MUX508IPWR [TI]

9.4pF 导通状态电容、36V、8:1、单通道模拟多路复用器 | PW | 16 | -40 to 125;
MUX508IPWR
型号: MUX508IPWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

9.4pF 导通状态电容、36V、8:1、单通道模拟多路复用器 | PW | 16 | -40 to 125

复用器
文件: 总42页 (文件大小:1204K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
MUX508, MUX509  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
MUX50x  
36V 低电容、低电荷注入、精密模拟多路复用器  
1 特性  
3 说明  
1
低导通电容  
MUX508 MUX509 (MUX50x) 是现代互补金属氧化  
物半导体 (CMOS) 模拟多路复用器 (mux)MUX508  
提供 8:1 单端通道,而 MUX509 提供 4:1 差分通道或  
4:1 单端通道. MUX508 MUX509 在双电源(±  
5V ±18V)或单电源(10V 36V)供电时均能正  
常运行。两种器件在由对称电源(如 VDD = 12VVSS  
= –12V)和非对称电源(如 VDD = 12VVSS = –5V)  
供电时也能保证优异性能。所有数字输入具有兼容晶体  
-晶体管逻辑电路 (TTL) 的阈值。当器件在有效电源  
电压范围内运行时,该阈值可确保 TTL CMOS 逻辑  
电路的兼容性。  
MUX5089.4pF  
MUX5096.7pF  
低输入泄漏电流:10pA  
低电荷注入:0.3pC  
轨到轨运行  
宽电源电压范围:±5V ±18V 10V 36V  
低导通电阻:125Ω  
转换时间:92ns  
先断后合开关操作  
EN 引脚与 VDD 相连  
逻辑电平:2V VDD  
低电源电流:45µA  
MUX508 MUX509 这两款多路复用器的导通和关断  
泄漏电流都非常低,因此能够以最小误差切换高输入阻  
抗源信号。该器件的电源电流低至 45µA,因此适用于  
便携式 进行 VTT 放电。  
人体放电模式 (HBM) 静电放电 (ESD) 保护 >  
2000V  
行业标准的薄型小外形尺寸 (TSSOP) 封装和小外  
形尺寸集成电路 (SOIC) 封装  
器件信息(1)  
器件型号  
MUX50x  
封装  
TSSOP (16)  
SOIC (16)  
封装尺寸(标称值)  
5.00mm x 4.40mm  
9.90mm x 3.91mm  
2 应用  
工厂自动化和工业过程控制  
可编程逻辑控制器 (PLC)  
模拟输入模块  
(1) 要了解所有可用封装,请参见数据表末尾的封装选项附录。  
自动测试设备 (ATE)  
数字万用表  
电池监控系统  
简化电路原理图  
电荷注入与源电压间的关系  
2
VDD = 15 V  
Bridge Sensor  
Thermocouple  
1
0
VSS = œ15 V  
œ
VINP  
ADC  
PGA/INA  
+
MUX509  
VINM  
VDD = 10 V  
VSS = œ10 V  
VDD = 12 V  
VSS = 0 V  
œ1  
œ2  
Current  
Sensing  
Photo  
LED  
Detector  
0
5
10  
15  
œ15  
œ10  
œ5  
Optical Sensor  
C008  
Source Voltage (V)  
Copyright © 2016, Texas Instruments Incorporated  
Analog Inputs  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS758  
 
 
 
 
 
 
 
 
MUX508, MUX509  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
目录  
8.10 Channel-to-Channel Crosstalk.............................. 21  
8.11 Bandwidth ............................................................. 22  
8.12 THD + Noise ......................................................... 22  
Detailed Description ............................................ 23  
9.1 Overview ................................................................. 23  
9.2 Functional Block Diagram ....................................... 23  
9.3 Feature Description................................................. 24  
9.4 Device Functional Modes........................................ 26  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics: Dual Supply ..................... 7  
7.6 Electrical Characteristics: Single Supply................... 9  
7.7 Typical Characteristics............................................ 11  
Parameter Measurement Information ................ 15  
8.1 Truth Tables............................................................ 15  
8.2 On-Resistance ........................................................ 16  
8.3 Off-Leakage Current ............................................... 16  
8.4 On-Leakage Current ............................................... 17  
8.5 Transition Time ....................................................... 17  
8.6 Break-Before-Make Delay....................................... 18  
8.7 Turn-On and Turn-Off Time .................................... 19  
8.8 Charge Injection...................................................... 20  
8.9 Off Isolation............................................................. 21  
9
10 Applications and Implementation...................... 27  
10.1 Application Information.......................................... 27  
10.2 Typical Application ............................................... 27  
11 Power-Supply Recommendations ..................... 29  
12 Layout................................................................... 30  
12.1 Layout Guidelines ................................................. 30  
12.2 Layout Example .................................................... 30  
13 器件和文档支持 ..................................................... 31  
13.1 文档支持................................................................ 31  
13.2 相关链接................................................................ 31  
13.3 接收文档更新通知 ................................................. 31  
13.4 社区资源................................................................ 31  
13.5 ....................................................................... 31  
13.6 静电放电警告......................................................... 31  
13.7 Glossary................................................................ 31  
14 机械、封装和可订购信息....................................... 31  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (July 2016) to Revision C  
Page  
已将 D (SOIC) 封装添加至文档 .............................................................................................................................................. 1  
已更改最后的 特性 分项以包括 SOIC 封装............................................................................................................................. 1  
已更改描述部分的部分..................................................................................................................................................... 1  
已将 SOIC 封装添加至器件信息.......................................................................................................................................... 1  
Changed MUX509 description in Device Comparison Table ................................................................................................. 4  
Added D package to Pin Configuration and Functions section.............................................................................................. 4  
Added D package to Thermal Information table .................................................................................................................... 7  
Changed Analog Switch, ID parameter in Electrical Characteristics: Dual Supply table: split parameter into ID(OFF) and  
ID(ON) parameters, changed symbols, parameter names, and test conditions........................................................................ 7  
Changed On-resistance drift parameter in Electrical Characteristics: Single Supply table: changed VS value in test  
conditions................................................................................................................................................................................ 9  
Changed Analog Switch, ID parameter in Electrical Characteristics: Single Supply table: split parameter into ID(OFF)  
and ID(ON) parameters, changed symbols, parameter names, and ID(ON) test conditions........................................................ 9  
Changed Figure 26: changed switch symbol to a closed switch symbol ............................................................................. 16  
Changed Figure 32: added 0 V line, flipped VS supply symbol............................................................................................ 20  
Changed description of MUX509 in Overview section ........................................................................................................ 23  
Changed Figure 42: changed OPA140 amplifier and charge kickback filter box................................................................. 27  
Added D package description to Layout Guidelines section ................................................................................................ 30  
2
版权 © 2016, Texas Instruments Incorporated  
 
MUX508, MUX509  
www.ti.com.cn  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
Changes from Revision A (March 2016) to Revision B  
Page  
已增加 TI 设计 ........................................................................................................................................................................ 1  
Changed Analog Switch, IS(OFF) and ID parameter specifications in Electrical Characteristics: Single Supply table.............. 9  
Changes from Original (January 2016) to Revision A  
Page  
已将产品预览更改为量产数据” ............................................................................................................................................ 1  
Copyright © 2016, Texas Instruments Incorporated  
3
MUX508, MUX509  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
5 Device Comparison Table  
PRODUCT  
MUX508  
MUX509  
DESCRIPTION  
8-channel, single-ended analog multiplexer (8:1 mux)  
4-channel differential or dual 4:1 single-ended analog multiplexer (8:2 mux)  
6 Pin Configuration and Functions  
MUX508: PW and D Packages  
16-Pin TSSOP and SOIC  
Top View  
A0  
EN  
VSS  
S1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
A1  
A2  
GND  
VDD  
S5  
S2  
S3  
S6  
S4  
S7  
D
S8  
Pin Functions: MUX508  
PIN  
TYPE  
DESCRIPTION  
NAME  
A0  
NO.  
1
Digital input  
Digital input  
Digital input  
Address line 0  
Address line 1  
Address line 2  
A1  
16  
15  
8
A2  
D
Analog input or output Drain pin. Can be an input or output.  
Active high digital input. When this pin is low, all switches are turned off. When this pin is  
high, the A[2:0] logic inputs determine which switch is turned on.  
EN  
2
Digital input  
GND  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
14  
4
Power supply  
Ground (0 V) reference  
Analog input or output Source pin 1. Can be an input or output.  
Analog input or output Source pin 2. Can be an input or output.  
Analog input or output Source pin 3. Can be an input or output.  
Analog input or output Source pin 4. Can be an input or output.  
Analog input or output Source pin 5. Can be an input or output.  
Analog input or output Source pin 6. Can be an input or output.  
Analog input or output Source pin 7. Can be an input or output.  
Analog input or output Source pin 8. Can be an input or output.  
5
6
7
12  
11  
10  
9
Positive power supply. This pin is the most positive power-supply potential. For reliable  
VDD  
VSS  
13  
3
Power supply  
Power supply  
operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD  
and GND.  
Negative power supply. This pin is the most negative power-supply potential. In single-  
supply applications, this pin can be connected to ground. For reliable operation, connect a  
decoupling capacitor ranging from 0.1 µF to 10 µF between VSS and GND.  
4
Copyright © 2016, Texas Instruments Incorporated  
MUX508, MUX509  
www.ti.com.cn  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
MUX509: PW and D Packages  
16-Pin TSSOP and SOIC  
Top View  
A0  
EN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
A1  
GND  
VDD  
S1B  
S2B  
S3B  
S4B  
DB  
VSS  
S1A  
S2A  
S3A  
S4A  
DA  
Pin Functions: MUX509  
PIN  
TYPE  
DESCRIPTION  
NAME  
A0  
NO.  
1
Digital input  
Digital input  
Address line 0  
Address line 1  
A1  
16  
8
DA  
Analog input or output Drain pin A. Can be an input or output.  
Analog input or output Drain pin B. Can be an input or output.  
DB  
9
Active high digital input. When this pin is low, all switches are turned off. When this pin is  
high, the A[1:0] logic inputs determine which pair of switches is turned on.  
EN  
2
Digital input  
GND  
S1A  
S2A  
S3A  
S4A  
S1B  
S2B  
S3B  
S4B  
15  
4
Power supply  
Ground (0 V) reference  
Analog input or output Source pin 1A. Can be an input or output.  
Analog input or output Source pin 2A. Can be an input or output.  
Analog input or output Source pin 3A. Can be an input or output.  
Analog input or output Source pin 4A. Can be an input or output.  
Analog input or output Source pin 1B. Can be an input or output.  
Analog input or output Source pin 2B. Can be an input or output.  
Analog input or output Source pin 3B. Can be an input or output.  
Analog input or output Source pin 4B. Can be an input or output.  
5
6
7
13  
12  
11  
10  
Positive power supply. This pin is the most positive power supply potential. For reliable  
VDD  
VSS  
14  
3
Power supply  
Power supply  
operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD  
and GND.  
Negative power supply. This pin is the most negative power supply potential. In single-  
supply applications, this pin can be connected to ground. For reliable operation, connect a  
decoupling capacitor ranging from 0.1 µF to 10 µF between VSS and GND.  
Copyright © 2016, Texas Instruments Incorporated  
5
MUX508, MUX509  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–40  
MAX  
40  
UNIT  
VDD  
Supply voltage  
VSS  
0.3  
V
VDD – VSS  
40  
Voltage  
Current  
Voltage  
Current  
Voltage  
Current  
VSS – 0.3  
–30  
VDD + 0.3  
30  
V
mA  
V
Digital input pins(2)  
Analog input pins(2)  
Analog output pins(2)  
EN, A0, A1, A2 pins  
Sx, SxA, SxB pins  
D, DA, DB pins  
VSS – 2  
–30  
VDD + 2  
30  
mA  
V
VSS – 2  
–30  
VDD + 2  
30  
mA  
Operating, TA  
Junction, TJ  
Storage, Tstg  
–55  
150  
Temperature  
150  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Only one pin at a time  
7.2 ESD Ratings  
VALUE  
2000  
500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
5
NOM  
MAX  
18  
UNIT  
Dual supply  
(1)  
(2)  
VDD  
VSS  
Positive power-supply voltage  
V
Single supply  
10  
36  
Negative power-supply voltage (dual supply)  
Supply voltage  
–5  
–18  
36  
V
V
VDD – VSS  
10  
VS  
Source pins voltage(3)  
VSS  
VSS  
VSS  
VSS  
–25  
–40  
VDD  
VDD  
VDD  
VDD  
25  
V
VD  
VEN  
VA  
Drain pins voltage  
V
Enable pin voltage  
V
Address pins voltage  
V
ICH  
TA  
Channel current (TA = 25°C)  
Operating temperature  
mA  
°C  
125  
(1) When VSS = 0 V, VDD can range from 10 V to 36 V.  
(2) VDD and VSS can be any value as long as 10 V (VDD – VSS) 36 V, and VDD 5 V.  
(3) VS is the voltage on all the S pins.  
6
Copyright © 2016, Texas Instruments Incorporated  
MUX508, MUX509  
www.ti.com.cn  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
7.4 Thermal Information  
MUX50x  
THERMAL METRIC(1)  
PW (TSSOP)  
16 PINS  
103.8  
36.8  
D (SOIC)  
16 PINS  
78.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
37.2  
49.8  
35.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.7  
8.2  
ψJB  
49.1  
35.4  
RθJC(bot)  
n/a  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics.  
7.5 Electrical Characteristics: Dual Supply  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG SWITCH  
Analog signal range  
On-resistance  
TA = –40°C to +125°C  
VS = 0 V, ICH = 1 mA  
VSS  
VDD  
170  
200  
230  
250  
6
V
125  
145  
RON  
Ω
VS = ±10 V, ICH = 1 mA  
VS = ±10 V, ICH = 1 mA  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
2.4  
22  
On-resistance mismatch  
between channels  
ΔRON  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
9
Ω
11  
45  
RFLAT  
On-resistance flatness  
On-resistance drift  
VS = 10 V, 0 V, –10 V  
VS = 0 V  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
53  
Ω
58  
0.52  
0.01  
%/°C  
nA  
–1  
–10  
–25  
–1  
1
10  
25  
1
Switch state is off,  
IS(OFF)  
ID(OFF)  
ID(ON)  
Input leakage current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
VS = ±10 V, VD = ±10 V(1)  
0.01  
0.01  
Switch state is off,  
Output off leakage current  
Output on leakage current  
TA = -40°C to +85°C  
TA = -40°C to +125°C  
–10  
–50  
–1  
10  
50  
1
nA  
nA  
VS = ±10 V, VD = ±10 V(1)  
Switch state is on,  
VD = ±10 V, VS = floating  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
–10  
–50  
10  
50  
LOGIC INPUT  
VIH  
VIL  
ID  
High-level input voltage  
2.0  
V
V
Low-level input voltage  
Input current  
0.8  
0.15  
µA  
(1) When VS is positive, VD is negative, and vice versa.  
Copyright © 2016, Texas Instruments Incorporated  
7
MUX508, MUX509  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Electrical Characteristics: Dual Supply (continued)  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
PARAMETER  
SWITCH DYNAMICS(2)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ns  
88  
136  
144  
151  
75  
VS = ±10 V, RL = 300 Ω,  
tON  
tOFF  
tt  
Enable turn-on time  
TA = –40°C to +85°C  
CL= 35 pF  
TA = –40°C to +125°C  
63  
92  
VS = ±10 V, RL = 300 Ω,  
Enable turn-off time  
Transition time  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
83  
ns  
CL= 35 pF  
90  
143  
151  
157  
VS = 10 V, RL = 300 Ω,  
CL= 35 pF,  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
ns  
Break-before-make time  
delay  
tBBM  
VS = 10 V, RL = 300 Ω, CL= 35 pF, TA = –40°C to +125°C  
30  
54  
ns  
VS = 0 V  
CL = 1 nF, RS = 0 Ω  
0.3  
±0.6  
–96  
–85  
–96  
–88  
2.4  
QJ  
Charge injection  
Off-isolation  
pC  
VS = –15 V to +15 V  
Nonadjacent channel to D, DA, DB  
Adjacent channel to D, DA, DB  
Nonadjacent channels  
RL = 50 Ω, VS = 1 VRMS  
f = 1 MHz  
,
,
dB  
Channel-to-channel  
crosstalk  
RL = 50 Ω, VS = 1 VRMS  
dB  
pF  
pF  
f = 1 MHz  
Adjacent channels  
CS(OFF)  
CD(OFF)  
Input off-capacitance  
Output off-capacitance  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
2.9  
8.4  
5
MUX508  
MUX509  
MUX508  
MUX509  
7.5  
4.3  
9.4  
10.6  
7.7  
Input/Output on-  
capacitance  
CD(ON)  
f = 1 MHz, VS = 0 V  
pF  
6.7  
POWER SUPPLY  
45  
25  
59  
62  
83  
34  
37  
57  
All VA = 0 V or 3.3 V,  
VS = 0 V, VEN = 3.3 V,  
VDD supply current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
µA  
µA  
All VA = 0 V or 3.3 V,  
VS = 0 V, VEN = 3.3 V,  
VSS supply current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
(2) Specified by design, not production tested.  
8
Copyright © 2016, Texas Instruments Incorporated  
MUX508, MUX509  
www.ti.com.cn  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
7.6 Electrical Characteristics: Single Supply  
at TA = 25°C, VDD = 12 V, and VSS = 0 V (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
235  
3.1  
MAX  
UNIT  
V
ANALOG SWITCH  
Analog signal range  
On-resistance  
TA = –40°C to +125°C  
VS = 10 V, ICH = 1 mA  
VSS  
VDD  
340  
390  
430  
12  
RON  
TA = –40°C to +85°C  
Ω
TA = –40°C to +125°C  
ΔRON  
On-resistance match  
On-resistance drift  
Input leakage current  
VS = 10 V, ICH = 1 mA  
VS = 10 V  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
19  
Ω
23  
0.47  
0.01  
%/°C  
nA  
–1  
–10  
–25  
–1  
1
10  
25  
1
Switch state is off,  
IS(OFF)  
ID(OFF)  
ID(ON)  
VS = 1 V and VD = 10 V,  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
or VS = 10 V and VD = 1 V(2)  
0.01  
0.01  
Switch state is off,  
Output off leakage current VS = 1 V and VD = 10 V,  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
–10  
–50  
–1  
10  
50  
1
nA  
nA  
or VS = 10 V and VD = 1 V(2)  
Switch state is on,  
Output on leakage current VD = 1 V and 10 V,  
VS = floating  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
–10  
–50  
10  
50  
LOGIC INPUT  
VIH  
VIL  
ID  
High-level input voltage  
2.0  
V
V
Low-level input voltage  
Input current  
0.8  
0.15  
µA  
SWITCH DYNAMIC CHARACTERISTICS  
85  
48  
87  
140  
145  
149  
83  
VS = 8 V, RL = 300 Ω,  
CL= 35 pF  
tON  
Enable turn-on time  
Enable turn-off time  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
ns  
ns  
VS = 8 V, RL = 300 Ω,  
CL= 35 pF  
tOFF  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
94  
102  
147  
VS = 8 V, CL= 35 pF  
VS = 8 V, RL = 300 Ω,  
CL= 35 pF,  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
153  
155  
tt  
Transition time  
ns  
VS = 8 V, RL = 300 Ω,  
CL= 35 pF,  
Break-before-make time  
delay  
tBBM  
VS = 8 V, RL = 300 Ω, CL= 35 pF, TA = –40°C to +125°C  
30  
54  
ns  
VS = 6 V  
CL = 1 nF, RS = 0 Ω  
0.15  
±0.4  
-96  
-85  
–96  
-88  
2.7  
9.1  
5
QJ  
Charge injection  
Off-isolation  
pC  
VS = 0 V to 12 V,  
Nonadjacent channel to D, DA, DB  
Adjacent channel to D, DA, DB  
Nonadjacent channels  
RL = 50 Ω, VS = 1 VRMS  
f = 1 MHz  
,
,
dB  
Channel-to-channel  
crosstalk  
RL = 50 Ω, VS = 1 VRMS  
dB  
pF  
pF  
f = 1 MHz  
Adjacent channels  
CS(OFF)  
CD(OFF)  
Input off-capacitance  
Output off-capacitance  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
3.2  
10  
5.7  
12  
8
MUX508  
MUX509  
MUX508  
MUX509  
10.8  
6.9  
Input/Output on-  
capacitance  
CD(ON)  
f = 1 MHz, VS = 6 V  
pF  
(1) Specified by design, not production tested.  
(2) When VS is 1 V, VD is 10 V, and vice versa.  
Copyright © 2016, Texas Instruments Incorporated  
9
MUX508, MUX509  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Electrical Characteristics: Single Supply (continued)  
at TA = 25°C, VDD = 12 V, and VSS = 0 V (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
µA  
POWER SUPPLY  
42  
53  
56  
77  
38  
31  
51  
All VA = 0 V or 3.3 V,  
VS= 0 V, VEN = 3.3 V  
VDD supply current  
VSS supply current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
23  
All VA = 0 V or 3.3 V,  
VS = 0 V, VEN = 3.3 V  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
µA  
10  
Copyright © 2016, Texas Instruments Incorporated  
 
MUX508, MUX509  
www.ti.com.cn  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
7.7 Typical Characteristics  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
250  
250  
200  
150  
100  
50  
TA = 125°C  
TA = 85°C  
VDD = 15 V  
VSS = œ15 V  
VDD = 13.5 V  
VSS = œ13.5 V  
200  
150  
100  
50  
TA = 25°C  
VDD = 18 V  
VSS = œ18 V  
VDD = 16.5 V  
VSS = œ16.5 V  
TA = œ40°C  
TA = 0°C  
0
0
0
5
10  
15  
20  
0
6
12  
18  
œ20  
œ15  
œ10  
œ5  
œ18  
œ12  
œ6  
C002  
Source or Drain Voltage (V)  
Source or Drain Voltage (V)  
C001  
VDD = 15 V, VSS = –15 V  
Figure 2. On-Resistance vs Source or Drain Voltage  
Figure 1. On-Resistance vs Source or Drain Voltage  
700  
700  
VDD = 5 V  
VSS = œ5 V  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
VDD = 6 V  
VSS = œ6 V  
TA = 85°C  
TA = 125°C  
TA = 25°C  
VDD = 7 V  
VSS = œ7 V  
TA = 0°C  
TA = œ40°C  
0
2
4
6
8
0
2
4
6
8
10  
12  
œ8  
œ6  
œ4  
œ2  
C004  
C003  
Source or Drain Voltage (V)  
Source or Drain Voltage (V)  
VDD = 12 V, VSS = 0 V  
Figure 4. On-Resistance vs Source or Drain Voltage  
Figure 3. On-Resistance vs Source or Drain Voltage  
250  
700  
VDD = 10 V  
VSS = 0 V  
VDD = 30 V  
VSS = 0 V  
600  
500  
400  
300  
200  
100  
0
200  
150  
100  
50  
VDD = 12 V  
VSS = 0 V  
VDD = 14 V  
VSS = 0 V  
VDD = 36 V  
VDD = 33 V  
VSS = 0 V  
VSS = 0 V  
0
0
6
12  
18  
24  
30  
36  
0
2
4
6
8
10  
12  
14  
C023  
Source or Drain Voltage (V)  
Source or Drain Voltage (V)  
C005  
Figure 5. On-Resistance vs Source or Drain Voltage  
Figure 6. On-Resistance vs Source or Drain Voltage  
Copyright © 2016, Texas Instruments Incorporated  
11  
MUX508, MUX509  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
250  
250  
200  
150  
100  
50  
200  
150  
100  
50  
0
0
0
6
12  
18  
24  
0
6
12  
œ12  
œ6  
C024  
C029  
Source or Drain Voltage (V)  
Source or Drain Voltage (V)  
VDD = 24 V, VSS = 0 V  
Figure 7. On-Resistance vs Source or Drain Voltage  
VDD = 12 V, VSS = –12 V  
Figure 8. On-Resistance vs Source or Drain Voltage  
900  
900  
ID(ON)+  
ID(ON)+  
600  
300  
600  
300  
IS(OFF)+  
ID(OFF)+  
ID(OFF)+  
IS(OFF)+  
0
0
IS(OFF)œ  
œ300  
œ600  
œ900  
œ300  
œ600  
œ900  
IS(OFF)œ  
ID(OFF)œ  
ID(OFF)œ  
ID(ON)œ  
ID(ON)œ  
0
25  
50  
75  
100 125 150  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
œ75 œ50 œ25  
C006  
C007  
Temperature (°C)  
Temperature (°C)  
VDD = 15 V, VSS = –15 V  
VDD = 12 V, VSS = 0 V  
Figure 9. Leakage Current vs Temperature  
Figure 10. Leakage Current vs Temperature  
2
1
2
1
VDD = 15 V  
VSS = œ15 V  
VDD = 15 V  
VSS = œ15 V  
0
0
VDD = 10 V  
VSS = œ10 V  
VDD = 10 V  
VSS = œ10 V  
VDD = 12 V  
VSS = 0 V  
œ1  
œ2  
œ1  
œ2  
VDD = 12 V  
VSS = 0 V  
0
5
10  
15  
0
5
10  
15  
œ15  
œ10  
œ5  
œ15  
œ10  
œ5  
C008  
C025  
Source Voltage (V)  
Source Voltage (V)  
MUX508, source-to-drain  
Figure 11. Charge Injection vs Source Voltage  
MUX509, source-to-drain  
Figure 12. Charge Injection vs Source Voltage  
12  
Copyright © 2016, Texas Instruments Incorporated  
MUX508, MUX509  
www.ti.com.cn  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
9
150  
120  
90  
60  
30  
0
tON (VDD = 15 V, VSS = œ15 V)  
VDD = 15 V  
VSS = œ15 V  
6
3
tON (VDD = 12 V, VSS = 0 V)  
VDD = 10 V  
VSS = œ10 V  
0
VDD = 12 V  
VSS = 0 V  
œ3  
œ6  
œ9  
tOFF (VDD = 15 V, VSS = œ15 V)  
tOFF (VDD = 12 V, VSS = 0 V)  
0
5
10  
15  
0
25  
50  
75  
100 125 150  
œ15  
œ10  
œ5  
œ75 œ50 œ25  
C011  
Drain voltage (V)  
Temperature (°C)  
C010  
Drain-to-source  
Figure 13. Charge Injection vs Source or Drain Voltage  
Figure 14. Turn-On and Turn-Off Times vs Temperature  
0
0
œ20  
œ20  
Adjacent Channel to D (Output)  
Adjacent Channels  
œ40  
œ60  
œ40  
œ60  
œ80  
œ80  
œ100  
œ120  
œ140  
œ100  
œ120  
œ140  
Non-Adjacent Channels  
Non-Adjacent Channel to D (Output)  
10k  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
1G  
C013  
C012  
Frequency (Hz)  
Frequency (Hz)  
Figure 15. Off Isolation vs Frequency  
Figure 16. Crosstalk vs Frequency  
100  
10  
3
0
VDD = 5 V  
VDD = 15 V  
VSS = œ5 V  
VSS = œ15 V  
1
œ3  
œ6  
œ9  
0.1  
0.01  
10  
100  
1k  
10k  
100k  
100k  
1M  
10M  
100M  
1G  
C014  
C018  
Frequency (Hz)  
Frequency (Hz)  
Figure 17. THD+N vs Frequency  
Figure 18. On Response vs Frequency  
Copyright © 2016, Texas Instruments Incorporated  
13  
MUX508, MUX509  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
18  
18  
15  
12  
9
15  
12  
CD(ON  
)
CD(OFF  
)
9
6
3
0
CD(ON  
)
6
CD(OFF  
)
CS(OFF)  
3
CS(OFF)  
10  
0
0
5
10  
15  
0
5
15  
œ15  
œ10  
œ5  
œ15  
œ10  
œ5  
C026  
Source Voltage (V)  
C015  
Source or Drain Voltage (V)  
MUX508, VDD = 15 V, VSS = –15 V  
Figure 19. Capacitance vs Source Voltage  
MUX509, VDD = 15 V, VSS = –15 V  
Figure 20. Capacitance vs Source Voltage  
18  
15  
12  
9
18  
15  
12  
9
CD(ON  
)
CD(OFF  
)
CD(ON  
)
6
6
CD(OFF  
)
CS(OFF)  
3
3
CS(OFF)  
25  
0
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
30  
C016  
C028  
Source Voltage (V)  
Source or Drain Voltage (V)  
MUX508, VDD = 30 V, VSS = 0 V  
MUX509, VDD = 30 V, VSS = 0 V  
Figure 22. Capacitance vs Source Voltage  
Figure 21. Capacitance vs Source Voltage  
18  
15  
12  
9
18  
15  
12  
9
CD(ON)  
CD(OFF  
)
CD(ON  
)
6
6
CD(OFF)  
CS(OFF)  
3
3
CS(OFF)  
0
0
0
3
6
9
12  
0
3
6
Source or Drain Voltage (V)  
9
12  
C027  
Source or Drain Voltage (V)  
C022  
MUX508, VDD = 12 V, VSS = 0 V  
Figure 23. Capacitance vs Source Voltage  
MUX509, VDD = 12 V, VSS = 0 V  
Figure 24. Capacitance vs Source Voltage  
14  
Copyright © 2016, Texas Instruments Incorporated  
MUX508, MUX509  
www.ti.com.cn  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
25  
20  
15  
10  
5
0
œ5  
œ10  
œ15  
œ20  
œ25  
0
5
10  
15  
20  
25  
œ25 œ20 œ15 œ10 œ5  
Source Current (mA)  
C021  
Figure 25. Source Current vs Drain Current  
8 Parameter Measurement Information  
8.1 Truth Tables  
Table 1 and Table 2 show the truth tables for the MUX508 and MUX509, respectively.  
Table 1. MUX508 Truth Table  
EN  
0
A2  
X(1)  
0
A1  
X(1)  
0
A0  
X(1)  
0
STATE  
All channels are off  
Channel 1 on  
Channel 2 on  
Channel 3 on  
Channel 4 on  
Channel 5 on  
Channel 6 on  
Channel 7 on  
Channel 8 on  
1
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
(1) X denotes don't care..  
Table 2. MUX509 Truth Table  
EN  
0
A1  
X(1)  
0
A0  
X(1)  
0
STATE  
All channels are off  
1
Channels 1A and 1B on  
Channels 2A and 2B on  
Channels 3A and 3B on  
Channels 4A and 4B on  
1
0
1
1
1
0
1
1
1
(1) X denotes don't care.  
Copyright © 2016, Texas Instruments Incorporated  
15  
 
 
MUX508, MUX509  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
8.2 On-Resistance  
The on-resistance of the MUX50x is the ohmic resistance across the source (Sx, SxA, or SxB) and drain (D, DA,  
or DB) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol RON is  
used to denote on-resistance. The measurement setup used to measure RON is shown in Figure 26. Voltage (V)  
and current (ICH) are measured using this setup, and RON is computed as shown in Equation 1.  
V
S
D
ICH  
VS  
Figure 26. On-Resistance Measurement Setup  
RON = V / ICH  
(1)  
8.3 Off-Leakage Current  
There are two types of leakage currents associated with a switch during the off state:  
1. Source off-leakage current  
2. Drain off-leakage current  
Source off-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is off. This current is denoted by the symbol IS(OFF)  
.
Drain off-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
off. This current is denoted by the symbol ID(OFF)  
.
The setup used to measure both types of off-leakage currents is shown in Figure 27.  
Is (OFF)  
A
ID (OFF)  
A
S
D
VS  
VD  
Figure 27. Off-Leakage Measurement Setup  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
 
MUX508, MUX509  
www.ti.com.cn  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
8.4 On-Leakage Current  
On-leakage current is defined as the leakage current that flows into or out of the drain pin when the switch is in  
the on state. The source pin is left floating during the measurement. Figure 28 shows the circuit used for  
measuring the on-leakage current, denoted by ID(ON)  
.
ID (ON)  
A
S
D
NC  
NC = No Connection  
VD  
Figure 28. On-Leakage Measurement Setup  
8.5 Transition Time  
Transition time is defined as the time taken by the output of the MUX50x to rise or fall to 90% of the transition  
after the digital address signal has fallen or risen to the 50% of the transition. Figure 29 shows the setup used to  
measure transition time, denoted by the symbol tt.  
VDD  
VSS  
3 V  
VDD  
VSS  
Address  
Signal (VIN  
50%  
50%  
)
S1  
VS1  
A0  
A1  
A2  
0 V  
S2-S7  
S8  
VIN  
tt  
tt  
VS8  
VS1  
90%  
Output  
MUX508  
Output  
EN  
D
2 V  
GND  
300 Ω  
35 pF  
90%  
VS8  
Copyright © 2016, Texas Instruments Incorporated  
Figure 29. Transition-Time Measurement Setup  
Copyright © 2016, Texas Instruments Incorporated  
17  
 
 
MUX508, MUX509  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
8.6 Break-Before-Make Delay  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the MUX50x is  
switching. The MUX50x output first breaks from the on-state switch before making the connection with the next  
on-state switch. The time delay between the break and the make is known as a break-before-make delay.  
Figure 30 shows the setup used to measure break-before-make delay, denoted by the symbol tBBM  
.
VDD  
VSS  
3 V  
VSS  
VDD  
Address  
Signal (VIN)  
S1  
VS  
A0  
A1  
A2  
0 V  
S2-S7  
S8  
VIN  
MUX508  
Output  
80%  
80%  
Output  
2 V  
EN  
D
GND  
300 Ω  
35 pF  
tBBM  
Copyright © 2016, Texas Instruments Incorporated  
Figure 30. Break-Before-Make Delay Measurement Setup  
18  
Copyright © 2016, Texas Instruments Incorporated  
 
MUX508, MUX509  
www.ti.com.cn  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
8.7 Turn-On and Turn-Off Time  
Turn-on time is defined as the time taken by the output of the MUX50x to rise to a 90% final value after the  
enable signal has risen to a 50% final value. Figure 31 shows the setup used to measure turn-on time. Turn-on  
time is denoted by the symbol tON  
.
Turn-off time is defined as the time taken by the output of the MUX50x to fall to a 10% initial value after the  
enable signal has fallen to a 50% initial value. Figure 31 shows the setup used to measure turn-off time. Turn-off  
time is denoted by the symbol tOFF  
.
VDD  
VSS  
3 V  
VDD  
VSS  
Enable  
Drive (VIN)  
50%  
50%  
S1  
VS  
A0  
A1  
A2  
S2-S8  
0 V  
tOFF (EN)  
MUX508  
tON (EN)  
0.9 VS  
Output  
Output  
EN  
D
GND  
300 Ω  
35 pF  
0.1 VS  
VIN  
Copyright © 2016, Texas Instruments Incorporated  
Figure 31. Turn-On and Turn-Off Time Measurement Setup  
Copyright © 2016, Texas Instruments Incorporated  
19  
 
MUX508, MUX509  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
8.8 Charge Injection  
The MUX50x have a simple transmission-gate topology. Any mismatch in capacitance between the NMOS and  
PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the gate  
signal. The amount of charge injected into the source or drain of the device is known as charge injection, and is  
denoted by the symbol QINJ. Figure 32 shows the setup used to measure charge injection.  
VDD  
VSS  
VDD  
VSS  
A0  
A1  
A2  
3 V  
VEN  
MUX508  
0 V  
RS  
S
D
VOUT  
EN  
VOUT  
CL  
VOUT  
VS  
1 nF  
GND  
QINJ = CL  
×
VOUT  
VEN  
Copyright © 2016, Texas Instruments Incorporated  
Figure 32. Charge-Injection Measurement Setup  
20  
Copyright © 2016, Texas Instruments Incorporated  
 
MUX508, MUX509  
www.ti.com.cn  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
8.9 Off Isolation  
Off isolation is defined as the voltage at the drain pin (D, DA, or DB) of the MUX50x when a 1-VRMS signal is  
applied to the source pin (Sx, SxA, or SxB) of an off-channel. Figure 33 shows the setup used to measure off  
isolation. Use Equation 2 to compute off isolation.  
VDD  
VSS  
0.1 µF  
0.1 µF  
Network Analyzer  
VSS  
VDD  
50  
S
50 Ω  
VS  
D
VOUT  
RL  
50 Ω  
GND  
Figure 33. Off Isolation Measurement Setup  
÷
VOUT  
VS  
Off Isolation = 20 Log  
«
(2)  
8.10 Channel-to-Channel Crosstalk  
Channel-to-channel crosstalk is defined as the voltage at the source pin (Sx, SxA, or SxB) of an off-channel,  
when a 1-VRMS signal is applied at the source pin of an on-channel. Figure 34 shows the setup used to measure,  
and Equation 3 is the equation used to compute, channel-to-channel crosstalk.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VSS  
VDD  
Network Analyzer  
VOUT  
S1  
RL  
50  
R
S2  
50 Ω  
VS  
GND  
Figure 34. Channel-to-Channel Crosstalk Measurement Setup  
«
÷
VOUT  
VS  
Channel-to-Channel Crosstalk = 20 Log  
(3)  
21  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
 
MUX508, MUX509  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
8.11 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by < 3 dB when the input is applied to the  
source pin of an on-channel and the output is measured at the drain pin of the MUX50x. Figure 35 shows the  
setup used to measure bandwidth of the mux. Use Equation 4 to compute the attenuation.  
VDD  
VSS  
0.1 µF  
0.1 µF  
Network Analyzer  
VSS  
VDD  
V1  
50  
S
VS  
V2  
D
VOUT  
RL  
50  
GND  
Figure 35. Bandwidth Measurement Setup  
«
÷
V2  
Attenuation = 20 Log  
V
1
(4)  
8.12 THD + Noise  
The total harmonic distortion (THD) of a signal is defined as the ratio of the sum of the powers of all harmonic  
components to the power of the fundamental frequency at the mux output. The on-resistance of the MUX50x  
varies with the amplitude of the input signal and results in distortion when the drain pin is connected to a low-  
impedance load. Total harmonic distortion plus noise is denoted as THD+N. Figure 36 shows the setup used to  
measure the THD+N of the MUX50x.  
VDD  
VSS  
0.1 µF  
0.1 µF  
Audio Precision  
RS  
VSS  
VDD  
S
IN  
VS  
5 Vrms  
D
VIN  
VOUT  
RL  
10 kΩ  
GND  
Figure 36. THD+N Measurement Setup  
22  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
MUX508, MUX509  
www.ti.com.cn  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
9 Detailed Description  
9.1 Overview  
The MUX50x are a family of analog multiplexers. The Functional Block Diagram section provides a top-level  
block diagram of both the MUX508 and MUX509. The MUX508 is an eight-channel, single-ended, analog mux.  
The MUX509 is a four-channel, differential or dual 4:1, single-ended, analog mux. Each channel is turned on or  
turned off based on the state of the address lines and enable pin.  
9.2 Functional Block Diagram  
MUX509  
MUX508  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S1A  
S2A  
S3A  
S4A  
S1B  
S2B  
S3B  
S4B  
DA  
DB  
D
1-of-4  
1-of-8  
Decoder  
Decoder  
A0  
A1  
EN  
A0  
A1  
A2  
EN  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
23  
 
MUX508, MUX509  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Ultralow Leakage Current  
The MUX50x provide extremely low on- and off-leakage currents. The MUX50x are capable of switching signals  
from high source-impedance inputs into a high input-impedance op amp with minimal offset error because of  
these ultralow leakage currents. Figure 37 shows typical leakage currents of the MUX50x versus temperature.  
900  
ID(ON)+  
600  
300  
0
ID(OFF)+  
IS(OFF)+  
IS(OFF)œ  
œ300  
ID(OFF)œ  
œ600  
ID(ON)œ  
œ900  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
C006  
Temperature (°C)  
Figure 37. Leakage Current vs Temperature  
9.3.2 Ultralow Charge Injection  
The MUX50x have a simple transmission gate topology, as shown in Figure 38. Any mismatch in the stray  
capacitance associated with the NMOS and PMOS transistors creates an output level change whenever the  
switch is opened or closed.  
OFF ON  
CGDN  
CGSN  
D
S
CGSP  
CGDP  
OFF ON  
Figure 38. Transmission Gate Topology  
24  
Copyright © 2016, Texas Instruments Incorporated  
 
 
MUX508, MUX509  
www.ti.com.cn  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
Feature Description (continued)  
The MUX50x have special charge-injection cancellation circuitry that reduces the source-to-drain charge injection  
to as low as 0.3 pC at VS = 0 V, and ±0.6 pC in the full signal range, as shown in Figure 39.  
2
1
0
VDD = 15 V  
VSS = œ15 V  
VDD = 10 V  
VSS = œ10 V  
œ1  
œ2  
VDD = 12 V  
VSS = 0 V  
0
5
10  
15  
œ15  
œ10  
œ5  
C025  
Source Voltage (V)  
Figure 39. Source-to-Drain Charge Injection vs Source or Drain voltage  
The drain-to-source charge injection becomes important when the device is used as a demultiplexer (demux),  
where D becomes the input and Sx becomes the output. Figure 40 shows the drain-to-source charge injection  
across the full signal range.  
9
VDD = 15 V  
VSS = œ15 V  
6
3
VDD = 10 V  
VSS = œ10 V  
0
VDD = 12 V  
VSS = 0 V  
œ3  
œ6  
œ9  
0
5
10  
15  
œ15  
œ10  
œ5  
C011  
Drain voltage (V)  
Figure 40. Drain-to-Source Charge Injection vs Source or Drain voltage  
9.3.3 Bidirectional Operation  
The MUX50x are operable as both a mux or demux. The source (Sx, SxA, SxB) and drain (D, DA, DB) pins of  
the MUX50x are used either as input or output. Each MUX50x channel has very similar characteristics in both  
directions.  
Copyright © 2016, Texas Instruments Incorporated  
25  
 
 
MUX508, MUX509  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Feature Description (continued)  
9.3.4 Rail-to-Rail Operation  
A valid analog signal for the MUX50x ranges from VSS to VDD. The input signal to the MUX50x can swing from  
VSS to VDD without any significant degradation in performance. The on-resistance of the MUX50x varies with  
input signal, as shown in Figure 41.  
250  
VDD = 15 V  
VSS = œ15 V  
VDD = 13.5 V  
VSS = œ13.5 V  
200  
150  
100  
50  
VDD = 18 V  
VSS = œ18 V  
VDD = 16.5 V  
VSS = œ16.5 V  
0
0
5
10  
15  
20  
œ20  
œ15  
œ10  
œ5  
Source or Drain Voltage (V)  
C001  
Figure 41. On-Resistance vs Source or Drain Voltage  
9.4 Device Functional Modes  
When the EN pin of the MUX50x is pulled high, one of the switches is closed based on the state of the address  
lines. When the EN pin is pulled low, all the switches are in an open state irrespective of the state of the address  
lines. The EN pin can be connected to VDD (as high as 36 V).  
26  
Copyright © 2016, Texas Instruments Incorporated  
 
MUX508, MUX509  
www.ti.com.cn  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
10 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The MUX50x family offers outstanding input/output leakage currents and ultralow charge injection. These devices  
operate up to 36 V, and offer true rail-to-rail input and output. The on-capacitance of the MUX50x is very low.  
These features makes the MUX50x a precision, robust, high-performance analog multiplexer for high-voltage,  
industrial applications.  
10.2 Typical Application  
Figure 42 shows a 16-bit, differential, four-channel, multiplexed, data-acquisition system. This example is typical  
in industrial applications that require low distortion and a high-voltage differential input. The circuit uses the  
ADS8864, a 16-bit, 400-kSPS successive-approximation-resistor (SAR) analog-to-digital converter (ADC), along  
with a precision, high-voltage, signal-conditioning front end, and a four-channel differential mux. This application  
example details the process for optimizing a precision, high-voltage, front-end drive circuit using the MUX509,  
OPA192 and OPA140 to achieve excellent dynamic performance and linearity with the ADS8864.  
Analog Inputs  
REF3140  
RC Filter  
OPA350  
RC Filter  
Bridge Sensor  
Thermocouple  
Reference Driver  
Gain Network  
Gain Network  
OPA192  
+
MUX509  
REF  
+
OPA140  
VINP  
Charge  
Kickback  
Filter  
Gain Network  
OPA192  
+
ADS8864  
Current Sensing  
Photo  
VINM  
Detector  
LED  
High-Voltage Multiplexed Input  
High-Voltage Level Translation  
VCM  
Optical Sensor  
Copyright © 2016, Texas Instruments Incorporated  
Figure 42. 16-Bit Precision Multiplexed Data-Acquisition System for High-Voltage Inputs With Lowest  
Distortion  
10.2.1 Design Requirements  
The primary objective is to design a ±20 V, differential, four-channel, multiplexed, data-acquisition system with  
lowest distortion using the 16-bit ADS8864 at a throughput of 400 kSPS for a 10-kHz, full-scale, pure, sine-wave  
input. The design requirements for this block design are:  
System supply voltage: ±15 V  
ADC supply voltage: 3.3 V  
ADC sampling rate: 400 kSPS  
ADC reference voltage (REFP): 4.096 V  
System input signal: A high-voltage differential input signal with a peak amplitude of 20 V and frequency  
(fIN) of 10 kHz are applied to each differential input of the mux.  
Copyright © 2016, Texas Instruments Incorporated  
27  
 
MUX508, MUX509  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Typical Application (continued)  
10.2.2 Detailed Design Procedure  
The purpose of this precision design is to design an optimal, high-voltage, multiplexed, data-acquisition system  
for highest system linearity and fast settling. The overall system block diagram is illustrated in Figure 42. The  
circuit is a multichannel, data-acquisition signal chain consisting of an input low-pass filter, mux, mux output  
buffer, attenuating SAR ADC driver, and the reference driver. The architecture allows fast sampling of multiple  
channels using a single ADC, providing a low-cost solution. This design systematically approaches each analog  
circuit block to achieve a 16-bit settling for a full-scale input stage voltage and linearity for a 10-kHz sinusoidal  
input signal at each input channel.  
For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test  
results, see TI Precision Design TIPD151, 16-Bit, 400-kSPS, 4-Channel Multiplexed Data-Acquisition System  
for High-Voltage Inputs with Lowest Distortion.  
10.2.3 Application Curve  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
0
5
10  
15  
20  
œ20  
œ15  
œ10  
œ5  
C030  
ADC Differential Peak-to-Peak Input (V)  
Figure 43. ADC 16-Bit Linearity Error for the Multiplexed Data-Acquisition Block  
28  
Copyright © 2016, Texas Instruments Incorporated  
MUX508, MUX509  
www.ti.com.cn  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
11 Power-Supply Recommendations  
The MUX50x operates across a wide supply range of ±5 V to ±18 V (10 V to 36 V in single-supply mode). The  
MUX508 and MUX509 operate equally well with either dual supplies (±5 V to ±18 V), or a single supply (10 V to  
36 V). They also perform well with unsymmetric supplies such as VDD = 12 V and VSS = –5 V. For reliable  
operation, use a supply decoupling capacitor with a capacitance between 0.1 µF to 10 µF at both the VDD and  
VSS pins to ground.  
The on-resistance of the MUX50x varies with supply voltage, as shown in Figure 44.  
250  
VDD = 15 V  
VSS = œ15 V  
VDD = 13.5 V  
VSS = œ13.5 V  
200  
150  
100  
50  
VDD = 18 V  
VSS = œ18 V  
VDD = 16.5 V  
VSS = œ16.5 V  
0
0
5
10  
15  
20  
œ20  
œ15  
œ10  
œ5  
Source or Drain Voltage (V)  
C001  
Figure 44. On-Resistance Variation With Supply and Input Voltage  
Copyright © 2016, Texas Instruments Incorporated  
29  
 
MUX508, MUX509  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
Figure 45 shows an example of a PCB layout with the MUX508IPW, and Figure 46 shows an example of a PCB  
layout with MUX509IPW. The guidelines provided in this section are also applicable to the SOIC MUX508ID and  
MUX509ID package variants as well.  
Some key considerations are:  
1. Decouple the VDD and VSS pins with a 0.1-µF capacitor, placed as close to the pin as possible. Make sure  
that the capacitor voltage rating is sufficient for the VDD and VSS supplies.  
2. Keep the input lines as small as possible. For the MUX509 differential signals, make sure the A inputs and B  
inputs are as symmetric as possible.  
3. Use a solid ground plane to help distribute heat and reduce electromagnetic interference (EMI) noise pickup.  
4. Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible and only make perpendicular crossings when necessary.  
12.2 Layout Example  
Via to  
ground plane  
Via to  
ground plane  
AO  
EN  
VSS  
A1  
A2  
C
C
GND  
VDD  
S5  
S1  
S2  
MUX508IPW  
S3  
S4  
D
S6  
S7  
S8  
Copyright © 2016, Texas Instruments Incorporated  
Figure 45. MUX508IPW Layout Example  
Via to  
ground plane  
Via to  
ground plane  
AO  
EN  
A1  
C
C
GND  
VDD  
VSS  
S1A  
S2A  
S1B  
MUX509IPW  
S2B  
S3B  
S3A  
S4A  
DA  
S4B  
DB  
Copyright © 2016, Texas Instruments Incorporated  
Figure 46. MUX509IPW Layout Example  
30  
版权 © 2016, Texas Instruments Incorporated  
 
 
MUX508, MUX509  
www.ti.com.cn  
ZHCSEV2C JANUARY 2016REVISED SEPTEMBER 2016  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档ꢀ  
ADS866x 支持双极输入范围的 12 位、500kSPS4 通道和  
号:SBAS492)  
8
通道单电源 SAR ADC(文献编  
OPAx140 高精度、低噪声、轨到轨输出、11 MHz JFET 运算放大器》(文献编号:SBOS498)  
OPAx192 具有 e-trim™ 36V、精密、轨到轨输入/输出、低偏移电压、低输入偏置电流运算放大器》(文  
献编号:SBOS620)  
13.2 相关链接  
3 列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,以及样片与购买的快速访问。  
3. 相关链接  
部件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
MUX508  
MUX509  
13.3 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
13.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
31  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MUX508ID  
MUX508IDR  
MUX508IPW  
MUX508IPWR  
MUX509ID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
16  
16  
16  
16  
16  
16  
16  
16  
40  
RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
M36508D  
2500 RoHS & Green  
90 RoHS & Green  
2000 RoHS & Green  
40 RoHS & Green  
2500 RoHS & Green  
90 RoHS & Green  
2000 RoHS & Green  
SN  
M36508D  
MUX508B  
MUX508B  
M36509D  
M36509D  
MUX509C  
MUX509C  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
NIPDAU  
NIPDAU  
SN  
MUX509IDR  
MUX509IPW  
MUX509IPWR  
SOIC  
D
SN  
TSSOP  
TSSOP  
PW  
PW  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MUX508IDR  
MUX508IPWR  
MUX509IDR  
MUX509IPWR  
SOIC  
TSSOP  
SOIC  
D
PW  
D
16  
16  
16  
16  
2500  
2000  
2500  
2000  
330.0  
330.0  
330.0  
330.0  
16.8  
12.4  
16.8  
12.4  
6.5  
6.9  
6.5  
6.9  
10.3  
5.6  
2.1  
1.6  
2.1  
1.6  
8.0  
8.0  
8.0  
8.0  
16.0  
12.0  
16.0  
12.0  
Q1  
Q1  
Q1  
Q1  
10.3  
5.6  
TSSOP  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MUX508IDR  
MUX508IPWR  
MUX509IDR  
MUX509IPWR  
SOIC  
TSSOP  
SOIC  
D
PW  
D
16  
16  
16  
16  
2500  
2000  
2500  
2000  
366.0  
356.0  
366.0  
356.0  
364.0  
356.0  
364.0  
356.0  
50.0  
35.0  
50.0  
35.0  
TSSOP  
PW  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-May-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
MUX508ID  
MUX508IPW  
MUX509ID  
D
PW  
D
SOIC  
TSSOP  
SOIC  
16  
16  
16  
16  
40  
90  
40  
90  
517  
530  
517  
530  
7.87  
10.2  
7.87  
10.2  
635  
3600  
635  
4.25  
3.5  
4.25  
3.5  
MUX509IPW  
PW  
TSSOP  
3600  
Pack Materials-Page 3  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY