation  
NMIIFG  
OFIFG  
(non)-maskable  
(non)-maskable  
(non)-maskable  
0FFFCh  
30  
ACCVIFG(2)(3)  
Timer1_A3  
Timer1_A3  
TA1CCR0 CCIFG(4)  
maskable  
0FFFAh  
0FFF8h  
29  
28  
TA1CCR2 TA1CCR1 CCIFG,  
TAIFG(2)(4)  
maskable  
Comparator_A+  
Watchdog Timer+  
Timer0_A3  
CAIFG(4)  
maskable  
maskable  
maskable  
0FFF6h  
0FFF4h  
0FFF2h  
27  
26  
25  
WDTIFG  
TA0CCR0 CCIFG(4)  
Timer0_A3  
TA0CCR2 TA0CCR1 CCIFG, TAIFG  
maskable  
maskable  
0FFF0h  
0FFEEh  
0FFECh  
24  
23  
22  
(5)(4)  
USCI_A0/USCI_B0 receive  
USCI_B0 I2C status  
UCA0RXIFG, UCB0RXIFG(2)(5)  
UCA0TXIFG, UCB0TXIFG(2)(6)  
ADC10IFG(4)  
USCI_A0/USCI_B0 transmit  
USCI_B0 I2C receive or transmit  
maskable  
maskable  
ADC10  
0FFEAh  
0FFE8h  
0FFE6h  
0FFE4h  
0FFE2h  
0FFE0h  
0FFDEh  
21  
20  
19  
18  
17  
16  
15  
I/O Port P2 (up to eight flags)  
I/O Port P1 (up to eight flags)  
P2IFG.0 to P2IFG.7(2)(4)  
P1IFG.0 to P1IFG.7(2)(4)  
maskable  
maskable  
(7)  
See  
(8)  
See  
0FFDEh to  
0FFC0h  
14 to 0, lowest  
(1) A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from  
within unused address ranges.  
(2) Multiple source flags  
(3) (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.  
(4) Interrupt flags are located in the module.  
(5) In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG.  
(6) In UART or SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG.  
(7) This location is used as bootstrap loader security key (BSLSKEY). A 0xAA55 at this location disables the BSL completely. A zero (0h)  
disables the erasure of the flash if an invalid password is supplied.  
(8) The interrupt vectors at addresses 0FFDEh to 0FFC0h are not used in this device and can be used for regular program code if  
necessary.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Special Function Registers (SFRs)  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
not allocated to a functional purpose are not physically present in the device. Simple software access is provided  
with this arrangement.  
Legend  
rw:  
Bit can be read and written.  
rw-0,1:  
rw-(0,1):  
Bit can be read and written. It is reset or set by PUC.  
Bit can be read and written. It is reset or set by POR.  
SFR bit is not present in device.  
Table 6. Interrupt Enable Register 1 and 2  
Address  
00h  
7
6
5
4
3
2
1
0
ACCVIE  
rw-0  
NMIIE  
rw-0  
OFIE  
rw-0  
WDTIE  
rw-0  
WDTIE  
Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer is configured in  
interval timer mode.  
OFIE  
Oscillator fault interrupt enable  
(Non)maskable interrupt enable  
Flash access violation interrupt enable  
NMIIE  
ACCVIE  
Address  
7
6
5
4
3
2
1
0
01h  
UCB0TXIE  
rw-0  
UCB0RXIE  
rw-0  
UCA0TXIE  
rw-0  
UCA0RXIE  
rw-0  
UCA0RXIE  
UCA0TXIE  
UCB0RXIE  
UCB0TXIE  
USCI_A0 receive interrupt enable  
USCI_A0 transmit interrupt enable  
USCI_B0 receive interrupt enable  
USCI_B0 transmit interrupt enable  
Table 7. Interrupt Flag Register 1 and 2  
Address  
02h  
7
6
5
4
3
2
1
0
NMIIFG  
rw-0  
RSTIFG  
rw-(0)  
PORIFG  
rw-(1)  
OFIFG  
rw-1  
WDTIFG  
rw-(0)  
WDTIFG  
Set on watchdog timer overflow (in watchdog mode) or security key violation.  
Reset on VCC power-on or a reset condition at the RST/NMI pin in reset mode.  
OFIFG  
Flag set on oscillator fault.  
PORIFG  
RSTIFG  
NMIIFG  
Power-On Reset interrupt flag. Set on VCC power-up.  
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power-up.  
Set via RST/NMI pin  
Address  
03h  
7
6
5
4
3
2
1
0
UCB0TXIFG UCB0RXIFG UCA0TXIFG UCA0RXIFG  
rw-1 rw-0 rw-1 rw-0  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
USCI_A0 receive interrupt flag  
USCI_A0 transmit interrupt flag  
USCI_B0 receive interrupt flag  
USCI_B0 transmit interrupt flag  
12  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Memory Organization  
Table 8. Memory Organization  
MSP430TCH5E  
Memory  
Size  
Flash  
Flash  
Size  
16kB  
Main: interrupt vector  
Main: code memory  
Information memory  
0xFFFF to 0xFFC0  
0xFFFF to 0xC000  
256 Byte  
Flash  
Size  
010FFh to 01000h  
512 Byte  
RAM  
0x03FF to 0x0200  
01FFh to 0100h  
0FFh to 010h  
0Fh to 00h  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
Bootstrap Loader (BSL)  
The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access to  
the MSP430 memory via the BSL is protected by user-defined password. For complete description of the  
features of the BSL and its implementation, see the MSP430 Programming Via the Bootstrap Loader User's  
Guide (SLAU319).  
Table 9. BSL Function Pins  
BSL FUNCTION  
Data transmit  
Data receive  
28-PIN PW PACKAGE  
3 - P1.1  
32-PIN RHB PACKAGE  
1 - P1.1  
7 - P1.5  
5 - P1.5  
Flash Memory  
The flash memory can be programmed via the Spy-Bi-Wire/JTAG port or in-system by the CPU. The CPU can  
perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
64 bytes each. Each segment in main memory is 512 bytes in size.  
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually or as a group with segments 0 to n. Segments A to D are also  
called information memory.  
Segment A contains calibration data. After reset segment A is protected against programming and erasing. It  
can be unlocked but care should be taken not to erase this segment if the device-specific calibration data is  
required.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Peripherals  
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all  
instructions. For complete module descriptions, see the MSP430x2xx Family User's Guide (SLAU144).  
Oscillator and System Clock  
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal  
oscillator, an internal very-low-power low-frequency oscillator and an internal digitally controlled oscillator (DCO).  
The basic clock module is designed to meet the requirements of both low system cost and low power  
consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic  
clock module provides the following clock signals:  
Auxiliary clock (ACLK), sourced either from a 32768-Hz watch crystal or the internal LF oscillator.  
Main clock (MCLK), the system clock used by the CPU.  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.  
The DCO settings to calibrate the DCO output frequency are stored in the information memory segment A.  
Main DCO Characteristics  
All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14  
overlaps RSELx = 15.  
DCO control bits DCOx have a step size as defined by parameter SDCO.  
Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK  
cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal to:  
32 × f  
× f  
DCO(RSEL,DCO+1)  
DCO(RSEL,DCO)  
f
=
average  
MOD × f  
+ (32 – MOD) × f  
DCO(RSEL,DCO+1)  
DCO(RSEL,DCO)  
14  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Calibration Data Stored in Information Memory Segment A  
Calibration data is stored for both the DCO and for ADC10 organized in a tag-length-value structure.  
Table 10. Tags Used by the ADC Calibration Tags  
NAME  
ADDRESS  
0x10F6  
0x10DA  
-
VALUE  
0x01  
DESCRIPTION  
DCO frequency calibration at VCC = 3 V and TA = 30°C at calibration  
ADC10_1 calibration tag  
TAG_DCO_30  
TAG_ADC10_1  
TAG_EMPTY  
0x10  
0xFE  
Identifier for empty memory areas  
Table 11. Labels Used by the ADC Calibration Tags  
ADDRESS  
LABEL  
SIZE  
CONDITION AT CALIBRATION / DESCRIPTION  
OFFSET  
0x0010  
0x000E  
0x000C  
0x000A  
0x0008  
0x0006  
0x0004  
0x0002  
0x0009  
0x0008  
0x0007  
0x0006  
0x0005  
0x0004  
0x0003  
0x0002  
CAL_ADC_25T85  
CAL_ADC_25T30  
word  
word  
word  
word  
word  
word  
word  
word  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
INCHx = 0x1010, REF2_5 = 1, TA = 85°C  
INCHx = 0x1010, REF2_5 = 1, TA = 30°C  
CAL_ADC_25VREF_FACTOR  
CAL_ADC_15T85  
REF2_5 = 1, TA = 30°C, IVREF+ = 1 mA  
INCHx = 0x1010, REF2_5 = 0, TA = 85°C  
CAL_ADC_15T30  
INCHx = 0x1010, REF2_5 = 0, TA = 30°C  
CAL_ADC_15VREF_FACTOR  
CAL_ADC_OFFSET  
CAL_ADC_GAIN_FACTOR  
CAL_BC1_1MHZ  
REF2_5 = 0, TA = 30°C, IVREF+ = 0.5 mA  
External VREF = 1.5 V, fADC10CLK = 5 MHz  
External VREF = 1.5 V, fADC10CLK = 5 MHz  
-
-
-
-
-
-
-
-
CAL_DCO_1MHZ  
CAL_BC1_8MHZ  
CAL_DCO_8MHZ  
CAL_BC1_12MHZ  
CAL_DCO_12MHZ  
CAL_BC1_16MHZ  
CAL_DCO_16MHZ  
Brownout  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and  
power off.  
Digital I/O  
Up to three 8-bit I/O ports are implemented:  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt condition (port P1 and port P2 only) is possible.  
Edge-selectable interrupt input capability for all bits of port P1 and port P2 (if available).  
Read/write access to port-control registers is supported by all instructions.  
Each I/O has an individually programmable pullup/pulldown resistor.  
Each I/O has an individually programmable pin oscillator enable bit to enable low-cost capacitive touch  
sensing.  
WDT+ Watchdog Timer  
The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a  
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog  
function is not needed in an application, the module can be disabled or configured as an interval timer and can  
generate interrupts at selected time intervals.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Timer_A3 (TA0, TA1)  
Timer0/1_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Table 12. Timer0_A3 Signal Connections  
INPUT PIN NUMBER  
MODULE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE  
INPUT NAME  
MODULE  
BLOCK  
PW28  
RHB32  
PW28  
RHB32  
P1.0-2  
P1.0-31  
TACLK  
ACLK  
SMCLK  
TACLK  
TA0.0  
ACLK  
VSS  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
CCR1  
CCR2  
NA  
PinOsc  
P1.1-3  
PinOsc  
P1.1-1  
P1.1-3  
P1.5-7  
P3.4-15  
P1.1-1  
P1.5-5  
P3.4-14  
TA0  
TA1  
TA2  
VCC  
VCC  
P1.2-4  
P1.2-2  
TA0.1  
CAOUT  
VSS  
CCI1A  
CCI1B  
GND  
P1.2-4  
P1.6-22  
P2.6-27  
P3.5-19  
P3.0-9  
P1.2-2  
P1.6-21  
P2.6-26  
P3.5-18  
P3.0-7  
VCC  
VCC  
P3.0-9  
PinOsc  
P3.0-7  
PinOsc  
TA0.2  
TA0.2  
VSS  
CCI2A  
CCI2B  
GND  
P3.6-20  
P3.6-19  
VCC  
VCC  
Table 13. Timer1_A3 Signal Connections  
INPUT PIN NUMBER  
MODULE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE  
INPUT NAME  
MODULE  
BLOCK  
PW28  
RHB32  
PW28  
RHB32  
P3.7-21  
P3.7-20  
TACLK  
ACLK  
SMCLK  
TACLK  
TA1.0  
TA1.0  
VSS  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
CCR1  
CCR2  
NA  
P3.7-21  
P2.0-10  
P2.3-16  
P3.7-20  
P2.0-9  
P2.0-10  
P2.3-16  
P3.1-8  
P2.0-9  
P2.3-15  
P3.1-6  
P2.3-12  
TA0  
TA1  
TA2  
VCC  
VCC  
P2.1-11  
P2.2-12  
P2.1-10  
P2.2-11  
TA1.1  
TA1.1  
VSS  
CCI1A  
CCI1B  
GND  
P2.1-11  
P2.2-12  
P3.2-13  
P2.1-10  
P2.2-11  
P3.2-12  
VCC  
VCC  
P2.4-17  
P2.5-18  
P2.4-16  
P2.5-17  
TA1.2  
TA1.2  
VSS  
CCI2A  
CCI2B  
GND  
P2.4-17  
P2.5-18  
P3.3-14  
P2.4-16  
P2.5-17  
P3.3-13  
VCC  
VCC  
16  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Universal Serial Communications Interface (USCI)  
The USCI module is used for serial data communication. The USCI module supports synchronous  
communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols such as  
UART, enhanced UART with automatic baudrate detection (LIN), and IrDA. Not all packages support the USCI  
functionality.  
USCI_A0 provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA.  
USCI_B0 provides support for SPI (3 or 4 pin) and I2C.  
Comparator_A+  
The primary function of the comparator_A+ module is to support precision slope analog-to-digital conversions,  
battery-voltage supervision, and monitoring of external analog signals.  
ADC10  
The ADC10 module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR  
core, sample select control, reference generator, and data transfer controller (DTC) for automatic conversion  
result handling, allowing ADC samples to be converted and stored without any CPU intervention.  
Haptics Enabled Device  
The MSP430TCH5E is accompanied by TI’s MSP430 Haptics Library (SLAU543), which incorporates Immersion  
TouchSense Technology. It includes 122 different haptics effects and is highly customizable to do multi-effect  
sequencing, delays, and repeat counters, resulting in an almost infinite and varied range of possibilities. A wide  
range of Eccentric Rotating Mass (ERM) and Linear Resonant Actuators (LRA) can be used with the library. The  
library also includes an audio-to-haptics feature, which creates a rich haptics experience based on an audio  
input.  
The library has both an API interface for integrated applications and an I2C command protocol, which allows the  
MSP430TCH5E to serve as a stand-alone haptics device with minimal development effort. A common example  
of functionality that can be integrated is capacitive touch buttons, sliders, or wheels. This is easily accomplished  
by pairing the Haptics Library with TI’s Capacitive Touch Library (SLAA490). The MSP430 Haptics Library  
includes examples to assist in these applications.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Peripheral File Map  
Table 14. Peripherals With Word Access  
MODULE  
REGISTER DESCRIPTION  
ADC data transfer start address  
ADC memory  
ACRONYM  
ADC10SA  
ADC10MEM  
ADC10CTL1  
ADC10CTL0  
TA1CCR2  
TA1CCR1  
TA1CCR0  
TA1R  
OFFSET  
ADC10  
1BCh  
1B4h  
ADC control register 1  
ADC control register 0  
Capture/compare register  
Capture/compare register  
Capture/compare register  
Timer_A register  
1B2h  
1B0h  
Timer1_A3  
0196h  
0194h  
0192h  
0190h  
0186h  
0184h  
0182h  
0180h  
011Eh  
0176h  
0174h  
0172h  
0170h  
0166h  
0164h  
0162h  
0160h  
012Eh  
012Ch  
012Ah  
0128h  
0120h  
Capture/compare control  
Capture/compare control  
Capture/compare control  
Timer_A control  
TA1CCTL2  
TA1CCTL1  
TA1CCTL0  
TA1CTL  
Timer_A interrupt vector  
Capture/compare register  
Capture/compare register  
Capture/compare register  
Timer_A register  
TA1IV  
Timer0_A3  
TA0CCR2  
TA0CCR1  
TA0CCR0  
TA0R  
Capture/compare control  
Capture/compare control  
Capture/compare control  
Timer_A control  
TA0CCTL2  
TA0CCTL1  
TA0CCTL0  
TA0CTL  
Timer_A interrupt vector  
Flash control 3  
TA0IV  
Flash Memory  
FCTL3  
Flash control 2  
FCTL2  
Flash control 1  
FCTL1  
Watchdog Timer+  
Watchdog/timer control  
WDTCTL  
18  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Table 15. Peripherals With Byte Access  
MODULE  
REGISTER DESCRIPTION  
USCI_B0 transmit buffer  
USCI_B0 receive buffer  
USCI_B0 status  
ACRONYM  
OFFSET  
06Fh  
06Eh  
06Dh  
06Ch  
06Bh  
06Ah  
069h  
068h  
011Ah  
0118h  
067h  
066h  
065h  
064h  
063h  
062h  
061h  
060h  
05Fh  
05Eh  
05Dh  
04Ah  
04Bh  
049h  
048h  
05Bh  
05Ah  
059h  
053h  
058h  
057h  
056h  
043h  
010h  
01Bh  
01Ah  
019h  
018h  
042h  
02Fh  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
USCI_B0  
UCB0TXBUF  
UCB0RXBUF  
UCB0STAT  
UCB0CIE  
UCB0BR1  
UCB0BR0  
UCB0CTL1  
UCB0CTL0  
UCB0SA  
UCB0OA  
UCA0TXBUF  
UCA0RXBUF  
UCA0STAT  
UCA0MCTL  
UCA0BR1  
UCA0BR0  
UCA0CTL1  
UCA0CTL0  
UCA0IRRCTL  
UCA0IRTCTL  
UCA0ABCTL  
ADC10AE0  
ADC10AE1  
ADC10DTC1  
ADC10DTC0  
CAPD  
USCI B0 I2C Interrupt enable  
USCI_B0 bit rate control 1  
USCI_B0 bit rate control 0  
USCI_B0 control 1  
USCI_B0 control 0  
USCI_B0 I2C slave address  
USCI_B0 I2C own address  
USCI_A0 transmit buffer  
USCI_A0 receive buffer  
USCI_A0 status  
USCI_A0  
USCI_A0 modulation control  
USCI_A0 baud rate control 1  
USCI_A0 baud rate control 0  
USCI_A0 control 1  
USCI_A0 control 0  
USCI_A0 IrDA receive control  
USCI_A0 IrDA transmit control  
USCI_A0 auto baud rate control  
ADC analog enable 0  
ADC10  
ADC analog enable 1  
ADC data transfer control register 1  
ADC data transfer control register 0  
Comparator_A+ port disable  
Comparator_A+ control 2  
Comparator_A+ control 1  
Basic clock system control 3  
Basic clock system control 2  
Basic clock system control 1  
DCO clock frequency control  
Port P3 selection 2  
Comparator_A+  
CACTL2  
CACTL1  
Basic Clock System+  
BCSCTL3  
BCSCTL2  
BCSCTL1  
DCOCTL  
P3SEL2  
Port P3  
Port P3 resistor enable  
Port P3 selection  
P3REN  
P3SEL  
Port P3 direction  
P3DIR  
Port P3 output  
P3OUT  
Port P3 input  
P3IN  
Port P2  
Port P2 selection 2  
P2SEL2  
Port P2 resistor enable  
Port P2 selection  
P2REN  
P2SEL  
Port P2 interrupt enable  
Port P2 interrupt edge select  
Port P2 interrupt flag  
P2IE  
P2IES  
P2IFG  
Port P2 direction  
P2DIR  
Port P2 output  
P2OUT  
Port P2 input  
P2IN  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Table 15. Peripherals With Byte Access (continued)  
MODULE  
REGISTER DESCRIPTION  
Port P1 selection 2  
ACRONYM  
P1SEL2  
P1REN  
P1SEL  
P1IE  
OFFSET  
Port P1  
041h  
027h  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
003h  
002h  
001h  
000h  
Port P1 resistor enable  
Port P1 selection  
Port P1 interrupt enable  
Port P1 interrupt edge select  
Port P1 interrupt flag  
Port P1 direction  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
Port P1 output  
Port P1 input  
Special Function  
SFR interrupt flag 2  
IFG2  
SFR interrupt flag 1  
IFG1  
SFR interrupt enable 2  
SFR interrupt enable 1  
IE2  
IE1  
20  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Absolute Maximum Ratings(1)  
Voltage applied at VCC to VSS  
Voltage applied to any pin(2)  
–0.3 V to 4.1 V  
–0.3 V to VCC + 0.3 V  
±2 mA  
Diode current at any device pin  
Unprogrammed device  
Programmed device  
–55°C to 150°C  
–55°C to 150°C  
(3)  
Storage temperature range, Tstg  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is  
applied to the TEST pin when blowing the JTAG fuse.  
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
Recommended Operating Conditions  
Typical values are specified at VCC = 3.3 V and TA = 25°C (unless otherwise noted)  
MIN NOM  
MAX UNIT  
During program execution  
1.8  
3.6  
VCC  
Supply voltage  
V
During flash programming  
or erase  
2.2  
3.6  
VSS  
TA  
Supply voltage  
0
V
Operating free-air temperature  
–40  
85  
6
°C  
VCC = 1.8 V,  
Duty cycle = 50% ± 10%  
dc  
dc  
dc  
Processor frequency (maximum MCLK frequency using the VCC = 2.7 V,  
USART module)(1)(2)  
Duty cycle = 50% ± 10%  
fSYSTEM  
12 MHz  
16  
VCC = 3.3 V,  
Duty cycle = 50% ± 10%  
(1) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the  
specified maximum frequency.  
(2) Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
Legend:  
16 MHz  
Supply voltage range  
during flash memory  
programming  
12 MHz  
Supply voltage range  
during program execution  
6 MHz  
3.3 V 3.6 V  
2.7 V  
Supply Voltage - V  
1.8 V  
2.2 V  
Note: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC  
of 2.2 V.  
Figure 4. Safe Operating Area  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Electrical Characteristics  
Active Mode Supply Current Into VCC Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)(2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fDCO = fMCLK = fSMCLK = 1 MHz,  
fACLK = 0 Hz,  
2.2 V  
230  
Program executes in flash,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
Active mode (AM)  
current at 1 MHz  
IAM,1MHz  
µA  
3 V  
330  
420  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance is chosen to closely match the required 9 pF.  
Typical Characteristics, Active Mode Supply Current (Into VCC)  
5.0  
4.0  
f
= 16 MHz  
DCO  
4.0  
3.0  
2.0  
1.0  
0.0  
T
= 85 °C  
= 25 °C  
A
3.0  
2.0  
1.0  
0.0  
T
A
V
= 3 V  
CC  
f
= 12 MHz  
DCO  
T
= 85 °C  
= 25 °C  
A
T
A
f
= 8 MHz  
DCO  
f
= 1 MHz  
V
CC  
= 2.2 V  
DCO  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
4.0  
8.0  
12.0  
16.0  
V
CC  
− Supply Voltage − V  
f
DCO  
− DCO Frequency − MHz  
Figure 5. Active Mode Current vs VCC, TA = 25°C  
Figure 6. Active Mode Current vs DCO Frequency  
22  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Low-Power Mode Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(2)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
fMCLK = 0 MHz,  
fSMCLK = fDCO = 1 MHz,  
fACLK = 32768 Hz,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 1, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
Low-power mode 0  
(LPM0) current(3)  
ILPM0,1MHz  
25°C  
2.2 V  
56  
µA  
fMCLK = fSMCLK = 0 MHz,  
fDCO = 1 MHz,  
fACLK = 32768 Hz,  
Low-power mode 2  
(LPM2) current(4)  
ILPM2  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 1, SCG0 = 0, SCG1 = 1,  
OSCOFF = 0  
25°C  
2.2 V  
22  
µA  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK = 32768 Hz,  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
Low-power mode 3  
(LPM3) current(4)  
ILPM3,LFXT1  
ILPM3,VLO  
ILPM4  
25°C  
25°C  
2.2 V  
2.2 V  
2.2 V  
0.7  
0.5  
1.5  
0.7  
µA  
µA  
µA  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK from internal LF oscillator (VLO),  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
Low-power mode 3  
current, (LPM3)(4)  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK = 0 Hz,  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 1  
25°C  
85°C  
0.1  
0.8  
0.5  
1.7  
Low-power mode 4  
(LPM4) current(5)  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance is chosen to closely match the required 9 pF.  
(3) Current for brownout and WDT clocked by SMCLK included.  
(4) Current for brownout and WDT clocked by ACLK included.  
(5) Current for brownout included.  
Typical Characteristics, Low-Power Mode Supply Currents  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
Vcc = 3.6 V  
Vcc = 3 V  
Vcc = 3.6 V  
Vcc = 3 V  
Vcc = 2.2 V  
Vcc = 2.2 V  
Vcc = 1.8 V  
Vcc = 1.8 V  
60 80  
-40  
-20  
0
20  
40  
-40  
-20  
0
20  
40  
60  
80  
TA – Temperature – °C  
TA – Temperature – °C  
Figure 7. LPM3 Current vs Temperature  
Figure 8. LPM4 Current vs Temperature  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
MAX UNIT  
Schmitt-Trigger Inputs, Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.45 VCC  
1.35  
TYP  
0.75 VCC  
VIT+  
Positive-going input threshold voltage  
V
V
3 V  
2.25  
0.55 VCC  
1.65  
0.25 VCC  
0.75  
VIT–  
Negative-going input threshold voltage  
3 V  
3 V  
Vhys  
RPull  
CI  
Input voltage hysteresis (VIT+ – VIT–  
Pullup or pulldown resistor  
Input capacitance  
)
0.3  
1
V
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
3 V  
20  
35  
5
50  
kΩ  
pF  
VIN = VSS or VCC  
Leakage Current, Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
±50 nA  
(1) (2)  
Ilkg(Px.y)  
High-impedance leakage current  
3 V  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is  
disabled.  
Outputs, Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –6 mA(1)  
I(OLmax) = 6 mA(1)  
VCC  
3 V  
3 V  
MIN  
TYP  
VCC – 0.3  
VSS + 0.3  
MAX UNIT  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
V
V
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
Output Frequency, Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Px.y, CL = 20 pF, RL = 1 kΩ(1) (2)  
Px.y, CL = 20 pF(2)  
VCC  
3 V  
3 V  
MIN  
TYP  
12  
MAX UNIT  
MHz  
Port output frequency  
(with load)  
fPx.y  
fPort_CLK  
Clock output frequency  
16  
MHz  
(1) A resistive divider with two 0.5-kΩ resistors between VCC and VSS is used as load. The output is connected to the center tap of the  
divider.  
(2) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
24  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Typical Characteristics, Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
V
= 2.2 V  
V
= 3 V  
CC  
CC  
T
= 25°C  
= 85°C  
A
T
= 25°C  
= 85°C  
P1.7  
A
P1.7  
T
A
T
A
0
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output Voltage − V  
Figure 9.  
Figure 10.  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0
−5  
0
−10  
−20  
−30  
−40  
−50  
V
= 2.2 V  
V
= 3 V  
CC  
CC  
P1.7  
P1.7  
−10  
−15  
−20  
−25  
T
A
= 85°C  
T
= 85°C  
A
T
A
= 25°C  
0.5  
T
= 25°C  
0.5  
A
0
1
1.5  
2
2.5  
0
1
1.5  
2
2.5  
3
3.5  
V
OH  
− High-Level Output Voltage − V  
V
OH  
− High-Level Output Voltage − V  
Figure 11.  
Figure 12.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Pin-Oscillator Frequency – Ports Px  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
1400  
900  
MAX UNIT  
P1.y, CL = 10 pF, RL = 100 kΩ(1)(2)  
P1.y, CL = 20 pF, RL = 100 kΩ(1)(2)  
P2.0 to P2.5, CL = 10 pF, RL = 100 kΩ(1)(2)  
P2.0 to P2.5, CL = 20 pF, RL = 100 kΩ(1)(2)  
foP1.x  
Port output oscillation frequency  
3 V  
kHz  
1800  
1000  
foP2.x  
foP2.6/7  
foP3.x  
Port output oscillation frequency  
Port output oscillation frequency  
Port output oscillation frequency  
kHz  
kHz  
kHz  
3 V  
3 V  
P2.6 and P2.7, CL = 20 pF, RL = 100  
700  
kΩ(1)(2)  
P3.y, CL = 10 pF, RL = 100 kΩ(1)(2)  
P3.y, CL = 20 pF, RL = 100 kΩ(1)(2)  
1800  
1000  
(1) A resistive divider with two 0.5-kΩ resistors between VCC and VSS is used as load. The output is connected to the center tap of the  
divider.  
(2) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
Typical Characteristics, Pin-Oscillator Frequency  
TYPICAL OSCILLATING FREQUENCY  
TYPICAL OSCILLATING FREQUENCY  
vs  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
1.50  
1.35  
1.20  
1.05  
0.90  
0.75  
0.60  
0.45  
0.30  
0.15  
0.00  
1.50  
1.35  
1.20  
1.05  
0.90  
0.75  
0.60  
0.45  
0.30  
0.15  
0.00  
V
CC  
= 3.0 V  
V
CC  
= 2.2 V  
P1.y  
P1.y  
P2.0 to P2.5  
P2.0 to P2.5  
P2.6 and P2.7  
P2.6 and P2.7  
10  
50  
100  
10  
50  
100  
C
LOAD  
− External Capacitance − pF  
C
LOAD  
− External Capacitance − pF  
A. One output active at a time.  
A. One output active at a time.  
Figure 13.  
Figure 14.  
26  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
POR and Brownout Reset (BOR)(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
0.7 ×  
V(B_IT--)  
VCC(start)  
See Figure 15  
dVCC/dt 3 V/s  
V
V(B_IT–)  
Vhys(B_IT–)  
td(BOR)  
See Figure 15 through Figure 17  
See Figure 15  
dVCC/dt 3 V/s  
dVCC/dt 3 V/s  
1.35  
140  
V
mV  
µs  
See Figure 15  
2000  
Pulse duration needed at RST/NMI pin to  
accepted reset internally  
t(reset)  
2.2 V  
2
µs  
(1) The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT–)  
+
Vhys(B_IT–)is 1.8 V.  
V
CC  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 15. POR and BOR vs Supply Voltage  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: MSP430TCH5E  
 
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Typical Characteristics, POR and BOR  
V
t
CC  
pw  
2
3 V  
V
= 3 V  
Typical Conditions  
CC  
1.5  
1
V
CC(drop)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
− Pulse Width − µs  
t
− Pulse Width − µs  
t
pw  
pw  
Figure 16. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
V
t
CC  
pw  
2
1.5  
1
3 V  
V
= 3 V  
CC  
Typical Conditions  
V
CC(drop)  
0.5  
t = t  
f
r
0
0.001  
1
1000  
t
t
r
f
t
− Pulse Width − µs  
t
− Pulse Width − µs  
pw  
pw  
Figure 17. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR or BOR Signal  
28  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
DCO Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1.8  
TYP  
MAX UNIT  
RSELx < 14  
RSELx = 14  
RSELx = 15  
3.6  
VCC  
Supply voltage  
2.2  
3.6  
3.6  
V
3
fDCO(0,0)  
fDCO(0,3)  
fDCO(1,3)  
fDCO(2,3)  
fDCO(3,3)  
fDCO(4,3)  
fDCO(5,3)  
fDCO(6,3)  
fDCO(7,3)  
fDCO(8,3)  
fDCO(9,3)  
fDCO(10,3)  
fDCO(11,3)  
fDCO(12,3)  
fDCO(13,3)  
fDCO(14,3)  
fDCO(15,3)  
fDCO(15,7)  
DCO frequency (0, 0)  
DCO frequency (0, 3)  
DCO frequency (1, 3)  
DCO frequency (2, 3)  
DCO frequency (3, 3)  
DCO frequency (4, 3)  
DCO frequency (5, 3)  
DCO frequency (6, 3)  
DCO frequency (7, 3)  
DCO frequency (8, 3)  
DCO frequency (9, 3)  
DCO frequency (10, 3)  
DCO frequency (11, 3)  
DCO frequency (12, 3)  
DCO frequency (13, 3)  
DCO frequency (14, 3)  
DCO frequency (15, 3)  
DCO frequency (15, 7)  
RSELx = 0, DCOx = 0, MODx = 0  
RSELx = 0, DCOx = 3, MODx = 0  
RSELx = 1, DCOx = 3, MODx = 0  
RSELx = 2, DCOx = 3, MODx = 0  
RSELx = 3, DCOx = 3, MODx = 0  
RSELx = 4, DCOx = 3, MODx = 0  
RSELx = 5, DCOx = 3, MODx = 0  
RSELx = 6, DCOx = 3, MODx = 0  
RSELx = 7, DCOx = 3, MODx = 0  
RSELx = 8, DCOx = 3, MODx = 0  
RSELx = 9, DCOx = 3, MODx = 0  
RSELx = 10, DCOx = 3, MODx = 0  
RSELx = 11, DCOx = 3, MODx = 0  
RSELx = 12, DCOx = 3, MODx = 0  
RSELx = 13, DCOx = 3, MODx = 0  
RSELx = 14, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 7, MODx = 0  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
0.06  
0.07  
0.14 MHz  
0.17 MHz  
MHz  
0.15  
0.21  
0.30  
0.41  
0.58  
MHz  
MHz  
MHz  
MHz  
0.54  
0.80  
1.06 MHz  
1.50 MHz  
MHz  
1.6  
2.3  
MHz  
3.4  
MHz  
4.25  
MHz  
4.30  
6.00  
8.60  
12.0  
16.0  
7.30 MHz  
9.60 MHz  
13.9 MHz  
18.5 MHz  
26.0 MHz  
7.8  
Frequency step between  
range RSEL and RSEL+1  
SRSEL  
SDCO  
SRSEL = fDCO(RSEL+1,DCO)/fDCO(RSEL,DCO)  
3 V  
1.35  
ratio  
Frequency step between  
tap DCO and DCO+1  
SDCO = fDCO(RSEL,DCO+1)/fDCO(RSEL,DCO)  
Measured at SMCLK output  
3 V  
3 V  
1.08  
50  
ratio  
%
Duty cycle  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
MAX UNIT  
Calibrated DCO Frequencies, Tolerance  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
calibrated at 30°C and 3 V  
1-MHz tolerance over  
temperature(1)  
0°C to 85°C  
3 V  
-3  
±0.5  
+3  
+3  
+6  
+3  
+3  
+6  
+3  
+3  
+6  
+3  
+3  
+6  
%
%
%
%
%
%
%
%
%
%
%
%
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
calibrated at 30°C and 3 V  
1-MHz tolerance over VCC  
1-MHz tolerance overall  
30°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
3 V  
-3  
-6  
-3  
-3  
-6  
-3  
-3  
-6  
-3  
-3  
-6  
±2  
±3  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
calibrated at 30°C and 3 V  
-40°C to 85°C  
0°C to 85°C  
30°C  
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
calibrated at 30°C and 3 V  
8-MHz tolerance over  
temperature(1)  
±0.5  
±2  
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
calibrated at 30°C and 3 V  
8-MHz tolerance over VCC  
8-MHz tolerance overall  
2.2 V to 3.6 V  
2.2 V to 3.6 V  
3 V  
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
calibrated at 30°C and 3 V  
-40°C to 85°C  
0°C to 85°C  
30°C  
±3  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
calibrated at 30°C and 3 V  
12-MHz tolerance over  
temperature(1)  
±0.5  
±2  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
calibrated at 30°C and 3 V  
12-MHz tolerance over VCC  
12-MHz tolerance overall  
2.7 V to 3.6 V  
2.7 V to 3.6 V  
3 V  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
calibrated at 30°C and 3 V  
-40°C to 85°C  
0°C to 85°C  
30°C  
±3  
BCSCTL1 = CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
calibrated at 30°C and 3 V  
16-MHz tolerance over  
temperature(1)  
±0.5  
±2  
BCSCTL1 = CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
calibrated at 30°C and 3 V  
16-MHz tolerance over VCC  
16-MHz tolerance overall  
3.3 V to 3.6 V  
3.3 V to 3.6 V  
BCSCTL1 = CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
calibrated at 30°C and 3 V  
-40°C to 85°C  
±3  
(1) This is the frequency change from the measured frequency at 30°C over temperature.  
30  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Wake-Up From Lower-Power Modes (LPM3/4)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
DCO clock wake-up time from  
LPM3/4(1)  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ  
tDCO,LPM3/4  
tCPU,LPM3/4  
3 V  
1.5  
µs  
CPU wake-up time from LPM3 or  
LPM4(2)  
1/fMCLK +  
tClock,LPM3/4  
(1) The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g., port interrupt) to the first clock edge  
observable externally on a clock pin (MCLK or SMCLK).  
(2) Parameter applicable only if DCOCLK is used for MCLK.  
Typical Characteristics, DCO Clock Wake-Up Time From LPM3/4  
10.00  
RSELx = 0 to 11  
RSELx = 12 to 15  
1.00  
0.10  
0.10  
1.00  
DCO Frequency − MHz  
Figure 18. DCO Wake-Up Time From LPM3 vs DCO Frequency  
10.00  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Crystal Oscillator, XT1, Low-Frequency Mode(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
LFXT1 oscillator crystal  
frequency, LF mode 0, 1  
fLFXT1,LF  
XTS = 0, LFXT1Sx = 0 or 1  
1.8 V to 3.6 V  
32768  
Hz  
LFXT1 oscillator logic level  
fLFXT1,LF,logic  
square wave input frequency, XTS = 0, XCAPx = 0, LFXT1Sx = 3  
LF mode  
1.8 V to 3.6 V 10000  
32768 50000  
Hz  
XTS = 0, LFXT1Sx = 0,  
fLFXT1,LF = 32768 Hz, CL,eff = 6 pF  
500  
200  
Oscillation allowance for  
LF crystals  
OALF  
kΩ  
XTS = 0, LFXT1Sx = 0,  
fLFXT1,LF = 32768 Hz, CL,eff = 12 pF  
XTS = 0, XCAPx = 0  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
1
5.5  
8.5  
11  
Integrated effective load  
capacitance, LF mode(2)  
CL,eff  
pF  
XTS = 0, Measured at ACLK,  
fLFXT1,LF = 32768 Hz  
Duty cycle, LF mode  
2.2 V  
2.2 V  
30  
10  
50  
70  
%
Oscillator fault frequency,  
LF mode(3)  
fFault,LF  
XTS = 0, XCAPx = 0, LFXT1Sx = 3(4)  
10000  
Hz  
(1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.  
(a) Keep the trace between the device and the crystal as short as possible.  
(b) Design a good ground plane around the oscillator pins.  
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
(e) Use assembly materials and techniques that avoid any parasitic load on the oscillator XIN and XOUT pins.  
(f) If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This  
signal is no longer required for the serial programming adapter.  
(2) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup, the effective load capacitance should always match the specification of the used crystal.  
(3) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies in between might set the flag.  
(4) Measured with logic-level input frequency but also applies to operation with crystals.  
Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TA  
VCC  
3 V  
MIN  
TYP  
12  
MAX UNIT  
20 kHz  
%/°C  
fVLO  
-40°C to 85°C  
-40°C to 85°C  
25°C  
4
dfVLO/dT  
3 V  
0.5  
4
dfVLO/dVCC VLO frequency supply voltage drift  
1.8 V to 3.6 V  
%/V  
Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SMCLK, duty cycle = 50% ± 10%  
TA0, TA1  
VCC  
MIN  
TYP  
fSYSTEM  
MAX UNIT  
fTA  
Timer_A input clock frequency  
Timer_A capture timing  
MHz  
ns  
tTA,cap  
3 V  
20  
32  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
USCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fUSCI  
USCI input clock frequency  
SMCLK, duty cycle = 50% ± 10%  
fSYSTEM  
MHz  
Maximum BITCLK clock frequency  
(equals baudrate in MBaud)(1)  
UART receive deglitch time(2)  
fmax,BITCLK  
tτ  
3 V  
3 V  
2
MHz  
50  
100  
600  
ns  
(1) The DCO wake-up time must be considered in LPM3 and LPM4 for baud rates above 1 MHz.  
(2) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized, their duration should exceed the maximum specification of the deglitch time.  
USCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 19 and  
Figure 20)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fUSCI  
USCI input clock frequency  
SOMI input data setup time  
SOMI input data hold time  
SIMO output data valid time  
SMCLK, duty cycle = 50% ± 10%  
fSYSTEM MHz  
tSU,MI  
3 V  
3 V  
3 V  
75  
0
ns  
ns  
tHD,MI  
tVALID,MO  
UCLK edge to SIMO valid, CL = 20 pF  
20  
ns  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLO/HI  
tLO/HI  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
Figure 19. SPI Master Mode, CKPH = 0  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLO/HI  
tLO/HI  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
Figure 20. SPI Master Mode, CKPH = 1  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: MSP430TCH5E  
 
 
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
USCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 21 and  
Figure 22)  
PARAMETER  
TEST CONDITIONS  
VCC  
3 V  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
STE lead time, STE low to clock  
STE lag time, Last clock to STE high  
STE access time, STE low to SOMI data out  
50  
ns  
ns  
ns  
10  
50  
50  
STE disable time, STE high to SOMI high  
impedance  
tSTE,DIS  
3 V  
ns  
tSU,SI  
tHD,SI  
SIMO input data setup time  
SIMO input data hold time  
3 V  
3 V  
15  
10  
ns  
ns  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO  
SOMI output data valid time  
3 V  
50  
75  
ns  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tSU,SI  
tLO/HI  
tLO/HI  
tHD,SI  
SIMO  
SOMI  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
Figure 21. SPI Slave Mode, CKPH = 0  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,SI  
tSU,SI  
SIMO  
SOMI  
tHD,MO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
Figure 22. SPI Slave Mode, CKPH = 1  
34  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
 
 
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
USCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 23)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fSYSTEM MHz  
400 kHz  
fUSCI  
fSCL  
USCI input clock frequency  
SCL clock frequency  
SMCLK, duty cycle = 50% ± 10%  
3 V  
3 V  
0
4.0  
0.6  
4.7  
0.6  
0
f
SCL 100 kHz  
fSCL > 100 kHz  
SCL 100 kHz  
tHD,STA  
Hold time (repeated) START  
µs  
µs  
f
tSU,STA  
Setup time for a repeated START  
3 V  
fSCL > 100 kHz  
tHD,DAT  
tSU,DAT  
tSU,STO  
Data hold time  
3 V  
3 V  
3 V  
ns  
ns  
µs  
Data setup time  
Setup time for STOP  
250  
4.0  
Pulse duration of spikes suppressed  
by input filter  
tSP  
3 V  
50  
100  
600  
ns  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
SCL  
tLOW  
tHIGH  
tSP  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 23. I2C Mode Timing  
Comparator_A+  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
(1)  
I(DD)  
CAON = 1, CARSEL = 0, CAREF = 0  
3 V  
45  
µA  
CAON = 1, CARSEL = 0,  
CAREF = 1/2/3,  
No load at CA0 and CA1  
I(Refladder/  
RefDiode)  
3 V  
45  
µA  
V(IC)  
Common-mode input voltage  
CAON = 1  
3 V  
3 V  
0
VCC-1  
V
PCA0 = 1, CARSEL = 1, CAREF = 1,  
No load at CA0 and CA1  
V(Ref025)  
(Voltage at 0.25 VCC node) / VCC  
0.24  
0.48  
490  
PCA0 = 1, CARSEL = 1, CAREF = 2,  
No load at CA0 and CA1  
V(Ref050)  
V(RefVT)  
(Voltage at 0.5 VCC node) / VCC  
See Figure 24 and Figure 25  
3 V  
3 V  
PCA0 = 1, CARSEL = 1, CAREF = 3,  
No load at CA0 and CA1, TA = 85°C  
mV  
V(offset)  
Vhys  
Offset voltage(2)  
Input hysteresis  
3 V  
3 V  
±10  
0.7  
mV  
mV  
CAON = 1  
TA = 25°C, Overdrive 10 mV,  
Without filter: CAF = 0  
120  
1.5  
ns  
µs  
Response time  
(low-high and high-low)  
t(response)  
3 V  
TA = 25°C, Overdrive 10 mV,  
With filter: CAF = 1  
(1) The leakage current for the Comparator_A+ terminals is identical to Ilkg(Px.y) specification.  
(2) The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements. The  
two successive measurements are then summed together.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: MSP430TCH5E  
 
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Typical Characteristics – Comparator_A+  
650  
650  
600  
550  
500  
450  
400  
VCC = 2.2 V  
VCC = 3 V  
600  
Typical  
Typical  
550  
500  
450  
400  
-45  
-25  
-5  
15  
35  
55  
75  
95  
115  
-45  
-25  
-5  
TA – Free-Air Temperature – °C  
Figure 25. V(RefVT) vs Temperature, VCC = 2.2 V  
15  
35  
55  
75  
95  
115  
TA – Free-Air Temperature – °C  
Figure 24. V(RefVT) vs Temperature, VCC = 3 V  
100  
VCC = 1.8 V  
VCC = 2.2 V  
VCC = 3 V  
10  
VCC = 3.6 V  
1
0
0.4  
0.6  
0.8  
1
0.2  
VIN/VCC – Normalized Input Voltage – V/V  
Figure 26. Short Resistance vs VIN/VCC  
36  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
10-Bit ADC, Power Supply and Input Range Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VSS = 0 V  
TA  
VCC  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
VCC  
VAx  
Analog supply voltage  
2.2  
3.6  
V
All Ax terminals, Analog inputs  
selected in ADC10AE register  
Analog input voltage(2)  
ADC10 supply current(3)  
0
VCC  
V
fADC10CLK = 5.0 MHz,  
ADC10ON = 1, REFON = 0,  
ADC10SHT0 = 1, ADC10SHT1 = 0,  
ADC10DIV = 0  
IADC10  
25°C  
25°C  
0.6  
mA  
mA  
fADC10CLK = 5.0 MHz,  
ADC10ON = 0, REF2_5V = 0,  
REFON = 1, REFOUT = 0  
0.25  
0.25  
Reference supply current,  
reference buffer disabled(4)  
IREF+  
3 V  
fADC10CLK = 5.0 MHz,  
ADC10ON = 0, REF2_5V = 1,  
REFON = 1, REFOUT = 0  
fADC10CLK = 5.0 MHz,  
Reference buffer supply  
ADC10ON = 0, REFON = 1,  
IREFB,0  
25°C  
25°C  
3 V  
3 V  
1.1  
0.5  
mA  
mA  
current with ADC10SR = 0(4) REF2_5V = 0, REFOUT = 1,  
ADC10SR = 0  
fADC10CLK = 5.0 MHz,  
ADC10ON = 0, REFON = 1,  
Reference buffer supply  
IREFB,1  
current with ADC10SR = 1(4) REF2_5V = 0, REFOUT = 1,  
ADC10SR = 1  
Only one terminal Ax can be selected  
CI  
RI  
Input capacitance  
at one time  
25°C  
25°C  
3 V  
3 V  
27  
pF  
Input MUX ON resistance  
0 V VAx VCC  
1000  
(1) The leakage current is defined in the leakage current table with Px.y/Ax parameter.  
(2) The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results.  
(3) The internal reference supply current is not included in current consumption parameter IADC10  
.
(4) The internal reference current is supplied via terminal VCC. Consumption is independent of the ADC10ON control bit, unless a  
conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
10-Bit ADC, Built-In Voltage Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IVREF+ 1 mA, REF2_5V = 0  
IVREF+ 1 mA, REF2_5V = 1  
IVREF+ IVREF+max, REF2_5V = 0  
IVREF+ IVREF+max, REF2_5V = 1  
VCC  
MIN  
2.2  
TYP  
MAX UNIT  
Positive built-in reference  
analog supply voltage range  
VCC,REF+  
V
2.9  
1.41  
2.35  
1.5  
2.5  
1.59  
V
Positive built-in reference  
voltage  
VREF+  
3 V  
3 V  
2.65  
Maximum VREF+ load  
current  
ILD,VREF+  
±1  
±2  
mA  
IVREF+ = 500 µA ± 100 µA,  
Analog input voltage VAx 0.75 V,  
REF2_5V = 0  
VREF+ load regulation  
3 V  
3 V  
LSB  
IVREF+ = 500 µA ± 100 µA,  
Analog input voltage VAx 1.25 V,  
REF2_5V = 1  
±2  
IVREF+ = 100 µA900 µA,  
VAx 0.5 × VREF+,  
Error of conversion result 1 LSB,  
ADC10SR = 0  
VREF+ load regulation  
response time  
400  
ns  
Maximum capacitance at  
pin VREF+  
CVREF+  
TCREF+  
IVREF+ ±1 mA, REFON = 1, REFOUT = 1  
IVREF+ = const with 0 mA IVREF+ 1 mA  
3 V  
3 V  
100  
pF  
ppm/  
°C  
Temperature coefficient(1)  
±100  
Settling time of internal  
reference voltage to  
99.9% VREF  
IVREF+ = 0.5 mA, REF2_5V = 0,  
REFON = 0 1  
tREFON  
3.6 V  
3 V  
30  
2
µs  
µs  
IVREF+ = 0.5 mA,  
REF2_5V = 1, REFON = 1,  
REFBURST = 1, ADC10SR = 0  
Settling time of reference  
buffer to 99.9% VREF  
tREFBURST  
(1) Calculated using the box method: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C – (–40°C))  
38  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
10-Bit ADC, External Reference(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VEREF+ > VEREF–,  
SREF1 = 1, SREF0 = 0  
1.4  
VCC  
Positive external reference input  
voltage range  
VEREF+  
V
(2)  
VEREF– VEREF+ VCC – 0.15 V,  
SREF1 = 1, SREF0 = 1  
1.4  
0
3
(3)  
Negative external reference input  
VEREF–  
VEREF+ > VEREF–  
1.2  
V
V
(4)  
voltage range  
Differential external reference  
input voltage range,  
(5)  
ΔVEREF  
VEREF+ > VEREF–  
1.4  
VCC  
ΔVEREF = VEREF+ – VEREF–  
0 V VEREF+ VCC  
SREF1 = 1, SREF0 = 0  
,
3 V  
±1  
IVEREF+  
Static input current into VEREF+  
Static input current into VEREF–  
µA  
µA  
0 V VEREF+ VCC – 0.15 V 3 V,  
3 V  
3 V  
0
SREF1 = 1, SREF0 = 1(3)  
IVEREF–  
0 V VEREF– VCC  
±1  
(1) The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the  
dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.  
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
(3) Under this condition the external reference is internally buffered. The reference buffer is active and requires the reference buffer supply  
current IREFB. The current consumption can be limited to the sample and conversion period with REBURST = 1.  
(4) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
(5) The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
10-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.45  
0.45  
TYP  
MAX  
6.3  
UNIT  
ADC10SR = 0  
ADC10SR = 1  
ADC10 input clock  
frequency  
For specified performance of  
ADC10 linearity parameters  
fADC10CLK  
fADC10OSC  
3 V  
MHz  
1.5  
ADC10 built-in oscillator ADC10DIVx = 0, ADC10SSELx = 0,  
3 V  
3 V  
3.7  
6.3  
MHz  
µs  
frequency  
fADC10CLK = fADC10OSC  
ADC10 built-in oscillator, ADC10SSELx = 0,  
fADC10CLK = fADC10OSC  
2.06  
3.51  
tCONVERT  
Conversion time  
13 ×  
fADC10CLK from ACLK, MCLK, or SMCLK:  
ADC10DIV ×  
1/fADC10CLK  
ADC10SSELx 0  
Turn-on settling time of  
the ADC  
(1)  
tADC10ON  
100  
ns  
(1) The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already  
settled.  
10-Bit ADC, Linearity Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Integral linearity error  
Differential linearity error  
Offset error  
TEST CONDITIONS  
VCC  
3 V  
3 V  
3 V  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
±1 LSB  
±1 LSB  
±1 LSB  
±2 LSB  
±5 LSB  
EI  
ED  
EO  
EG  
ET  
Source impedance RS < 100 Ω  
Gain error  
±1.1  
±2  
Total unadjusted error  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
10-Bit ADC, Temperature Sensor and Built-In VMID  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
3 V  
3 V  
3 V  
3 V  
3 V  
MIN  
TYP  
60  
MAX UNIT  
Temperature sensor supply  
current(1)  
REFON = 0, INCHx = 0Ah,  
TA = 25°C  
ISENSOR  
TCSENSOR  
tSensor(sample)  
IVMID  
µA  
mV/°C  
µs  
(2)  
ADC10ON = 1, INCHx = 0Ah  
ADC10ON = 1, INCHx = 0Ah,  
Error of conversion result 1 LSB  
3.55  
Sample time required if channel  
30  
(3)  
10 is selected  
(4)  
Current into divider at channel 11 ADC10ON = 1, INCHx = 0Bh  
µA  
ADC10ON = 1, INCHx = 0Bh,  
VCC divider at channel 11  
VMID  
1.5  
V
V
MID 0.5 × VCC  
Sample time required if  
channel 11 is selected  
ADC10ON = 1, INCHx = 0Bh,  
Error of conversion result 1 LSB  
tVMID(sample)  
3 V  
1220  
ns  
(5)  
(1) The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is  
high). When REFON = 1, ISENSOR is included in IREF+. When REFON = 0, ISENSOR applies during conversion of the temperature sensor  
input (INCH = 0Ah).  
(2) The following formula can be used to calculate the temperature sensor output voltage:  
VSensor,typ = TCSensor (273 + T [°C] ) + VOffset,sensor [mV] or  
VSensor,typ = TCSensor T [°C] + VSensor(TA = 0°C) [mV]  
(3) The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time tSENSOR(on)  
.
(4) No additional current is needed. The VMID is used during sampling.  
(5) The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.  
Flash Memory  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST  
CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
VCC(PGM/ERASE) Program and erase supply voltage  
2.2  
3.6  
476  
5
V
kHz  
mA  
fFTG  
Flash timing generator frequency  
Supply current from VCC during program  
Supply current from VCC during erase  
Cumulative program time(1)  
257  
IPGM  
2.2 V, 3.6 V  
2.2 V, 3.6 V  
2.2 V, 3.6 V  
2.2 V, 3.6 V  
1
1
IERASE  
tCPT  
7
mA  
10  
ms  
tCMErase  
Cumulative mass erase time  
20  
104  
100  
ms  
Program and erase endurance  
Data retention duration  
105  
cycles  
years  
tFTG  
tFTG  
tRetention  
tWord  
TJ = 25°C  
(2)  
Word or byte program time  
30  
25  
(2)  
(2)  
tBlock, 0  
Block program time for first byte or word  
Block program time for each additional byte or  
word  
tBlock, 1-63  
18  
tFTG  
(2)  
(2)  
(2)  
tBlock, End  
tMass Erase  
tSeg Erase  
Block program end-sequence wait time  
Mass erase time  
6
10593  
4819  
tFTG  
tFTG  
tFTG  
Segment erase time  
(1) The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
(2) These values are hardwired into the Flash Controller's state machine (tFTG = 1/fFTG).  
40  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
RAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
CPU halted  
MIN  
MAX  
UNIT  
(1)  
V(RAMh)  
RAM retention supply voltage  
1.6  
V
(1) This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should  
happen during this supply voltage condition.  
JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Spy-Bi-Wire input frequency  
VCC  
2.2 V  
2.2 V  
MIN  
0
TYP  
MAX  
20  
UNIT  
MHz  
µs  
fSBW  
tSBW,Low  
Spy-Bi-Wire low clock pulse duration  
0.025  
15  
Spy-Bi-Wire enable time  
tSBW,En  
2.2 V  
1
µs  
(TEST high to acceptance of first clock edge(1)  
)
tSBW,Ret  
fTCK  
Spy-Bi-Wire return to normal operation time  
TCK input frequency(2)  
2.2 V  
2.2 V  
2.2 V  
15  
0
100  
5
µs  
MHz  
kΩ  
RInternal  
Internal pulldown resistance on TEST  
25  
60  
90  
(1) Tools accessing the Spy-Bi-Wire interface need to wait for the maximum tSBW,En time after pulling the TEST/SBWCLK pin high before  
applying the first SBWCLK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
JTAG Fuse(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA = 25°C  
MIN  
2.5  
6
MAX  
UNIT  
V
VCC(FB)  
VFB  
Supply voltage during fuse-blow condition  
Voltage level on TEST for fuse blow  
Supply current into TEST during fuse blow  
Time to blow fuse  
7
100  
1
V
IFB  
mA  
ms  
tFB  
(1) After the fuse is blown, no further access to the JTAG/Test, Spy-Bi-Wire, and emulation features is possible, and JTAG is switched to  
bypass mode.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
PORT SCHEMATICS  
Port P1 Pin Schematic: P1.0 to P1.2, Input/Output With Schmitt Trigger  
To Comparator  
From Comparator  
To ADC10  
INCHx = y  
CAPD.y  
or ADC10AE0.y  
PxSEL2.y  
PxSEL.y  
PxDIR.y  
0
From Timer  
1
Direction  
0: Input  
1: Output  
1
2
3
From USCI  
PxSEL2.y  
PxSEL.y  
PxREN.y  
0
1
1
0
1
PxSEL2.y  
PxSEL.y  
DVSS  
DVCC  
0
1
1
PxOUT.y  
0
1
From Timer  
2
3
Bus  
Keeper  
EN  
P1.0/TA0CLK/ACLK/  
A0/CA0  
0
P1.1/TA0.0/UCA0RXD/  
UCA0SOMI/A1/CA1  
P1.2/TA0.1/UCA0TXD/  
UCA0SIMO/A2/CA2  
TAx.y  
TAxCLK  
PxIN.y  
EN  
To Module  
PxIRQ.y  
D
PxIE.y  
EN  
Set  
Q
PxIFG.y  
PxSEL.y  
PxIES.y  
Interrupt  
Edge  
Select  
42  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Table 16. Port P1 (P1.0 to P1.2) Pin Functions  
CONTROL BITS / SIGNALS(1)  
PIN NAME  
(P1.x)  
x
FUNCTION  
ADC10AE.x  
P1DIR.x  
P1SEL.x  
P1SEL2.x  
CAPD.y  
INCH.x=1  
P1.0/  
P1.x (I/O)  
I: 0; O: 1  
0
1
1
X
X
0
0
1
1
1
1
X
X
0
0
1
1
1
1
X
X
0
0
0
0
X
X
1
0
0
0
1
1
X
X
1
0
0
0
1
1
X
X
1
0
0
TA0CLK/  
ACLK/  
A0/  
TA0.TACLK  
ACLK  
0
0
0
1
0
0
0
A0  
X
1 (y = 0)  
0
CA0/  
CA0  
X
0
1 (y = 0)  
Pin Osc  
P1.1/  
Capacitive sensing  
P1.x (I/O)  
TA0.0  
X
0
0
I: 0; O: 1  
0
0
TA0.0/  
1
0
0
TA0.CCI0A  
UCA0RXD  
UCA0SOMI  
A1  
0
0
0
UCA0RXD/  
UCA0SOMI/  
A1/  
from USCI  
0
0
1
from USCI  
0
0
X
1 (y = 1)  
0
CA1/  
CA1  
X
0
1 (y = 1)  
Pin Osc  
P1.2/  
Capacitive sensing  
P1.x (I/O)  
TA0.1  
X
0
0
I: 0; O: 1  
0
0
TA0.1/  
1
0
0
TA0.CCI1A  
UCA0TXD  
UCA0SIMO  
A2  
0
0
0
UCA0TXD/  
UCA0SIMO/  
A2/  
from USCI  
0
0
2
from USCI  
0
0
X
X
X
1 (y = 2)  
0
1 (y = 2)  
0
CA2/  
CA2  
0
0
Pin Osc  
Capacitive sensing  
(1) X = don't care  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Port P1 Pin Schematic: P1.3, Input/Output With Schmitt Trigger  
SREF2  
VSS  
0
1
To ADC10 VREF-  
To Comparator  
from Comparator  
To ADC10  
INCHx = y  
CAPD.y  
or ADC10AE0.y  
PxSEL2.y PxSEL.y  
PxDIR.y  
0,2,3  
1
Direction  
0: Input  
1: Output  
PxSEL2.y  
PxSEL.y  
PxREN.y  
0
1
1
0
1
PxSEL2.y  
PxSEL.y  
DVSS  
DVCC  
0
1
1
PxOUT.y  
0
1
From ADC10  
2
3
Bus  
Keeper  
EN  
P1.3/ADC10CLK/CAOUT/  
A3/VREF-/VEREF-/CA3  
From Comparator  
TAx.y  
TAxCLK  
PxIN.y  
EN  
D
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
PxSEL.y  
PxIES.y  
Interrupt  
Edge  
Select  
44  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Table 17. Port P1 (P1.3) Pin Functions  
CONTROL BITS / SIGNALS(1)  
PIN NAME  
(P1.x)  
x
FUNCTION  
ADC10AE.x  
P1DIR.x  
P1SEL.x  
P1SEL2.x  
CAPD.y  
INCH.x=1  
P1.3/  
P1.x (I/O)  
I: 0; O: 1  
0
1
0
0
0
0
ADC10CLK/  
CAOUT/  
A3/  
ADC10CLK  
CAOUT  
A3  
1
1
0
0
1
1
0
0
X
X
X
X
X
X
X
X
X
0
X
X
X
X
1
1 (y = 3)  
0
3
VREF-/  
VEREF-/  
CA3/  
VREF-  
1
1
0
0
0
VEREF-  
CA3  
0
1 (y = 3)  
0
Pin Osc  
Capacitive sensing  
(1) X = don't care  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Port P1 Pin Schematic: P1.4, Input/Output With Schmitt Trigger  
From/To ADC10 Ref+  
To Comparator  
from Comparator  
To ADC10  
INCHx = y  
CAPD.y  
or ADC10AE0.y  
PxSEL.y  
PxDIR.y  
0
1
Direction  
0: Input  
1: Output  
PxSEL2.y  
PxSEL.y  
PxREN.y  
0
1
1
0
1
PxSEL2.y  
PxSEL.y  
DVSS  
DVCC  
0
1
1
PxOUT.y  
SMCLK  
0
1
2
3
Bus  
Keeper  
EN  
P1.4/SMCLK/UCB0STE/UCA0CLK/  
A4/VREF+/VEREF+/CA4/TCK  
From Module  
TAx.y  
TAxCLK  
PxIN.y  
EN  
D
To Module  
PxIRQ.y  
PxIE.y  
EN  
Q
Set  
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
From JTAG  
To JTAG  
46  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Table 18. Port P1 (P1.4) Pin Functions  
CONTROL BITS / SIGNALS(1)  
PIN NAME  
(P1.x)  
x
FUNCTION  
ADC10AE.x  
INCH.x=1  
P1DIR.x  
P1SEL.x  
P1SEL2.x  
JTAG Mode  
CAPD.y  
P1.4/  
P1.x (I/O)  
SMCLK  
UCB0STE  
UCA0CLK  
VREF+  
VEREF+  
A4  
I: 0; O: 1  
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
SMCLK/  
UCB0STE/  
UCA0CLK/  
VREF+/  
VEREF+/  
A4/  
1
0
0
from USCI  
1
1
0
0
from USCI  
1
1
0
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
0
4
1
0
1 (y = 4)  
0
1 (y = 4)  
0
CA4  
CA4  
0
0
TCK/  
TCK  
Capacitive  
sensing  
Pin Osc  
X
0
1
0
0
0
(1) X = don't care  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Port P1 Pin Schematic: P1.5 to P1.7, Input/Output With Schmitt Trigger  
To Comparator  
From Comparator  
To ADC10  
INCHx = y  
CAPD.y  
ADC10AE0.y  
PxSEL2.y  
PxSEL.y  
PxDIR.y  
0
1
From Module  
Direction  
0: Input  
1: Output  
2
3
From Module  
PxSEL2.y  
PxSEL.y  
PxREN.y  
0
1
1
0
1
PxSEL2.y  
PxSEL.y  
DVSS  
DVCC  
0
1
1
PxOUT.y  
0
1
From Module  
2
3
Bus  
Keeper  
EN  
From Module  
P1.5/TA0.0/UCB0CLK/UCA0STE/  
A5/CA5/TMS  
P1.6/TA0.1/UCB0SOMI/UCB0SCL/  
A6/CA6/TDI/TCLK  
P1.7/CAOUT/UCB0SIMO/UCB0SDA/  
A7/CA7/TDO/TDI  
TAx.y  
TAxCLK  
PxIN.y  
EN  
D
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
PxSEL.y  
PxIES.y  
Interrupt  
Edge  
Select  
From JTAG  
To JTAG  
48  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Table 19. Port P1 (P1.5 to P1.7) Pin Functions  
CONTROL BITS / SIGNALS(1)  
PIN NAME  
(P1.x)  
x
FUNCTION  
ADC10AE.x  
P1DIR.x  
P1SEL.x  
P1SEL2.x  
JTAG Mode  
CAPD.y  
INCH.x=1  
P1.5/  
P1.x (I/O)  
TA0.0  
I: 0; O: 1  
0
1
0
0
0
0
0
0
0
0
0
1
0
TA0.0/  
UCB0CLK/  
UCA0STE/  
A5/  
1
0
0
UCB0CLK  
UCA0STE  
A5  
from USCI  
1
1
0
0
from USCI  
1
1
0
0
5
X
X
X
X
X
X
X
X
X
1 (y = 5)  
0
1 (y = 5)  
0
CA5  
CA5  
0
0
TMS  
TMS  
Capacitive  
sensing  
Pin Osc  
X
0
1
0
0
0
P1.6/  
P1.x (I/O)  
TA0.1  
I: 0; O: 1  
0
1
0
0
0
0
0
0
0
0
0
1
0
TA0.1/  
1
0
0
UCB0SOMI/  
UCB0SCL/  
A6/  
UCB0SOMI  
UCB0SCL  
A6  
from USCI  
1
1
0
0
from USCI  
1
1
0
0
6
X
X
X
X
X
X
X
X
X
1 (y = 6)  
0
1 (y = 6)  
0
CA6  
CA6  
0
0
TDI/TCLK/  
TDI/TCLK  
Capacitive  
sensing  
Pin Osc  
X
0
1
0
0
0
P1.7/  
P1.x (I/O)  
UCB0SIMO  
UCB0SDA  
A7  
I: 0; O: 1  
0
1
0
1
0
0
0
0
0
0
0
1
0
UCB0SIMO/  
UCB0SDA/  
A7/  
from USCI  
0
0
from USCI  
1
1
0
0
X
X
1
X
X
1
X
X
0
1 (y = 7)  
0
7
CA7  
CA7  
0
0
0
1 (y = 7)  
CAOUT  
TDO/TDI/  
CAOUT  
TDO/TDI  
0
0
X
X
X
Capacitive  
sensing  
Pin Osc  
X
0
1
0
0
0
(1) X = don't care  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Port P2 Pin Schematic: P2.0 to P2.5, Input/Output With Schmitt Trigger  
PxSEL.y  
PxDIR.y  
0
1
Direction  
0: Input  
1: Output  
PxSEL2.y  
PxSEL.y  
PxREN.y  
0
1
1
0
1
PxSEL2.y  
PxSEL.y  
DVSS  
DVCC  
0
1
1
PxOUT.y  
0
From Timer  
1
2
3
P2.0/TA1.0  
0
P2.1/TA1.1  
P2.2/TA1.1  
P2.3/TA1.0  
P2.4/TA1.2  
P2.5/TA1.2  
TAx.y  
TAxCLK  
PxIN.y  
EN  
D
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
50  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Table 20. Port P2 (P2.0 to P2.5) Pin Functions  
CONTROL BITS / SIGNALS(1)  
PIN NAME  
(P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL.x  
P2SEL2.x  
P2.0/  
P2.x (I/O)  
I: 0; O: 1  
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
TA1.0/  
Timer1_A3.CCI0A  
Timer1_A3.TA0  
Capacitive sensing  
P2.x (I/O)  
0
0
1
Pin Osc  
P2.1/  
X
I: 0; O: 1  
TA1.1/  
Timer1_A3.CCI1A  
Timer1_A3.TA1  
Capacitive sensing  
P2.x (I/O)  
0
1
2
3
4
5
1
Pin Osc  
P2.2/  
X
I: 0; O: 1  
TA1.1/  
Timer1_A3.CCI1B  
Timer1_A3.TA1  
Capacitive sensing  
P2.x (I/O)  
0
1
Pin Osc  
P2.3/  
X
I: 0; O: 1  
TA1.0/  
Timer1_A3.CCI0B  
Timer1_A3.TA0  
Capacitive sensing  
P2.x (I/O)  
0
1
Pin Osc  
P2.4/  
X
I: 0; O: 1  
TA1.2/  
Timer1_A3.CCI2A  
Timer1_A3.TA2  
Capacitive sensing  
P2.x (I/O)  
0
1
Pin Osc  
P2.5/  
X
I: 0; O: 1  
TA1.2/  
Timer1_A3.CCI2B  
Timer1_A3.TA2  
Capacitive sensing  
0
1
Pin Osc  
X
(1) X = don't care  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Port P2 Pin Schematic: P2.6, Input/Output With Schmitt Trigger  
XOUT/P2.7  
LF off  
PxSEL.6 and PxSEL.7  
BCSCTL3.LFXT1Sx = 11  
0
LFXT1CLK  
1
PxSEL.y  
PxDIR.y  
0
1
Direction  
0: Input  
1: Output  
PxSEL2.y  
PxSEL.y  
PxREN.y  
0
1
1
0
1
PxSEL2.y  
PxSEL.y  
DVSS  
DVCC  
0
1
1
PxOUT.y  
0
1
From Module  
2
3
XIN/P2.6/TA0.1  
TAx.y  
TAxCLK  
PxIN.y  
EN  
D
To Module  
PxIRQ.y  
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
52  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Table 21. Port P2 (P2.6) Pin Functions  
CONTROL BITS / SIGNALS(1)  
PIN NAME  
(P2.x)  
x
FUNCTION  
P2SEL.6  
P2SEL.7  
P2SEL2.6  
P2SEL2.7  
P2DIR.x  
1
1
0
0
XIN  
XIN  
0
0
X
0
0
P2.6  
P2.x (I/O)  
I: 0; O: 1  
6
1
0
0
0
TA0.1  
Pin Osc  
Timer0_A3.TA1  
Capacitive sensing  
1
0
X
1
X
X
(1) X = don't care  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Port P2 Pin Schematic: P2.7, Input/Output With Schmitt Trigger  
XIN  
LF off  
PxSEL.6 and PxSEL.7  
BCSCTL3.LFXT1Sx = 11  
LFXT1CLK  
PxDIR.y  
0
1
from P2.6  
PxSEL.y  
0
1
Direction  
0: Input  
1: Output  
PxSEL2.y  
PxSEL.y  
PxREN.y  
0
1
1
0
1
PxSEL2.y  
PxSEL.y  
DVSS  
DVCC  
0
1
1
PxOUT.y  
0
1
From Module  
2
3
XOUT/P2.7  
TAx.y  
TAxCLK  
PxIN.y  
EN  
To Module  
PxIRQ.y  
D
PxIE.y  
EN  
Set  
Q
PxIFG.y  
Interrupt  
Edge  
Select  
PxSEL.y  
PxIES.y  
54  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Table 22. Port P2 (P2.7) Pin Functions  
CONTROL BITS / SIGNALS(1)  
PIN NAME  
(P2.x)  
x
FUNCTION  
P2SEL.6  
P2SEL.7  
P2SEL2.6  
P2SEL2.7  
P2DIR.x  
1
1
0
0
XOUT/  
P2.7/  
XOUT  
1
I: 0; O: 1  
X
0
X
0
0
7
P2.x (I/O)  
0
X
1
X
Pin Osc  
Capacitive sensing  
(1) X = don't care  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
Port P3 Pin Schematic: P3.0 to P3.7, Input/Output With Schmitt Trigger  
PxSEL.y  
PxDIR.y  
0
1
Direction  
0: Input  
1: Output  
PxSEL2.y  
PxSEL.y  
PxREN.y  
0
1
1
0
1
PxSEL2.y  
PxSEL.y  
DVSS  
DVCC  
0
1
1
PxOUT.y  
0
1
From Module  
2
3
P3.0/TA0.2  
P3.1/TA1.0  
P3.2/TA1.1  
P3.3/TA1.2  
P3.4/TA0.0  
P3.5/TA0.1  
P3.6/TA0.2  
TAx.y  
TAxCLK  
P3.7/TA1CLK/CAOUT  
PxIN.y  
EN  
D
To Module  
56  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
www.ti.com  
SLAS895 DECEMBER 2013  
Table 23. Port P3 (P3.0 to P3.7) Pin Functions  
CONTROL BITS / SIGNALS(1)  
PIN NAME  
(P3.x)  
x
FUNCTION  
P3DIR.x  
P3SEL.x  
P3SEL2.x  
P3.0/  
P3.x (I/O)  
I: 0; O: 1  
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
TA0.2/  
Timer0_A3.CCI2A  
Timer0_A3.TA2  
Capacitive sensing  
P3.x (I/O)  
0
0
1
Pin Osc  
P3.1/  
X
I: 0; O: 1  
TA1.0/  
Pin Osc  
P3.2/  
1
2
3
4
5
6
Timer1_A3.TA0  
Capacitive sensing  
P3.x (I/O)  
1
X
I: 0; O: 1  
TA1.1/  
Pin Osc  
P3.3/  
Timer1_A3.TA1  
Capacitive sensing  
P3.x (I/O)  
1
X
I: 0; O: 1  
TA1.2/  
Pin Osc  
P3.4/  
Timer1_A3.TA2  
Capacitive sensing  
P3.x (I/O)  
1
X
I: 0; O: 1  
TA0.0/  
Pin Osc  
P3.5/  
Timer0_A3.TA0  
Capacitive sensing  
P3.x (I/O)  
1
X
I: 0; O: 1  
TA0.1/  
Pin Osc  
P3.6/  
Timer0_A3.TA1  
Capacitive sensing  
P3.x (I/O)  
1
X
I: 0; O: 1  
TA0.2/  
Pin Osc  
P3.7/  
Timer0_A3.TA2  
Capacitive sensing  
P3.x (I/O)  
1
X
I: 0; O: 1  
TA1CLK/  
CAOUT/  
Pin Osc  
Timer1_A3.TACLK  
Comparator output  
Capacitive sensing  
0
1
7
X
(1) X = don't care  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: MSP430TCH5E  
MSP430TCH5E  
SLAS895 DECEMBER 2013  
www.ti.com  
REVISION HISTORY  
REVISION  
DESCRIPTION  
SLAS895  
Initial release  
58  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: MSP430TCH5E  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Dec-2013  
PACKAGING INFORMATION  
Orderable Device  
MSP430TCH5EPW  
MSP430TCH5EPWR  
MSP430TCH5ERHBR  
MSP430TCH5ERHBT  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
TSSOP  
TSSOP  
VQFN  
PW  
28  
28  
32  
32  
50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
430TCH5E  
ACTIVE  
ACTIVE  
ACTIVE  
PW  
RHB  
RHB  
2000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
430TCH5E  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
MSP430  
TCH5E  
VQFN  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
MSP430  
TCH5E  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Dec-2013  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

MSP430X11X

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430X11X2

MIXED SIGNAL MICROCONTROLLER
TI

MSP430X11X2_08

MIXED SIGNAL MICROCONTROLLER
TI

MSP430X11X2_11

MIXED SIGNAL MICROCONTROLLER
TI

MSP430X11X_11

MIXED SIGNAL MICROCONTROLLER
TI

MSP430X11X_16

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430X12X

MIXED SIGNAL MICROCONTROLLER
TI

MSP430X12X2

MIXED SIGNAL MICROCONTROLLER
TI

MSP430X12X_11

MIXED SIGNAL MICROCONTROLLER
TI

MSP430X13X

MXED SIGNAL MICROCONTROLLER
TI

MSP430X13X_10

MIXED SIGNAL MICROCONTROLLER
TI

MSP430X14X

MIXED SIGNAL MICROCONTROLLER
TI