NSQAU040 [TI]

DP83848J PHYTER Mini LS Commercial Temperature Single Port 10/100 Mb/s Ethernet Transceiver; DP83848J PHYTER迷你LS商业温度单端口10/100 Mb / s以太网收发器
NSQAU040
型号: NSQAU040
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DP83848J PHYTER Mini LS Commercial Temperature Single Port 10/100 Mb/s Ethernet Transceiver
DP83848J PHYTER迷你LS商业温度单端口10/100 Mb / s以太网收发器

以太网 局域网(LAN)标准
文件: 总80页 (文件大小:705K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DP83848J  
DP83848J PHYTER Mini LS Commercial Temperature Single Port 10/100 Mb/s  
Ethernet Transceiver  
Literature Number: SNLS250D  
May 2008  
DP83848J PHYTER® Mini LS  
Commercial Temperature Single Port 10/100 Ethernet  
Transceiver  
General Description  
Features  
The DP83848J addresses the quality, reliability and small  
form factor required for space sensitive applications in  
embedded systems.  
Low-power 3.3V, 0.18µm CMOS technology  
Auto-MDIX for 10/100 Mb/s  
Energy Detection Mode  
The DP83848J offers performance far exceeding the  
IEEE specifications, with superior interoperability and  
industry leading performance beyond 137m of Cat-V  
cable. The DP83848J also offers Auto-MDIX to remove  
cabling complications. DP83848J has superior ESD pro-  
tection, greater than 4KV Human Body Model, providing  
extremely high reliability and robust operation, ensuring a  
high level performance in all applications.  
3.3V MAC Interface  
RMII Rev. 1.2 Interface (configurable)  
MII Interface  
MII serial management interface (MDC and MDIO)  
IEEE 802.3u Auto-Negotiation and Parallel Detection  
IEEE 802.3u ENDEC, 10BASE-T transceivers and filters  
IEEE 802.3u PCS, 100BASE-TX transceivers and filters  
DP83848J offers two flexible LED indicators - one for Link  
and the other for Speed. In addition, both MII and RMII  
are supported ensuring ease and flexibility of design.  
Integrated ANSI X3.263 compliant TP-PMD physical sub-  
layer with adaptive equalization and Baseline Wander  
compensation  
The DP83848J is offered in a tiny 6mm x 6mm LLP 40-pin  
package and is ideal for industrial controls, building/fac-  
tory automation, transportation, test equipment and wire-  
less base stations.  
Error-free Operation beyond 137 meters  
ESD protection - greater than 4KV Human body model  
Configurable LED for link and activity  
Applications  
Single register access for complete PHY status  
10/100 Mb/s packet BIST (Built in Self Test)  
40 pin LLP package (6mm) x (6mm) x (0.8mm)  
Peripheral devices  
Mobile devices  
Factory and building automation  
Base stations  
System Diagram  
DP83848J  
10BASE-T  
or  
10/100 Ethernet  
Transceiver  
MPU/CPU  
MII/RMII  
100BASE-TX  
Status  
LED/s  
Clock  
Source  
Typical Ethernet Application  
PHYTER® is a registered trademark of National Semiconductor Corporation.  
www.national.com  
© 2008 National Semiconductor Corporation  
MII/RMII  
SERIAL  
MANAGEMENT  
MII/RMII INTERFACE  
RX_CLK  
TX_DATA  
TX_CLK  
RX_DATA  
MII  
Registers  
10BASE-T &  
10BASE-T &  
100BASE-TX  
100BASE-TX  
Auto-Negotiation  
State Machine  
Transmit  
Block  
Receive  
Block  
Clock  
Generation  
ADC  
DAC  
Auto-MDIX  
LED  
Driver  
TD± RD±  
LEDS  
REFERENCE CLOCK  
Figure 1. DP83848J Functional Block Diagram  
www.national.com  
2
 
Table of Contents  
1.0 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.1 Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
1.2 MAC Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
1.3 Clock Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
1.4 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
1.5 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
1.6 Strap Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
1.7 10 Mb/s and 100 Mb/s PMD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
1.8 Special Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
1.9 Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
1.10 Package Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
2.0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.1 Auto-Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
2.1.1 Auto-Negotiation Pin Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.1.2 Auto-Negotiation Register Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.1.3 Auto-Negotiation Parallel Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.1.4 Auto-Negotiation Restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.1.5 Auto-Negotiation Complete Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.2 Auto-MDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
2.3 PHY Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.3.1 MII Isolate Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.4 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
2.4.1 LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.4.2 LED Direct Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.5 Half Duplex vs. Full Duplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2.6 Internal Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2.7 BIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.0 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.1 MII Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
3.1.1 Nibble-wide MII Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.1.2 Collision Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.1.3 Carrier Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.2 Reduced MII Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
3.3 802.3u MII Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.3.1 Serial Management Register Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.3.2 Serial Management Access Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.3.3 Serial Management Preamble Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.0 Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.1 100BASE-TX TRANSMITTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.1.1 Code-group Encoding and Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.1.2 Scrambler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.1.3 NRZ to NRZI Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.1.4 Binary to MLT-3 Convertor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.2 100BASE-TX RECEIVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4.2.1 Analog Front End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.2.2 Digital Signal Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.2.2.1 Digital Adaptive Equalization and Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.2.2.2 Base Line Wander Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.2.3 Signal Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.2.4 MLT-3 to NRZI Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.2.5 NRZI to NRZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.2.6 Serial to Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.2.7 Descrambler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
4.2.8 Code-group Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
4.2.9 4B/5B Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3
www.national.com  
4.2.10 100BASE-TX Link Integrity Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
4.2.11 Bad SSD Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
4.3 10BASE-T TRANSCEIVER MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
4.3.1 Operational Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
4.3.2 Smart Squelch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.3.3 Collision Detection and SQE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.3.4 Carrier Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.3.5 Normal Link Pulse Detection/Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.3.6 Jabber Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4.3.7 Automatic Link Polarity Detection and Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4.3.8 Transmit and Receive Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4.3.9 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4.3.10 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
5.0 Design Guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
5.1 TPI Network Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
5.2 ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5.3 Clock In (X1) Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5.4 Power Feedback Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
5.5 Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
5.6 Energy Detect Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.0 Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.1 Hardware Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.2 Software Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
7.0 Register Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7.1 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7.1.1 Basic Mode Control Register (BMCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
7.1.2 Basic Mode Status Register (BMSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.1.3 PHY Identifier Register #1 (PHYIDR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
7.1.4 PHY Identifier Register #2 (PHYIDR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
7.1.5 Auto-Negotiation Advertisement Register (ANAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
7.1.6 Auto-Negotiation Link Partner Ability Register (ANLPAR) (BASE Page) . . . . . . . . . . . . . . . . 45  
7.1.7 Auto-Negotiation Link Partner Ability Register (ANLPAR) (Next Page) . . . . . . . . . . . . . . . . . 46  
7.1.8 Auto-Negotiate Expansion Register (ANER) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
7.1.9 Auto-Negotiation Next Page Transmit Register (ANNPTR) . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
7.2 Extended Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
7.2.1 PHY Status Register (PHYSTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
7.2.2 False Carrier Sense Counter Register (FCSCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
7.2.3 Receiver Error Counter Register (RECR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
7.2.4 100 Mb/s PCS Configuration and Status Register (PCSR) . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
7.2.5 RMII and Bypass Register (RBR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
7.2.6 LED Direct Control Register (LEDCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
7.2.7 PHY Control Register (PHYCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
7.2.8 10Base-T Status/Control Register (10BTSCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
7.2.9 CD Test and BIST Extensions Register (CDCTRL1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
7.2.10 Energy Detect Control (EDCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
8.0 Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
8.1 DC Specs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
8.2 AC Specs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
8.2.1 Power Up Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
8.2.2 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
8.2.3 MII Serial Management Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
8.2.4 100 Mb/s MII Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
8.2.5 100 Mb/s MII Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
8.2.6 100BASE-TX Transmit Packet Latency Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
8.2.7 100BASE-TX Transmit Packet Deassertion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
8.2.8 100BASE-TX Transmit Timing (tR/F & Jitter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
8.2.9 100BASE-TX Receive Packet Latency Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
8.2.10 100BASE-TX Receive Packet Deassertion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
8.2.11 10 Mb/s MII Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
8.2.12 10 Mb/s MII Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
www.national.com  
4
8.2.13 10BASE-T Transmit Timing (Start of Packet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
8.2.14 10BASE-T Transmit Timing (End of Packet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
8.2.15 10BASE-T Receive Timing (Start of Packet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
8.2.16 10BASE-T Receive Timing (End of Packet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
8.2.17 10 Mb/s Heartbeat Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
8.2.18 10 Mb/s Jabber Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
8.2.19 10BASE-T Normal Link Pulse Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
8.2.20 Auto-Negotiation Fast Link Pulse (FLP) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
8.2.21 100BASE-TX Signal Detect Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
8.2.22 100 Mb/s Internal Loopback Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
8.2.23 10 Mb/s Internal Loopback Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
8.2.24 RMII Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
8.2.25 RMII Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
8.2.26 Isolation Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
8.2.27 100 Mb/s X1 to TX_CLK Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
5
www.national.com  
List of Figures  
Figure 1. DP83848J Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Figure 2. PHYAD Strapping Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 3. AN Strapping and LED Loading Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 4. Typical MDC/MDIO Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 5. Typical MDC/MDIO Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 6. 100BASE-TX Transmit Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 7. 100BASE-TX Receive Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 8. EIA/TIA Attenuation vs. Frequency for 0, 50, 100, 130 & 150 meters of CAT 5 cable . . . . . 27  
Figure 9. 100BASE-TX BLW Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 10. 10BASE-T Twisted Pair Smart Squelch Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 11. 10/100 Mb/s Twisted Pair Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 12. Crystal Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 13. Power Feedback Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
www.national.com  
6
List of Tables  
Table 1. Auto-Negotiation Modes in DP83848J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 2. PHY Address Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 3. LED Mode Select for DP83848J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 4. Supported packet sizes at +/-50ppm +/-100ppm for each clock . . . . . . . . . . . . . . . . . . . . . . 21  
Table 5. Typical MDIO Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 6. 4B5B Code-Group Encoding/Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 7. 25 MHz Oscillator Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 8. 50 MHz Oscillator Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 9. 25 MHz Crystal Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 10. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 11. Register Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 12. Basic Mode Control Register (BMCR), address 0x00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 13. Basic Mode Status Register (BMSR), address 0x01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 14. PHY Identifier Register #1 (PHYIDR1), address 0x02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 15. PHY Identifier Register #2 (PHYIDR2), address 0x03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 16. Negotiation Advertisement Register (ANAR), address 0x04 . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 17. Auto-Negotiation Link Partner Ability Register (ANLPAR) (BASE Page), address 0x05 . . . 45  
Table 18. Auto-Negotiation Link Partner Ability Register (ANLPAR) (Next Page), address 0x05 . . . . 46  
Table 19. Auto-Negotiate Expansion Register (ANER), address 0x06 . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 20. Auto-Negotiation Next Page Transmit Register (ANNPTR), address 0x07 . . . . . . . . . . . . . 47  
Table 21. PHY Status Register (PHYSTS), address 0x10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 22. False Carrier Sense Counter Register (FCSCR), address 0x14 . . . . . . . . . . . . . . . . . . . . . 50  
Table 23. Receiver Error Counter Register (RECR), address 0x15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 24. 100 Mb/s PCS Configuration and Status Register (PCSR), address 0x16 . . . . . . . . . . . . . 51  
Table 25. RMII and Bypass Register (RBR), addresses 0x17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 26. LED Direct Control Register (LEDCR), address 0x18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 27. PHY Control Register (PHYCR), address 0x19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 28. 10Base-T Status/Control Register (10BTSCR), address 0x1A . . . . . . . . . . . . . . . . . . . . . . 56  
Table 29. CD Test and BIST Extensions Register (CDCTRL1), address 0x1B . . . . . . . . . . . . . . . . . . 57  
Table 30. Energy Detect Control (EDCR), address 0x1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
7
www.national.com  
Pin Layout for DP83848J  
1
2
3
4
5
6
7
8
9
10  
PFBIN2  
DGND  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
IOVDD33  
TX_CLK  
TX_EN  
X1  
X2  
TXD_0  
IOVDD33  
MDC  
TXD_1  
DP83848J  
TXD_2  
MDIO  
TXD_3  
RESET_N  
LED_LINK/AN0  
LED_SPEED/AN1  
RESERVED  
RESERVED  
RESERVED  
DAP  
Note: Die Attached Pad (DAP) provides thermal dissipation, connection to GND plane optional.  
Top View  
Order Number DP83848J  
NS Package Number NSQAU040  
www.national.com  
8
1.0 Pin Descriptions  
The DP83848J pins are classified into the following inter- Note: Strapping pin option. Please see Section 1.6 for strap  
face categories (each interface is described in the sections  
that follow):  
definitions.  
All DP83848J signal pins are I/O cells regardless of the  
particular use. The definitions below define the functionality  
of the I/O cells for each pin.  
— Serial Management Interface  
— MAC Data Interface  
— Clock Interface  
Type: I  
Input  
— LED Interface  
Type: O  
Type: I/O  
Output  
— Reset  
Input/Output  
— Strap Options  
Type: PD,PU Internal Pulldown/Pullup  
Type: S Strapping Pin (All strap pins have weak in-  
— 10/100 Mb/s PMD Interface  
— Special Connect Pins  
— Power and Ground pins  
ternal pull-ups or pull-downs. If the default  
strap value is needed to be changed then an  
external 2.2 kresistor should be used.  
Please see Section 1.6 for details.)  
1.1 SERIAL MANAGEMENT INTERFACE  
Signal Name  
Type  
Pin #  
Description  
MDC  
I
25  
MANAGEMENT DATA CLOCK: Synchronous clock to the MDIO  
management data input/output serial interface which may be  
asynchronous to transmit and receive clocks. The maximum clock  
rate is 25 MHz with no minimum clock rate.  
MDIO  
I/O  
24  
MANAGEMENT DATA I/O: Bi-directional management instruc-  
tion/data signal that may be sourced by the station management  
entity or the PHY. This pin requires a 1.5 kpullup resistor.  
1.2 MAC DATA INTERFACE  
Signal Name  
TX_CLK  
Type  
Pin #  
Description  
O
2
MII TRANSMIT CLOCK: 25 MHz Transmit clock output in 100  
Mb/s mode or 2.5 MHz in 10 Mb/s mode derived from the 25 MHz  
reference clock.  
Unused in RMII mode. The device uses the X1 reference clock in-  
put as the 50 MHz reference for both transmit and receive.  
TX_EN  
I, PD  
3
MII TRANSMIT ENABLE: Active high input indicates the pres-  
ence of valid data inputs on TXD[3:0].  
RMII TRANSMIT ENABLE: Active high input indicates the pres-  
ence of valid data on TXD[1:0].  
TXD_0  
TXD_1  
TXD_2  
TXD_3  
I
4
5
6
7
MII TRANSMIT DATA: Transmit data MII input pins, TXD[3:0],  
that accept data synchronous to the TX_CLK (2.5 MHz in 10 Mb/s  
mode or 25 MHz in 100 Mb/s mode).  
RMII TRANSMIT DATA: Transmit data RMII input pins, TXD[1:0],  
that accept data synchronous to the 50 MHz reference clock.  
I, PD  
O
RX_CLK  
31  
MII RECEIVE CLOCK: Provides the 25 MHz recovered receive  
clocks for 100 Mb/s mode and 2.5 MHz for 10 Mb/s mode.  
Unused in RMII mode. The device uses the X1 reference clock in-  
put as the 50 MHz reference for both transmit and receive.  
RX_DV  
O, PD  
32  
MII RECEIVE DATA VALID: Asserted high to indicate that valid  
data is present on the corresponding RXD[3:0].  
RMII Synchronous Receive Data Valid: This signal provides the  
RMII Receive Data Valid indication independent of Carrier Sense.  
9
www.national.com  
Signal Name  
Type  
Pin #  
Description  
RX_ER  
S, O, PU  
34  
MII RECEIVE ERROR: Asserted high synchronously to RX_CLK  
to indicate that an invalid symbol has been detected within a re-  
ceived packet in 100 Mb/s mode.  
RMII RECEIVE ERROR: Assert high synchronously to X1 when-  
ever it detects a media error and RX_DV is asserted in 100 Mb/s  
mode.  
This pin is not required to be used by a MAC, in either MII or RMII  
mode, since the Phy is required to corrupt data on a receive error.  
RXD_0  
RXD_1  
RXD_2  
RXD_3  
S, O, PD  
S, O, PU  
S, O, PU  
36  
37  
38  
39  
MII RECEIVE DATA: Nibble wide receive data signals driven syn-  
chronously to the RX_CLK, 25 MHz for 100 Mb/s mode, 2.5 MHz  
for 10 Mb/s mode). RXD[3:0] signals contain valid data when  
RX_DV is asserted.  
RMII RECEIVE DATA: 2-bits receive data signals, RXD[1:0], driv-  
en synchronously to the X1 clock, 50 MHz.  
CRS/CRS_DV  
33  
MII CARRIER SENSE: Asserted high to indicate the receive me-  
dium is non-idle.  
RMII CARRIER SENSE/RECEIVE DATA VALID: This signal  
combines the RMII Carrier and Receive Data Valid indications.  
For a detailed description of this signal, see the RMII Specifica-  
tion.  
COL  
35  
MII COLLISION DETECT: Asserted high to indicate detection of  
a collision condition (simultaneous transmit and receive activity)  
in 10 Mb/s and 100 Mb/s Half Duplex Modes.  
While in 10BASE-T Half Duplex mode with heartbeat enabled this  
pin is also asserted for a duration of approximately 1µs at the end  
of transmission to indicate heartbeat (SQE test).  
In Full Duplex Mode, for 10 Mb/s or 100 Mb/s operation, this sig-  
nal is always logic 0. There is no heartbeat function during 10  
Mb/s full duplex operation.  
RMII COLLISION DETECT: Per the RMII Specification, no COL  
signal is required. The MAC will recover CRS from the CRS_DV  
signal and use that along with its TX_EN signal to determine col-  
lision.  
1.3 CLOCK INTERFACE  
Signal Name  
Type  
Pin #  
Description  
X1  
I
28  
CRYSTAL/OSCILLATOR INPUT: This pin is the primary clock  
reference input for the DP83848J and must be connected to a 25  
MHz 0.005% (+50 ppm) clock source. The DP83848J supports ei-  
ther an external crystal resonator connected across pins X1 and  
X2, or an external CMOS-level oscillator source connected to pin  
X1 only.  
RMII REFERENCE CLOCK: This pin is the primary clock refer-  
ence input for the RMII mode and must be connected to a 50 MHz  
0.005% (+50 ppm) CMOS-level oscillator source.  
X2  
O
27  
CRYSTAL OUTPUT: This pin is the primary clock reference out-  
put to connect to an external 25 MHz crystal resonator device.  
This pin must be left unconnected if an external CMOS oscillator  
clock source is used.  
www.national.com  
10  
1.4 LED INTERFACE  
See Table 3 for LED Mode Selection.  
Signal Name  
LED_LINK  
Type  
Pin #  
Description  
S, O, PU  
22  
LINK LED: In Mode 1, this pin indicates the status of the LINK.  
The LED will be ON when Link is good.  
LINK/ACT LED: In Mode 2, this pin indicates transmit and receive  
activity in addition to the status of the Link. The LED will be ON  
when Link is good. It will blink when the transmitter or receiver is  
active.  
LED_SPEED  
S, O, PU  
21  
SPEED LED: This LED is ON when DP83848J is in 100Mb/s and  
OFF when DP83848J is in 10Mb/s. Functionality of this LED is in-  
dependent of the mode selected.  
1.5 RESET  
Signal Name  
Type  
Pin #  
Description  
RESET_N  
I, PU  
23  
RESET: Active Low input that initializes or re-initializes the  
DP83848J. Asserting this pin low for at least 1 µs will force a reset  
process to occur. All internal registers will re-initialize to their de-  
fault states as specified for each bit in the Register Block section.  
All strap options are re-initialized as well.  
1.6 STRAP OPTIONS  
DP83848J uses many functional pins as strap options. The A 2.2 kresistor should be used for pull-down or pull-up to  
values of these pins are sampled during reset and used to change the default strap option. If the default option is  
strap the device into specific modes of operation. The strap required, then there is no need for external pull-up or pull  
option pin assignments are defined below. The functional down resistors. Since these pins may have alternate func-  
pin name is indicated in parentheses.  
tions after reset is deasserted, they should not be con-  
nected directly to VCC or GND.  
Signal Name  
PHYAD0 (COL)  
Type  
Pin #  
35  
Description  
S, O, PU  
S, O, PD  
PHY ADDRESS [4:0]: The DP83848J provides five PHY address  
pins, the state of which are latched into the PHYCTRL register at  
system Hardware-Reset.  
PHYAD1 (RXD_0)  
PHYAD2 (RXD_1)  
PHYAD3 (RXD_2)  
PHYAD4 (RXD_3)  
36  
37  
The DP83848J supports PHY Address strapping values 0  
(<00000>) through 31 (<11111>). A PHY Address of 0 puts the  
part into the MII Isolate Mode. The MII isolate mode must be se-  
lected by strapping Phy Address 0; changing to Address 0 by reg-  
ister write will not put the Phy in the MII isolate mode. Please refer  
to section 2.3 for additional information.  
38  
39  
PHYAD0 pin has weak internal pull-up resistor.  
PHYAD[4:1] pins have weak internal pull-down resistors.  
11  
www.national.com  
Signal Name  
AN0 (LED_LINK)  
AN1 (LED_SPEED)  
Type  
Pin #  
22  
Description  
S, O, PU  
S, O, PU  
These input pins control the advertised operating mode of the de-  
vice according to the following table. The value on these pins are  
set by connecting them to GND (0) or VCC (1) through 2.2 kre-  
21  
sistors. These pins should NEVER be connected directly to  
GND or VCC.  
The value set at this input is latched into the DP83848J at Hard-  
ware-Reset.  
The float/pull-down status of these pins are latched into the Basic  
Mode Control Register and the Auto_Negotiation Advertisement  
Register during Hardware-Reset.  
The default for DP83848J is 11 since these pins have an internal  
pull-up.  
AN1 AN0  
Advertised Mode  
0
0
1
0
1
0
10BASE-T, Half/Full-Duplex  
100BASE-TX, Half/Full-Duplex  
10BASE-T, Half-Duplex  
100BASE-TX, Half-Duplex  
10BASE-T, Half/Full-Duplex  
100BASE-TX,Half/Full-Duplex  
1
1
MII_MODE (RX_DV)  
S, O, PD  
32  
MII MODE SELECT: This strapping option determines the oper-  
ating mode of the MAC Data Interface. Default operation (No pul-  
lup) will enable normal MII Mode of operation. Strapping  
MII_MODE high will cause the device to be in RMII mode of oper-  
ation. Since the pin includes an internal pull-down, the default val-  
ue is 0.  
The following table details the configuration:  
MII_MODE MAC Interface Mode  
0
1
MII Mode  
RMII Mode  
LED_CFG (CRS/CRS_DV) S, O, PU  
33  
34  
LED CONFIGURATION: This strapping option determines the  
mode of operation of the LED pins. Default is Mode 1. Mode 1 and  
Mode 2 can be controlled via the strap option. All modes are con-  
figurable via register access.  
SeeTable 3 for LED Mode Selection.  
MDIX_EN (RX_ER)  
S, O, PU  
MDIX ENABLE: Default is to enable MDIX. This strapping option  
disables Auto-MDIX. An external pull-down will disable Auto-  
MDIX mode.  
www.national.com  
12  
1.7 10 MB/S AND 100 MB/S PMD INTERFACE  
Signal Name  
TD-, TD+  
Type  
Pin #  
Description  
I/O  
14, 15  
Differential common driver transmit output (PMD Output Pair).  
These differential outputs are automatically configured to either  
10BASE-T or 100BASE-TX signaling.  
In Auto-MDIX mode of operation, this pair can be used as the Re-  
ceive Input pair.  
These pins require 3.3V bias for operation.  
RD-, RD+  
I/O  
11, 12  
Differential receive input (PMD Input Pair). These differential in-  
puts are automatically configured to accept either 100BASE-TX  
or 10BASE-T signaling.  
In Auto-MDIX mode of operation, this pair can be used as the  
Transmit Output pair.  
These pins require 3.3V bias for operation.  
1.8 SPECIAL CONNECTIONS  
Signal Name Type  
Pin #  
Description  
RBIAS  
I
20  
Bias Resistor Connection. A 4.87 kΩ 1% resistor should be con-  
nected from RBIAS to GND.  
PFBOUT  
O
19  
Power Feedback Output. Parallel caps, 10µ F (Tantalum pre-  
ferred) and 0.1µF, should be placed close to the PFBOUT. Con-  
nect this pin to PFBIN1 (pin 16) and PFBIN2 (pin 30). See  
Section 5.4 for proper placement pin.  
PFBIN1  
PFBIN2  
I
16  
30  
Power Feedback Input. These pins are fed with power from  
PFBOUT pin. A small capacitor of 0.1µF should be connected  
close to each pin.  
Note: Do not supply power to these pins other than from  
PFBOUT.  
RESERVED  
I/O  
8,9,10  
RESERVED: These pins must be left unconnected.  
1.9 POWER SUPPLY PINS  
Signal Name  
IOVDD33  
IOGND  
Pin #  
Description  
I/O 3.3V Supply  
1, 26  
40  
I/O Ground  
DGND  
29  
Digital Ground  
AVDD33  
18  
Analog 3.3V Supply  
Analog Ground  
AGND  
13, 17  
13  
www.national.com  
1.10 PACKAGE PIN ASSIGNMENTS  
NSQAU040  
Pin Name  
Pin #  
1
(DP83848J)  
IO_VDD  
TX_CLK  
TX_EN  
TXD_0  
TXD_1  
TXD_2  
TXD_3  
2
3
4
5
6
7
8
RESERVED  
RESERVED  
RESERVED  
RD-  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
RD+  
AGND  
TD -  
TD +  
PFBIN1  
AGND  
AVDD33  
PFBOUT  
RBIAS  
LED_SPEED/AN1  
LED_LINK/AN0  
RESET_N  
MDIO  
MDC  
IOVDD33  
X2  
X1  
DGND  
PFBIN2  
RX_CLK  
RX_DV/MII_MODE  
CRS/CRS_DV/LED_CFG  
RX_ER/MDIX_EN  
COL/PHYAD0  
RXD_0/PHYAD1  
RXD_1/PHYAD2  
RXD_2/PHYAD3  
RXD_3/PHYAD4  
IOGND  
www.national.com  
14  
2.0 Configuration  
This section includes information on the various configura- 2.1.2 Auto-Negotiation Register Control  
tion options available with the DP83848J. The configura-  
tion options described below include:  
When Auto-Negotiation is enabled, the DP83848J trans-  
mits the abilities programmed into the Auto-Negotiation  
Advertisement register (ANAR) at address 04h via FLP  
Bursts. Any combination of 10 Mb/s, 100 Mb/s, Half-  
Duplex, and Full Duplex modes may be selected.  
— Auto-Negotiation  
— PHY Address and LED  
— Half Duplex vs. Full Duplex  
— Isolate mode  
Auto-Negotiation Priority Resolution:  
— (1) 100BASE-TX Full Duplex (Highest Priority)  
— (2) 100BASE-TX Half Duplex  
— Loopback mode  
— BIST  
— (3) 10BASE-T Full Duplex  
— (4) 10BASE-T Half Duplex (Lowest Priority)  
2.1 AUTO-NEGOTIATION  
The Basic Mode Control Register (BMCR) at address 00h  
provides control for enabling, disabling, and restarting the  
Auto-Negotiation process. When Auto-Negotiation is dis-  
abled, the Speed Selection bit in the BMCR controls  
switching between 10 Mb/s or 100 Mb/s operation, and the  
Duplex Mode bit controls switching between full duplex  
operation and half duplex operation. The Speed Selection  
and Duplex Mode bits have no effect on the mode of oper-  
ation when the Auto-Negotiation Enable bit is set.  
The Auto-Negotiation function provides a mechanism for  
exchanging configuration information between two ends of  
a link segment and automatically selecting the highest per-  
formance mode of operation supported by both devices.  
Fast Link Pulse (FLP) Bursts provide the signalling used to  
communicate Auto-Negotiation abilities between two  
devices at each end of a link segment. For further detail  
regarding Auto-Negotiation, refer to Clause 28 of the IEEE  
802.3u specification. The DP83848J supports four different  
Ethernet protocols (10 Mb/s Half Duplex, 10 Mb/s Full  
Duplex, 100 Mb/s Half Duplex, and 100 Mb/s Full Duplex),  
so the inclusion of Auto-Negotiation ensures that the high-  
est performance protocol will be selected based on the  
advertised ability of the Link Partner. In DP83848J, the  
Auto-Negotiation function can be controlled either by inter-  
nal register access or by the use of AN0 and AN1 pins.  
The Link Speed can be examined through the PHY Status  
Register (PHYSTS) at address 10h after a Link is  
achieved.  
The Basic Mode Status Register (BMSR) indicates the set  
of available abilities for technology types, Auto-Negotiation  
ability, and Extended Register Capability. These bits are  
permanently set to indicate the full functionality of the  
DP83848J (only the 100BASE-T4 bit is not set since the  
DP83848J does not support that function).  
2.1.1 Auto-Negotiation Pin Control  
The BMSR also provides status on:  
— Completion of Auto-Negotiation  
The state of AN0 and AN1 pins determine the specific  
mode advertised by the device as given in Table 1.. The  
state of AN0 and AN1 pins, upon power-up/reset, deter-  
mines the state of bits [8:5] of the ANAR register.  
— Occurrence of a remote fault as advertised by the Link  
Partner  
The Auto-Negotiation function selected at power-up or — Establishment of a valid link  
reset can be changed at any time by writing to the Basic  
— Support for Management Frame Preamble suppression  
Mode Control Register (BMCR) at address 0x00h  
The Auto-Negotiation Advertisement Register (ANAR)  
indicates the Auto-Negotiation abilities to be advertised by  
the DP83848J. All available abilities are transmitted by  
default, but any ability can be suppressed by writing to the  
ANAR. Updating the ANAR to suppress an ability is one  
way for a management agent to change (restrict) the tech-  
nology that is used.  
Table 1. Auto-Negotiation Modes in DP83848J  
AN1  
AN0  
Advertised Mode  
10BASE-T, Half/Full-Duplex  
100BASE-TX, Half/Full-Duplex  
10BASE-T, Half-Duplex  
0
0
1
0
1
0
The Auto-Negotiation Link Partner Ability Register  
(ANLPAR) at address 05h is used to receive the base link  
code word as well as all next page code words during the  
negotiation. Furthermore, the ANLPAR will be updated to  
either 0081h or 0021h for parallel detection to either 100  
Mb/s or 10 Mb/s respectively.  
100BASE-TX, Half-Duplex  
10BASE-T, Half/Full-Duplex  
100BASE-TX, Half/Full-Duplex  
1
1
The Auto-Negotiation Expansion Register (ANER) indi-  
cates additional Auto-Negotiation status. The ANER pro-  
vides status on:  
— Occurrence of a Parallel Detect Fault  
— Next Page function support by the Link Partner  
— Next page support function by DP83848J  
— Reception of the current page that is exchanged by Auto-  
Negotiation  
— Auto-Negotiation support by the Link Partner  
15  
www.national.com  
 
2.1.3 Auto-Negotiation Parallel Detection  
Auto-MDIX is enabled by default and can be configured  
via strap or via PHYCR (0x19h) register, bits [15:14].  
The DP83848J supports the Parallel Detection function as  
defined in the IEEE 802.3u specification. Parallel Detec-  
tion requires both the 10 Mb/s and 100 Mb/s receivers to  
monitor the receive signal and report link status to the  
Auto-Negotiation function. Auto-Negotiation uses this  
information to configure the correct technology in the  
event that the Link Partner does not support Auto-Negoti-  
ation but is transmitting link signals that the 100BASE-TX  
or 10BASE-T PMAs recognize as valid link signals.  
Neither Auto-Negotiation nor Auto-MDIX is required to be  
enabled in forcing crossover of the MDI pairs. Forced  
crossover can be achieved through the FORCE_MDIX bit,  
bit 14 of PHYCR (0x19h) register.  
Note: Auto-MDIX will not work in a forced mode of opera-  
tion.  
If the DP83848J completes Auto-Negotiation as a result of  
Parallel Detection, bit 5 or bit 7 within the ANLPAR regis-  
ter will be set to reflect the mode of operation present in  
the Link Partner. Note that bits 4:0 of the ANLPAR will also  
be set to 00001 based on a successful parallel detection  
to indicate a valid 802.3 selector field. Software may  
determine that negotiation completed via Parallel Detec-  
tion by reading a zero in the Link Partner Auto-Negotiation  
Able bit once the Auto-Negotiation Complete bit is set. If  
configured for parallel detect mode and any condition  
other than a single good link occurs then the parallel  
detect fault bit will be set.  
2.1.4 Auto-Negotiation Restart  
Once Auto-Negotiation has completed, it may be restarted  
at any time by setting bit 9 (Restart Auto-Negotiation) of  
the BMCR to one. If the mode configured by a successful  
Auto-Negotiation loses a valid link, then the Auto-Negotia-  
tion process will resume and attempt to determine the  
configuration for the link. This function ensures that a valid  
configuration is maintained if the cable becomes discon-  
nected.  
A renegotiation request from any entity, such as a man-  
agement agent, will cause the DP83848J to halt any  
transmit data and link pulse activity until the  
break_link_timer expires (~1500 ms). Consequently, the  
Link Partner will go into link fail and normal Auto-Negotia-  
tion resumes. The DP83848J will resume Auto-Negotia-  
tion after the break_link_timer has expired by issuing FLP  
(Fast Link Pulse) bursts.  
2.1.5 Auto-Negotiation Complete Time  
Parallel detection and Auto-Negotiation take approxi-  
mately 2-3 seconds to complete. In addition, Auto-Negoti-  
ation with next page should take approximately 2-3  
seconds to complete, depending on the number of next  
pages sent.  
Refer to Clause 28 of the IEEE 802.3u standard for a full  
description of the individual timers related to Auto-Negoti-  
ation.  
2.2 AUTO-MDIX  
When enabled, this function utilizes Auto-Negotiation to  
determine the proper configuration for transmission and  
reception of data and subsequently selects the appropri-  
ate MDI pair for MDI/MDIX operation. The function uses a  
random seed to control switching of the crossover cir-  
cuitry. This implementation complies with the correspond-  
ing IEEE 802.3 Auto-Negotiation and Crossover  
Specifications.  
www.national.com  
16  
Since the PHYAD[0] pin has weak internal pull-up resistor  
and PHYAD[4:1] pins have weak internal pull-down resis-  
tors, the default setting for the PHY address is 00001  
(01h).  
2.3 PHY ADDRESS  
The 5 PHY address inputs pins are shared with the  
RXD[3:0] pins and COL pin as shown below.  
Refer to Figure 2 for an example of a PHYAD connection to  
external components. In this example, the PHYAD strap-  
ping results in address 00011 (03h).  
Table 2. PHY Address Mapping  
Pin #  
35  
PHYAD Function  
PHYAD0  
RXD Function  
COL  
36  
PHYAD1  
RXD_0  
2.3.1 MII Isolate Mode  
37  
PHYAD2  
RXD_1  
The DP83848J can be put into MII Isolate mode by writing  
to bit 10 of the BMCR register or by strapping in Physical  
Address 0. It should be noted that selecting Physical  
Address 0 via an MDIO write to PHYCR will not put the  
device in the MII isolate mode.  
38  
PHYAD3  
RXD_2  
39  
PHYAD4  
RXD_3  
The DP83848J can be set to respond to any of 32 possible  
PHY addresses via strap pins. The information is latched  
into the PHYCR register (address 19h, bits [4:0]) at device  
power-up and hardware reset. The PHY Address pins are  
shared with the RXD and COL pins. Each DP83848J or  
port sharing an MDIO bus in a system must have a unique  
physical address.  
When in the MII isolate mode, the DP83848J does not  
respond to packet data present at TXD[3:0], TX_EN inputs  
and presents a high impedance on the TX_CLK, RX_CLK,  
RX_DV, RX_ER, RXD[3:0], COL, and CRS outputs. When  
in Isolate mode, the DP83848J will continue to respond to  
all management transactions.  
While in Isolate mode, the PMD output pair will not transmit  
packet data but will continue to source 100BASE-TX  
scrambled idles or 10BASE-T normal link pulses.  
The DP83848J supports PHY Address strapping values 0  
(<00000>) through 31 (<11111>). Strapping PHY Address  
0 puts the part into Isolate Mode. It should also be noted  
that selecting PHY Address 0 via an MDIO write to PHYCR  
will not put the device in Isolate Mode. See Section 2.3.1  
for more information.  
The DP83848J can Auto-Negotiate or parallel detect to a  
specific technology depending on the receive signal at the  
PMD input pair. A valid link can be established for the  
receiver even when the DP83848J is in Isolate mode.  
For further detail relating to the latch-in timing requirements  
of the PHY Address pins, as well as the other hardware  
configuration pins, refer to the Reset summary in  
Section 6.0.  
VCC  
Figure 2. PHYAD Strapping Example  
17  
www.national.com  
 
 
sults in Auto-Negotiation with 10BASE-T Half-Duplex ,  
100BASE-TX, Half-Duplex advertised.  
2.4 LED INTERFACE  
The DP83848J supports configurable Light Emitting Diode  
(LED) pins for configuring the link and speed. The PHY  
Control Register (PHYCR) for the LED can also be  
selected through address 19h, bit [5].  
The adaptive nature of the LED output helps to simplify  
potential implementation issues of this dual purpose pin.  
.
See Table 3. for LED Mode selection of DP83848J.  
Table 3. LED Mode Select for DP83848J  
LED_CFG[0]  
Mode  
LED_LINK  
LED_SPEED  
(bit 5) or (pin 33)  
1
1
ON for Good ON in 100Mb/s  
Link  
OFF in 10Mb/s  
OFF for No  
Link  
2
0
ON for Good ON in 100Mb/s  
Link  
OFF in 10Mb/s  
BLINK for  
Activity  
VCC  
The LED_LINK pin in Mode 1 indicates the link status of  
the port. In 100BASE-T mode, link is established as a  
result of input receive amplitude compliant with the TP-  
PMD specifications which will result in internal generation  
of signal detect. A 10 Mb/s Link is established as a result  
of the reception of at least seven consecutive normal Link  
Pulses or the reception of a valid 10BASE-T packet. This  
will cause the assertion of LED_LINK. LED_LINK will  
deassert in accordance with the Link Loss Timer as speci-  
fied in the IEEE 802.3 specification.  
Figure 3. AN Strapping and LED Loading Example  
2.4.2 LED Direct Control  
The LED_LINK pin in Mode 1 will be OFF when no LINK is  
present.  
The DP83848J provides another option to directly control  
the LED outputs through the LED Direct Control Register  
(LEDCR), address 18h. The register does not provide  
read access to the LED.  
The LED_LINK pin in Mode 2 will be ON to indicate Link is  
good and BLINK to indicate activity is present on either  
transmit or receive activity.  
The LED_SPEED pin in DP83848J indicates 10 or 100  
Mb/s data rate of the port. The standard CMOS driver  
goes high when operating in 100Mb/s operation. The  
functionality of this LED is independent of the mode  
selected.  
Since these LED pins are also used as strap options, the  
polarity of the LED is dependent on whether the pin is  
pulled up or down.  
2.4.1 LED  
Since the Auto-Negotiation strap options share the LED  
output pins, the external components required for strap-  
ping and LED usage must be considered in order to avoid  
contention.  
Specifically, when the LED output is used to drive the LED  
directly, the active state of the output driver is dependent  
on the logic level sampled by the AN input upon power-  
up/reset. For example, if the AN input is resistively pulled  
low then the corresponding output will be configured as an  
active high driver. Conversely, if the AN input is resistively  
pulled high, then the corresponding output will be config-  
ured as an active low driver.  
Refer to Figure 3 for an example of AN connection to ex-  
ternal components. In this example, the AN strapping re-  
www.national.com  
18  
 
 
through bit 14 (Loopback) of the Basic Mode Control Reg-  
ister (BMCR). Writing 1 to this bit enables MII transmit data  
to be routed to the MII receive outputs. Loopback status  
may be checked in bit 3 of the PHY Status Register  
2.5 HALF DUPLEX VS. FULL DUPLEX  
The DP83848J supports both half and full duplex operation  
at both 10 Mb/s and 100 Mb/s speeds.  
Half-duplex relies on the CSMA/CD protocol to handle colli- (PHYSTS). While in Loopback mode the data will not be  
sions and network access. In Half-Duplex mode, CRS transmitted onto the media. To ensure that the desired  
responds to both transmit and receive activity in order to operating mode is maintained, Auto-Negotiation should be  
maintain compliance with the IEEE 802.3 specification.  
disabled before selecting the Loopback mode.  
Since the DP83848J is designed to support simultaneous  
transmit and receive activity, it is capable of supporting full-  
duplex switched applications with a throughput of up to 200  
Mb/s per port when operating in 100BASE-TX mode.  
Because the CSMA/CD protocol does not apply to full-  
duplex operation, the DP83848J disables its own internal  
collision sensing and reporting functions and modifies the  
behavior of Carrier Sense (CRS) such that it indicates only  
receive activity. This allows a full-duplex capable MAC to  
operate properly.  
2.7 BIST  
The DP83848J incorporates an internal Built-in Self Test  
(BIST) circuit to accommodate in-circuit testing or diagnos-  
tics. The BIST circuit can be utilized to test the integrity of  
the transmit and receive data paths. BIST testing can be  
performed with the part in the internal loopback mode or  
externally looped back using a loopback cable fixture.  
The BIST is implemented with independent transmit and  
receive paths, with the transmit block generating a continu-  
ous stream of a pseudo random sequence. The user can  
select a 9 bit or 15 bit pseudo random sequence from the  
PSR_15 bit in the PHY Control Register (PHYCR). The  
received data is compared to the generated pseudo-ran-  
dom data by the BIST Linear Feedback Shift Register  
(LFSR) to determine the BIST pass/fail status.  
All modes of operation (100BASE-TX and 10BASE-T) can  
run either half-duplex or full-duplex. Additionally, other than  
CRS and Collision reporting, all remaining MII signaling  
remains the same regardless of the selected duplex mode.  
It is important to understand that while Auto-Negotiation  
with the use of Fast Link Pulse code words can interpret  
and configure to full-duplex operation, parallel detection  
can not recognize the difference between full and half-  
duplex from a fixed 10 Mb/s or 100 Mb/s link partner over  
twisted pair. As specified in the 802.3u specification, if a  
far-end link partner is configured to a forced full duplex  
100BASE-TX ability, the parallel detection state machine in  
the partner would be unable to detect the full duplex capa-  
The pass/fail status of the BIST is stored in the BIST status  
bit in the PHYCR register. The status bit defaults to 0 (BIST  
fail) and will transition on a successful comparison. If an  
error (mis-compare) occurs, the status bit is latched and is  
cleared upon a subsequent write to the Start/Stop bit.  
bility of the far-end link partner. This link segment would For transmit VOD testing, the Packet BIST Continuous  
negotiate to a half duplex 100BASE-TX configuration Mode can be used to allow continuous data transmission,  
(same scenario for 10 Mb/s).  
setting BIST_CONT_MODE, bit 5, of CDCTRL1 (0x1Bh).  
The number of BIST errors can be monitored through the  
BIST Error Count in the CDCTRL1 (0x1Bh), bits [15:8].  
2.6 INTERNAL LOOPBACK  
The DP83848J includes a Loopback Test mode for facilitat-  
ing system diagnostics. The Loopback mode is selected  
19  
www.national.com  
active simultaneously. Collisions are reported by the COL  
signal on the MII.  
3.0 Functional Description  
The DP83848J supports two modes of operation using the  
MII interface pins. The options are defined in the following  
sections and include:  
If the DP83848J is transmitting in 10 Mb/s mode when a  
collision is detected, the collision is not reported until  
seven bits have been received while in the collision state.  
This prevents a collision being reported incorrectly due to  
noise on the network. The COL signal remains set for the  
duration of the collision.  
— MII Mode  
— RMII Mode  
The modes of operation can be selected by strap options  
or register control. For RMII mode, it is required to use the  
strap option, since it requires a 50 MHz clock instead of  
the normal 25 MHz.  
If a collision occurs during a receive operation, it is imme-  
diately reported by the COL signal.  
When heartbeat is enabled (only applicable to 10 Mb/s  
operation), approximately 1µs after the transmission of  
each packet, a Signal Quality Error (SQE) signal of  
approximately 10 bit times is generated (internally) to indi-  
cate successful transmission. SQE is reported as a pulse  
on the COL signal of the MII.  
In the each of these modes, the IEEE 802.3 serial man-  
agement interface is operational for device configuration  
and status. The serial management interface of the MII  
allows for the configuration and control of multiple PHY  
devices, gathering of status, error information, and the  
determination of the type and capabilities of the attached  
PHY(s).  
3.1.3 Carrier Sense  
Carrier Sense (CRS) is asserted due to receive activity,  
once valid data is detected via the squelch function during  
10 Mb/s operation. During 100 Mb/s operation CRS is  
asserted when a valid link (SD) and two non-contiguous  
zeros are detected on the line.  
3.1 MII INTERFACE  
The DP83848J incorporates the Media Independent Inter-  
face (MII) as specified in Clause 22 of the IEEE 802.3u  
standard. This interface may be used to connect PHY  
devices to a MAC in 10/100 Mb/s systems. This section  
describes the nibble wide MII data interface.  
For 10 or 100 Mb/s Half Duplex operation, CRS is  
asserted during either packet transmission or reception.  
The nibble wide MII data interface consists of a receive  
bus and a transmit bus each with control signals to facili-  
tate data transfer between the PHY and the upper layer  
(MAC).  
For 10 or 100 Mb/s Full Duplex operation, CRS is  
asserted only due to receive activity.  
CRS is deasserted following an end of packet.  
3.2 Reduced MII Interface  
3.1.1 Nibble-wide MII Data Interface  
The DP83848T incorporates the Reduced Media Indepen-  
dent Interface (RMII) as specified in the RMII specification  
(rev1.2) from the RMII Consortium. This interface may be  
used to connect PHY devices to a MAC in 10/100 Mb/s  
systems using a reduced number of pins. In this mode,  
data is transferred 2-bits at a time using the 50 MHz  
RMII_REF clock for both transmit and receive. The follow-  
ing pins are used in RMII mode:  
Clause 22 of the IEEE 802.3u specification defines the  
Media Independent Interface. This interface includes a  
dedicated receive bus and a dedicated transmit bus.  
These two data buses, along with various control and sta-  
tus signals, allow for the simultaneous exchange of data  
between the DP83848J and the upper layer agent (MAC).  
The receive interface consists of a nibble wide data bus  
RXD[3:0], a receive error signal RX_ER, a receive data  
valid flag RX_DV, and a receive clock RX_CLK for syn-  
chronous transfer of the data. The receive clock operates  
at either 2.5 MHz to support 10 Mb/s operation modes or  
at 25 MHz to support 100 Mb/s operational modes.  
— TX_EN  
— TXD[1:0]  
— RX_ER (optional for Mac)  
— CRS_DV  
The transmit interface consists of a nibble wide data bus  
TXD[3:0], a transmit enable control signal TX_EN, and a  
transmit clock TX_CLK which runs at either 2.5 MHz or 25  
MHz.  
— RXD[1:0]  
— X1 (RMII Reference clock is 50 MHz)  
In addition, the RMII mode supplies an RX_DV signal  
which allows for a simpler method of recovering receive  
data without having to separate RX_DV from the CRS_DV  
indication. This is especially useful for systems which do  
not require CRS, such as systems that only support fulldu-  
plex operation. This signal is also useful for diagnostic  
testing where it may be desirable to loop Receive RMII  
data directly to the transmitter.  
Additionally, the MII includes the carrier sense signal  
CRS, as well as a collision detect signal COL. The CRS  
signal asserts to indicate the reception of data from the  
network or as a function of transmit data in Half Duplex  
mode. The COL signal asserts as an indication of a colli-  
sion which can occur during half-duplex operation when  
both a transmit and receive operation occur simulta-  
neously.  
Since the reference clock operates at 10 times the data  
rate for 10 Mb/s operation, transmit data is sampled every  
10 clocks. Likewise, receive data will be generated every  
10th clock so that an attached device can sample the data  
every 10 clocks.  
3.1.2 Collision Detect  
For Half Duplex, a 10BASE-T or 100BASE-TX collision is  
detected when the receive and transmit channels are  
www.national.com  
20  
RMII mode requires a 50 MHz oscillator be connected to The elasticity buffer will force Frame Check Sequence  
the device X1 pin. A 50 MHz crystal is not supported.  
errors for packets which overrun or underrun the FIFO.  
Underrun and Overrun conditions can be reported in the  
RMII and Bypass Register (RBR). The following table indi-  
cates how to program the elasticity buffer fifo (in 4-bit incre-  
ments) based on expected max packet size and clock  
accuracy. It assumes both clocks (RMII Reference clock  
and far-end Transmitter clock) have the same accuracy  
To tolerate potential frequency differences between the 50  
MHz reference clock and the recovered receive clock, the  
receive RMII function includes a programmable elasticity  
buffer. The elasticity buffer is programmable to minimize  
propagation delay based on expected packet size and  
clock accuracy. This allows for supporting a range of  
packet sizes including jumbo frames.  
Table 4. Supported packet sizes at +/-50ppm +/-100ppm for each clock  
Start Threshold  
RBR[1:0]  
Latency Tolerance  
Recommended Packet Size Recommended Packet Size  
at +/- 50ppm  
2400 bytes  
7200 bytes  
12000 bytes  
16800 bytes  
at +/- 100ppm  
1200 bytes  
3600 bytes  
6000 bytes  
8400 bytes  
1 (4-bits)  
2 (8-bits)  
3 (12-bits)  
0 (16-bits)  
2 bits  
6 bits  
10 bits  
14 bits  
should be used to re-sync the device if an invalid start,  
opcode, or turnaround bit is detected.  
3.3 802.3U MII SERIAL MANAGEMENT INTER-  
FACE  
The DP83848J waits until it has received this preamble  
sequence before responding to any other transaction.  
Once the DP83848J serial management port has been ini-  
tialized no further preamble sequencing is required until  
after a power-on/reset, invalid Start, invalid Opcode, or  
invalid turnaround bit has occurred.  
3.3.1 Serial Management Register Access  
The serial management MII specification defines a set of  
thirty-two 16-bit status and control registers that are acces-  
sible through the management interface pins MDC and  
MDIO. The DP83848J implements all the required MII reg-  
isters as well as several optional registers. These registers  
are fully described in Section 7.0. A description of the serial  
management access protocol follows.  
The Start code is indicated by a <01> pattern. This assures  
the MDIO line transitions from the default idle line state.  
Turnaround is defined as an idle bit time inserted between  
the Register Address field and the Data field. To avoid con-  
tention during a read transaction, no device shall actively  
drive the MDIO signal during the first bit of Turnaround.  
The addressed DP83848J drives the MDIO with a zero for  
the second bit of turnaround and follows this with the  
3.3.2 Serial Management Access Protocol  
The serial control interface consists of two pins, Manage- required data. Figure 4 shows the timing relationship  
ment Data Clock (MDC) and Management Data Input/Out- between MDC and the MDIO as driven/received by the Sta-  
put (MDIO). MDC has a maximum clock rate of 25 MHz tion (STA) and the DP83848J (PHY) for a typical register  
and no minimum rate. The MDIO line is bi-directional and read access.  
may be shared by up to 32 devices. The MDIO frame for-  
mat is shown below in Table 5..  
For write transactions, the station management entity  
writes data to the addressed DP83848J thus eliminating  
The MDIO pin requires a pull-up resistor (1.5 k) which, the requirement for MDIO Turnaround. The Turnaround  
during IDLE and turnaround, will pull MDIO high. In order to time is filled by the management entity by inserting <10>.  
initialize the MDIO interface, the station management entity Figure 5 shows the timing relationship for a typical MII reg-  
sends a sequence of 32 contiguous logic ones on MDIO to ister write access.  
provide the DP83848J with a sequence that can be used to  
establish synchronization. This preamble may be gener-  
ated either by driving MDIO high for 32 consecutive MDC  
clock cycles, or by simply allowing the MDIO pull-up resis-  
tor to pull the MDIO pin high during which time 32 MDC  
clock cycles are provided. In addition, 32 MDC clock cycles  
Table 5. Typical MDIO Frame Format  
MII Management  
Serial Protocol  
<idle><start><op code><device addr><reg addr><turnaround><data><idle>  
Read Operation  
Write Operation  
<idle><01><10><AAAAA><RRRRR><Z0><xxxx xxxx xxxx xxxx><idle>  
<idle><01><01><AAAAA><RRRRR><10><xxxx xxxx xxxx xxxx><idle>  
21  
www.national.com  
 
MDC  
Z
Z
MDIO  
(STA)  
Z
Z
MDIO  
(PHY)  
Z
Z
Z
0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0  
Opcode  
(Read)  
Register Address  
(00h = BMCR)  
PHY Address  
Register Data  
Idle  
TA  
Idle  
Start  
(PHYAD = 0Ch)  
Figure 4. Typical MDC/MDIO Read Operation  
MDC  
Z
Z
MDIO  
(STA)  
Z
Z
0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
PHY Address  
Register Address  
(00h = BMCR)  
Opcode  
(Write)  
Register Data  
Idle  
Idle  
Start  
TA  
(PHYAD = 0Ch)  
Figure 5. Typical MDC/MDIO Write Operation  
3.3.3 Serial Management Preamble Suppression  
The DP83848J supports a Preamble Suppression mode  
as indicated by a one in bit 6 of the Basic Mode Status  
Register (BMSR, address 01h.) If the station management  
entity (i.e. MAC or other management controller) deter-  
mines that all PHYs in the system support Preamble Sup-  
pression by returning a one in this bit, then the station  
management entity need not generate preamble for each  
management transaction.  
The DP83848J requires a single initialization sequence of  
32 bits of preamble following hardware/software reset.  
This requirement is generally met by the mandatory pull-  
up resistor on MDIO in conjunction with a continuous  
MDC, or the management access made to determine  
whether Preamble Suppression is supported.  
While the DP83848J requires an initial preamble  
sequence of 32 bits for management initialization, it does  
not require a full 32-bit sequence between each subse-  
quent transaction. A minimum of one idle bit between  
management transactions is required as specified in the  
IEEE 802.3u specification.  
www.national.com  
22  
The block diagram in Figure 6. provides an overview of  
each functional block within the 100BASE-TX transmit sec-  
tion.  
4.0 Architecture  
This section describes the operations within each trans-  
ceiver module, 100BASE-TX and 10BASE-T. Each opera-  
tion consists of several functional blocks and described in  
the following:  
The Transmitter section consists of the following functional  
blocks:  
— Code-group Encoder and Injection block  
— Scrambler block (bypass option)  
— 100BASE-TX Transmitter  
— 100BASE-TX Receiver  
— NRZ to NRZI encoder block  
— 10BASE-T Transceiver Module  
— Binary to MLT-3 converter / Common Driver  
The bypass option for the functional blocks within the  
100BASE-TX transmitter provides flexibility for applications  
where data conversion is not always required. The  
DP83848J implements the 100BASE-TX transmit state  
machine diagram as specified in the IEEE 802.3u Stan-  
dard, Clause 24.  
4.1 100BASE-TX TRANSMITTER  
The 100BASE-TX transmitter consists of several functional  
blocks which convert synchronous 4-bit nibble data, as pro-  
vided by the MII, to a scrambled MLT-3 125 Mb/s serial  
data stream. Because the 100BASE-TX TP-PMD is inte-  
grated, the differential output pins, PMD Output Pair, can  
be directly routed to the magnetics.  
TX_CLK  
TXD[3:0] /  
TX_EN  
DIVIDE  
BY 5  
4B5B CODE-GROUP  
ENCODER &  
INJECTOR  
5B PARALLEL  
TO SERIAL  
125MHZ CLOCK  
SCRAMBLER  
MUX  
BP_SCR  
MLT[1:0]  
100BASE-TX  
LOOPBACK  
NRZ TO NRZI  
ENCODER  
BINARY  
TO MLT-3 /  
COMMON  
DRIVER  
PMD OUTPUT PAIR  
Figure 6. 100BASE-TX Transmit Block Diagram  
23  
www.national.com  
 
 
Table 6. 4B5B Code-Group Encoding/Decoding  
DATA CODES  
0
11110  
01001  
10100  
10101  
01010  
01011  
01110  
01111  
10010  
10011  
10110  
10111  
11010  
11011  
11100  
11101  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
IDLE AND CONTROL CODES  
H
00100  
11111  
11000  
10001  
01101  
00111  
HALT code-group - Error code  
I
Inter-Packet IDLE - 0000 (Note 1)  
First Start of Packet - 0101 (Note 1)  
Second Start of Packet - 0101 (Note 1)  
First End of Packet - 0000 (Note 1)  
Second End of Packet - 0000 (Note 1)  
J
K
T
R
INVALID CODES  
V
V
V
V
V
V
V
V
00000  
00001  
00010  
00011  
00101  
00110  
01000  
01100  
Note: Control code-groups I, J, K, T and R in data fields will be mapped as invalid codes, together with RX_ER as-  
serted.  
www.national.com  
24  
4.1.1 Code-group Encoding and Injection  
transmit transformer primary winding, resulting in a MLT-3  
signal.  
The code-group encoder converts 4-bit (4B) nibble data  
generated by the MAC into 5-bit (5B) code-groups for  
transmission. This conversion is required to allow control  
data to be combined with packet data code-groups. Refer  
to for 4B to 5B code-group mapping details.  
The 100BASE-TX MLT-3 signal sourced by the PMD Out-  
put Pair common driver is slew rate controlled. This should  
be considered when selecting AC coupling magnetics to  
ensure TP-PMD Standard compliant transition times (3 ns  
< Tr < 5 ns).  
The code-group encoder substitutes the first 8-bits of the  
MAC preamble with a J/K code-group pair (11000 10001)  
upon transmission. The code-group encoder continues to  
replace subsequent 4B preamble and data nibbles with  
corresponding 5B code-groups. At the end of the transmit  
packet, upon the deassertion of Transmit Enable signal  
from the MAC, the code-group encoder injects the T/R  
code-group pair (01101 00111) indicating the end of the  
frame.  
The 100BASE-TX transmit TP-PMD function within the  
DP83848J is capable of sourcing only MLT-3 encoded  
data. Binary output from the PMD Output Pair is not possi-  
ble in 100 Mb/s mode.  
4.2 100BASE-TX RECEIVER  
The 100BASE-TX receiver consists of several functional  
blocks which convert the scrambled MLT-3 125 Mb/s serial  
data stream to synchronous 4-bit nibble data that is pro-  
vided to the MII. Because the 100BASE-TX TP-PMD is  
integrated, the differential input pins, RD±, can be directly  
routed from the AC coupling magnetics.  
After the T/R code-group pair, the code-group encoder  
continuously injects IDLEs into the transmit data stream  
until the next transmit packet is detected (reassertion of  
Transmit Enable).  
See Figure 7 for a block diagram of the 100BASE-TX  
receive function. This provides an overview of each func-  
tional block within the 100BASE-TX receive section.  
4.1.2 Scrambler  
The scrambler is required to control the radiated emissions  
at the media connector and on the twisted pair cable (for  
100BASE-TX applications). By scrambling the data, the  
total energy launched onto the cable is randomly distrib-  
uted over a wide frequency range. Without the scrambler,  
The Receive section consists of the following functional  
blocks:  
— Analog Front End  
energy levels at the PMD and on the cable could peak — Digital Signal Processor  
beyond FCC limitations at frequencies related to repeating  
5B sequences (i.e., continuous transmission of IDLEs).  
— MLT-3 to Binary Decoder  
The scrambler is configured as a closed loop linear feed-  
— Signal Detect  
— NRZI to NRZ Decoder  
back shift register (LFSR) with an 11-bit polynomial. The  
— Serial to Parallel  
— Descrambler  
output of the closed loop LFSR is X-ORd with the serial  
NRZ data from the code-group encoder. The result is a  
scrambled data stream with sufficient randomization to  
decrease radiated emissions at certain frequencies by as  
much as 20 dB. The DP83848J uses the PHY_ID (pins  
PHYAD [4:0]) to set a unique seed value.  
— Code Group Alignment  
— 4B/5B Decoder  
— Link Integrity Monitor  
— Bad SSD Detection  
4.1.3 NRZ to NRZI Encoder  
4.2.1 Analog Front End  
After the transmit data stream has been serialized and  
scrambled, the data must be NRZI encoded in order to  
comply with the TP-PMD standard for 100BASE-TX trans-  
mission over Category-5 Unshielded twisted pair cable.  
In addition to the Digital Equalization and Gain Control, the  
DP83848J includes Analog Equalization and Gain Control  
in the Analog Front End. The Analog Equalization reduces  
the amount of Digital Equalization required in the DSP.  
4.1.4 Binary to MLT-3 Convertor  
4.2.2 Digital Signal Processor  
The Binary to MLT-3 conversion is accomplished by con-  
verting the serial binary data stream output from the NRZI  
encoder into two binary data streams with alternately  
phased logic one events. These two binary streams are  
then fed to the twisted pair output driver which converts the  
voltage to current and alternately drives either side of the  
The Digital Signal Processor includes Adaptive Equaliza-  
tion with Gain Control and Base Line Wander Compensa-  
tion.  
25  
www.national.com  
RX_DV/CRS  
RX_CLK  
RXD[3:0] / RX_ER  
4B/5B DECODER  
SERIAL TO  
PARALLEL  
CODE GROUP  
ALIGNMENT  
LINK  
INTEGRITY  
MONITOR  
RX_DATA VALID  
SSD DETECT  
DESCRAMBLER  
NRZI TO NRZ  
DECODER  
MLT-3 TO BINARY  
DECODER  
SIGNAL  
DETECT  
DIGITAL  
SIGNAL  
PROCESSOR  
ANALOG  
FRONT  
END  
RD +/−  
Figure 7. 100BASE-TX Receive Block Diagram  
www.national.com  
26  
4.2.2.1 Digital Adaptive Equalization and Gain Control tive to ensure proper conditioning of the received signal  
independent of the cable length.  
When transmitting data at high speeds over copper twisted  
The DP83848J utilizes an extremely robust equalization  
scheme referred as ‘Digital Adaptive Equalization.’  
pair cable, frequency dependent attenuation becomes a  
concern. In high-speed twisted pair signalling, the fre-  
quency content of the transmitted signal can vary greatly  
during normal operation based primarily on the random-  
ness of the scrambled data stream. This variation in signal  
attenuation caused by frequency variations must be com-  
pensated to ensure the integrity of the transmission.  
The Digital Equalizer removes ISI (inter symbol interfer-  
ence) from the receive data stream by continuously adapt-  
ing to provide a filter with the inverse frequency response  
of the channel. Equalization is combined with an adaptive  
gain control stage. This enables the receive 'eye pattern' to  
be opened sufficiently to allow very reliable data recovery.  
In order to ensure quality transmission when employing  
MLT-3 encoding, the compensation must be able to adapt  
to various cable lengths and cable types depending on the  
installed environment. The selection of long cable lengths  
for a given implementation, requires significant compensa-  
tion which will over-compensate for shorter, less attenuat-  
ing lengths. Conversely, the selection of short or  
intermediate cable lengths requiring less compensation will  
cause serious under-compensation for longer length  
cables. The compensation or equalization must be adap-  
The curves given in Figure 8 illustrate attenuation at certain  
frequencies for given cable lengths. This is derived from  
the worst case frequency vs. attenuation figures as speci-  
fied in the EIA/TIA Bulletin TSB-36. These curves indicate  
the significant variations in signal attenuation that must be  
compensated for by the receive adaptive equalization cir-  
cuit.  
Figure 8. EIA/TIA Attenuation vs. Frequency for 0, 50,  
100, 130 & 150 meters of CAT 5 cable  
27  
www.national.com  
 
4.2.2.2 Base Line Wander Compensation  
Figure 9. 100BASE-TX BLW Event  
The DP83848J is completely ANSI TP-PMD compliant  
and includes Base Line Wander (BLW) compensation.  
The BLW compensation block can successfully recover  
the TP-PMD defined “killer” pattern.  
4.2.4 MLT-3 to NRZI Decoder  
The DP83848J decodes the MLT-3 information from the  
Digital Adaptive Equalizer block to binary NRZI data.  
BLW can generally be defined as the change in the aver-  
age DC content, relatively short period over time, of an AC  
coupled digital transmission over a given transmission  
medium. (i.e., copper wire).  
4.2.5 NRZI to NRZ  
BLW results from the interaction between the low fre-  
quency components of a transmitted bit stream and the  
frequency response of the AC coupling component(s)  
within the transmission system. If the low frequency con-  
tent of the digital bit stream goes below the low frequency  
pole of the AC coupling transformers then the droop char-  
acteristics of the transformers will dominate resulting in  
potentially serious BLW.  
In a typical application, the NRZI to NRZ decoder is  
required in order to present NRZ formatted data to the  
descrambler.  
4.2.6 Serial to Parallel  
The 100BASE-TX receiver includes a Serial to Parallel  
converter which supplies 5-bit wide data symbols to the  
PCS Rx state machine.  
The digital oscilloscope plot provided in Figure 9 illus-  
trates the severity of the BLW event that can theoretically  
be generated during 100BASE-TX packet transmission.  
This event consists of approximately 800 mV of DC offset  
for a period of 120 µs. Left uncompensated, events such  
as this can cause packet loss.  
4.2.3 Signal Detect  
The signal detect function of the DP83848J is incorpo-  
rated to meet the specifications mandated by the ANSI  
FDDI TP-PMD Standard as well as the IEEE 802.3  
100BASE-TX Standard for both voltage thresholds and  
timing parameters.  
Note that the reception of normal 10BASE-T link pulses  
and fast link pulses per IEEE 802.3u Auto-Negotiation by  
the 100BASE-TX receiver do not cause the DP83848J to  
assert signal detect.  
www.national.com  
28  
 
4.2.7 Descrambler  
A serial descrambler is used to de-scramble the received  
NRZ data. The descrambler has to generate an identical  
4.2.10 100BASE-TX Link Integrity Monitor  
data scrambling sequence (N) in order to recover the origi- The 100 Base TX Link monitor ensures that a valid and sta-  
nal unscrambled data (UD) from the scrambled data (SD) ble link is established before enabling both the Transmit  
as represented in the equations:  
SD= (UD N)  
and Receive PCS layer.  
Signal detect must be valid for 395us to allow the link mon-  
itor to enter the 'Link Up' state, and enable the transmit and  
receive functions.  
UD= (SD N)  
Synchronization of the descrambler to the original scram-  
bling sequence (N) is achieved based on the knowledge  
that the incoming scrambled data stream consists of  
scrambled IDLE data. After the descrambler has recog-  
nized 12 consecutive IDLE code-groups, where an  
unscrambled IDLE code-group in 5B NRZ is equal to five  
consecutive ones (11111), it will synchronize to the receive  
data stream and generate unscrambled data in the form of  
unaligned 5B code-groups.  
4.2.11 Bad SSD Detection  
A Bad Start of Stream Delimiter (Bad SSD) is any transition  
from consecutive idle code-groups to non-idle code-groups  
which is not prefixed by the code-group pair /J/K.  
If this condition is detected, the DP83848J will assert  
RX_ER and present RXD[3:0] = 1110 to the MII for the  
cycles that correspond to received 5B code-groups until at  
least two IDLE code groups are detected. In addition, the  
False Carrier Sense Counter register (FCSCR) will be  
incremented by one.  
In order to maintain synchronization, the descrambler must  
continuously monitor the validity of the unscrambled data  
that it generates. To ensure this, a line state monitor and a  
hold timer are used to constantly monitor the synchroniza-  
tion status. Upon synchronization of the descrambler the  
hold timer starts a 722 µs countdown. Upon detection of  
sufficient IDLE code-groups (58 bit times) within the 722 µs  
period, the hold timer will reset and begin a new count-  
down. This monitoring operation will continue indefinitely  
given a properly operating network connection with good  
signal integrity. If the line state monitor does not recognize  
sufficient unscrambled IDLE code-groups within the 722 µs  
period, the entire descrambler will be forced out of the cur-  
rent state of synchronization and reset in order to re-  
acquire synchronization.  
Once at least two IDLE code groups are detected, RX_ER  
and CRS become de-asserted.  
4.3 10BASE-T TRANSCEIVER MODULE  
The 10BASE-T Transceiver Module is IEEE 802.3 compli-  
ant. It includes the receiver, transmitter, collision, heart-  
beat, loopback, jabber, and link integrity functions, as  
defined in the standard. An external filter is not required on  
the 10BASE-T interface since this is integrated inside the  
DP83848J. This section focuses on the general 10BASE-T  
system level operation.  
4.2.8 Code-group Alignment  
The code-group alignment module operates on unaligned  
5-bit data from the descrambler (or, if the descrambler is  
bypassed, directly from the NRZI/NRZ decoder) and con-  
verts it into 5B code-group data (5 bits). Code-group align-  
ment occurs after the J/K code-group pair is detected.  
Once the J/K code-group pair (11000 10001) is detected,  
subsequent data is aligned on a fixed boundary.  
4.3.1 Operational Modes  
The DP83848J has two basic 10BASE-T operational  
modes:  
— Half Duplex mode  
— Full Duplex mode  
4.2.9 4B/5B Decoder  
Half Duplex Mode  
The code-group decoder functions as a look up table that  
translates incoming 5B code-groups into 4B nibbles. The  
code-group decoder first detects the J/K code-group pair  
preceded by IDLE code-groups and replaces the J/K with  
MAC preamble. Specifically, the J/K 10-bit code-group pair  
is replaced by the nibble pair (0101 0101). All subsequent  
5B code-groups are converted to the corresponding 4B  
In Half Duplex mode the DP83848J functions as a standard  
IEEE 802.3 10BASE-T transceiver supporting the  
CSMA/CD protocol.  
Full Duplex Mode  
nibbles for the duration of the entire packet. This conver- In Full Duplex mode the DP83848J is capable of simulta-  
sion ceases upon the detection of the T/R code-group pair  
denoting the End of Stream Delimiter (ESD) or with the collision signal. The DP83848J's 10 Mb/s ENDEC is  
reception of a minimum of two IDLE code-groups.  
designed to encode and decode simultaneously.  
neously transmitting and receiving without asserting the  
29  
www.national.com  
4.3.2 Smart Squelch  
within 150 ns. Finally the signal must again exceed the  
original squelch level within a 150 ns to ensure that the  
input waveform will not be rejected. This checking proce-  
dure results in the loss of typically three preamble bits at  
the beginning of each packet.  
The smart squelch is responsible for determining when  
valid data is present on the differential receive inputs. The  
DP83848J implements an intelligent receive squelch to  
ensure that impulse noise on the receive inputs will not be  
mistaken for a valid signal. Smart squelch operation is  
independent of the 10BASE-T operational mode.  
Only after all these conditions have been satisfied will a  
control signal be generated to indicate to the remainder of  
the circuitry that valid data is present. At this time, the  
smart squelch circuitry is reset.  
The squelch circuitry employs a combination of amplitude  
and timing measurements (as specified in the IEEE 802.3  
10BSE-T standard) to determine the validity of data on the  
twisted pair inputs (refer to Figure 10).  
Valid data is considered to be present until the squelch  
level has not been generated for a time longer than 150  
ns, indicating the End of Packet. Once good data has  
been detected, the squelch levels are reduced to minimize  
the effect of noise causing premature End of Packet  
detection.  
The signal at the start of a packet is checked by the smart  
squelch and any pulses not exceeding the squelch level  
(either positive or negative, depending upon polarity) will  
be rejected. Once this first squelch level is overcome cor-  
rectly, the opposite squelch level must then be exceeded  
<150 ns  
>150 ns  
<150 ns  
V
SQ+  
V
SQ+(reduced)  
V
SQ-(reduced)  
V
SQ-  
end of packet  
start of packet  
Figure 10. 10BASE-T Twisted Pair Smart Squelch Operation  
4.3.3 Collision Detection and SQE  
4.3.4 Carrier Sense  
When in Half Duplex, a 10BASE-T collision is detected  
when the receive and transmit channels are active simul-  
taneously. Collisions are reported by the COL signal on  
the MII. Collisions are also reported when a jabber condi-  
tion is detected.  
Carrier Sense (CRS) may be asserted due to receive  
activity once valid data is detected via the squelch func-  
tion.  
For 10 Mb/s Half Duplex operation, CRS is asserted dur-  
ing either packet transmission or reception.  
The COL signal remains set for the duration of the colli-  
sion. If the PHY is receiving when a collision is detected it  
is reported immediately (through the COL pin).  
For 10 Mb/s Full Duplex operation, CRS is asserted only  
during receive activity.  
CRS is deasserted following an end of packet.  
When heartbeat is enabled, approximately 1 µs after the  
transmission of each packet, a Signal Quality Error (SQE)  
signal of approximately 10-bit times is generated to indi-  
cate successful transmission. SQE is reported as a pulse  
on the COL signal of the MII.  
4.3.5 Normal Link Pulse Detection/Generation  
The link pulse generator produces pulses as defined in  
the IEEE 802.3 10BASE-T standard. Each link pulse is  
nominally 100 ns in duration and transmitted every 16 ms  
in the absence of transmit data.  
The SQE test is inhibited when the PHY is set in full  
duplex mode. SQE can also be inhibited by setting the  
HEARTBEAT_DIS bit in the 10BTSCR register.  
Link pulses are used to check the integrity of the connec-  
tion with the remote end. If valid link pulses are not  
received, the link detector disables the 10BASE-T twisted  
pair transmitter, receiver and collision detection functions.  
When the link integrity function is disabled  
(FORCE_LINK_10 of the 10BTSCR register), a good link  
is forced and the 10BASE-T transceiver will operate  
regardless of the presence of link pulses.  
www.national.com  
30  
 
4.3.6 Jabber Function  
4.3.8 Transmit and Receive Filtering  
The jabber function monitors the DP83848J's output and External 10BASE-T filters are not required when using the  
disables the transmitter if it attempts to transmit a packet of DP83848J, as the required signal conditioning is integrated  
longer than legal size. A jabber timer monitors the transmit- into the device.  
ter and disables the transmission if the transmitter is active  
for approximately 85 ms.  
Only isolation transformers and impedance matching resis-  
tors are required for the 10BASE-T transmit and receive  
Once disabled by the Jabber function, the transmitter stays interface. The internal transmit filtering ensures that all the  
disabled for the entire time that the ENDEC module's inter- harmonics in the transmit signal are attenuated by at least  
nal transmit enable is asserted. This signal has to be de- 30 dB.  
asserted for approximately 500 ms (the “unjab” time)  
before the Jabber function re-enables the transmit outputs.  
The Jabber function is only relevant in 10BASE-T mode.  
4.3.9 Transmitter  
The encoder begins operation when the Transmit Enable  
input (TX_EN) goes high and converts NRZ data to pre-  
emphasized Manchester data for the transceiver. For the  
duration of TX_EN, the serialized Transmit Data (TXD) is  
encoded for the transmit-driver pair (PMD Output Pair).  
TXD must be valid on the rising edge of Transmit Clock  
(TX_CLK). Transmission ends when TX_EN deasserts.  
The last transition is always positive; it occurs at the center  
of the bit cell if the last bit is a one, or at the end of the bit  
cell if the last bit is a zero.  
4.3.7 Automatic Link Polarity Detection and Correction  
The DP83848J's 10BASE-T transceiver module incorpo-  
rates an automatic link polarity detection circuit. When  
three consecutive inverted link pulses are received, bad  
polarity is reported.  
A polarity reversal can be caused by a wiring error at either  
end of the cable, usually at the Main Distribution Frame  
(MDF) or patch panel in the wiring closet.  
The bad polarity condition is latched in the 10BTSCR regis-  
ter. The DP83848J's 10BASE-T transceiver module cor-  
rects for this error internally and will continue to decode  
received data correctly. This eliminates the need to correct  
the wiring error immediately.  
4.3.10 Receiver  
The decoder detects the end of a frame when no additional  
mid-bit transitions are detected. Within one and a half bit  
times after the last bit, carrier sense is de-asserted.  
Receive clock stays active for five more bit times after CRS  
goes low, to guarantee the receive timings of the controller.  
31  
www.national.com  
5.0 Design Guidelines  
5.1 TPI NETWORK CIRCUIT  
Pulse H1102  
Pulse H2019  
Pulse J0011D21  
Pulse J0011D21B  
Figure 11 shows the recommended circuit for a 10/100  
Mb/s twisted pair interface. To the right is a partial list of  
recommended transformers. It is important that the user  
realize that variations with PCB and component character-  
istics requires that the application be tested to ensure that  
the circuit meets the requirements of the intended applica-  
tion.  
Vdd  
RD-  
Vdd  
COMMON MODE CHOKES  
MAY BE REQUIRED.  
49.9Ω  
0.1µF  
1:1  
49.9  
RD+  
TD-  
RD-  
0.1µF*  
0.1µF*  
RD+  
TD-  
TD+  
Vdd  
RJ45  
49.9Ω  
T1  
1:1  
0.1µF  
NOTE: CENTER TAP IS PULLED TO VDD  
49.9  
*PLACE CAPACITORS CLOSE TO THE  
TRANSFORMER CENTER TAPS  
TD+  
All values are typical and are +/- 1%  
PLACE RESISTORS AND  
CAPACITORS CLOSE TO  
THE DEVICE.  
Figure 11. 10/100 Mb/s Twisted Pair Interface  
www.national.com  
32  
 
capacitor values will vary with the crystal vendors; check  
with the vendor for the recommended loads.  
5.2 ESD PROTECTION  
Typically, ESD precautions are predominantly in effect  
when handling the devices or board before being installed  
in a system. In those cases, strict handling procedures  
need be implemented during the manufacturing process to  
greatly reduce the occurrences of catastrophic ESD  
events. After the system is assembled, internal compo-  
nents are less sensitive from ESD events.  
The oscillator circuit is designed to drive a parallel reso-  
nance AT cut crystal with a minimum drive level of 100µW  
and a maximum of 500µW. If a crystal is specified for a  
lower drive level, a current limiting resistor should be  
placed in series between X2 and the crystal.  
As a starting point for evaluating an oscillator circuit, if the  
requirements for the crystal are not known, CL1 and CL2  
should be set at 33 pF, and R1 should be set at 0Ω.  
See Section 8.0 for ESD rating.  
Specification for 25 MHz crystal are listed in Table 9..  
5.3 CLOCK IN (X1) RECOMMENDATIONS  
The DP83848J supports an external CMOS level oscillator  
source or a crystal resonator device.  
X2  
X1  
Oscillator  
If an external clock source is used, X1 should be tied to the  
clock source and X2 should be left floating.  
R1  
The CMOS oscillator specifications for MII Mode are listed  
in Table 7.25 MHz Oscillator Specification. For RMII Mode,  
the CMOS oscillator specifications are listed in Table 8.50  
MHz Oscillator Specification. For RMII mode, it is not rec-  
ommended that the system clock out, Pin 21, be used as  
the reference clock to the MAC without first verifying the  
interface timing. See AN-1405 for more details..  
CL1  
CL2  
Figure 12. Crystal Oscillator Circuit  
Crystal  
A 25 MHz, parallel, 20 pF load crystal resonator should be  
used if a crystal source is desired. Figure 12 shows a typi-  
cal connection for a crystal resonator circuit. The load  
Table 7. 25 MHz Oscillator Specification  
Typ Max  
25  
Parameter  
Frequency  
Frequency  
Tolerance  
Frequency  
Stability  
Min  
Units  
MHz  
ppm  
Condition  
+50  
Operational  
Temperature  
+50  
ppm  
1 year aging  
Rise / Fall Time  
Jitter  
6
nsec  
psec  
20% - 80%  
Short term  
8001  
8001  
60%  
Jitter  
psec  
Long term  
Duty Cycle  
Symmetry  
40%  
1. This limit is provided as a guideline for component selection and not guaranteed by production testing. Refer to AN-  
1548, “PHYTER 100 Base-TX Reference Clock Jitter Tolerance,” for details on jitter performance.  
33  
www.national.com  
 
 
 
Table 8. 50 MHz Oscillator Specification  
Parameter  
Frequency  
Frequency  
Tolerance  
Frequency  
Stability  
Min  
Typ  
Max  
+50  
+50  
Units  
MHz  
ppm  
Condition  
25  
Operational  
Temperature  
ppm  
1 year aging  
Rise / Fall Time  
Jitter  
6
nsec  
psec  
20% - 80%  
Short term  
8001  
8001  
60%  
Jitter  
psec  
Long term  
Duty Cycle  
Symmetry  
40%  
1. This limit is provided as a guideline for component selection and not guaranteed by production testing. Refer to  
AN-1548, “PHYTER 100 Base-TX Reference Clock Jitter Tolerance,” for details on jitter performance.  
Table 9. 25 MHz Crystal Specification  
Parameter  
Frequency  
Min  
Typ  
Max  
+50  
+50  
40  
Units  
MHz  
ppm  
Condition  
25  
Frequency  
Operational  
Temperature  
Tolerance  
Frequency  
ppm  
pF  
1 year aging  
Stability  
Load Capacitance  
25  
www.national.com  
34  
 
5.4 POWER FEEDBACK CIRCUIT  
5.6 ENERGY DETECT MODE  
To ensure correct operation for the DP83848J, parallel When Energy Detect is enabled and there is no activity on  
caps with values of 10 µF (Tantalum) and 0.1 µF should be the cable, the DP83848J will remain in a low power mode  
placed close to pin 19 (PFBOUT) of the device.  
while monitoring the transmission line. Activity on the line  
will cause the DP83848J to go through a normal power up  
sequence. Regardless of cable activity, the DP83848J will  
occasionally wake up the transmitter to put ED pulses on  
the line, but will otherwise draw as little power as possible.  
Energy detect functionality is controlled via register Energy  
Detect Control (EDCR), address 0x1Dh.  
Pin 16 (PFBIN1) and pin 30 (PFBIN2) must be connected  
to pin 19 (PFBOUT), each pin requires a small capacitor  
(0.1 µF). See Figure 13 below for proper connections.  
Pin 19 (PFBOUT  
)
10 µF  
0.1µF  
+
-
6.0 Reset Operation  
Pin 16 (PFBIN1)  
Pin 30 (PFBIN2)  
The DP83848J includes an internal power-on reset (POR)  
function and does not need to be explicitly reset for normal  
operation after power up. If required during normal opera-  
tion, the device can be reset by a hardware or software  
reset.  
0.1 µF  
0.1 µF  
6.1 HARDWARE RESET  
A hardware reset is accomplished by applying a low pulse  
(TTL level), with a duration of at least 1 µs, to the  
RESET_N. This will reset the device such that all registers  
will be reinitialized to default values and the hardware con-  
figuration values will be re-latched into the device (similar  
to the power-up/reset operation).  
Figure 13. Power Feedback Connection  
5.5 POWER DOWN  
6.2 SOFTWARE RESET  
The device can be put in a Power Down mode by setting bit  
11 (Power Down) in the Basic Mode Control Register,  
BMCR (0x00h).  
A software reset is accomplished by setting the reset bit  
(bit 15) of the Basic Mode Control Register (BMCR). The  
period from the point in time when the reset bit is set to the  
point in time when software reset has concluded is approx-  
imately 1 µs.  
The software reset will reset the device such that all regis-  
ters will be reset to default values and the hardware config-  
35  
www.national.com  
 
7.0 Register Block  
Table 10. Register Map  
Tag  
Offset  
Access  
Description  
Hex  
00h  
Decimal  
0
1
RW  
RO  
RO  
RO  
RW  
RW  
RW  
RW  
RW  
RW  
BMCR  
Basic Mode Control Register  
01h  
BMSR  
Basic Mode Status Register  
02h  
2
PHYIDR1  
PHYIDR2  
ANAR  
PHY Identifier Register #1  
03h  
3
PHY Identifier Register #2  
04h  
4
Auto-Negotiation Advertisement Register  
Auto-Negotiation Link Partner Ability Register (Base Page)  
Auto-Negotiation Link Partner Ability Register (Next Page)  
Auto-Negotiation Expansion Register  
Auto-Negotiation Next Page TX  
05h  
5
ANLPAR  
ANLPARNP  
ANER  
05h  
5
06h  
6
07h  
7
ANNPTR  
RESERVED  
08h-Fh  
8-15  
RESERVED  
Extended Registers  
10h  
11h  
16  
17  
RO  
RW  
RO  
PHYSTS  
RESERVED  
RESERVED  
RESERVED  
FCSCR  
PHY Status Register  
RESERVED  
12h  
18  
RESERVED  
13h  
19  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RESERVED  
14h  
20  
False Carrier Sense Counter Register  
Receive Error Counter Register  
PCS Sub-Layer Configuration and Status Register  
RMII and Bypass Register  
LED Direct Control Register  
PHY Control Register  
15h  
21  
RECR  
16h  
22  
PCSR  
17h  
23  
RBR  
18h  
24  
LEDCR  
19h  
25  
PHYCR  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh-1Fh  
26  
10BTSCR  
CDCTRL1  
RESERVED  
EDCR  
10Base-T Status/Control Register  
CD Test Control Register and BIST Extensions Register  
RESERVED  
27  
28  
29  
Energy Detect Control Register  
RESERVED  
30-31  
RESERVED  
www.national.com  
36  
37  
www.national.com  
www.national.com  
38  
7.1 REGISTER DEFINITION  
In the register definitions under the ‘Default’ heading, the following definitions hold true:  
RW=Read Write access  
SC=Register sets on event occurrence and Self-Clears when event ends  
RW/SC =Read Write access/Self Clearing bit  
RO=Read Only access  
COR = Clear on Read  
RO/COR=Read Only, Clear on Read  
RO/P=Read Only, Permanently set to a default value  
LL=Latched Low and held until read, based upon the occurrence of the corresponding event  
— LH=Latched High and held until read, based upon the occurrence of the corresponding event  
39  
www.national.com  
7.1.1 Basic Mode Control Register (BMCR)  
Table 12. Basic Mode Control Register (BMCR), address 0x00  
Bit  
Bit Name  
Default  
Description  
15  
Reset  
0, RW/SC  
Reset:  
1 = Initiate software Reset / Reset in Process.  
0 = Normal operation.  
This bit, which is self-clearing, returns a value of one until the reset  
process is complete. The configuration is re-strapped.  
14  
Loopback  
0, RW  
Loopback:  
1 = Loopback enabled.  
0 = Normal operation.  
The loopback function enables MII transmit data to be routed to the MII  
receive data path.  
Setting this bit may cause the descrambler to lose synchronization and  
produce a 500 µs “dead time” before any valid data will appear at the  
MII receive outputs.  
13  
12  
Speed Selection  
RW  
RW  
Speed Select:  
When auto-negotiation is disabled writing to this bit allows the port  
speed to be selected.  
1 = 100 Mb/s.  
0 = 10 Mb/s.  
Auto-Negotiation  
Enable  
Auto-Negotiation Enable:  
Strap controls initial value at reset.  
1 = Auto-Negotiation Enabled - bits 8 and 13 of this register are ig-  
nored when this bit is set.  
0 = Auto-Negotiation Disabled - bits 8 and 13 determine the port speed  
and duplex mode.  
11  
Power Down  
0, RW  
Power Down:  
1 = Power down.  
0 = Normal operation.  
Setting this bit powers down the PHY. Only the register block is en-  
abled during a power down condition.  
10  
9
Isolate  
0, RW  
Isolate:  
1 = Isolates the Port from the MII with the exception of the serial man-  
agement.  
0 = Normal operation.  
Restart Auto-  
Negotiation  
0, RW/SC  
Restart Auto-Negotiation:  
1 = Restart Auto-Negotiation. Re-initiates the Auto-Negotiation pro-  
cess. If Auto-Negotiation is disabled (bit 12 = 0), this bit is ignored. This  
bit is self-clearing and will return a value of 1 until Auto-Negotiation is  
initiated, whereupon it will self-clear. Operation of the Auto-Negotiation  
process is not affected by the management entity clearing this bit.  
0 = Normal operation.  
8
Duplex Mode  
RW  
Duplex Mode:  
When auto-negotiation is disabled writing to this bit allows the port Du-  
plex capability to be selected.  
1 = Full Duplex operation.  
0 = Half Duplex operation.  
www.national.com  
40  
Table 12. Basic Mode Control Register (BMCR), address 0x00 (Continued)  
Bit  
Bit Name  
Default  
Description  
7
Collision Test  
0, RW  
Collision Test:  
1 = Collision test enabled.  
0 = Normal operation.  
When set, this bit will cause the COL signal to be asserted in response  
to the assertion of TX_EN within 512-bit times. The COL signal will be  
de-asserted within 4-bit times in response to the de-assertion of  
TX_EN.  
6:0  
RESERVED  
0, RO  
RESERVED: Write ignored, read as 0.  
41  
www.national.com  
7.1.2 Basic Mode Status Register (BMSR)  
Table 13. Basic Mode Status Register (BMSR), address 0x01  
Bit  
Bit Name  
Default  
Description  
15  
100BASE-T4  
0, RO/P  
100BASE-T4 Capable:  
0 = Device not able to perform 100BASE-T4 mode.  
100BASE-TX Full Duplex Capable:  
14  
13  
12  
11  
100BASE-TX  
Full Duplex  
100BASE-TX  
Half Duplex  
10BASE-T  
1, RO/P  
1, RO/P  
1, RO/P  
1, RO/P  
1 = Device able to perform 100BASE-TX in full duplex mode.  
100BASE-TX Half Duplex Capable:  
1 = Device able to perform 100BASE-TX in half duplex mode.  
10BASE-T Full Duplex Capable:  
Full Duplex  
10BASE-T  
1 = Device able to perform 10BASE-T in full duplex mode.  
10BASE-T Half Duplex Capable:  
Half Duplex  
RESERVED  
MF Preamble  
Suppression  
1 = Device able to perform 10BASE-T in half duplex mode.  
RESERVED: Write as 0, read as 0.  
10:7  
6
0, RO  
1, RO/P  
Preamble suppression Capable:  
1 = Device able to perform management transaction with preamble  
suppressed, 32-bits of preamble needed only once after reset, invalid  
opcode or invalid turnaround.  
0 = Normal management operation.  
Auto-Negotiation Complete:  
5
4
Auto-Negotiation Com-  
plete  
0, RO  
1 = Auto-Negotiation process complete.  
0 = Auto-Negotiation process not complete.  
Remote Fault  
0, RO/LH Remote Fault:  
1 = Remote Fault condition detected (cleared on read or by reset).  
Fault criteria: Far End Fault Indication or notification from Link Part-  
ner of Remote Fault.  
0 = No remote fault condition detected.  
Auto Negotiation Ability:  
3
2
Auto-Negotiation Abili-  
ty  
1, RO/P  
1 = Device is able to perform Auto-Negotiation.  
0 = Device is not able to perform Auto-Negotiation.  
Link Status  
0, RO/LL Link Status:  
1 = Valid link established (for either 10 or 100 Mb/s operation).  
0 = Link not established.  
The criteria for link validity is implementation specific. The occurrence  
of a link failure condition will causes the Link Status bit to clear. Once  
cleared, this bit may only be set by establishing a good link condition  
and a read via the management interface.  
1
0
Jabber Detect  
0, RO/LH Jabber Detect: This bit only has meaning in 10 Mb/s mode.  
1 = Jabber condition detected.  
0 = No Jabber.  
This bit is implemented with a latching function, such that the occur-  
rence of a jabber condition causes it to set until it is cleared by a read  
to this register by the management interface or by a reset.  
Extended Capability  
1, RO/P  
Extended Capability:  
1 = Extended register capabilities.  
0 = Basic register set capabilities only.  
www.national.com  
42  
The PHY Identifier Registers #1 and #2 together form a unique identifier for the DP83848J. The Identifier consists of a  
concatenation of the Organizationally Unique Identifier (OUI), the vendor's model number and the model revision num-  
ber. A PHY may return a value of zero in each of the 32 bits of the PHY Identifier if desired. The PHY Identifier is intended  
to support network management. National's IEEE assigned OUI is 080017h.  
7.1.3 PHY Identifier Register #1 (PHYIDR1)  
Table 14. PHY Identifier Register #1 (PHYIDR1), address 0x02  
Bit  
Bit Name  
Default  
Description  
15:0  
OUI_MSB  
<0010 0000 0000 OUI Most Significant Bits: Bits 3 to 18 of the OUI (080017h) are  
0000>, RO/P  
stored in bits 15 to 0 of this register. The most significant two bits  
of the OUI are ignored (the IEEE standard refers to these as bits 1  
and 2).  
7.1.4 PHY Identifier Register #2 (PHYIDR2)  
Table 15. PHY Identifier Register #2 (PHYIDR2), address 0x03  
Bit  
Bit Name  
Default  
<0101 11>, RO/P OUI Least Significant Bits:  
Bits 19 to 24 of the OUI (080017h) are mapped from bits 15 to 10  
Description  
15:10  
OUI_LSB  
of this register respectively.  
9:4  
3:0  
VNDR_MDL  
MDL_REV  
<00 1001>, RO/P Vendor Model Number:  
The six bits of vendor model number are mapped from bits 9 to 4  
(most significant bit to bit 9).  
<0000>, RO/P  
Model Revision Number:  
Four bits of the vendor model revision number are mapped from  
bits 3 to 0 (most significant bit to bit 3). This field will be incremented  
for all major device changes.  
7.1.5 Auto-Negotiation Advertisement Register (ANAR)  
This register contains the advertised abilities of this device as they will be transmitted to its link partner during Auto-Nego-  
tiation. Any writes to this register prior to completion of Auto-Negotiation (as indicated in the Basic Mode Status Register  
(address 0x01) Auto-Negotiation complete bit, BMSR[5] ) should be followed by a renegotiation. This will ensure that the  
new values are properly used in the Auto-Negotiation.  
Table 16. Negotiation Advertisement Register (ANAR), address 0x04  
Bit  
Bit Name  
Default  
Description  
15  
NP  
0, RW  
Next Page Indication:  
0 = Next Page Transfer not desired.  
1 = Next Page Transfer desired.  
14  
13  
RESERVED  
RF  
0, RO/P  
0, RW  
RESERVED by IEEE: Writes ignored, Read as 0.  
Remote Fault:  
1 = Advertises that this device has detected a Remote Fault.  
0 = No Remote Fault detected.  
12  
RESERVED  
0, RW  
RESERVED for Future IEEE use: Write as 0, Read as 0  
43  
www.national.com  
Table 16. Negotiation Advertisement Register (ANAR), address 0x04 (Continued)  
Bit  
Bit Name  
Default  
Description  
11  
ASM_DIR  
0, RW  
Asymmetric PAUSE Support for Full Duplex Links:  
The ASM_DIR bit indicates that asymmetric PAUSE is supported.  
Encoding and resolution of PAUSE bits is defined in IEEE 802.3  
Annex 28B, Tables 28B-2 and 28B-3, respectively. Pause resolu-  
tion status is reported in PHYCR[13:12].  
1 = Advertise that the DTE (MAC) has implemented both the op-  
tional MAC control sublayer and the pause function as specified in  
clause 31 and annex 31B of 802.3u.  
0= No MAC based full duplex flow control.  
10  
PAUSE  
0, RW  
PAUSE Support for Full Duplex Links:  
The PAUSE bit indicates that the device is capable of providing the  
symmetric PAUSE functions as defined in Annex 31B.  
Encoding and resolution of PAUSE bits is defined in IEEE 802.3  
Annex 28B, Tables 28B-2 and 28B-3, respectively. Pause resolu-  
tion status is reported in PHYCR[13:12].  
1 = Advertise that the DTE (MAC) has implemented both the op-  
tional MAC control sublayer and the pause function as specified in  
clause 31 and annex 31B of 802.3u.  
0= No MAC based full duplex flow control.  
100BASE-T4 Support:  
9
8
T4  
TX_FD  
TX  
0, RO/P  
Strap, RW  
Strap, RW  
RW  
1= 100BASE-T4 is supported by the local device.  
0 = 100BASE-T4 not supported.  
100BASE-TX Full Duplex Support:  
1 = 100BASE-TX Full Duplex is supported by the local device.  
0 = 100BASE-TX Full Duplex not supported.  
100BASE-TX Support:  
7
1 = 100BASE-TX is supported by the local device.  
0 = 100BASE-TX not supported.  
6
10_FD  
10  
10BASE-T Full Duplex Support:  
1 = 10BASE-T Full Duplex is supported by the local device.  
0 = 10BASE-T Full Duplex not supported.  
10BASE-T Support:  
5
RW  
1 = 10BASE-T is supported by the local device.  
0 = 10BASE-T not supported.  
4:0  
Selector  
<00001>, RW Protocol Selection Bits:  
These bits contain the binary encoded protocol selector supported  
by this port. <00001> indicates that this device supports IEEE  
802.3u.  
www.national.com  
44  
7.1.6 Auto-Negotiation Link Partner Ability Register (ANLPAR) (BASE Page)  
This register contains the advertised abilities of the Link Partner as received during Auto-Negotiation. The content  
changes after the successful auto-negotiation if Next-pages are supported.  
Table 17. Auto-Negotiation Link Partner Ability Register (ANLPAR) (BASE Page), address 0x05  
Bit  
Bit Name  
Default  
Description  
15  
NP  
0, RO  
Next Page Indication:  
0 = Link Partner does not desire Next Page Transfer.  
1 = Link Partner desires Next Page Transfer.  
Acknowledge:  
14  
13  
ACK  
RF  
0, RO  
0, RO  
1 = Link Partner acknowledges reception of the ability data word.  
0 = Not acknowledged.  
The Auto-Negotiation state machine will automatically control the  
this bit based on the incoming FLP bursts.  
Remote Fault:  
1 = Remote Fault indicated by Link Partner.  
0 = No Remote Fault indicated by Link Partner.  
RESERVED for Future IEEE use:  
12  
11  
RESERVED  
ASM_DIR  
0, RO  
0, RO  
Write as 0, read as 0.  
ASYMMETRIC PAUSE:  
1 = Asymmetric pause is supported by the Link Partner.  
0 = Asymmetric pause is not supported by the Link Partner.  
PAUSE:  
10  
9
PAUSE  
T4  
0, RO  
0, RO  
0, RO  
0, RO  
0, RO  
0, RO  
1 = Pause function is supported by the Link Partner.  
0 = Pause function is not supported by the Link Partner.  
100BASE-T4 Support:  
1 = 100BASE-T4 is supported by the Link Partner.  
0 = 100BASE-T4 not supported by the Link Partner.  
100BASE-TX Full Duplex Support:  
8
TX_FD  
TX  
1 = 100BASE-TX Full Duplex is supported by the Link Partner.  
0 = 100BASE-TX Full Duplex not supported by the Link Partner.  
100BASE-TX Support:  
7
1 = 100BASE-TX is supported by the Link Partner.  
0 = 100BASE-TX not supported by the Link Partner.  
10BASE-T Full Duplex Support:  
6
10_FD  
10  
1 = 10BASE-T Full Duplex is supported by the Link Partner.  
0 = 10BASE-T Full Duplex not supported by the Link Partner.  
10BASE-T Support:  
5
1 = 10BASE-T is supported by the Link Partner.  
0 = 10BASE-T not supported by the Link Partner.  
4:0  
Selector  
<0 0000>, RO Protocol Selection Bits:  
Link Partner’s binary encoded protocol selector.  
45  
www.national.com  
7.1.7 Auto-Negotiation Link Partner Ability Register (ANLPAR) (Next Page)  
Table 18. Auto-Negotiation Link Partner Ability Register (ANLPAR) (Next Page), address 0x05  
Bit  
Bit Name  
Default  
Description  
15  
NP  
0, RO  
Next Page Indication:  
1 = Link Partner desires Next Page Transfer.  
0 = Link Partner does not desire Next Page Transfer.  
Acknowledge:  
14  
ACK  
0, RO  
1 = Link Partner acknowledges reception of the ability data word.  
0 = Not acknowledged.  
The Auto-Negotiation state machine will automatically control the  
this bit based on the incoming FLP bursts. Software should not at-  
tempt to write to this bit.  
13  
12  
MP  
0, RO  
0, RO  
Message Page:  
1 = Message Page.  
0 = Unformatted Page.  
Acknowledge 2:  
ACK2  
1 = Link Partner does have the ability to comply to next page mes-  
sage.  
0 = Link Partner does not have the ability to comply to next page  
message.  
11  
Toggle  
CODE  
0, RO  
Toggle:  
1 = Previous value of the transmitted Link Code word equalled 0.  
0 = Previous value of the transmitted Link Code word equalled 1.  
10:0  
<00000000000>, Code:  
RO  
This field represents the code field of the next page transmission.  
If the MP bit is set (bit 13 of this register), then the code shall be  
interpreted as a “Message Page,” as defined in annex 28C of  
Clause 28. Otherwise, the code shall be interpreted as an “Unfor-  
matted Page,” and the interpretation is application specific.  
7.1.8 Auto-Negotiate Expansion Register (ANER)  
This register contains additional Local Device and Link Partner status information.  
Table 19. Auto-Negotiate Expansion Register (ANER), address 0x06  
Bit  
15:5  
4
Bit Name  
RESERVED  
PDF  
Default  
0, RO  
0, RO  
Description  
RESERVED: Writes ignored, Read as 0.  
Parallel Detection Fault:  
1 = A fault has been detected via the Parallel Detection function.  
0 = A fault has not been detected.  
3
LP_NP_ABLE  
0, RO  
Link Partner Next Page Able:  
1 = Link Partner does support Next Page.  
0 = Link Partner does not support Next Page.  
Next Page Able:  
2
1
NP_ABLE  
PAGE_RX  
1, RO/P  
1 = Indicates local device is able to send additional “Next Pages”.  
Link Code Word Page Received:  
0, RO/COR  
1 = Link Code Word has been received, cleared on a read.  
0 = Link Code Word has not been received.  
www.national.com  
46  
Table 19. Auto-Negotiate Expansion Register (ANER), address 0x06 (Continued)  
Bit  
Bit Name  
Default  
Description  
0
LP_AN_ABLE  
0, RO  
Link Partner Auto-Negotiation Able:  
1 = indicates that the Link Partner supports Auto-Negotiation.  
0 = indicates that the Link Partner does not support Auto-Negotia-  
tion.  
7.1.9 Auto-Negotiation Next Page Transmit Register (ANNPTR)  
This register contains the next page information sent by this device to its Link Partner during Auto-Negotiation.  
Table 20. Auto-Negotiation Next Page Transmit Register (ANNPTR), address 0x07  
Bit  
Bit Name  
Default  
Description  
15  
NP  
0, RW  
Next Page Indication:  
0 = No other Next Page Transfer desired.  
1 = Another Next Page desired.  
RESERVED: Writes ignored, read as 0.  
Message Page:  
14  
13  
RESERVED  
MP  
0, RO  
1, RW  
1 = Message Page.  
0 = Unformatted Page.  
12  
11  
ACK2  
0, RW  
0, RO  
Acknowledge2:  
1 = Will comply with message.  
0 = Cannot comply with message.  
Acknowledge2 is used by the next page function to indicate that Lo-  
cal Device has the ability to comply with the message received.  
TOG_TX  
Toggle:  
1 = Value of toggle bit in previously transmitted Link Code Word  
was 0.  
0 = Value of toggle bit in previously transmitted Link Code Word  
was 1.  
Toggle is used by the Arbitration function within Auto-Negotiation  
to ensure synchronization with the Link Partner during Next Page  
exchange. This bit shall always take the opposite value of the Tog-  
gle bit in the previously exchanged Link Code Word.  
10:0  
CODE  
<00000000001>, This field represents the code field of the next page transmission.  
RW  
If the MP bit is set (bit 13 of this register), then the code shall be  
interpreted as a "Message Page”, as defined in annex 28C of IEEE  
802.3u. Otherwise, the code shall be interpreted as an "Unformat-  
ted Page”, and the interpretation is application specific.  
The default value of the CODE represents a Null Page as defined  
in Annex 28C of IEEE 802.3u.  
47  
www.national.com  
7.2 EXTENDED REGISTERS  
7.2.1 PHY Status Register (PHYSTS)  
This register provides a single location within the register set for quick access to commonly accessed information.  
Table 21. PHY Status Register (PHYSTS), address 0x10  
Bit  
15  
14  
Bit Name  
RESERVED  
MDI-X mode  
Default  
0, RO  
0, RO  
Description  
RESERVED: Write ignored, read as 0.  
MDI-X mode as reported by the Auto-Negotiation logic:  
This bit will be affected by the settings of the MDIX_EN and  
FORCE_MDIX bits in the PHYCR register. When MDIX is enabled,  
but not forced, this bit will update dynamically as the Auto-MDIX al-  
gorithm swaps between MDI and MDI-X configurations.  
1 = MDI pairs swapped  
(Receive on TPTD pair, Transmit on TPRD pair)  
0 = MDI pairs normal  
(Receive on TRD pair, Transmit on TPTD pair)  
Receive Error Latch:  
13  
12  
Receive Error Latch  
Polarity Status  
0, RO/LH  
This bit will be cleared upon a read of the RECR register.  
1 = Receive error event has occurred since last read of RXERCNT  
(address 0x15, Page 0).  
0 = No receive error event has occurred.  
0, RO  
Polarity Status:  
This bit is a duplication of bit 4 in the 10BTSCR register. This bit will  
be cleared upon a read of the 10BTSCR register, but not upon a  
read of the PHYSTS register.  
1 = Inverted Polarity detected.  
0 = Correct Polarity detected.  
11  
False Carrier Sense  
Latch  
0, RO/LH  
False Carrier Sense Latch:  
This bit will be cleared upon a read of the FCSR register.  
1 = False Carrier event has occurred since last read of FCSCR (ad-  
dress 0x14).  
0 = No False Carrier event has occurred.  
100Base-TX unconditional Signal Detect from PMD.  
100Base-TX Descrambler Lock from PMD.  
Link Code Word Page Received:  
10  
9
Signal Detect  
Descrambler Lock  
Page Received  
0, RO/LL  
0, RO/LL  
0, RO  
8
This is a duplicate of the Page Received bit in the ANER register,  
but this bit will not be cleared upon a read of the PHYSTS register.  
1 = A new Link Code Word Page has been received. Cleared on  
read of the ANER (address 0x06, bit 1).  
0 = Link Code Word Page has not been received.  
RESERVED: Writes ignored, read as 0.  
Remote Fault:  
7
6
RESERVED  
Remote Fault  
0, RO  
0, RO  
1 = Remote Fault condition detected (cleared on read of BMSR (ad-  
dress 01h) register or by reset). Fault criteria: notification from Link  
Partner of Remote Fault via Auto-Negotiation.  
0 = No remote fault condition detected.  
5
Jabber Detect  
0, RO  
Jabber Detect: This bit only has meaning in 10 Mb/s mode  
This bit is a duplicate of the Jabber Detect bit in the BMSR register,  
except that it is not cleared upon a read of the PHYSTS register.  
1 = Jabber condition detected.  
0 = No Jabber.  
www.national.com  
48  
Table 21. PHY Status Register (PHYSTS), address 0x10 (Continued)  
Bit  
Bit Name  
Default  
Description  
Auto-Negotiation Complete:  
4
Auto-Neg Complete  
0, RO  
1 = Auto-Negotiation complete.  
0 = Auto-Negotiation not complete.  
Loopback:  
3
2
Loopback Status  
Duplex Status  
0, RO  
0, RO  
1 = Loopback enabled.  
0 = Normal operation.  
Duplex:  
This bit indicates duplex status and is determined from Auto-Nego-  
tiation or Forced Modes.  
1 = Full duplex mode.  
0 = Half duplex mode.  
Note: This bit is only valid if Auto-Negotiation is enabled and com-  
plete and there is a valid link or if Auto-Negotiation is disabled and  
there is a valid link.  
1
Speed Status  
0, RO  
Speed10:  
This bit indicates the status of the speed and is determined from  
Auto-Negotiation or Forced Modes.  
1 = 10 Mb/s mode.  
0 = 100 Mb/s mode.  
Note: This bit is only valid if Auto-Negotiation is enabled and com-  
plete and there is a valid link or if Auto-Negotiation is disabled and  
there is a valid link.  
0
Link Status  
0, RO  
Link Status:  
This bit is a duplicate of the Link Status bit in the BMSR register,  
except that it will not be cleared upon a read of the PHYSTS regis-  
ter.  
1 = Valid link established (for either 10 or 100 Mb/s operation)  
0 = Link not established.  
49  
www.national.com  
7.2.2 False Carrier Sense Counter Register (FCSCR)  
This counter provides information required to implement the “False Carriers” attribute within the MAU managed object  
class of Clause 30 of the IEEE 802.3u specification.  
Table 22. False Carrier Sense Counter Register (FCSCR), address 0x14  
Bit  
15:8  
7:0  
Bit Name  
RESERVED  
FCSCNT[7:0]  
Default  
0, RO  
Description  
RESERVED: Writes ignored, Read as 0  
False Carrier Event Counter:  
0, RO / COR  
This 8-bit counter increments on every false carrier event. This  
counter sticks when it reaches its max count (FFh).  
7.2.3 Receiver Error Counter Register (RECR)  
This counter provides information required to implement the “Symbol Error During Carrier” attribute within the PHY man-  
aged object class of Clause 30 of the IEEE 802.3u specification.  
Table 23. Receiver Error Counter Register (RECR), address 0x15  
Bit  
15:8  
7:0  
Bit Name  
RESERVED  
RXERCNT[7:0]  
Default  
0, RO  
Description  
RESERVED: Writes ignored, Read as 0  
RX_ER Counter:  
0, RO / COR  
When a valid carrier is present and there is at least one occurrence  
of an invalid data symbol, this 8-bit counter increments for each re-  
ceive error detected. This event can increment only once per valid  
carrier event. If a collision is present, the attribute will not incre-  
ment. The counter sticks when it reaches its max count.  
www.national.com  
50  
7.2.4 100 Mb/s PCS Configuration and Status Register (PCSR)  
Table 24. 100 Mb/s PCS Configuration and Status Register (PCSR), address 0x16  
Bit  
15:13  
12  
Bit Name  
RESERVED  
RESERVED  
Default  
<00>, RO  
0
Description  
RESERVED: Writes ignored, Read as 0.  
RESERVED:  
Must be zero.  
11  
10  
RESERVED  
TQ_EN  
0
RESERVED:  
Must be zero.  
100Mbs True Quiet Mode Enable:  
1 = Transmit True Quiet Mode.  
0 = Normal Transmit Mode.  
Signal Detect Force PMA:  
1 = Forces Signal Detection in PMA.  
0 = Normal SD operation.  
Signal Detect Option:  
0, RW  
9
8
7
SD FORCE PMA  
SD_OPTION  
0, RW  
1, RW  
0, RW  
1 = Enhanced signal detect algorithm.  
0 = Reduced signal detect algorithm.  
Descrambler Timeout:  
DESC_TIME  
Increase the descrambler timeout. When set this should allow the  
device to receive larger packets (>9k bytes) without loss of syn-  
chronization.  
1 = 2ms  
0 = 722us (per ANSI X3.263: 1995 (TP-PMD) 7.2.3.3e)  
RESERVED:  
6
5
RESERVED  
0
Must be zero.  
FORCE_100_OK  
0, RW  
Force 100Mb/s Good Link:  
1 = Forces 100Mb/s Good Link.  
0 = Normal 100Mb/s operation.  
RESERVED:  
4
3
2
RESERVED  
RESERVED  
0
0
Must be zero.  
RESERVED:  
Must be zero.  
NRZI_BYPASS  
0, RW  
NRZI Bypass Enable:  
1 = NRZI Bypass Enabled.  
0 = NRZI Bypass Disabled.  
RESERVED:  
1
0
RESERVED  
RESERVED  
0
0
Must be zero.  
RESERVED:  
Must be zero.  
51  
www.national.com  
7.2.5 RMII and Bypass Register (RBR)  
This register configures the RMII Mode of operation. When RMII mode is disabled, the RMII functionality is bypassed.  
Table 25. RMII and Bypass Register (RBR), addresses 0x17  
Bit  
15:6  
5
Bit Name  
RESERVED  
RMII_MODE  
Default  
Description  
RESERVED: Writes ignored, Read as 0.  
Reduced MII Mode:  
0, RO  
Strap, RW  
0, RW  
0 = Standard MII Mode  
1 = Reduced MII Mode  
4
RMII_REV1_0  
Reduce MII Revision 1.0:  
0 = (RMII revision 1.2) CRS_DV will toggle at the end of a packet  
to indicate deassertion of CRS.  
1 = (RMII revision 1.0) CRS_DV will remain asserted until final data  
is transferred. CRS_DV will not toggle at the end of a packet.  
RX FIFO Over Flow Status:  
3
2
RX_OVF_STS  
RX_UNF_STS  
ELAST_BUF[1:0]  
0, RO  
0, RO  
1, RW  
0 = Normal  
1 = Overflow detected  
RX FIFO Under Flow Status:  
0 = Normal  
1 = Underflow detected  
1:0  
Receive Elasticity Buffer. This field controls the Receive Elastic-  
ity Buffer which allows for frequency variation tolerance between  
the 50MHz RMII clock and the recovered data. The following value  
indicate the tolerance in bits for a single packet. The minimum set-  
ting allows for standard Ethernet frame sizes at +/-50ppm accuracy  
for both RMII and Receive clocks. For greater frequency tolerance  
the packet lengths may be scaled (i.e. for +/-100ppm, the packet  
lengths need to be divided by 2).  
00 = 14 bit tolerance (up to 16800 byte packets)  
01 = 2 bit tolerance (up to 2400 byte packets)  
10 = 6 bit tolerance (up to 7200 byte packets)  
11 = 10 bit tolerance (up to 12000 byte packets)  
www.national.com  
52  
7.2.6 LED Direct Control Register (LEDCR)  
This register provides the ability to directly control the LED outputs. It does not provide read access to the LEDs.  
Table 26. LED Direct Control Register (LEDCR), address 0x18  
Bit  
15:6  
5
Bit Name  
RESERVED  
DRV_SPDLED  
Default  
0, RO  
Description  
RESERVED: Writes ignored, read as 0.  
1 = Drive value of SPDLED bit onto LED_SPEED output  
0 = Normal operation  
0, RW  
4
3
DRV_LNKLED  
RESERVED  
0, RW  
0
1 = Drive value of LNKLED bit onto LED_LINK output  
0 = Normal operation  
RESERVED:  
Must be zero.  
2
1
0
SPDLED  
LNKLED  
0, RW  
0, RW  
0
Value to force on LED_SPEED output  
Value to force on LED_LINK output  
RESERVED:  
RESERVED  
Must be zero.  
53  
www.national.com  
7.2.7 PHY Control Register (PHYCR)  
Table 27. PHY Control Register (PHYCR), address 0x19  
Bit  
Bit Name  
Default  
Description  
15  
MDIX_EN  
Strap, RW  
Auto-MDIX Enable:  
1 = Enable Auto-neg Auto-MDIX capability.  
0 = Disable Auto-neg Auto-MDIX capability.  
The Auto-MDIX algorithm requires that the Auto-Negotiation En-  
able bit in the BMCR register to be set. If Auto-Negotiation is not  
enabled, Auto-MDIX should be disabled as well.  
14  
13  
FORCE_MDIX  
PAUSE_RX  
0, RW  
0, RO  
Force MDIX:  
1 = Force MDI pairs to cross.  
(Receive on TPTD pair, Transmit on TPRD pair)  
0 = Normal operation.  
Pause Receive Negotiated:  
Indicates that pause receive should be enabled in the MAC. Based  
on ANAR[11:10] and ANLPAR[11:10] settings.  
This function shall be enabled according to IEEE 802.3 Annex 28B  
Table 28B-3, “Pause Resolution”, only if the Auto-Negotiated High-  
est Common Denominator is a full duplex technology.  
12  
11  
PAUSE_TX  
BIST_FE  
0, RO  
Pause Transmit Negotiated:  
Indicates that pause transmit should be enabled in the MAC. Based  
on ANAR[11:10] and ANLPAR[11:10] settings.  
This function shall be enabled according to IEEE 802.3 Annex 28B  
Table 28B-3, “Pause Resolution”, only if the Auto-Negotiated High-  
est Common Denominator is a full duplex technology.  
0, RW/SC  
BIST Force Error:  
1 = Force BIST Error.  
0 = Normal operation.  
This bit forces a single error, and is self clearing.  
BIST Sequence select:  
1 = PSR15 selected.  
10  
9
PSR_15  
0, RW  
0 = PSR9 selected.  
BIST_STATUS  
0, LL/RO  
BIST Test Status:  
1 = BIST pass.  
0 = BIST fail. Latched, cleared when BIST is stopped.  
For a count number of BIST errors, see the BIST Error Count in the  
CDCTRL1 register.  
8
7
BIST_START  
BP_STRETCH  
0, RW  
0, RW  
BIST Start:  
1 = BIST start.  
0 = BIST stop.  
Bypass LED Stretching:  
This will bypass the LED stretching and the LEDs will reflect the in-  
ternal value.  
1 = Bypass LED stretching.  
0 = Normal operation.  
6
RESERVED  
0
RESERVED: Must be zero.  
www.national.com  
54  
Table 27. PHY Control Register (PHYCR), address 0x19 (Continued)  
Bit  
Bit Name  
Default  
Description  
5
LED_CNFG[0]  
LED Configuration  
Strap, RW  
LED_ CNFG[0]  
Mode Description  
Mode 1  
1
0
Mode2  
In Mode 1, LEDs are configured as follows:  
LED_LINK = ON for Good Link, OFF for No Link  
LED_SPEED = ON in 100Mb/s, OFF in 10Mb/s  
In Mode 2, LEDs are configured as follows:  
LED_LINK = ON for good Link, BLINK for Activity  
LED_SPEED = ON in 100Mb/s, OFF in 10Mb/s  
PHY Address: PHY address for port.  
4:0  
PHYADDR[4:0]  
Strap, RW  
55  
www.national.com  
7.2.8 10Base-T Status/Control Register (10BTSCR)  
Table 28. 10Base-T Status/Control Register (10BTSCR), address 0x1A  
Bit  
Bit Name  
Default  
Description  
15  
RESERVED  
0, RW  
RESERVED:  
Must be zero.  
14:12  
11:9  
RESERVED  
SQUELCH  
0, RW  
RESERVED:  
Must be zero.  
100, RW  
Squelch Configuration:  
Used to set the Squelch ‘ON’ threshold for the receiver.  
Default Squelch ON is 330mV peak.  
8
LOOPBACK_10_D  
IS  
0, RW  
In half-duplex mode, default 10BASE-T operation loops Transmit  
data to the Receive data in addition to transmitting the data on the  
physical medium. This is for consistency with earlier 10BASE2 and  
10BASE5 implementations which used a shared medium. Setting  
this bit disables the loopback function.  
This bit does not affect loopback due to setting BMCR[14].  
Normal Link Pulse Disable:  
1 = Transmission of NLPs is disabled.  
0 = Transmission of NLPs is enabled.  
Force 10Mb Good Link:  
7
6
LP_DIS  
0, RW  
0, RW  
FORCE_LINK_10  
1 = Forced Good 10Mb Link.  
0 = Normal Link Status.  
5
4
RESERVED  
POLARITY  
0, RW  
RO/LH  
RESERVED:  
Must be zero.  
10Mb Polarity Status:  
This bit is a duplication of bit 12 in the PHYSTS register. Both bits  
will be cleared upon a read of 10BTSCR register, but not upon a  
read of the PHYSTS register.  
1 = Inverted Polarity detected.  
0 = Correct Polarity detected.  
RESERVED:  
3
2
1
RESERVED  
RESERVED  
0, RW  
1, RW  
0, RW  
Must be zero.  
RESERVED:  
Must be set to one.  
HEARTBEAT_DIS  
Heartbeat Disable: This bit only has influence in half-duplex 10Mb  
mode.  
1 = Heartbeat function disabled.  
0 = Heartbeat function enabled.  
When the device is operating at 100Mb or configured for full  
duplex operation, this bit will be ignored - the heartbeat func-  
tion is disabled.  
0
JABBER_DIS  
0, RW  
Jabber Disable:  
Applicable only in 10BASE-T.  
1 = Jabber function disabled.  
0 = Jabber function enabled.  
www.national.com  
56  
7.2.9 CD Test and BIST Extensions Register  
(CDCTRL1)  
Table 29. CD Test and BIST Extensions Register (CDCTRL1), address 0x1B  
Bit  
Bit Name  
Default  
Description  
15:8  
BIST_ERROR_CO  
UNT  
0, RO  
BIST ERROR Counter:  
Counts number of errored data nibbles during Packet BIST. This  
value will reset when Packet BIST is restarted. The counter sticks  
when it reaches its max count.  
7:6  
5
RESERVED  
0, RW  
0, RW  
RESERVED:  
Must be zero.  
BIST_CONT_MOD  
E
Packet BIST Continuous Mode:  
Allows continuous pseudo random data transmission without any  
break in transmission. This can be used for transmit VOD testing.  
This is used in conjunction with the BIST controls in the PHYCR  
Register (0x19h). For 10Mb operation, jabber function must be dis-  
abled, bit 0 of the 10BTSCR (0x1Ah), JABBER_DIS = 1.  
4
CDPATTEN_10  
RESERVED  
0, RW  
CD Pattern Enable for 10Mb:  
1 = Enabled.  
0 = Disabled.  
3
2
0, RW  
0, RW  
RESERVED:  
Must be zero.  
10MEG_PATT_GA  
P
Defines gap between data or NLP test sequences:  
1 = 15 µs.  
0 = 10 µs.  
1:0  
CDPATTSEL[1:0]  
00, RW  
CD Pattern Select[1:0]:  
If CDPATTEN_10 = 1:  
00 = Data, EOP0 sequence  
01 = Data, EOP1 sequence  
10 = NLPs  
11 = Constant Manchester 1s (10MHz sine wave) for harmonic dis-  
tortion testing.  
57  
www.national.com  
7.2.10 Energy Detect Control (EDCR)  
Table 30. Energy Detect Control (EDCR), address 0x1D  
Bit  
Bit Name  
Default  
Description  
15  
ED_EN  
0, RW  
Energy Detect Enable:  
Allow Energy Detect Mode.  
When Energy Detect is enabled and Auto-Negotiation is disabled  
via the BMCR register, Auto-MDIX should be disabled via the PHY-  
CR register.  
14  
13  
12  
11  
ED_AUTO_UP  
ED_AUTO_DOWN  
ED_MAN  
1, RW  
1, RW  
Energy Detect Automatic Power Up:  
Automatically begin power up sequence when Energy Detect Data  
Threshold value (EDCR[3:0]) is reached. Alternatively, device  
could be powered up manually using the ED_MAN bit (ECDR[12]).  
Energy Detect Automatic Power Down:  
Automatically begin power down sequence when no energy is de-  
tected. Alternatively, device could be powered down using the  
ED_MAN bit (EDCR[12]).  
0, RW/SC  
0, RW  
Energy Detect Manual Power Up/Down:  
Begin power up/down sequence when this bit is asserted. When  
set, the Energy Detect algorithm will initiate a change of Energy De-  
tect state regardless of threshold (error or data) and timer values.  
ED_BURST_DIS  
Energy Detect Bust Disable:  
Disable bursting of energy detect data pulses. By default, Energy  
Detect (ED) transmits a burst of 4 ED data pulses each time the CD  
is powered up. When bursting is disabled, only a single ED data  
pulse will be send each time the CD is powered up.  
10  
ED_PWR_STATE  
0, RO  
Energy Detect Power State:  
Indicates current Energy Detect Power state. When set, Energy  
Detect is in the powered up state. When cleared, Energy Detect is  
in the powered down state. This bit is invalid when Energy Detect  
is not enabled.  
9
8
ED_ERR_MET  
ED_DATA_MET  
ED_ERR_COUNT  
0, RO/COR  
0, RO/COR  
0001, RW  
Energy Detect Error Threshold Met:  
No action is automatically taken upon receipt of error events. This  
bit is informational only and would be cleared on a read.  
Energy Detect Data Threshold Met:  
The number of data events that occurred met or surpassed the En-  
ergy Detect Data Threshold. This bit is cleared on a read.  
7:4  
Energy Detect Error Threshold:  
Threshold to determine the number of energy detect error events  
that should cause the device to take action. Intended to allow aver-  
aging of noise that may be on the line. Counter will reset after ap-  
proximately 2 seconds without any energy detect data events.  
3:0  
ED_DATA_COUNT  
0001, RW  
Energy Detect Data Threshold:  
Threshold to determine the number of energy detect events that  
should cause the device to take actions. Intended to allow averag-  
ing of noise that may be on the line. Counter will reset after approx-  
imately 2 seconds without any energy detect data events.  
www.national.com  
58  
8.0 Electrical Specifications  
Note: All parameters are guaranteed by test, statistical analysis or design.  
Recommended Operating Conditions  
Supply voltage (VCC  
Absolute Maximum Ratings  
Supply Voltage (VCC  
)
3.3 Volts + .3V  
0 to 70°C  
)
-0.5 V to 4.2 V  
-0.5V to VCC + 0.5V  
-0.5V to VCC + 0.5V  
Commercia - Ambient Temperature (TA)  
Power Dissipation (PD)  
DC Input Voltage (VIN)  
264 mW  
DC Output Voltage (VOUT  
)
-65oC to 150°C  
147.7 °C  
150 °C  
Absolute maximum ratings are those values beyond which  
the safety of the device cannot be guaranteed. They are  
not meant to imply that the device should be operated at  
these limits.  
Storage Temperature (TSTG  
)
Max case temp  
Max. die temperature (Tj)  
Lead Temp. (TL)  
260 °C  
(Soldering, 10 sec.)  
ESD Rating  
4.0 kV  
(RZAP = 1.5k, CZAP = 120 pF)  
Max  
Units  
Thermal Characteristic  
Theta Junction to Case (Tjc)  
8.8  
°C / W  
Theta Junction to Ambient (Tja) degrees Celsius/Watt - No Airflow @ 1.0W  
Note: This is done with a JEDEC (2 layer 2 oz CU.) thermal test board  
31.7  
°C / W  
8.1 DC SPECS  
Symbol  
VIH  
Pin Types  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
I
Input High Voltage Nominal VCC  
2.0  
V
I/O  
VIL  
I
Input Low Voltage  
0.8  
10  
V
I/O  
IIH  
I
Input High Current VIN = VCC  
Input Low Current VIN = GND  
µA  
µA  
V
I/O  
IIL  
I
10  
I/O  
VOL  
VOH  
VledOL  
VledOH  
IOZ  
O,  
I/O  
Output Low  
Voltage  
IOL = 4 mA  
0.4  
O,  
I/O  
Output High  
Voltage  
IOH = -4 mA  
IOL = 2.5 mA  
IOH = -2.5 mA  
VOUT = VCC  
Vcc - 0.5  
Vcc - 0.5  
0.95  
V
LED  
Output Low  
Voltage  
0.4  
V
LED  
Output High  
Voltage  
V
I/O,  
O
TRI-STATE  
Leakage  
+ 10  
1.05  
+ 2  
µA  
V
VTPTD_100 PMD Output 100M Transmit  
Pair Voltage  
1
VTPTDsym PMD Output 100M Transmit  
Pair Voltage Symmetry  
%
V
VTPTD_10  
PMD Output 10M Transmit  
Pair Voltage  
2.2  
2.5  
2.8  
59  
www.national.com  
Symbol  
Pin Types  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
CIN1  
I
CMOS Input  
Capacitance  
5
pF  
COUT1  
O
CMOS Output  
Capacitance  
5
pF  
SDTHon  
PMD Input  
Pair  
100BASE-TX  
Signal detect turn-  
on threshold  
1000  
mV diff pk-pk  
SDTHoff  
PMD Input  
Pair  
100BASE-TX  
Signal detect turn-  
off threshold  
200  
mV diff pk-pk  
VTH1  
PMD Input  
Pair  
10BASE-T Re-  
ceive Threshold  
585  
mV  
mA  
Idd100  
Supply  
100BASE-TX  
(Full Duplex)  
IOUT = 0 mA  
81  
92  
See Note1  
IOUT = 0 mA  
See Note1  
Idd10  
Supply  
10BASE-T  
(Full Duplex)  
mA  
1. Refer to application note AN-1540, “Power Measurement of Ethernet Physical Layer Products”  
www.national.com  
60  
 
8.2 AC SPECS  
8.2.1 Power Up Timing  
Vcc  
X1 clock  
T2.1.1  
Hardware  
RESET_N  
32 clocks  
MDC  
T2.1.2  
Latch-In of Hardware  
Configuration Pins  
T2.1.3  
output  
input  
Dual Function Pins  
Become Enabled As Outputs  
Parameter  
Description  
Post Power Up Stabilization  
Notes  
Min  
Typ Max Units  
T2.1.1  
MDIO is pulled high for 32-bit serial man- 167  
ms  
time prior to MDC preamble for agement initialization  
register accesses  
X1 Clock must be stable for a min. of  
167ms at power up.  
T2.1.2  
T2.1.3  
Hardware Configuration Latch- Hardware Configuration Pins are de-  
167  
ms  
in Time from power up  
scribed in the Pin Description section  
X1 Clock must be stable for a min. of  
167ms at power up.  
Hardware Configuration pins  
transition to output drivers  
50  
ns  
Note: In RMII Mode, the minimum Post Power up Stabilization and Hardware Configuration Latch-in times are 84 ms.  
61  
www.national.com  
 
 
 
8.2.2 Reset Timing  
Vcc  
X1 clock  
T2.2.4  
T2.2.1  
Hardware  
RESET_N  
32 clocks  
MDC  
T2.2.2  
Latch-In of Hardware  
Configuration Pins  
T2.2.3  
output  
input  
Dual Function Pins  
Become Enabled As Outputs  
Parameter  
Description  
Notes  
Min  
Typ Max Units  
T2.2.1  
Post RESET Stabilization time MDIO is pulled high for 32-bit serial man-  
prior to MDC preamble for reg- agement initialization  
ister accesses  
3
µs  
T2.2.2  
Hardware Configuration Latch- Hardware Configuration Pins are de-  
in Time from the Deassertion scribed in the Pin Description section  
of RESET (either soft or hard)  
3
µs  
T2.2.3  
T2.2.4  
Hardware Configuration pins  
transition to output drivers  
50  
ns  
RESET pulse width  
X1 Clock must be stable for at min. of 1us  
during RESET pulse low time.  
1
µs  
Note: It is important to choose pull-up and/or pull-down resistors for each of the hardware configuration pins that provide  
fast RC time constants in order to latch-in the proper value prior to the pin transitioning to an output driver.  
www.national.com  
62  
 
 
 
 
8.2.3 MII Serial Management Timing  
MDC  
T2.3.4  
T2.3.1  
MDIO (output)  
MDC  
T2.3.2  
T2.3.3  
Valid Data  
MDIO (input)  
Parameter  
T2.3.1  
Description  
Notes  
Min  
0
Typ  
Max  
Units  
ns  
MDC to MDIO (Output) Delay Time  
MDIO (Input) to MDC Setup Time  
MDIO (Input) to MDC Hold Time  
MDC Frequency  
30  
T2.3.2  
10  
10  
ns  
T2.3.3  
ns  
T2.3.4  
2.5  
25  
MHz  
8.2.4 100 Mb/s MII Transmit Timing  
T2.4.1  
T2.4.1  
TX_CLK  
T2.4.2  
T2.4.3  
TXD[3:0]  
TX_EN  
Valid Data  
Parameter  
T2.4.1  
Description  
Notes  
Min Typ Max Units  
TX_CLK High/Low Time  
100 Mb/s Normal mode  
100 Mb/s Normal mode  
16  
10  
20  
24  
ns  
ns  
T2.4.2  
TXD[3:0], TX_EN Data Setup to TX_CLK  
T2.4.3  
TXD[3:0], TX_EN Data Hold from TX_CLK 100 Mb/s Normal mode  
0
ns  
63  
www.national.com  
 
 
 
 
 
 
 
8.2.5 100 Mb/s MII Receive Timing  
T2.5.1  
T2.5.2  
T2.5.1  
RX_CLK  
RXD[3:0]  
RX_DV  
RX_ER  
Valid Data  
Parameter  
T2.5.1  
Description  
RX_CLK High/Low Time  
RX_CLK to RXD[3:0], RX_DV, RX_ER Delay 100 Mb/s Normal mode  
Notes  
Min Typ Max Units  
100 Mb/s Normal mode  
16  
10  
20  
24  
30  
ns  
ns  
T2.5.2  
Note: RX_CLK may be held low or high for a longer period of time during transition between reference and recovered  
clocks. Minimum high and low times will not be violated.  
8.2.6 100BASE-TX Transmit Packet Latency Timing  
TX_CLK  
TX_EN  
TXD  
T2.6.1  
IDLE  
(J/K)  
DATA  
PMD Output Pair  
Parameter  
Description  
Notes  
Min  
Typ Max  
Units  
T2.6.1  
TX_CLK to PMD Output Pair 100 Mb/s Normal mode  
Latency  
6
bits  
Note: For Normal mode, latency is determined by measuring the time from the first rising edge of TX_CLK occurring after  
the assertion of TX_EN to the first bit of the “J” code group as output from the PMD Output Pair. 1 bit time = 10 ns in 100  
Mb/s mode.  
www.national.com  
64  
 
 
 
8.2.7 100BASE-TX Transmit Packet Deassertion Timing  
TX_CLK  
TX_EN  
TXD  
T2.7.1  
PMD Output Pair  
DATA  
(T/R)  
IDLE  
Parameter  
Description  
Notes  
Min  
Typ Max Units  
bits  
T2.7.1  
TX_CLK to PMD Output Pair 100 Mb/s Normal mode  
Deassertion  
6
Note: Deassertion is determined by measuring the time from the first rising edge of TX_CLK occurring after the deasser-  
tion of TX_EN to the first bit of the “T” code group as output from the PMD Output Pair. 1 bit time = 10 ns in 100 Mb/s mode.  
65  
www.national.com  
 
8.2.8 100BASE-TX Transmit Timing (tR/F & Jitter)  
T2.8.1  
+1rise  
90%  
10%  
PMD Output Pair  
10%  
90%  
+1 fall  
T2.8.1  
-1 fall  
-1 rise  
T2.8.1  
T2.8.1  
T2.8.2  
PMD Output Pair  
eye pattern  
T2.8.2  
Parameter  
Description  
Notes  
Min  
Typ Max Units  
T2.8.1  
100 Mb/s PMD Output Pair tR  
and tF  
3
4
5
ns  
100 Mb/s tR and tF Mismatch  
500  
1.4  
ps  
ns  
T2.8.2  
100 Mb/s PMD Output Pair  
Transmit Jitter  
Note: Normal Mismatch is the difference between the maximum and minimum of all rise and fall times  
Note: Rise and fall times taken at 10% and 90% of the +1 or -1 amplitude  
www.national.com  
66  
 
 
8.2.9 100BASE-TX Receive Packet Latency Timing  
PMD Input Pair  
IDLE  
(J/K)  
Data  
T2.9.1  
CRS  
T2.9.2  
RXD[3:0]  
RX_DV  
RX_ER  
Parameter  
T2.9.1  
Description  
Carrier Sense ON Delay  
Receive Data Latency  
Notes  
Min  
Typ Max  
Units  
bits  
100 Mb/s Normal mode  
100 Mb/s Normal mode  
20  
24  
T2.9.2  
bits  
Note: Carrier Sense On Delay is determined by measuring the time from the first bit of the “J” code group to the assertion  
of Carrier Sense.  
Note: 1 bit time = 10 ns in 100 Mb/s mode  
Note: PMD Input Pair voltage amplitude is greater than the Signal Detect Turn-On Threshold Value.  
8.2.10 100BASE-TX Receive Packet Deassertion Timing  
PMD Input Pair  
CRS  
DATA  
(T/R)  
IDLE  
T2.10.1  
Parameter  
Description  
Carrier Sense OFF Delay  
Notes  
100 Mb/s Normal mode  
Min  
Typ Max  
Units  
T2.10.1  
24  
bits  
Note: Carrier Sense Off Delay is determined by measuring the time from the first bit of the “T” code group to the deasser-  
tion of Carrier Sense.  
Note: 1 bit time = 10 ns in 100 Mb/s mode  
67  
www.national.com  
 
 
 
8.2.11 10 Mb/s MII Transmit Timing  
T2.11.1  
T2.11.1  
TX_CLK  
T2.11.2  
T2.11.3  
TXD[3:0]  
TX_EN  
Valid Data  
Parameter  
T2.11.1  
Description  
TX_CLK High/Low Time  
Notes  
Min Typ Max Units  
10 Mb/s MII mode  
10 Mb/s MII mode  
10 Mb/s MII mode  
190 200 210  
ns  
ns  
ns  
T2.11.2  
TXD[3:0], TX_EN Data Setup to TX_CLK fall  
TXD[3:0], TX_EN Data Hold from TX_CLK rise  
25  
0
T2.11.3  
Note: An attached Mac should drive the transmit signals using the positive edge of TX_CLK. As shown above, the MII  
signals are sampled on the falling edge of TX_CLK.  
8.2.12 10 Mb/s MII Receive Timing  
T2.12.1  
T2.12.1  
RX_CLK  
T2.12.2  
T2.12.3  
RXD[3:0]  
RX_DV  
Valid Data  
Parameter  
T2.12.1  
Description  
RX_CLK High/Low Time  
Notes  
Min Typ Max Units  
160 200 240  
ns  
ns  
ns  
T2.12.2  
RX_CLK to RXD[3:0], RX_DV Delay  
10 Mb/s MII mode  
10 Mb/s MII mode  
100  
100  
T2.12.3  
RX_CLK rising edge delay from RXD[3:0],  
RX_DV Valid  
Note: RX_CLK may be held low for a longer period of time during transition between reference and recovered clocks. Min-  
imum high and low times will not be violated.  
www.national.com  
68  
 
 
 
 
 
 
8.2.13 10BASE-T Transmit Timing (Start of Packet)  
TX_CLK  
TX_EN  
TXD  
PMD Output Pair  
T2.13.1  
Parameter  
Description  
Transmit Output Delay from the  
Falling Edge of TX_CLK  
Notes  
Min  
Typ  
Max  
Units  
T2.13.1  
10 Mb/s MII mode  
3.5  
bits  
Note: 1 bit time = 100 ns in 10Mb/s.  
8.2.14 10BASE-T Transmit Timing (End of Packet)  
TX_CLK  
TX_EN  
T2.14.1  
0
0
PMD Output Pair  
T2.14.2  
PMD Output Pair  
1
1
Parameter  
Description  
Notes  
Min  
Typ Max Units  
T2.14.1  
End of Packet High Time  
(with ‘0’ ending bit)  
250  
300  
ns  
T2.14.2  
End of Packet High Time  
(with ‘1’ ending bit)  
250  
300  
ns  
69  
www.national.com  
 
 
 
8.2.15 10BASE-T Receive Timing (Start of Packet)  
1st SFD bit decoded  
1
0
1
0
1
0
1
0
1
0
1
1
TPRD±  
T2.15.1  
CRS  
RX_CLK  
T2.15.2  
RX_DV  
T2.15.3  
0000  
Preamble  
SFD  
Data  
RXD[3:0]  
Parameter  
Description  
Notes  
Min  
Typ Max Units  
T2.15.1  
Carrier Sense Turn On Delay (PMD  
Input Pair to CRS)  
630 1000  
ns  
T2.15.2  
T2.15.3  
RX_DV Latency  
10  
8
bits  
bits  
Receive Data Latency  
Measurement shown from SFD  
Note: 10BASE-T RX_DV Latency is measured from first bit of preamble on the wire to the assertion of RX_DV  
Note: 1 bit time = 100 ns in 10 Mb/s mode.  
8.2.16 10BASE-T Receive Timing (End of Packet)  
IDLE  
1
0
1
PMD Input Pair  
RX_CLK  
T2.16.1  
CRS  
Parameter  
Description  
Carrier Sense Turn Off Delay  
Notes  
Min  
Typ Max Units  
T2.16.1  
1.0  
µs  
www.national.com  
70  
 
 
 
 
8.2.17 10 Mb/s Heartbeat Timing  
TX_EN  
TX_CLK  
COL  
T2.17.1  
T2.17.2  
Parameter  
T2.17.1  
Description  
Notes  
Min  
Typ Max Units  
CD Heartbeat Delay  
All 10 Mb/s modes  
All 10 Mb/s modes  
1200  
1000  
ns  
ns  
T2.17.2  
CD Heartbeat Duration  
8.2.18 10 Mb/s Jabber Timing  
TXE  
T2.18.1  
T2.18.2  
PMD Output Pair  
COL  
Parameter  
T2.18.1  
Description  
Jabber Activation Time  
Jabber Deactivation Time  
Notes  
Min  
Typ Max Units  
85  
ms  
ms  
T2.18.2  
500  
71  
www.national.com  
 
 
 
 
8.2.19 10BASE-T Normal Link Pulse Timing  
T2.19.2  
T2.19.1  
Normal Link Pulse(s)  
Parameter  
Description  
Notes  
Min  
Typ Max Units  
T2.19.1  
T2.19.2  
Pulse Width  
Pulse Period  
100  
16  
ns  
ms  
Note: These specifications represent transmit timings.  
8.2.20 Auto-Negotiation Fast Link Pulse (FLP) Timing  
T2.20.2  
T2.20.3  
T2.20.1  
T2.20.1  
Fast Link Pulse(s)  
clock  
pulse  
data  
pulse  
clock  
pulse  
T2.20.5  
T2.20.4  
FLP Burst  
FLP Burst  
Parameter  
T2.20.1  
Description  
Notes  
Min  
Typ Max Units  
Clock, Data Pulse Width  
100  
125  
ns  
T2.20.2  
Clock Pulse to Clock Pulse  
Period  
µs  
T2.20.3  
Clock Pulse to Data Pulse  
Period  
Data = 1  
62  
µs  
T2.20.4  
T2.20.5  
Burst Width  
2
ms  
ms  
FLP Burst to FLP Burst Period  
16  
Note: These specifications represent transmit timings.  
www.national.com  
72  
 
 
 
 
 
 
 
8.2.21 100BASE-TX Signal Detect Timing  
PMD Input Pair  
T2.21.1  
T2.21.2  
SD+ internal  
Parameter  
T2.21.1  
Description  
Notes  
Min  
Typ Max Units  
SD Internal Turn-on Time  
SD Internal Turn-off Time  
1
ms  
T2.21.2  
350  
µs  
Note: The signal amplitude on PMD Input Pair must be TP-PMD compliant.  
8.2.22 100 Mb/s Internal Loopback Timing  
TX_CLK  
TX_EN  
TXD[3:0]  
CRS  
T2.22.1  
RX_CLK  
RX_DV  
RXD[3:0]  
Parameter  
Description  
Notes  
Min  
Typ Max Units  
240 ns  
T2.22.1  
TX_EN to RX_DV Loopback  
100 Mb/s internal loopback mode  
Note: Due to the nature of the descrambler function, all 100BASE-TX Loopback modes will cause an initial “dead-time”  
of up to 550 µs during which time no data will be present at the receive MII outputs. The 100BASE-TX timing specified is  
based on device delays after the initial 550µs “dead-time”.  
Note: Measurement is made from the first rising edge of TX_CLK after assertion of TX_EN.  
73  
www.national.com  
 
 
 
8.2.23 10 Mb/s Internal Loopback Timing  
TX_CLK  
TX_EN  
TXD[3:0]  
CRS  
T2.23.1  
RX_CLK  
RX_DV  
RXD[3:0]  
Parameter  
Description  
Notes  
Min  
Typ Max Units  
µs  
T2.23.1  
TX_EN to RX_DV Loopback 10 Mb/s internal loopback mode  
2
Note: Measurement is made from the first rising edge of TX_CLK after assertion of TX_EN.  
www.national.com  
74  
 
8.2.24 RMII Transmit Timing  
T2.24.1  
X1  
T2.24.2  
T2.24.3  
TXD[1:0]  
TX_EN  
Valid Data  
T2.24.4  
Symbol  
PMD Output Pair  
Parameter  
T2.24.1  
Description  
Notes  
50 MHz Reference Clock  
Min Typ Max Units  
X1 Clock Period  
20  
ns  
ns  
T2.24.2  
TXD[1:0], TX_EN, DataSetup  
to X1 rising  
4
2
T2.24.3  
T2.24.4  
TXD[1:0], TX_EN, Data Hold  
from X1 rising  
ns  
X1 Clock to PMD Output Pair From X1 Rising edge to first bit of symbol  
Latency  
17  
bits  
75  
www.national.com  
 
 
 
 
8.2.25 RMII Receive Timing  
Data  
Data  
IDLE  
(J/K)  
(TR)  
PMD Input Pair  
T2.25.4  
T2.25.5  
X1  
T2.25.2  
T2.25.1  
T2.25.2  
T2.25.2  
T2.25.3  
RX_DV  
CRS_DV  
T2.25.2  
RXD[1:0]  
RX_ER  
Parameter  
Description  
X1 Clock Period  
Notes  
Min Typ Max Units  
T2.25.1  
T2.25.2  
50 MHz Reference Clock  
20  
ns  
ns  
RXD[1:0], CRS_DV, RX_DV,  
and RX_ER output delay from  
X1 rising  
2
14  
T2.25.3  
T2.25.4  
T2.25.5  
CRS ON delay  
From JK symbol on PMD Receive Pair to  
initial assertion of CRS_DV  
18.5  
27  
bits  
bits  
bits  
CRS OFF delay  
From TR symbol on PMD Receive Pair to  
initial deassertion of CRS_DV  
RXD[1:0] and RX_ER latency From symbol on Receive Pair. Elasticity  
buffer set to default value (01)  
38  
Note: Per the RMII Specification, output delays assume a 25pF load.  
Note: CRS_DV is asserted asynchronously in order to minimize latency of control signals through the Phy. CRS_DV may  
toggle synchronously at the end of the packet to indicate CRS deassertion.  
Note: RX_DV is synchronous to X1. While not part of the RMII specification, this signal is provided to simplify recovery of  
receive data.  
Note: CRS ON delay is measured from the first bit of the JK symbol on the PMD Input Pair to initial assertion of CRS_DV.  
Note: CRS OFF delay is measured from the first bit of the TR symbol on the PMD Input Pair to initial de-assertion of  
CRS_DV.  
Note: Receive Latency is measured from the first bit of the symbol pair on the PMD Input Pair. Typical values are with the  
Elasticity Buffer set to the default value (01).  
www.national.com  
76  
 
 
 
 
 
8.2.26 Isolation Timing  
Clear bit 10 of BMCR  
(return to normal operation  
from Isolate mode)  
T2.26.1  
T2.26.2  
H/W or S/W Reset  
(with PHYAD = 00000)  
MODE  
ISOLATE  
NORMAL  
Parameter  
Description  
Notes  
Min  
Typ Max Units  
T2.26.1  
From software clear of bit 10 in  
the BMCR register to the transi-  
tion from Isolate to Normal Mode  
100  
µs  
T2.26.2  
From Deassertion of S/W or H/W  
Reset to transition from Isolate to  
Normal mode  
500  
µs  
8.2.27 100 Mb/s X1 to TX_CLK Timing  
X1  
T2.27.1  
TX_CLK  
Parameter  
Description  
X1 to TX_CLK delay  
Notes  
100 Mb/s Normal mode  
Min Typ Max Units  
ns  
T2.27.1  
0
5
Note: X1 to TX_CLK timing is provided to support devices that use X1 instead of TX_CLK as the reference for transmit  
Mll data.  
77  
www.national.com  
 
 
Physical Dimensions inches (millimeters) unless otherwise noted  
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION  
(“NATIONAL”) PROCUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY  
OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPEC-  
IFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED,  
ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.  
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT  
NATIONAL’S PRODUCT WARRANT. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL  
PARAMETER OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLIC-  
TIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PROCUCTS AND APPLICA-  
TIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PROCUCTS THAT INCLUDE NATIONAL  
COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.  
EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO  
LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE  
AND/OR USE OF NATIONAL PRODUCTS INCLUDEDING LIBILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICU-  
LAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROP-  
ERTY RIGHT.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER  
AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected  
to result in a significant injury to the user. A critical component is any component of a life support device or system whose failure to per-  
form can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.  
National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other  
brand or product names may be trademarks or registered trademarks of their respective holders.  
Copyright 2008 National Semiconductor Corporation  
©
For the most current product information visit us at www.national.com  
National Semiconductor  
Americas Technical  
Support Center  
Email:  
new.feedback@nsc.com  
Tel: 1-800-272-9959  
National Semiconductor Europe  
Technical Support Center  
National Semiconductor Asia  
Pacific Technical  
Support Center  
National Semiconductor Japan  
Technical Support Center  
Email: jpn.feedback@nsc.com  
Email: europe.support@nsc.com  
German Tel: +49 (0) 180 5010 771  
English Tel: +44 (0) 870 850 4288  
Email: ap.support@nsc.com  
www.national.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Transportation and Automotive www.ti.com/automotive  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY