O917A130TRGZTQ1 [TI]

具有 5 个降压转换器和 5 个 LDO 的汽车类 3.15V 至 5.25V 电源管理 IC (PMIC) | RGZ | 48 | -40 to 105;
O917A130TRGZTQ1
型号: O917A130TRGZTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 5 个降压转换器和 5 个 LDO 的汽车类 3.15V 至 5.25V 电源管理 IC (PMIC) | RGZ | 48 | -40 to 105

集成电源管理电路 转换器
文件: 总94页 (文件大小:2474K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
TPS65917-Q1 适用于处理器的电源管理单元 (PMU)  
1 器件概述  
1.1 特性  
1
部时钟保持同步  
五个低压降 (LDO) 线性稳压器:  
符合汽车应用 应用  
具有符合 AEC-Q100 标准的下列结果:  
输出电压范围为 0.9V 3.3V(步长为 50mV)  
其中两个稳压器具备 300mA 电流性能以及旁路  
模式  
器件温度 2 级:-40℃ 至 +105℃ 的环境运行温  
度范围  
器件人体放电模型 (HBM) 分类等级 2  
器件充电器件模型 (CDM) 分类等级 C4B  
系统电压范围为 3.135V 5.25V  
低功耗  
一个稳压器具备 100mA 电流性能以及最高可达  
50mA 的低噪声性能  
其他两个 LDO 具有 200mA 电流性能  
短路保护功能  
断电模式下为 20μA  
休眠模式下(两个 SMPS 处于激活状态)为  
90μA  
具有 8 条输入通道(2 条为外部通道)的 12 -Δ  
通用模数转换器 (ADC) (GPADC)  
具有高温报警和热关断功能的温度监控  
电源序列控制:  
可配置加电和断电序列 (OTP)  
休眠和激活状态转换之间的可配置序列 (OTP)  
三个数字输出信号可添加至启动序列  
可选控制接口:  
五个降压开关模式电源 (SMPS) 稳压器:  
输出电压范围为 0.7V 3.3V(步长为 10mV 或  
20mV)  
其中两个 SMPS 稳压器具备 3.5A 电流性能、在  
双相配置中结合 7A 输出的能力以及差分远程感  
测(输出和接地)  
其他三个 SMPS 稳压器分别具有 3A2A 和  
1.5A 电流性能  
– 3.5A 3A SMPS 稳压器具备动态电压调节  
(DVS) 控制和输出电流测量功能  
硬件和软件受控的 Eco-mode™最高可提供 5mA  
电流  
一个用于资源配置和 DVS 控制的串行外设接口  
(SPI)  
两个 I2C 接口。  
其中一个专用于 DVS 控制  
另一个用作资源配置和 DVS 控制的通用 I2C  
接口  
短路保护功能  
带有运行或保持加电序列以及 RESET_OUT 释放选  
项的 OTP 位完整性错误检测  
封装选项:  
电源正常指示(电压和过流指示)  
用于限制浪涌电流的内部软启动  
能够与频率介于 1.7MHz 2.7MHz 范围内的外  
– 7mm × 7mm 48 引脚 VQFN,间距为 0.5mm  
1.2 应用  
汽车数字集群  
汽车导航系统  
汽车高级驾驶员辅助系统 (ADAS)  
1.3 说明  
TPS65917-Q1 PMIC 将五个可配置降压转换器与高达 3.5A 的输出电流相集成,从而为 LDO 的处理器内  
核、存储器、I/O 以及预稳压电路供电该器件符合 AEC-Q100 标准。 降压转换器与 2.2MHz 内部时钟同  
步,可提升器件的 EMC 性能。GPIO_3 引脚允许降压转换器与外部时钟同步,支持多个器件与同一时钟同  
步,从而提升系统级 EMC 性能。该器件还包含五个 LDO,用于为低电流或低噪声域供电。  
电源序列控制器采用一次性可编程 (OTP) 存储器控制电源序列,同时采用默认配置,例如输出电压和通用输  
/输出 (GPIO) 配置。OTP 经过出厂编程,无需使用软件即可启动。多数默认静态设置可通过 SPI I2C  
进行更改,从而根据多种不同系统需求配置器件。例如,电压调节寄存器用于支持处理器的动态电压调节要  
求。对于另一项安全功能,OTP 还具备比特完整性错误检测功能,可在检测到错误时停止上电序列,防止系  
统在未知状态下启动。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSCO4  
 
 
 
 
 
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
TPS65917-Q1 器件还具有一个监控系统状态的模数转换器 (ADC)GPADC 包括两条监控所有外部电压的  
外部通道,以及多条测量电源电压、输出电流和芯片温度的内部通道,允许处理器监控系统健康状况。该器  
件提供看门狗监控软件锁定情况并提供保护和诊断机制,例如短路保护、热监控、关断和自动 ADC 转换,  
以便检测电压是否低于预定义阈值。PMIC 可通过中断处理程序向处理器报告这些事件,以便处理器采取相  
关措施进行响应。  
器件信息(1)  
封装  
器件型号  
封装尺寸(标称值)  
7.00mm × 7.00mm  
TPS65917-Q1  
VQFN (48)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
2
器件概述  
版权 © 2015–2019, Texas Instruments Incorporated  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
1.4 功能图  
VCCA  
VCCA  
I2C and SPI  
VSYS Monitor  
VCC_SENSE  
PWRON  
INT  
First Supply Detection  
32-kHz RC Oscillator  
SYNCCLKOUT  
Interrupt Handler  
Bandgap  
REFSYS  
VBG  
1.23-V  
Vref  
RC15M  
÷6  
PWRDOWN  
POWERHOLD  
RESET_IN  
Event Handler  
OSC  
SYNCDCDC  
PLL  
REFGND  
BBS  
NSLEEP  
OFF2ACT  
ACT2OFF  
ACT2SLP  
SLP2ACT  
Watchdog Timer  
NRESWARM  
OSC + PLL  
Independent Bandgap  
LDOVRTC  
I2C/SPI  
NRESWARM  
OTP  
LDOVRTC_OUT  
SMPS1_IN  
SMPS1  
Power  
Sequencer  
VIN Monitor,  
Thermal SD,  
Short Circuit Monitor  
SMPS1_FDBK  
CRC  
Registers  
LDO1, Bypass  
LDO1_OUT  
LDO12_IN  
LDO2_OUT  
Short Circuit Monitor  
Dual Phase or  
Single Phase  
VCCA  
LDO2, Bypass  
Thermal  
Monitor  
SMPS2_IN  
Short Circuit Monitor  
SMPS2  
Resource Controller  
VIN Monitor,  
Thermal SD,  
Short Circuit Monitor  
SMPS/LDO  
POWERGOOD/SHORT/  
VINLOW  
SMPS2_FDBK  
LDO3  
LDO3_IN  
Short Circuit Monitor  
LDO3_OUT  
I2C and SPI  
SMPS3_IN  
SMPS3  
GPADC Controller  
LDO4  
LDO4_IN  
CNTRL  
Registers  
VIN Monitor,  
Thermal SD,  
Short Circuit Monitor  
Short Circuit Monitor  
SMPS3_FDBK  
LDO4_OUT  
LDO5, LN  
LDO5_IN  
SMPS4_IN  
Short Circuit Monitor  
SMPS4  
LDO5_OUT  
VIN Monitor,  
Short Circuit Monitor  
SMPS4_FDBK  
I2C and SPI  
I/O  
12-Bit GPADC  
LDOVANA  
LDOVANA_OUT  
VCC_SENSE  
SMPS5_IN  
SMPS5  
7x GPIO  
VIN Monitor,  
Thermal SD,  
SMPS5_FDBK  
Short Circuit Monitor  
POWERGOOD  
POWERGOOD Monitor  
VIO  
VIO_IN  
1-1. 功能图  
版权 © 2015–2019, Texas Instruments Incorporated  
器件概述  
3
 
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
内容  
4.23 Switching Characteristics — Reference Generator  
1
器件概.................................................... 1  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 1  
1.3 说明 ................................................... 1  
1.4 功能图 ................................................ 3  
修订历史记录............................................... 5  
Pin Configuration and Functions..................... 6  
3.1 Pin Attributes ......................................... 6  
3.2 Signal Descriptions ................................... 9  
Specifications ........................................... 12  
4.1 Absolute Maximum Ratings......................... 12  
4.2 ESD Ratings ........................................ 12  
4.3 Recommended Operating Conditions............... 12  
4.4 Thermal Information................................. 13  
(Bandgap) ........................................... 23  
4.24 Switching Characteristics — PLL for SMPS Clock  
Generation .......................................... 23  
4.25 Switching Characteristics — 32-kHz RC Oscillators  
and SYNCCLKOUT Output Buffers................. 23  
4.26 Switching Characteristics — 12-Bit Sigma-Delta  
ADC ................................................. 24  
2
3
4.27 Typical Characteristics .............................. 26  
Detailed Description ................................... 29  
5.1 Overview ............................................ 29  
5.2 Functional Block Diagram........................... 30  
5.3 Device State Machine ............................... 31  
5
4
5.4  
Power Resources (Step-Down and Step-Up SMPS  
Regulators, LDOs) .................................. 41  
SMPS and LDO Input Supply Connections ........ 50  
5.5  
4.5  
Electrical Characteristics — LDO Regulators....... 13  
5.6 First Supply Detection .............................. 50  
5.7 Long-Press Key Detection .......................... 51  
4.6  
Electrical Characteristics — SMPS1&2 in Dual-  
Phase Configuration ................................ 15  
Electrical Characteristics — SMPS1, SMPS2,  
SMPS3, SMPS4, and SMPS5 Stand-Alone  
5.8  
12-Bit Sigma-Delta General-Purpose ADC  
4.7  
(GPADC) ............................................ 51  
Regulators........................................... 16  
5.9 General-Purpose I/Os (GPIO Pins) ................. 55  
5.10 Thermal Monitoring.................................. 56  
5.11 Interrupts ........................................... 57  
5.12 Control Interfaces ................................... 60  
5.13 OTP Configuration Memory ........................ 65  
5.14 Watchdog Timer (WDT) ............................ 65  
5.15 System Voltage Monitoring ......................... 66  
5.16 Register Map ........................................ 69  
5.17 Device Identification................................. 69  
Applications, Implementation, and Layout........ 70  
6.1 Application Information.............................. 70  
6.2 Typical Application .................................. 71  
6.3 Layout ............................................... 79  
4.8  
4.9  
Electrical Characteristics — Reference Generator  
(Bandgap) ........................................... 17  
Electrical Characteristics — 32-kHz RC Oscillators  
and SYNCCLKOUT Output Buffers................. 17  
4.10 Electrical Characteristics — 12-Bit Sigma-Delta  
ADC ................................................. 18  
4.11 Electrical Characteristics — Thermal Monitoring and  
Shutdown............................................ 18  
4.12 Electrical Characteristics — System Control  
Thresholds .......................................... 19  
4.13 Electrical Characteristics — Current Consumption . 19  
4.14 Electrical Characteristics — Digital Input Signal  
Parameters .......................................... 19  
4.15 Electrical Characteristics — Digital Output Signal  
Parameters .......................................... 20  
6
7
6.4  
Power Supply Coupling and Bulk Capacitors....... 82  
4.16 I/O Pullup and Pulldown Characteristics............ 20  
4.17 Electrical Characteristics — I2C Interface........... 20  
4.18 Timing Requirements — I2C Interface .............. 21  
4.19 Timing Requirements — SPI ....................... 22  
4.20 Switching Characteristics — LDO Regulators ...... 22  
器件和文档支持 .......................................... 83  
7.1 器件支............................................. 83  
7.2 文档支............................................. 83  
7.3 接收文档更新通知 ................................... 84  
7.4 社区资............................................. 84  
7.5 商标.................................................. 84  
7.6 静电放电警告 ........................................ 84  
7.7 Glossary ............................................. 84  
机械、封装和可订购信息................................ 84  
4.21 Switching Characteristics — SMPS1&2 in Dual-  
Phase Configuration ................................ 22  
4.22 Switching Characteristics — SMPS1, SMPS2,  
SMPS3, SMPS4, and SMPS5 Stand-Alone  
8
Regulators........................................... 23  
4
内容  
版权 © 2015–2019, Texas Instruments Incorporated  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (March 2017) to Revision D  
Page  
Added footnote recommending not to pull open-drain GPIOs up to an always-on voltage domain ....................... 9  
Clarified that LDO1 and LDO2 input pins are not included in this minimum recommended operating voltage. See  
Electrical Characteristics: LDO Regulators for more information. ............................................................ 12  
Added LDO and SMPS output capacitance footnote........................................................................... 13  
Added SMPS Output voltage slew rate description ............................................................................ 15  
已更改 the comparison condition from VCCA to VCC_SENSE in the Embedded Power Controller section ........... 32  
Added typical debounce time from POWERHOLD to the enable of the first rail in the power sequence. .............. 33  
Changed discharge resistance to match electrical characteristics table..................................................... 42  
Changed description of clock dithering from internal to external only........................................................ 44  
Added information about shutdown timing during short circuit detection .................................................... 45  
Updated POWERGOOD block diagram and description to clarify dual phase operation. ................................ 46  
已添加 notes to the SMPS Controls for DVS image............................................................................ 48  
已添加 the equation to convert GPADC code to internal die temperature in the 12-Bit Sigma-Delta General-  
Purpose ADC (GPADC) section................................................................................................... 52  
Additional description of VSYS_LO functionality ............................................................................... 66  
Added details on identifying device version. .................................................................................... 69  
SMPS and LDO output capacitance specification further explained ......................................................... 74  
Added design considerations for VCCA capacitance to support loss of power............................................. 74  
Corrected 9-Vpp with 7V absolute maximum specification in the Layout Guidelines section............................. 79  
Updated requirements relating to measurement of high-side and low-side FETs in the Layout Guidelines section... 80  
Updated images and description on differential measurements across high-side and low-side FETs .................. 81  
Changes from Revision B (November 2015) to Revision C  
Page  
首次公开发布的完整数据.......................................................................................................... 1  
Added recommendation for external pulldown resistor on the LDOVRTC_OUT pin in the Pin Attributes table ......... 7  
Added OTP to the PU/PD selection for GPIO_1 as NRESWARM in the Signal Descriptions table ...................... 9  
已更改 the caption of the SMPS Efficiency For SMPS1 and SMPS 2 in Dual-Phase PWM Mode graph to SMPS  
Load Regulation for SMPS1 and SMPS2 Single-Phase PWM Mode in the Typical Characteristics section ........... 26  
已添加 the SMPS Load regulation for SMPS3, PWM Mode graph to the Typical Characteristics section.............. 26  
已更改 single-phase to dual-phase and increased the output current to 7 A in the SMPS Load Regulation for  
SMPS12 graph in the Typical Characteristics section.......................................................................... 26  
已更改 the debounce for PWRON to N/A in the ON Requests table......................................................... 33  
已添加 description of VIO power-up timing in the Device Power Up Timing section....................................... 37  
已更改 the description of the LDOVRTC when in the BACKUP and OFF states and added a note in the  
LDOVRTC section .................................................................................................................. 50  
已添加 the note and pulldown equations to the System Voltage Monitoring section....................................... 67  
已更改 the SMPS1 voltage, SMPS2 voltage, and LDO2 voltage in the Design Parameters table ...................... 72  
已更改 静电放电注意事项..................................................................................................... 84  
Changes from Revision A (November 2015) to Revision B  
已添加 statement to the Current Monitoring and Short Circuit Detection section that the  
Page  
SMPS_SHORT_REGISTER bit will keep a resource off until it is cleared ................................................. 45  
Changes from Original (July 2015) to Revision A  
Page  
Deleted the PPU type and changed the connection from floating to VRTC for the GPIO_1 pin when used only as  
an input with the secondary function as NRESWARM .......................................................................... 7  
Updated Max value of Device Off Mode Current Consumption from 45 µA to 55 µA ..................................... 19  
已更改 the units for the x axis from mA to A in graphs D002 to D008 in the Typical Characteristics section .......... 26  
Added register names for the GPADC channel 3 D1 & D2 trim when HIGH_VCC_SENSE = 1 ......................... 55  
Copyright © 2015–2019, Texas Instruments Incorporated  
修订历史记录  
5
Submit Documentation Feedback  
Product Folder Links: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
3 Pin Configuration and Functions  
Figure 3-1 shows the 48-pin RGZ plastic quad-flatpack no-lead (VQFN) pin assignments and thermal pad.  
GPIO_4  
GPIO_2  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
I2C1_SDA_SDI  
I2C1_SCL_SCK  
VIO_IN  
LDO5_IN  
3
LDO5_OUT  
LDO3_IN  
4
SMPS1_FDBK  
SMPS1_IN  
SMPS1_SW  
SMPS2_SW  
SMPS2_IN  
SMPS2_FDBK  
GPIO6  
5
LDO3_OUT  
LDO4_OUT  
LDO4_IN  
6
Thermal Pad  
(PGND)  
7
8
SMPS3_FDBK  
SMPS3_IN  
SMPS3_SW  
GPIO_0  
9
10  
11  
12  
INT  
RESET_OUT  
Figure 3-1. 48-Pin RGZ (VQFN) Package, 0.5-mm Pitch,  
With Thermal Pad (Top View)  
3.1 Pin Attributes  
Pin Attributes  
PIN  
CONNECTION  
IF NOT USED  
I/O  
DESCRIPTION  
PU/PD(1)  
NAME  
NO.  
REFERENCE  
REFGND  
VBG  
41  
40  
O
System reference ground  
Ground  
Bandgap reference voltage  
STEP-DOWN CONVERTERS (SMPSs)  
SMPS1_IN  
32  
I
Power input for SMPS1  
System supply  
Ground  
Output voltage-sense (feedback) input for SMPS1 or  
differential voltage-sense (feedback) positive input for SMPS12  
in dual-phase configuration  
SMPS1_FDBK  
33  
I
SMPS1_SW  
SMPS2_IN  
31  
29  
O
I
Switch node of SMPS1; connect output inductor  
Power input for SMPS2  
Floating  
System supply  
Output voltage-sense (feedback) input for SMPS2 or  
differential voltage-sense (feedback) negative input for  
SMPS12 in dual-phase configuration  
SMPS2_FDBK  
28  
I
Ground  
SMPS2_SW  
SMPS3_IN  
30  
10  
9
O
I
Switch node of SMPS2; connect output inductor  
Power input for SMPS3  
Floating  
System supply  
Floating  
SMPS3_FDBK  
SMPS3_SW  
SMPS4_IN  
I
Output voltage-sense (feedback) input for SMPS3  
Switch node of SMPS3; connect output inductor  
Power input for SMPS4  
11  
18  
O
I
Floating  
System supply  
(1) The PU/PD column shows the pullup and pulldown resistors on the digital input lines. Pullup and pulldown resistors: PU = Pullup, PD =  
Pulldown, PPU = Software-programmable pullup, PPD = Software-programmable pulldown.  
6
Pin Configuration and Functions  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65917-Q1  
 
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
Pin Attributes (continued)  
PIN  
CONNECTION  
PU/PD(1)  
I/O  
DESCRIPTION  
IF NOT USED  
NAME  
NO.  
17  
19  
46  
45  
47  
SMPS4_FDBK  
SMPS4_SW  
SMPS5_IN  
I
O
I
Output voltage-sense (feedback) input for SMPS4  
Switch node of SMPS4; connect output inductor  
Power input for SMPS5  
Ground  
Floating  
System supply  
Ground  
SMPS5_FDBK  
SMPS5_SW  
I
Output voltage-sense (feedback) input for SMPS5  
Switch node of SMPS5; connect output inductor  
O
Floating  
LOW-DROPOUT REGULATORS  
LDO12_IN  
LDO1_OUT  
LDO2_OUT  
LDO3_IN  
22  
23  
21  
5
I
Power input voltage for LDO1 and LDO2 regulators  
LDO1 output voltage  
System supply  
Floating  
O
O
I
LDO2 output voltage  
Floating  
Power input voltage for LDO3 regulator  
LDO3 output voltage  
System supply  
Floating  
LDO3_OUT  
LDO4_IN  
6
O
I
8
Power input voltage for LDO4 regulator  
LDO4 output voltage  
System supply  
Floating  
LDO4_OUT  
LDO5_IN  
7
O
I
3
Power input voltage for LDO5 regulator  
LDO5 output voltage  
System supply  
Floating  
LDO5_OUT  
4
O
LOW-DROPOUT REGULATORS (INTERNAL)  
LDOVRTC output voltage. To support rapid power off and on,  
LDOVRTC_OUT  
44  
43  
O
O
connect a pulldown resistor on the LDOVRTC_OUT pin. See  
5.15 for more details.  
LDOVANA_OUT  
GPADC  
LDOVANA output voltage  
ADCIN1  
38  
39  
I
I
GPADC input 1  
GPADC input 2  
Ground  
Ground  
ADCIN2  
CLOCKING  
Primary function: 2.2-MHz fallback switching frequency for  
SMPS  
SYNCCLKOUT  
48  
16  
O
Floating  
Secondary function: 32-kHz digital-gated output clock when  
VIO_IN input supply is present  
SYSTEM CONTROL  
Ground or  
VRTC  
BOOT  
I
Boot ball for power-up sequence selection  
Ground or  
VRTC  
I/O  
Primary function: General-purpose input(2) and output  
PPD  
Secondary function: ENABLE2 which is the peripheral power  
request input 2  
Floating  
Ground or VIO  
Floating  
PPD(2)  
PPD  
GPIO_0  
GPIO_1  
12  
I
Secondary function: PWRDOWN input  
Secondary function: REGEN1 which is the external regulator  
enable output 1  
Primary function: General-purpose input(2) and output  
Secondary function: RESET_IN which is the reset input  
Secondary function: VBUS_SENSE input  
O
I/O  
Floating  
Floating  
PPD  
PPD  
13  
Ground or VIO  
I
Secondary function: NRESWARM which is the warm reset  
input  
VRTC  
Floating  
Floating  
PPD  
PPU  
PPD  
I/O  
I
Primary function: General-purpose input(2) and output  
Secondary function: ENABLE1 which is the peripheral power  
request input 1  
PPU  
GPIO_2  
2
PPD(2)  
Secondary function: I2C2_SDA_SDO which is the DVS I2C  
serial bidirectional data (external pullup) and the SPI output  
data signal  
I/O  
Floating  
(2) Default option.  
Copyright © 2015–2019, Texas Instruments Incorporated  
Pin Configuration and Functions  
7
Submit Documentation Feedback  
Product Folder Links: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Pin Attributes (continued)  
PIN  
CONNECTION  
IF NOT USED  
I/O  
DESCRIPTION  
PU/PD(1)  
NAME  
NO.  
I/O  
O
Primary function: General-purpose input(2) and output  
Floating  
Floating  
PPD  
Secondary function: REGEN1 which is the external regulator  
enable output 1  
GPIO_3  
14  
Secondary function: ENABLE2 which is the peripheral power  
request input 2  
I
I
PPD(2)  
PPD(2)  
Secondary function: SYNCDCDC which is the synchronization  
signal for SMPS switching  
Floating  
Floating  
Floating  
Floating  
PPU  
PPD  
I/O  
O
I
Primary function: General-purpose input(2) and output  
Secondary function: REGEN2 which is the external regulator  
enable output 2  
Secondary function: I2C2_SCL_SCE which is the DVS I2C  
serial clock (external pullup) and the SPI chip enable signal  
GPIO_4  
GPIO_5  
1
I/O  
I
Primary function: General-purpose input(2) and output  
Ground  
PPD  
PPD  
Secondary function: POWERHOLD input  
Ground or VIO  
15  
Secondary function: REGEN3 which is the external regulator  
enable output 3  
Primary function: General-purpose input(2) and output  
O
I/O  
I
Floating  
Ground  
Floating  
PPD  
PPU(2)  
PPD  
Secondary function: NSLEEP request signal  
GPIO_6  
27  
Secondary function: POWERGOOD which is the indication  
signal for valid regulator output voltages  
O
Floating  
Secondary function: REGEN3 which is the external regulator  
enable output 3  
Control I2C serial clock (external pullup) and SPI clock signal  
Control I2C serial bidirectional data (external pullup) and SPI  
input data signal  
O
I
Floating  
I2C1_SCL_SCK  
I2C1_SDA_SDI  
35  
36  
I/O  
INT  
26  
24  
O
I
Maskable interrupt output request to the host processor  
External power-on event (on-button switch-on event)  
PWRON  
Floating  
PU  
System reset or power on output (low = reset, high = active or  
sleep)  
RESET_OUT  
25  
O
Floating  
PROGRAMMING, TESTING  
Ground or  
floating  
I
Primary function: OTP programming voltage  
Secondary function: TESTV  
VPROG  
20  
O
Floating  
POWER SUPPLIES  
VCCA  
42  
37  
34  
I
I
I
Analog input voltage for internal LDOs  
System supply sense line  
System supply  
System supply  
N/A  
VCC_SENSE  
VIO_IN  
Digital supply input for GPIOs and I/O supply voltage  
8
Pin Configuration and Functions  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65917-Q1  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
3.2 Signal Descriptions  
Table 3-1. Signal Descriptions  
OUTPUT TYPE  
SELECTION  
OTP POLARITY  
ACTIVITY  
SIGNAL NAME  
LEVEL  
I/O(1)  
INPUT PU/PD(2)  
PU/PD SELECTION  
SELECTION  
PWRON  
BOOT  
VSYS (VCCA)  
VRTC  
Input  
PU fixed  
N/A (fixed)  
N/A (input)  
N/A (input)  
N/A (input)  
Low  
No  
No  
Tri-level input  
N/A (input)  
Boot conf.  
GPIO_0  
(primary function)  
Input(1)/output  
Input  
PPD  
OTP/SW  
Open-drain  
Low or high  
High  
Yes  
GPIO_0  
secondary  
function:  
PPD (Opt. Ext. PU)  
OTP/SW  
N/A (input)  
Yes  
PWRDOWN  
VRTC, fail-safe  
(5.25-V tolerance)  
GPIO_0  
secondary  
function:  
ENABLE2  
No, but software  
possible  
Input  
PPD(1)  
SW  
N/A (input)  
High  
GPIO_0  
secondary  
function:  
Output  
Input(1)/output  
Input  
N/A (output)  
PPD  
N/A (output)  
OTP/SW  
Open-drain  
Open-drain  
N/A (input)  
High  
Low or high  
Low  
No  
Yes  
Yes  
REGEN1(3)  
GPIO_1  
(primary function)  
GPIO_1  
secondary  
function:  
PPD  
OTP/SW  
RESET_IN  
VRTC, fail-safe  
(5.25-V tolerance)  
GPIO_1  
secondary  
function:  
Input  
Input  
PPD  
No  
OTP/SW  
No  
N/A (input)  
N/A (input)  
Low or high  
High  
Yes  
No  
NRESWARM  
GPIO_1  
secondary  
function:  
VBUS_SENSE  
(1) Default option.  
(2) Pullup and pulldown resistors: PU = Pullup, PD = Pulldown, PPU = Software-programmable pullup, PPD = Software-programmable pulldown.  
(3) This pin should not be pulled up to an always-on voltage domain. Before OTP is loaded, this will be configured as an input, and an active pull-up domain will pull this pin to a high level.  
Copyright © 2015–2019, Texas Instruments Incorporated  
Pin Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 3-1. Signal Descriptions (continued)  
OUTPUT TYPE  
SELECTION  
OTP POLARITY  
SELECTION  
SIGNAL NAME  
LEVEL  
I/O(1)  
INPUT PU/PD(2)  
PU/PD SELECTION  
ACTIVITY  
GPIO_2  
(primary function)  
Input(1)/output  
PPU/PPD  
OTP/SW  
Push-pull(1) or open-drain  
Low or high  
Yes  
GPIO_2  
secondary  
function:  
ENABLE1  
No, but software  
possible  
Input  
PPU/PPD(1)  
SW  
N/A (input)  
High  
VIO (VIO_IN)  
GPIO_2  
secondary  
function:  
I2C2_SDA_SDO  
Input/output  
Input(1)/output  
Input  
No  
No  
OTP/SW  
SW  
Open-drain  
Open-drain  
N/A (input)  
High  
Low or high  
High  
No  
GPIO_3  
(primary function)  
PPD  
Yes  
GPIO_3  
secondary  
function:  
ENABLE2  
No, but software  
possible  
PPD(1)  
VRTC, fail-safe  
(5.25-V tolerance)  
GPIO_3  
secondary  
function:  
Output  
Input  
N/A (output)  
PPD(1)  
N/A (output)  
SW  
Open-drain  
N/A (input)  
High  
No  
No  
REGEN1(3)  
GPIO_3  
secondary  
function:  
Toggling  
SYNCDCDC  
GPIO_4  
(primary function)  
Input(1)/output  
Output  
PPU/PPD  
OTP/SW  
Push-pull(1) or open-drain  
Push-pull(1) or open-drain  
Low or high  
High  
Yes  
No  
GPIO_4  
secondary  
N/A (output)  
N/A (output)  
function: REGEN2  
VIO (VIO_IN)  
GPIO_4  
secondary  
function:  
Input  
No  
No  
N/A (input)  
High  
No  
I2C2_SCL_SCE  
10  
Pin Configuration and Functions  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65917-Q1  
TPS65917-Q1  
www.ti.com.cn  
SIGNAL NAME  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
Table 3-1. Signal Descriptions (continued)  
OUTPUT TYPE  
SELECTION  
OTP POLARITY  
ACTIVITY  
LEVEL  
I/O(1)  
INPUT PU/PD(2)  
PU/PD SELECTION  
SELECTION  
GPIO_5  
(primary function)  
Input(1)/output  
PPD  
OTP/SW  
Open-drain  
Low or high  
High  
Yes  
GPIO_5  
secondary  
function:  
Input  
PPD(1)  
SW  
N/A (input)  
Yes  
VRTC, fail-safe  
POWERHOLD  
(5.25-V tolerance)  
GPIO_5  
secondary  
function:  
Output  
N/A (output)  
N/A (output)  
Open-drain  
High  
No  
REGEN3(3)  
GPIO_6  
(primary function)  
Input(1)/output  
Input  
PPD  
OTP/SW  
SW  
Open-drain  
N/A (input)  
Low or high  
Low  
Yes  
Yes  
GPIO_6  
secondary  
PPU(1)/PPD  
function: NSLEEP  
GPIO_6  
VRTC  
secondary  
function:  
Output  
Output  
N/A (output)  
N/A (output)  
N/A (output)  
N/A (output)  
Open-drain  
Low or high  
High  
Yes  
POWERGOOD(3)  
GPIO_6  
secondary  
function:  
Open-drain  
No  
No  
REGEN3(3)  
RESET_OUT  
VIO (VIO_IN)  
VIO (VIO_IN)  
Output  
Output  
N/A (output)  
N/A (output)  
N/A (output)  
N/A (output)  
Push-pull(1) or open-drain  
Push-pull(1) or open-drain  
Low  
Low  
No, but software  
possible  
INT  
SYNCCLKOUT  
I2C1_SDA_SDI  
I2C1_SCL_CLK  
VCC_SENSE  
VRTC  
Output  
Input/output  
Input  
N/A (output)  
N/A (output)  
Push-pull  
Open-drain  
N/A (input)  
N/A (analog)  
Toggling  
High  
No  
No  
No  
No  
VIO (VIO_IN)  
VIO (VIO_IN)  
VSYS (VCCA)  
No  
No  
No  
No  
No  
No  
High  
Input  
Analog  
Copyright © 2015–2019, Texas Instruments Incorporated  
Pin Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
4 Specifications  
4.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–2  
MAX  
UNIT  
VCCA  
6
VCC_SENSE  
7
All LDOs and SMPS supply voltage input pins  
SMPSx_SW pins, 10-ns transient  
All SMPS-related input pins _FDBK  
6
7
–0.3  
3.6  
I/O digital supply voltage (VIO_IN with respect to VIO_GND) –0.3 VIOmax + 0.3  
VIOmax + 0.3  
Voltage  
VBUS  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–5  
6
V
GPADC pins: ADCIN1 and ADCIN2  
OTP supply voltage VPROG  
2.4  
7
VRTC digital input pins, without fail-safe  
VRTC digital input pins, with fail-Safe  
VIO digital input pins (VIO_IN pin reference)  
VSYS digital input pins (VCCA pin reference)  
Peak output current on all pins other than power resources  
2.15  
5.25  
VIOmax + 0.3  
6
5
mA  
A
Buck SMPS, SMPSx_IN, SMPSx_SW, and SMPSx_OUT  
total per phase  
Current  
4
LDOs  
1
Junction temperature, TJ  
Storage temperature, Tstg  
–45  
–65  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
4.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
All pins  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC  
Q100-011  
Corner pins (1, 12, 13,  
24, 25, 36, 37, and 48)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
4.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted).  
MIN  
NOM  
MAX  
UNIT  
ELECTRICAL  
System voltage input pin VCCA (named VSYS in the specification)  
VCC_SENSE, HIGH_VCC_SENSE = 0 (if measured with GPADC, see also 5-9)  
VCC_SENSE, HIGH_VCC_SENSE = 1 (if measured with GPADC, see also 5-9)  
3.135  
3.135  
3.135  
1.75  
3.8  
5.25  
VCCA  
V
V
V
V
V
VCCA – 1  
5.25  
(1)  
All LDO-related input pins _IN  
3.8  
3.8  
All SMPS-related input pins _IN  
3.135  
5.25  
VOUTmax  
+
All SMPS-related input pins _FDBK  
All SMPS-related input pins _FDBK_GND  
0
V
V
0.3  
–0.3  
1.71  
0.3  
VIO = 1.8 V  
1.8  
3.3  
1.89  
3.465  
I/O digital supply voltage VIO_IN  
VIO = 3.3 V  
V
3.135  
(1) Does not include LDO1 and LDO2 minimum input voltages.  
12  
Specifications  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65917-Q1  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
Recommended Operating Conditions (continued)  
Over operating free-air temperature range (unless otherwise noted).  
MIN  
0
NOM  
MAX  
UNIT  
V
Voltage on the GPADC pins ADCIN1 (channel 0) and ADCIN2 (channel 1)  
OTP supply voltage VPROG  
1.25  
0
6
LDOVRTC  
LDOVRTC  
VIO  
V
without fail-safe  
0
1.85  
5.25  
Voltage on VRTC digital input pins  
V
with fail-safe  
0
Voltage on VIO digital input pin (VIO_IN pin reference)  
Voltage on VSYS digital input pins (VCCA pin reference)  
TEMPERATURE  
0
VIOmax  
5.25  
V
V
0
3.8  
Operating free-air temperature range(2)  
–40  
–40  
–40  
–65  
27  
27  
105  
150  
125  
150  
°C  
°C  
Operational  
Junction temperature, TJ  
Parametric compliance  
27  
Storage temperature, Tstg  
27  
°C  
°C  
Lead temperature (soldering, 10 s)  
260  
(2) Additional cooling strategies may be necessary to maintain junction temperature at recommended limits.  
4.4 Thermal Information  
TPS65917-Q1  
THERMAL METRIC(1)  
RGZ (VQFN)  
UNIT  
48 PINS  
24.8  
5.6  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
3.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
3.9  
RθJC(bot)  
0.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4.5 Electrical Characteristics — LDO Regulators  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Connected from LDOx_IN to GND  
Input filtering capacitance (C18, C19)  
0.6  
2.2  
µF  
Shared input tank capacitance (depending on platform requirements)  
Connected from LDOx_OUT to GND  
Output filtering capacitance (C20, C21, C22,  
C23, C24)(1)  
0.6  
2.2  
2.7  
µF  
< 100 kHz  
20  
1
100  
10  
600  
20  
CESR  
Filtering capacitor ESR  
Input voltage  
mΩ  
1 to 10 MHz  
0.9 V VOUT < 2.2 V  
1.2  
1.2  
1.2  
1.75  
1.75  
0.9  
VCCA  
5.25  
3.6  
LDO1, LDO2 from LDO12_IN, Normal Mode  
LDO1, LDO2 from LDO12_IN, Bypass Mode  
2.2 V VOUT 3.3 V  
VOUT = VIN  
VIN(LDOx)  
V
0.9 V VOUT < 2.2 V  
2.2 V VOUT 3.3 V  
VCCA  
5.25  
3.3  
LDO3, LDO4, LDO5 from LDO3_IN, LDO4_IN and  
LDO5_IN  
LDO output voltage programmable(2) (except  
LDOVRTC and LDOVANA)  
Range  
V
VOUT(LDOx)  
Step size  
50  
mV  
0.99 ×  
1.006 ×  
VOUT(LDOx)  
+ 0.014  
All LDOs except LDOVANA and LDOVRTC  
VOUT(LDOx)  
VIN(LDOx) 2.5 V  
Total DC output voltage accuracy, including  
0.014  
TDCOV(LDOx) voltage references, DC load and line  
regulations, process and temperature  
V
0.99 ×  
1.006 ×  
VOUT(LDOx)  
+ 0.014  
All LDOs except LDOVANA and LDOVRTC  
VIN(LDOx) < 2.5 V and VOUT(LDOx) < 1.5 V  
VOUT(LDOx)  
0.014  
(1) Additional information about how this parameter is specified is located in 6.2.2.  
(2) LDO output voltages are programmed separately.  
Copyright © 2015–2019, Texas Instruments Incorporated  
Specifications  
13  
Submit Documentation Feedback  
Product Folder Links: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Electrical Characteristics — LDO Regulators (continued)  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Total DC output voltage accuracy, including  
TDCOV(LDOx) voltage references, DC load and line  
regulations, process and temperature  
–40°C TA 85°C  
85°C <TA 105°C  
–40°C TA 85°C  
85°C <TA 105°C  
1.726  
1.8  
1.85  
LDOVRTC_OUT  
LDOVANA_OUT  
V
1.726  
2.002  
2.002  
1.8  
2.093  
2.093  
1.85  
2.14  
2.14  
Total DC output voltage accuracy, including  
TDCOV(LDOx) voltage references, DC load and line  
regulations, process and temperature  
V
LDO1, LDO2: IOUT = IOUTmax  
LDO3, LDO4: IOUT = IOUTmax  
LDO5: IOUT = 50 mA  
150  
290  
150  
290  
300  
200  
100  
10  
Dropout voltage  
DV(LDOx)= VIN – VOUT  
where  
VOUT = VOUTnom – 2%  
DV(LDOx)  
mV  
LDO5: IOUT = IOUTmax (not low-noise performance)  
LDO1, LDO2  
IOUT(LDOx)  
Output current  
LDO3, LDO4  
mA  
LDO5  
IOUT(LDOx)  
IOUT(LDOx)  
Output current, internal LDOs  
Output current, internal LDOs  
LDOVANA in Active Mode  
LDOVRTC in Active Mode  
LDO1, LDO2  
mA  
mA  
25  
380  
340  
135  
600  
650  
325  
1800  
1300  
740  
500  
16  
ISHORT(LDOx) LDO current limitation  
LDO inrush current  
LDO3, LDO4  
mA  
mA  
LDO5  
LDO1, LDO2  
–40°C TA 85°C  
85°C <TA 105°C  
–40°C TA 85°C  
85°C <TA 105°C  
–40°C TA 85°C  
85°C <TA 105°C  
–40°C TA 85°C  
85°C <TA 105°C  
4
4
IOUT = 0 to IOUTmax at pin, LDO1, LDO2  
IOUT = 0 to IOUTmax at pin, all other LDOs  
VIN = VINmin to VINmax, IOUT = IOUTmax  
16  
DCLDR  
DC load regulation, ΔVOUT  
mV  
4
14  
4
14  
0.1%  
0.1%  
0.3%  
0.3%  
0.2%  
0.2%  
0.75%  
0.75%  
DCLNR  
DC line regulation, ΔVOUT / VOUT  
VSYS = VSYSmin to VSYSmax, IOUT = IOUTmax. VINconstant  
(LDO preregulated), VOUT 2.2 V  
Pulldown discharge resistance at LDO  
output, except LDOVRTC  
RDIS  
Off mode, pulldown enabled and LDO disabled. Applies to bypass mode also.  
30  
125  
Ω
f = 217 Hz, IOUT = IOUTmax  
f = 50 kHz, IOUT = IOUTmax  
f = 1 MHz, IOUT = IOUTmax  
f = 217 Hz, IOUT = IOUTmax  
f = 50 kHz, IOUT = IOUTmax  
f = 1 MHz, IOUT = IOUTmax  
f = 217 Hz, IOUT = IOUTmax  
55  
35  
25  
55  
25  
20  
55  
25  
25  
90  
45  
Power supply ripple rejection (PSRR),  
LDO1, LDO2  
35  
90  
Power supply ripple rejection (PSRR),  
LDO3, LDO4  
45  
dB  
35  
90  
Power supply ripple rejection (PSRR), LDO5 f = 50 kHz, IOUT = IOUTmax  
f = 1 MHz, IOUT = IOUTmax  
45  
35  
For all LDOs, VCCA = VIN(LDOx) = 3.8 V, TA = 27°C  
0.1  
0.2  
0.2  
46  
0.4  
1.3  
1.3  
70  
IQoff  
Quiescent current – off mode  
For all LDOs, VCCA = VIN(LDOx) = 3.8 V, TA = 85°C  
For all LDOs, VCCA = VIN(LDOx) = 3.8 V, TA = 105°C  
µA  
–40°C TA 85°C  
85°C <TA 105°C  
–40°C TA 85°C  
85°C <TA 105°C  
–40°C TA 85°C  
85°C <TA 105°C  
–40°C TA 85°C  
85°C <TA 105°C  
ILOAD = 0 mA (LDO1, LDO2),  
VIN(LDOx) > VOUT(LDOx) + DV(LDOx)  
46  
70  
36  
47  
ILOAD = 0 mA (LDO3, LDO4),  
VIN(LDOx) > VOUT(LDOx) + DV(LDOx)  
36  
47  
IQon(LDO)  
Quiescent current – LDO on mode  
µA  
140  
140  
180  
180  
4%  
2%  
1%  
190  
190  
210  
210  
ILOAD = 0 mA (LDO5) ,  
VOUT 1.8 V, VIN(LDOx) > VOUT(LDOx) + DV(LDOx)  
ILOAD = 0 mA (LDO5) ,  
VOUT > 1.8 V, VIN(LDOx) > VOUT(LDOx) + DV(LDOx)  
IOUT < 100 µA  
Quiescent current coefficient  
LDO on mode, IQout = IQon + αQ × IOUT  
αQ  
100 µA IOUT < 1 mA  
IOUT 1 mA  
On mode, IOUT = 10 mA to IOUTmax / 2, TR = TF = 1 µs. All LDOs except LDO5  
On mode, IOUT = 1 mA to IOUTmax / 2, TR = TF = 1 µs. LDO5  
On mode, IOUT = 100 µA to IOUTmax / 2, TR = TF = 1 µs  
–25  
–25  
–50  
25  
25  
33  
TLDR  
Transient load regulation, ΔVOUT  
mV  
14  
Specifications  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65917-Q1  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
Electrical Characteristics — LDO Regulators (continued)  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN step = 600 mVpp, TR = TF = 10 µs  
0.25%  
0.5%  
Transient line regulation,  
ΔVOUT / VOUT  
TLNR  
VSYS step = 600 mVpp, TR = TF = 10 µs. VINconstant (LDO preregulated), VOUT  
2.2 V  
0.8%  
1.6%  
100 Hz < f 10 kHz  
5000  
1250  
150  
250  
400  
62  
8000  
2500  
300  
10 kHz < f 100 kHz  
Noise (except LDO5)  
nV/Hz  
100 kHz < f 1 MHz  
f > 1 MHz  
500  
100 Hz < f 5 kHz, IOUT = 50 mA , VOUT 1.8 V  
5 kHz < f 400 kHz, IOUT = 50 mA , VOUT 1.8 V  
400 kHz < f 10 MHz, IOUT = 50 mA , VOUT 1.8 V  
500  
Noise (LDO5)  
Ripple  
125 nV/Hz  
25  
50  
LDO1, LDO2, ripple at 32 kHz (from the internal charge pump of 300 mA LDO)  
5
mVPP  
LDO BYPASS MODE LDO1, LDO2  
Bypass resistance of 300 mA LDO  
2.9 V VIN 3.3 V, VSYS 3.4 V, IOUT = 250 mA, programmed to BYPASS  
1.75 V VIN 1.9 V, IOUT = 75 mA , programmed to BYPASS  
1.75 V VIN 1.9 V, IOUT = 200 mA , programmed to BYPASS  
Maximum 50 µF load connected to LDOx_OUT  
0.22  
0.24  
0.24  
1100  
60  
Ω
Ω
Bypass resistance of 300 mA LDO  
Bypass resistance of 300 mA LDO  
Bypass mode inrush current  
Quiescent current – bypass mode  
Slew-rate  
Ω
mA  
µA  
IQon(bypass)  
60 mV/µs  
4.6 Electrical Characteristics — SMPS1&2 in Dual-Phase Configuration  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
4.7  
47  
2
MAX  
UNIT  
µF  
Input capacitance (C8, C9)  
Output capacitance (C13, C14)(2)  
Filtering capacitor ESR  
SMPS1&2 input dual phase operation, per phase  
33  
57  
10  
µF  
CESR  
1 to 10 MHz  
SMPSx_SW  
mΩ  
µH  
Output filter inductance (L1, L2)  
Filter inductor DC resistance  
0.7  
1
1.3  
100  
DCRL  
50  
mΩ  
VIN  
(SMPSx)  
Input voltage range, SMPSx_IN  
VSYS (VCCA)  
3.135  
0.7  
5.25  
1.65  
V
RANGE = 0 (value for RANGE must not be changed when SMPS is active). In  
ECO mode the output voltage values are fixed (defined before ECO mode is  
enabled). RANGE = 1 is not supported in Multi-phase configuration.  
V
VOUT  
(SMPSx)  
Output voltage, programmable, SMPSx  
Step size, 0.7 V VOUT 1.65 V (RANGE = 0)  
10  
mV  
DC output voltage accuracy, includes  
voltage references, DC load and line  
regulation, process and temperature  
ECO mode  
–3%  
–1%  
4%  
2%  
PWM mode  
Max load, VIN = 3.8 V, VOUT = 1.2 V, ESRCOUT = 2 mΩ, measure with 20-MHz  
LPF  
Ripple, dual phase  
4
0.1  
0.1  
mVPP  
%/V  
DC line regulation,  
ΔVOUT / VOUT  
DCLNR  
DCLDR  
VIN = VINmin to VINmax  
IOUT = 0 to IOUTmax  
DC load regulation,  
ΔVOUT / VOUT  
%/A  
IOUT = 0.8 to 2 A, TR = TF = 400 ns, COUT = 47 µF , L = 1 µH  
IOUT = 0.5 to 500 mA, TR = TF = 100 ns, COUT = 47 µF , L = 1 µH  
Advance thermal design is required to avoide thermal shut down  
3%  
3%  
TLDSR  
Transient load step response, dual phase  
Rated output current, SMPS1&2  
7
5
A
mA  
A
IOUTmax  
Maximum output current, ECO mode  
High-side MOSFET forward current limit  
Low-side MOSFET forward current limit  
ILIM  
SMPS1&2, each phase  
SMPS1&2, each phase  
4.2  
4.5  
4.2  
HS FET  
ILIM  
A
LS FET  
RDS(ON) HS  
N-channel MOSFET on-resistance, high-  
side FET  
SMPS1&2, each phase  
50  
mΩ  
FET  
RDS(ON) LS  
N-channel MOSFET on-resistance, low-side  
FET  
SMPS1&2, each phase  
RANGE = 1  
39  
mΩ  
FET  
(3)  
Output voltage slew rate  
2.5  
mV/μs  
(1) SMPS1 and SMPS2 can be used in parallel in dual-phase mode to be able to multiply the output current by 2, and the converter is  
named SMPS1&2. The naming SMPS1 and SMPS2 is used when the bucks are configured as a separate buck converters.  
(2) Additional information about how this parameter is specified is located in6.2.2.  
(3) This slew rate refers to the rate at which the output voltage changes from one voltage level to another voltage after startup is complete.  
Copyright © 2015–2019, Texas Instruments Incorporated  
Specifications  
15  
Submit Documentation Feedback  
Product Folder Links: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Electrical Characteristics — SMPS1&2 in Dual-Phase Configuration (continued)  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
375  
9
MAX  
UNIT  
SMPSx_FDBK, SMPS turned off  
RDIS  
Pulldown discharge resistance output  
SMPSx_SW, SMPS turned off. Pulldown is at master phase output.  
Between SMPS1_FDBK and SMPS2_FDBK  
22  
Input resistance for remote sense (sense  
line)  
RSENSE  
IQoff  
260  
2200  
kΩ  
μA  
Quiescent current – Off mode  
ILOAD = 0 mA  
0.1  
15  
18  
2.5  
25  
ECO mode, device not switching, –40°C TA 85°C  
ECO mode, device not switching, 85°C < TA 105°C  
µA  
25.5  
IQon(ON)  
Quiescent current – On mode, dual phase  
PWM mode,  
11  
mA  
ILOAD = 0 mA, VIN = 3.8 V, VOUT = 1 V, device switching, 1-phase operation  
SMPS output voltage rising, referenced to programmed output voltage  
SMPS output voltage falling, referenced to programmed output voltage  
IL_AVG_COMP_rising  
–4%  
–16%  
6
VSMPSPG  
Powergood threshold SMPS1, SMPS2  
IL_AVG_COMP Powergood: GPADC monitoring SMPS1&2  
A
IL_AVG_COM  
P_rising-5%  
IL_AVG_COMP_falling  
4.7 Electrical Characteristics — SMPS1, SMPS2, SMPS3, SMPS4, and SMPS5 Stand-  
Alone Regulators  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input capacitance (C8, C9, C10, C11, C12)  
4.7  
µF  
Output capacitance (C13, C14, C15, C16,  
C17)(1)  
33  
47  
57  
µF  
CESR  
Filtering capacitor DC ESR  
1 to 10 MHz  
SMPSx_SW  
2
1
10  
1.3  
mΩ  
µH  
mΩ  
V
Output filter inductance (L1, L2, L3, L4, L5)  
Filter inductor DC resistance  
0.7  
DCRL  
50  
100  
5.25  
VIN (SMPSx)  
Input voltage range, SMPSx_IN  
VSYS (VCCA)  
3.135  
0.7  
RANGE = 0 (value for RANGE must not be changed when SMPS is  
active). In ECO mode the output voltage value is fixed (defined before  
ECO mode is enabled).  
1.65  
3.3  
V
RANGE = 1 (value for RANGE must not be changed when SMPS is  
active). In ECO mode the output voltage value is fixed (defined before  
ECO mode is enabled).  
VOUT (SMPSx) Output voltage, programmable, SMPSx  
1.0  
Step size, 0.7 V VOUT 1.65 V  
Step size, 1 V VOUT 3.3 V  
10  
20  
mV  
DC output voltage accuracy, includes voltage ECO mode  
–3%  
–1%  
4%  
2%  
references, DC load and line regulation,  
process and temperature  
PWM mode  
Max load, VIN = 3.8 V, VOUT = 1.2 V, ESRCOUT = 2 mΩ, measured with 20-  
MHz LPF  
Ripple  
8
mVPP  
DCLNR  
DCLDR  
DC line regulation, ΔVOUT / VOUT  
DC load regulation, ΔVOUT / VOUT  
VIN = VINmin to VINmax  
IOUT = 0 to IOUTmax  
0.1  
0.1  
%/V  
%/A  
SMPS1, SMPS2, SMPS3, SMPS5, IOUT = 0.5 to 500 mA, TR = TF = 100  
ns, COUT = 47 µF , L = 1µH  
TLDSR  
TLDSR  
Transient load step response  
Transient load step response  
3%  
3%  
SMPS4, IOUT = 0.5 to 500 mA, TR = TF = 1 µs, COUT = 47 µF , L = 1µH  
IOUTmax(SMPS1,2) Rated output current, SMPS1, SMPS2  
Advance thermal design is required to avoid thermal shut down  
3.5  
3
A
A
IOUTmax(SMPS3)  
IOUTmax(SMPS4)  
IOUTmax(SMPS5)  
IOUTmax(ECO)  
Rated output current, SMPS3  
Rated output current, SMPS4  
Rated output current, SMPS5  
Maximum output current, ECO mode  
Advance thermal design is required to avoid thermal shut down  
Advance thermal design is required to avoid thermal shut down  
1.5  
2
A
Advance thermal design is required to avoid thermal shut down  
A
Advance thermal design is required to avoid thermal shut down  
5
mA  
SMPS1, SMPS2, SMPS3  
4.2  
2.2  
2.7  
4.5  
2.5  
3
ILIM  
High-side MOSFET forward current limit  
Low-side MOSFET forward current limit  
SMPS4  
A
A
HS FET  
SMPS5  
SMPS1, SMPS2, SMPS3  
4.2  
2.2  
2.7  
50  
ILIM  
SMPS4  
LS FET  
SMPS5  
SMPS1, SMPS2, SMPS3, SMPS5  
SMPS4  
mΩ  
mΩ  
N-channel MOSFET on-resistance (high-side  
FET)  
RDS(ON)  
HS FET  
110  
(1) Additional information about how this parameter is specified is located in 6.2.2.  
16 Specifications  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65917-Q1  
 
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
Electrical Characteristics — SMPS1, SMPS2, SMPS3, SMPS4, and SMPS5 Stand-Alone  
Regulators (continued)  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
39  
MAX  
UNIT  
SMPS1, SMPS2, SMPS3, SMPS5  
N-channel MOSFET on-resistance (low-side  
FET)  
RDS(ON)  
mΩ  
LS FET  
SMPS4  
79  
Overshoot during turn-on  
5%  
(2)  
Output voltage slew rate  
2.5  
375  
9
mV/μs  
SMPSx_FDBK, SMPS turned off  
Pulldown discharge resistance at SMPSx  
output  
RDIS  
IQoff  
SMPSx_SW, SMPS turned off  
22  
2.5  
Quiescent current – Off mode  
ILOAD = 0 mA  
0.1  
15  
μA  
ECO mode, device not switching, VOUT < 1.8 V –40°C TA 85°C  
ECO mode, device not switching, VOUT < 1.8 V 85°C < TA 105°C  
ECO mode, device not switching, VOUT 1.8 V, –40°C TA 85°C  
ECO mode, device not switching, VOUT 1.8 V, 85°C < TA 105°C  
25  
18  
25.5  
25  
µA  
mA  
µA  
Quiescent current – On mode - SMPS1,  
SMPS2, SMPS3, SMPS5  
16.5  
19.5  
IQon(SMPS1,2,3,5)  
25.5  
FORCED_PWM mode, ILOAD = 0 mA, VIN = 3.8 V, VOUT = 1 V, device  
switching  
11  
ECO mode, device not switching, VOUT < 1.8 V –40°C TA 85°C  
ECO mode, device not switching, VOUT < 1.8 V 85°C < TA 105°C  
ECO mode, device not switching, VOUT 1.8 V, –40°C TA 85°C  
ECO mode, device not switching, VOUT 1.8 V, 85°C < TA 105°C  
15  
18  
24  
25  
24  
25  
16.5  
19.5  
IQon(SMPS4)  
Quiescent current – On mode - SMPS4  
FORCED_ PWM mode, ILOAD = 0 mA, VIN = 3.8 V, VOUT = 1 V, device  
switching  
7
mA  
SMPS output voltage rising, referenced to programmed output voltage  
SMPS output voltage falling, referenced to programmed output voltage  
IL_AVG_COMP_rising - SIMPS1, SMPS2  
–4%  
VSMPSPG  
Powergood threshold  
–16%  
3
3
2
A
A
A
IL_AVG_COMP_rising - SMPS3  
IL_AVG_COMP_rising - SMPS5  
IL_AVG_COMP Powergood: GPADC monitoring  
IL_AVG_COM  
P_rising-5%  
IL_AVG_COMP_falling - SMPS1, SMPS2, SMPS3  
IL_AVG_COMP_falling- SMPS5  
A
A
IL_AVG_COM  
P_rising-8%  
(2) This slew rate refers to the rate at which the output voltage changes from one voltage level to another voltage after startup is complete.  
4.8 Electrical Characteristics — Reference Generator (Bandgap)  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
Connected from VBG to REFGND  
MIN  
TYP  
100  
0.85  
20  
MAX  
UNIT  
nF  
Filtering capacitor  
Output voltage  
Ground current  
30  
150  
V
40  
µA  
4.9 Electrical Characteristics — 32-kHz RC Oscillators and SYNCCLKOUT Output Buffers  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).  
PARAMETER  
32-kHz RC OSCILLATOR  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Active current consumption  
Power down current  
4
8
μA  
30  
nA  
SYNCCLKOUT OUTPUT BUFFER  
Logic output external load  
5
35  
50  
pF  
Copyright © 2015–2019, Texas Instruments Incorporated  
Specifications  
17  
Submit Documentation Feedback  
Product Folder Links: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
4.10 Electrical Characteristics — 12-Bit Sigma-Delta ADC  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).  
PARAMETER  
Current consumption  
Off mode current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1600  
1
UNIT  
μA  
IQON  
During conversion  
1500  
IQOFF  
GPADC is not enabled (no conversion)  
Without calibration (inputs without scaler)  
Without calibration (inputs with scaler)  
With calibration, TA = 27°C, VCCA = 5.25V  
Without calibration  
μA  
–3.5%  
–4.5%  
–0.95%  
–65  
3.5%  
4.5%  
0.95%  
65  
Gain error  
Offset  
LSB  
With calibration, TA = 27°C, VCCA = 5.25V  
–17  
17  
Gain error drift (after trimming, including  
reference voltage)  
Temperature and supply  
–0.6%  
0.6%  
Offset drift after trimming  
Integral nonlinearity  
Differential nonlinearity  
Input capacitance  
Temperature and supply  
Best fitting  
–2  
–3.5  
–1  
2
3.5  
3.5  
LSB  
LSB  
LSB  
pF  
INL  
DNL  
ADCIN1, ADCIN2  
0.5  
Source resistance without capacitance  
Source capacitance with > 20-kΩ source resistance  
Typical range  
20  
kΩ  
Source input impedance  
100  
0
nF  
1.25  
Input range (sigma-delta ADC)  
V
Assured range without saturation  
0.01  
1.215  
SMPS CURRENT MONITORING (GPADC CHANNEL 4)(1)  
Channel 4 SMPS output current  
measurement gain factor, IFS0  
3.958  
0.652  
A
A
Channel 4 SMPS output current  
measurement current offset, IOS0  
Channel 4 SMPS output current  
measurement temperature coefficient,  
TC_R0  
–1090  
ppm/°C  
SMPS output current measurement  
accuracy, Ierr (%), GPADC trimmed  
ILOAD_error (%) = ILOAD_meas / ILOAD × 100.  
ILOAD = 3 A for SMPS1/SMPS2/SMPS3. 25°C  
–8%  
8%  
SMPS output current measurement  
accuracy, Ierr (%), GPADC trimmed  
ILOAD_error (%) = ILOAD_meas / ILOAD × 100.  
ILOAD = 2 A for SMPS5. 25°C  
–10%  
10%  
(1) Basic equation for result: ILOAD = IFS × GPADC code / (212 – 1) – IOS, where K is the number of SMPS active phases, IFS= IFS0 × K  
and IOS = IOS0 × K  
Temperature compensated result: ILOAD = IFS × GPADC code / ( (212 – 1) × (1 + TC_R0 × (TEMP-25) ) ) – IOS  
4.11 Electrical Characteristics — Thermal Monitoring and Shutdown  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
104  
95  
TYP  
117  
108  
121  
112  
125  
116  
130  
120  
148  
123  
MAX  
127  
119  
132  
123  
136  
128  
143  
132  
163  
135  
0.1  
UNIT  
Rising threshold  
Falling threshold  
Rising threshold  
Falling threshold  
Rising threshold  
Falling threshold  
Rising threshold  
Falling threshold  
HDSEL[1:0] = 00  
HDSEL[1:0] = 01  
HDSEL[1:0] = 10  
HDSEL[1:0] = 11  
109  
99  
Hot-die temperature threshold  
°C  
113  
104  
117  
108  
133  
111  
Rising threshold  
Falling threshold  
Thermal shutdown threshold  
°C  
μA  
μA  
Device in OFF state, VCCA = 3.8 V, T = 25°C  
Device in OFF state  
Off ground current (two sensors on the die,  
specification for one sensor)  
IQOFF  
0.5  
Device in ACTIVE state, VCCA = 3.8 V, T = 25°C  
Device in ACTIVE state, GPADC measurement  
7
15  
On ground current (two sensors on the die,  
specification for one sensor)  
IQON  
25  
40  
18  
Specifications  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65917-Q1  
 
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
4.12 Electrical Characteristics — System Control Thresholds  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).  
PARAMETER  
POR (power-on reset) rising-edge threshold  
POR falling-edge threshold  
TEST CONDITIONS  
MIN  
2.0  
TYP  
2.15  
2
MAX  
UNIT  
V
Measured on VCCA pin  
Measured on VCCA pin  
2.5  
1.7  
2.46  
300  
3.1  
V
POR hysteresis  
Rising edge to falling edge  
Voltage range, 50-mV steps  
Voltage accuracy  
40  
mV  
V
2.75  
–50  
75  
VSYS_LO, falling threshold, measured on VCCA pin  
VSYS_LO hysteresis  
95  
mV  
mV  
V
Falling edge to rising edge  
Voltage range, 50-mV steps  
Voltage accuracy  
460  
3.85  
140  
4.6  
2.9  
VSYS_HI, measured on VCC_SENSE pin  
–70  
2.75  
–70  
2.9  
mV  
V
Voltage range, 50-mV steps  
Voltage accuracy  
VSYS_MON, measured on VCC_SENSE pin  
140  
3.6  
mV  
V
Rising threshold  
VBUS detection (VBUS wake-up comparator threshold [plug  
detect])  
Falling threshold  
2.8  
3.3  
V
4.13 Electrical Characteristics — Current Consumption  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFF MODE  
IOFF  
Device Off Mode Current Consumption  
VCCA = 3.8 V, Device in OFF mode.  
20  
90  
55  
µA  
SLEEP MODE  
VCCA = 3.8 V, PLL disabled, Device in Sleep mode. SMPS4 and  
SMPS5 enabled in ECO mode, no load, all other external supply  
rails are disabled  
ISLEEP Device Sleep Mode Current Consumption  
150  
µA  
4.14 Electrical Characteristics — Digital Input Signal Parameters  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted). (VIO to refers to VIO_IN  
pin, VSYS to refers to VCCA pin)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PWRON  
Low-level input voltage related to VSYS (VCCA pin  
reference)  
0.35 ×  
VSYS  
VIL(VSYS)  
–0.3  
0
V
V
V
High-level input voltage related to VSYS (VCCA pin  
reference)  
0.65 ×  
VSYS  
VSYS + 0.3  
VIH(VSYS)  
VSYS  
5.25  
0.025 ×  
VSYS  
Hysteresis related to VSYS  
GPIO_2, GPIO_4, ENABLE1, I2C2_SCL_SCE, I2C2_SDA_SDO, I2C1_SCL_SCK, I2C1_SDA_SDI  
Low-level input voltage related to VIO (VIO_IN pin  
reference)  
VIL(VIO)  
–0.3  
0
0.3 × VIO  
VIO + 0.3  
V
High-level input voltage related to VIO (VIO_IN pin  
reference)  
VIH(VIO)  
0.7 × VIO  
VIO  
V
V
Hysteresis related to VIO  
0.045 × VIO  
BOOT, SYNCDCDC, ENABLE2, GPIO_0, GPIO_1, GPIO_3, GPIO_5, GPIO_6, NRESWARM, POWERHOLD, PWRDOWN, RESET_IN, NSLEEP  
VIL(VRTC)  
VIH(VRTC)  
Low-level input voltage related to VRTC  
High-level input voltage related to VRTC  
–0.3  
0
0.3 × VRTC  
V
V
0.7 × VRTC  
VRTC VRTC + 0.3  
0.05 ×  
VRTC  
Hysteresis related to VRTC  
V
Copyright © 2015–2019, Texas Instruments Incorporated  
Specifications  
19  
Submit Documentation Feedback  
Product Folder Links: TPS65917-Q1  
 
 
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
4.15 Electrical Characteristics — Digital Output Signal Parameters  
TA = –40°C to +85°C, typical values are at TA = 27°C (unless otherwise noted). (VIO to refers to VIO_IN pin, VSYS to refers  
to VCCA pin)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GPIO_2, GPIO_4, REGEN2, INT, RESET_OUT  
IOL = 2 mA  
0.45  
0.2  
Low-level output voltage, push-pull and open-drain  
V
IOL = 100 µA  
VIO –  
0.45  
IOH = 2 mA  
VIO  
High-level output voltage, push-pull (VIO_IN pin  
reference)  
V
V
IOH = 100 µA  
VIO – 0.2  
VIO  
VIO  
Supply for external pullup resistor, open drain  
SYNCCLKOUT  
IOL = 1 mA  
0.45  
0.2  
VOL(SYNCCLKO  
Low-level output voltage, push-pull  
High-level output voltage , push-pull  
V
V
UT)  
IOL = 100 µA  
VRTC –  
0.45  
IOH = 1 mA  
VRTC  
VRTC  
VOH(SYNCCLK  
OUT)  
VRTC –  
0.2  
IOH = 100 µA  
GPIO_0, GPIO_1, GPIO_3, GPIO_5, REGEN1  
External pullup to VRTC, IOL = 2 mA  
External pullup to VRTC, IOL = 100 µA  
0.45  
0.2  
Low-level output voltage, open-drain  
V
V
Supply for external pullup resistor, open-drain  
5.25  
GPIO_6, POWERGOOD, REGEN3  
External pullup to VRTC, IOL = 2 mA  
External pullup to VRTC, IOL = 100 µA  
0.45  
0.2  
Low-level output voltage, open-drain  
V
V
Supply for external pullup resistor, open-drain  
VRTC  
I2C1_SDA_SDI, I2C2_SDA_SDO  
Low-level output voltage related to VIO (VIO_IN pin  
reference)  
VOL(VIO)  
3-mA sink current  
0.1 × VIO  
0.2 × VIO  
20  
V
CB  
Capacitive load for I2C2_SDA _SDO  
SPI Interface mode is selected  
pF  
4.16 I/O Pullup and Pulldown Characteristics  
Over operating free-air temperature range (unless otherwise noted). (VIO to refers to VIO_IN pin, VSYS to refers to VCCA  
pin)  
PARAMETER  
PWRON signal, fixed pullup  
TEST CONDITIONS  
PULL UP  
MIN  
55  
TYP  
120  
400  
400  
400  
400  
400  
MAX  
370  
UNIT  
kΩ  
VSYS pullup supply  
VRTC pullup supply  
GPIO_0, GPIO_1, GPIO3, and GPIO5 signals  
PULL DOWN  
PULL UP  
180  
170  
170  
170  
180  
900  
kΩ  
1200  
950  
GPIO_2 and GPIO_4 signals  
VIO pullup supply  
kΩ  
kΩ  
PULL DOWN  
PULL UP  
1200  
900  
GPIO_6 signal  
VRTC pullup supply  
PULL DOWN  
4.17 Electrical Characteristics — I2C Interface  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CB  
Capacitive load for SDA and SCL  
400  
pF  
20  
Specifications  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65917-Q1  
 
 
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
4.18 Timing Requirements — I2C Interface  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).  
(1)(2)(3)(4)  
MIN  
MAX  
100  
UNIT  
kHz  
Standard mode  
Fast mode  
400  
kHz  
High-speed mode (write operation), CB  
100 pF max  
3.4  
3.4  
1.7  
1.7  
MHz  
MHz  
MHz  
MHz  
High-speed mode (read operation), CB  
100 pF max  
f(SCL)  
SCL clock frequency  
High-speed mode (write operation), CB  
400 pF max  
High-speed mode (read operation), CB  
400 pF max  
Standard mode  
4.7  
μs  
μs  
μs  
ns  
ns  
μs  
μs  
ns  
ns  
μs  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Bus free time between a stop (P)  
and start (S) condition  
tBUF  
Fast mode  
1.3  
Standard mode  
4
tHD(ST Hold time (Repeated) start  
Fast mode  
600  
condition  
A)  
High-speed mode  
160  
Standard mode  
4.7  
Fast mode  
1.3  
tLOW  
Low period of the SCL clock  
High period of the SCL clock  
High-speed mode, CB – 100 pF max  
High-speed mode, CB – 400 pF max  
Standard mode  
160  
320  
4
Fast mode  
600  
tHIGH  
High-speed mode, CB – 100 pF max  
High-speed mode, CB – 400 pF max  
Standard mode  
60  
120  
4.7  
tSU(STA Setup time for a repeated start  
Fast mode  
600  
(Sr) condition  
)
High-speed mode  
160  
Standard mode  
250  
tSU(DA  
T)  
Data setup time  
Fast mode  
100  
High-speed mode  
10  
Standard mode  
0
3.45  
0.9  
Fast mode  
0
tHD(DA  
T)  
Data hold time  
High-speed mode, CB – 100 pF max  
High-speed mode, CB – 400 pF max  
Standard mode  
0
70  
0
20 + 0.1 CB  
20 + 0.1 CB  
10  
150  
1000  
300  
40  
Fast mode  
tRCL  
Rise time of the SCL signal  
High-speed mode, CB – 100 pF max  
High-speed mode, CB – 400 pF max  
Standard mode  
20  
80  
20 + 0.1 CB  
20 + 0.1 CB  
10  
1000  
300  
80  
Rise time of the SCL signal after  
a Repeated Start condition and  
after an acknowledge bit  
Fast mode  
tRCL1  
High-speed mode, CB – 100 pF max  
High-speed mode, CB – 400 pF max  
20  
160  
(1) Specified by design. Not tested in production.  
(2) All values referred to VIHmin and VIHmax levels.  
(3) For bus line loads CB between 100 and 400 pF, the timing parameters must be linearly interpolated.  
(4) A device must internally provide a data hold time to bridge the undefined part between VIH and VIL of the falling edge of the SCLH  
signal. An input circuit with a threshold as low as possible for the falling edge of the SCLH signal minimizes this hold time.  
Copyright © 2015–2019, Texas Instruments Incorporated  
Specifications  
21  
Submit Documentation Feedback  
Product Folder Links: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Timing Requirements — I2C Interface (continued)  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted). (1)(2)(3)(4)  
MIN  
MAX  
300  
300  
40  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
Standard mode  
20 + 0.1 CB  
Fast mode  
20 + 0.1 CB  
tFCL  
tRDA  
tFDA  
Fall time of the SCL signal  
Rise time of the SDA signal  
High-speed mode, CB – 100 pF max  
High-speed mode, CB – 400 pF max  
Standard mode  
10  
20  
80  
20 + 0.1 CB  
1000  
300  
80  
Fast mode  
20 + 0.1 CB  
High-speed mode, CB – 100 pF max  
High-speed mode, CB – 400 pF max  
Standard mode  
10  
20  
160  
300  
300  
80  
20 + 0.1 CB  
Fast mode  
20 + 0.1 CB  
Fall time of the SDA signal  
High-speed mode, CB – 100 pF max  
High-speed mode, CB – 400 pF max  
Standard mode  
10  
20  
160  
4
tSU(ST  
O)  
Setup time for a stop condition  
Fast mode  
600  
160  
ns  
ns  
High-speed mode  
4.19 Timing Requirements — SPI  
See 4-3 for the SPI timing diagram.  
MIN  
30  
30  
67  
20  
20  
5
MAX  
UNIT  
ns  
tcesu  
tcehld  
tckper  
tckhigh  
tcklow  
tsisu  
Chip-select set up time  
Chip-select hold time  
ns  
Clock cycle time  
100  
ns  
Clock high typical pulse duration  
Clock low typical pulse duration  
Input data set up time, before clock active edge  
Input data hold time, after clock active edge  
ns  
ns  
ns  
tsihld  
tdr  
5
ns  
15  
30  
ns  
tCE  
Time from CE going low to CE going high  
Capacitive load on pin SDO  
67  
ns  
pF  
4.20 Switching Characteristics — LDO Regulators  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).  
PARAMETER  
Turn-on time  
Turn-off time (except VRTC)  
TEST CONDITIONS  
MIN  
TYP  
100  
250  
MAX  
500  
UNIT  
μs  
Ton  
Toff  
IOUT = 0, VOUT = 0.1 V up to VOUTmin  
IOUT = 0, VOUT down to 10% × VOUT  
500  
μs  
4.21 Switching Characteristics — SMPS1&2 in Dual-Phase Configuration  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
PWM mode  
MIN  
TYP  
MAX  
UNIT  
fSW  
Switching frequency  
1.7  
2.2  
2.7  
MHz  
Time from enable to the start of the  
ramp  
Tstart  
Tramp  
240  
400  
µs  
µs  
Time from enable to 80% of VOUT  
COUT < 57 µF per phase, no load  
1000  
22  
Specifications  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65917-Q1  
 
 
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
4.22 Switching Characteristics — SMPS1, SMPS2, SMPS3, SMPS4, and SMPS5 Stand-  
Alone Regulators  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
In PWM mode  
MIN  
TYP  
MAX  
UNIT  
fSW  
Switching frequency  
1.7  
2.2  
2.7  
MHz  
Time from enable to the start of the  
ramp  
Tstart  
Tramp  
150  
400  
µs  
µs  
Time from enable to 80% of VOUT  
COUT < 57 µF per phase, no load  
1000  
4.23 Switching Characteristics — Reference Generator (Bandgap)  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).  
PARAMETER  
Start-up time  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
1
3
ms  
4.24 Switching Characteristics — PLL for SMPS Clock Generation  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Synchronization range of  
SYNCDCDC clock  
fSYNC  
1.7  
2.2  
2.7  
MHz  
Dither amplitude of SYNCDCDC  
clock  
ADITHER  
MDITHER  
128  
kHz  
Dither slope of SYNCDCDC clock  
1.35  
2.42  
2.42  
2.42  
kHz/µs  
VCCA = 5.25 V  
1.98  
1.9  
2.2  
2.2  
2.2  
fFALLBACK  
Fallback frequency  
VCCA = 3.8 V  
MHz  
VCCA = 3.135 V  
1.9  
The low saturation frequency of  
the PLL  
fSAT,LO  
fSAT,HI  
1.35  
2.8  
1.68  
3.8  
MHz  
MHz  
The high saturation frequency of  
the PLL  
Time from initial application or  
removal of sync clock until PLL  
output has settled to 1% of the final  
value  
tSETTLE  
Settling time  
100  
1%  
µs  
The steady-state percent of  
difference between fSYNC and the  
switching frequency  
fERROR  
Frequency error  
–1%  
4.25 Switching Characteristics — 32-kHz RC Oscillators and SYNCCLKOUT Output Buffers  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).  
PARAMETER  
32-kHz RC OSCILLATOR  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output frequency low-level output voltage  
Output frequency accuracy  
Cycle jitter (RMS)  
32768  
0%  
Hz  
After trimming at 27°C  
–10%  
40%  
10%  
10%  
60%  
150  
Output duty cycle  
50%  
Settling time  
μs  
SYNCCLKOUT OUTPUT BUFFER  
Rise and fall time  
CL = 35 pF, 10% to 90%  
Logic output signal  
5
20  
100  
ns  
Duty cycle  
40%  
50%  
60%  
Copyright © 2015–2019, Texas Instruments Incorporated  
Specifications  
23  
Submit Documentation Feedback  
Product Folder Links: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
4.26 Switching Characteristics — 12-Bit Sigma-Delta ADC  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Active or  
sleep with VANA ON and  
RC15MHZ_ON_IN_SLEEP = 1 or  
sleep with GPADC_FORCE = 1  
0
Turn-on time  
μs  
Sleep or OFF  
794  
282  
113  
563  
223  
Sleep with VANA enabled  
1 channel, EXTEND_DELAY = 0  
1 channel, EXTEND_DELAY = 1  
2 channels  
Conversion time  
μs  
SDA  
SCL  
tBUF  
tf  
tLOW  
tf  
tsu;DAT  
tr  
thd;STA  
tr  
thd;STA  
tsu;STA  
tsu;STO  
thd;DAT  
HIGH  
Sr  
S
P
S
Note: S = Start; Sr = Repeated start; P = Stop  
4-1. Serial Interface Timing Diagram For F/S Mode  
Sr  
Sr  
P
tfDA  
trDA  
SDA (HS)  
thd;DAT  
tsu;STO  
tsu;STA  
tsu;DAT  
thd;STA  
SCL (HS)  
tfCL1  
trCL1  
trCL1  
trCL  
tLOW  
tHIGH  
tHIGH  
tLOW  
See Note A  
See Note B  
= MCS Current Source Pullup  
= R(P) Resistor Pullup  
A. First rising edge of the SCL (HS) signal after Sr and after each acknowledge bit.  
B. Sr = Repeated start; P = Stop  
4-2. Serial Interface Timing Diagram For HS Mode  
24  
Specifications  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
SPI chip select  
tckper  
tckhigh  
tcehld  
tcklow  
tcesu  
SPI clock enable  
tsisu  
tsihld  
R/W  
Address  
Unused  
tdr  
Data  
SPI data input  
SPI data output  
Don‘t care  
4-3. SPI Timings  
See Section 4.19 for the Timing Parameters  
版权 © 2015–2019, Texas Instruments Incorporated  
Specifications  
25  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
4.27 Typical Characteristics  
100%  
80%  
60%  
40%  
20%  
0%  
80%  
60%  
40%  
20%  
VO = 0.7 V  
VO = 1.05 V  
VO = 1.2 V  
VO = 1.65 V  
VO = 1.8 V  
VO = 2.5 V  
VO = 0.7 V  
VO = 1.05 V  
VO = 1.2 V  
VO = 1.65 V  
VO = 1.8 V  
VO = 3.3 V  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Load Current (mA)  
D001  
Load Current (A)  
D002  
VI = 3.8 V  
ƒS = 2.2 MHz  
TA = 25°C  
VI = 3.8 V  
ƒS = 2.2 MHz  
TA = 25°C  
4-4. SMPS Efficiency for all SMPS in Eco-mode  
4-5. SMPS Efficiency for SMPS1 and SMPS2  
in Single-Phase PWM Mode  
100%  
100%  
80%  
60%  
40%  
20%  
0%  
80%  
60%  
40%  
20%  
0%  
TA = -40èC  
TA = 25èC  
TA = 105èC  
Ö
Ö
Ö
S = 1.7 MHz  
S = 2.2 MHz  
S = 2.7 MHz  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Load Current (A)  
Load Current (A)  
D003  
D004  
VI = 3.8 V  
ƒS = 2.2 MHz  
VO = 1.8 V  
VI = 3.8 V  
VO = 1.8 V  
TA = 25°C  
4-6. SMPS Efficiency for SMPS1 and SMPS2  
in Single-Phase PWM Mode With Temperature Variation  
4-7. SMPS Efficiency for SMPS1 and SMPS2  
in Single-Phase PWM Mode With Frequency Variation  
100%  
80%  
60%  
100%  
80%  
60%  
40%  
40%  
VO = 0.7 V  
VO = 0.7 V  
VO = 1.05 V  
VO = 1.2 V  
VO = 1.65 V  
VO = 1.05 V  
VO = 1.2 V  
VO = 1.65 V  
20%  
20%  
VO = 1.8 V  
VO = 1.8 V  
VO = 3.3 V  
VO = 3.3 V  
0%  
0%  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Load Current (A)  
3
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4 1.6  
Load Current (A)  
D005  
D006  
VI = 3.8 V  
ƒS = 2.2 MHz  
TA = 25°C  
VI = 3.8 V  
ƒS = 2.2 MHz  
TA = 25°C  
4-8. SMPS Efficiency for SMPS3  
4-9. SMPS Efficiency for SMPS4  
in PWM Mode  
in PWM Mode  
26  
Specifications  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
Typical Characteristics (continued)  
100%  
100%  
80%  
60%  
40%  
20%  
0%  
80%  
60%  
40%  
20%  
0%  
VO = 0.7 V  
VO = 1.05 V  
VO = 1.2 V  
VO = 1.65 V  
VO = 1.8 V  
VO = 3.3 V  
VO = 0.7 V  
VO = 1.05 V  
VO = 1.2 V  
VO = 1.65 V  
VO = 1.8 V  
VO = 3.3 V  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
Load Current (A)  
Load Current (A)  
D007  
D008  
VI = 3.8 V  
ƒS = 2.2 MHz  
TA = 25°C  
VI = 3.8 V  
ƒS = 2.2 MHz  
TA = 25°C  
4-10. SMPS Efficiency for SMPS5  
in PWM Mode  
4-11. SMPS Efficiency for SMPS12  
in Dual-Phase PWM Mode  
0.2%  
0.16%  
0.12%  
0.08%  
0.04%  
0%  
0.32%  
0.28%  
0.24%  
0.2%  
0.16%  
0.12%  
0.08%  
0.04%  
0
-0.04%  
-0.08%  
-0.12%  
-0.16%  
-0.2%  
VO = 0.7 V  
VO = 0.7 V  
VO = 1.2 V  
VO = 1.8 V  
VO = 3.3 V  
VO = 1.05 V  
VO = 1.2 V  
VO = 1.65 V  
-0.04%  
-0.08%  
-0.12%  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
Output Current (A)  
D009  
D013  
VI = 3.8 V  
ƒS = 2.2 MHz  
TA = 25°C  
VI = 3.8 V  
ƒS = 2.2 MHz  
TA = 25°C  
4-12. SMPS Load Regulation for SMPS1 and SMPS2 Single-  
4-13. SMPS Load Regulation for SMPS3, PWM Mode  
Phase PWM Mode  
0.2%  
0.16%  
0.12%  
0.08%  
0.04%  
0%  
0.32%  
0.28%  
0.24%  
0.2%  
0.16%  
0.12%  
0.08%  
0.04%  
-0.04%  
-0.08%  
0
VO = 0.7 V  
VO = 1.05 V  
VO = 1.2 V  
VO = 1.65 V  
VO = 0.7 V  
-0.12%  
-0.04%  
-0.08%  
-0.12%  
VO = 1.05 V  
VO = 1.2 V  
VO = 1.65 V  
-0.16%  
-0.2%  
0
0.5  
Output Current (A)  
1
1.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
Output Current (A)  
D010  
D011  
VI = 3.8 V  
ƒS = 2.2 MHz  
TA = 25°C  
VI = 3.8 V  
ƒS = 2.2 MHz  
TA = 25°C  
4-14. SMPS Load Regulation for SMPS4  
4-15. SMPS Load Regulation for SMPS12  
in Dual-Phase PWM Mode  
in PWM Mode  
版权 © 2015–2019, Texas Instruments Incorporated  
Specifications  
27  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
0.2%  
0.16%  
0.12%  
0.08%  
0.04%  
0%  
-0.04%  
-0.08%  
-0.12%  
-0.16%  
VO = 0.7 V  
VO = 1.05 V  
VO = 1.2 V  
VO = 1.65 V  
-0.2%  
0
0.5  
1
1.5  
2
Output Current (A)  
D012  
VI = 3.8 V  
ƒS = 2.2 MHz  
TA = 25°C  
4-16. SMPS Load Regulation for SMPS5  
in PWM Mode  
28  
Specifications  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
5 Detailed Description  
5.1 Overview  
The TPS65917-Q1 device is an integrated power-management integrated circuit (PMIC), available in a 48-  
pin, 0.5-mm pitch, 7-mm × 7-mm QFN package. It is designed specifically for automotive applications. It  
provides five configurable step-down converter rails, with two of the rails having the ability to combine  
power rails and supply up to 7A of output current in multi-phase mode. The TPS65917-Q1 device also  
provides five external LDO rails. It also comes with a 12-bit GPADC with two external channels, seven  
configurable GPIOs, two I2C interface channels or one SPI interface channel, PLL for external clock sync  
and phase delay capability, and programmable power sequencer and control for supporting different  
processors and applications.  
The five step-down converter rails are consisting of five high frequency switch mode converters with  
integrated FETs. They are capable of synchronizing to an external clock input and supports switching  
frequency between 1.7 MHz and 2.7 MHz. The SMPS1 and SMPS2 can combine in dual phase  
configuration to supply up to 7 A. In addition, SMPS1, SMPS2, and SMPS3 support dynamic voltage  
scaling by a dedicated I2C interface for optimum power savings.  
The five LDOs support 0.9 V to 3.3 V output with 50-mV step. The LDOs can be supplied from either a  
system supply or a pre-regulated supply. All LDOs and step-down converters can be controlled by the SPI  
or I2C interface, or by power request signals. In addition, voltage scaling registers allow transitioning the  
SMPS to different voltages by SPI, I2C, or roof and floor control.  
The power-up and power-down controller is configurable and programmable through OTP. The  
TPS65917-Q1 device includes a 32-kHz RC oscillator to sequence all resources during power up and  
power down. An internal LDOVRTC generates the supply for the entire digital circuitry of the device as  
soon as the VSYS supply is available through the VCCA input.  
Configurable GPIOs with multiplexed feature are available on the TPS65917-Q1 device. The GPIOs can  
be configured and used as enable signals for external resources, which can be included into the power-up  
and power-down sequence. The general-purpose (GP) sigma-delta analog-to-digital converter (ADC) with  
two external input channels included in this device can be used as thermal or voltage and current  
monitors.  
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
29  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
5.2 Functional Block Diagram  
VSYS  
VIO  
VSYS  
C1  
C3  
C5  
C4  
C2  
BOOT  
Boot mode  
selection  
PWRON  
POWERHOLD  
Control  
inputs  
SMPS1_IN  
VSYS  
RESET_IN  
NRESWARM  
NSLEEP  
Grounds  
L1  
SMPS1_SW  
SMPS1  
3.5 A  
(DVS/AVS)  
[Master]  
Test and  
program  
LDOVANA  
LDOVRTC  
C8  
<SMPS1_GND>  
C13  
VCC  
I2C1_SCL_CLK  
internal  
supply  
I2C CNTL,  
I2C DVS,  
or SPI  
SMPS2_IN  
SMPS2_SW  
SMPS1_FDBK  
SMPS2_FDBK  
<SMPS2_GND>  
I2C1_SDA_SDI  
VSYS  
Dual or  
Single phase  
L2  
EN  
VSEL  
RAMP  
CLK1  
I2C2_SCL_SCE  
I2C2_SDA_SDO  
TPS65917-Q1  
Application  
Processor  
SMPS2  
3.5 A  
(DVS/AVS)  
[Multi/Stand-  
alone]  
RESET_OUT  
INT  
C14  
C9  
PLL  
(Phase  
synchronization  
and dither)  
Internal  
Interrupt  
events  
SYNCDCDC  
SMPS3_IN  
SMPS3_SW  
VSYS  
VSYS  
ENABLE2  
PWRDOWN  
REGEN1  
GPIO_0  
GPIO_1  
GPIO_2  
JTAG  
DFT  
L3  
SMPS3  
3 A  
(DVS/  
AVS)  
CLK2  
EN  
VSEL  
RAMP  
SMPS3_FDBK  
OTP controller  
OTP memory  
C10  
C15  
RESET_IN  
<SMPS3_GND>  
RESWARM  
VBUS_SENSE  
Registers  
CLK3  
EN  
VSEL  
SMPS4_IN  
VCCA  
POR  
Programmable  
power sequencer  
controller  
L4  
SMPS4_SW  
ENABLE1  
I2C2_SDA_SDO  
SMPS4  
1.5 A  
(AVS)  
VCCA  
SMPS4_FDBK  
VSYS_LO  
VCC_SENSE  
VSYS_MON  
C11  
ECO  
PWM  
DVS  
C16  
GPIO  
signals  
and  
<SMPS4_GND>  
ENABLE2  
REGEN1  
GPIO_3  
VBUS_SENSE  
Switch ON and  
OFF  
controls  
SYNCDCDC  
SMPS5_IN  
VSYS  
VBUS_WKUP_UP  
CLK4  
EN  
VSEL  
L5  
SMPS5_SW  
GPIO_4  
GPIO_5  
GPIO_6  
WDT  
REGEN2  
I2C2_SCL_SCE  
SMPS5  
2 A  
(AVS)  
Thermal  
monitoring  
SMPS5_FDBK  
C12  
C17  
<SMPS5_GND>  
Thermal  
shutdown  
REGEN3  
POWERHOLD  
Hot die detection  
NSLEEP  
REGEN3  
VCC_SENSE  
SYNCCLKOUT  
Internal  
32-KHz  
RC  
Control  
outputs  
12-bit  
ADC  
POWERGOOD  
ADCIN1  
ADCIN2  
Osc.  
VCC internal  
supply  
Low noise  
LDO5  
100 mA  
VBG  
Bypass  
LDO1  
300 mA  
Bypass  
LDO2  
300 mA  
LDO3  
200 mA  
LDO4  
200 mA  
C7  
REFGND  
Reference  
and bias  
VSYS  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
Copyright © 2017, Texas Instruments Incorporated  
30  
Detailed Description  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
5.3 Device State Machine  
The TPS65917-Q1 device integrates an embedded power controller (EPC) that fully manages the state of  
the device during power transitions. According to the four defined types of requests (ON, OFF, WAKE,  
and SLEEP), the EPC executes one of the five predefined power sequences (OFF2ACT, ACT2OFF,  
SLP2OFF, ACT2SLP, and SLP2ACT) to control the state of the device resources. Any resource can be  
included in any power sequence. When a resource is not controlled or configured through a power  
sequence, the resource is left in the default state as pre-programmed by the OTP.  
Each resource is only configured through register bits. Therefore, the user can statically control the  
resource through the control interfaces (I2C or SPI), or the EPC can automatically control the resource  
during power transitions which are predefined sequences of registers accesses.  
The EPC is powered by an internal LDO which is automatically enabled when VSYS is available to the  
device. Ensuring that the VSYS pin (which is connected to VCCA, VCC_SENSE, SMPSx_In and LDOx_IN  
as suggested in the device block diagram) is the first supply available to the device is important to ensure  
proper operation of all the power resources provided by the device. Ensuring that the VSYS pin is stable  
prior to the VIO supply becoming available is important to ensure proper operation of the control interface  
and device IOs.  
5.3.1 Embedded Power Controller  
The EPC is composed of the following three main modules:  
An event arbitration module that is used to prioritize ON, OFF, WAKE, and SLEEP requests.  
A power state-machine that is used to determine which power sequence to execute based on the  
system state (supplies, temperature, and so forth) and requested transition (from the event arbitration  
module).  
A power sequencer that fetches the selected power sequence from OTP and executes the sequence.  
The power sequencer sets up and controls all resources accordingly, based on the definition of each  
sequence.  
5-1 shows the EPC block diagram.  
Power  
sequence  
pointer  
ON requests  
Resources  
Resources  
Resources  
OFF requests  
SLEEP requests  
WAKE requests  
Events  
arbitration  
Event  
Power  
state-machine  
Power  
sequence  
System state  
(supplies,  
temperature, ...)  
Power  
sequences  
OFF2ACT  
ACT2OFF  
SLP2OFF  
ACT2SLP  
SLP2ACT  
5-1. EPC Block Diagram  
The power state-machine is defined through the following states:  
NO SUPPLY The device is not powered by a valid energy source on the system power rail (VCCA <  
POR).  
BACKUP  
OFF  
The device is powered by a valid supply on the system power rail which is above power-on  
reset (POR) threshold but below the system low threshold (POR < VCCA < VSYS_LO).  
The device is powered by a valid supply on the system power rail (VCCA > VSYS_LO) and  
is waiting for a start-up event or condition. All device resources, except VRTC, are in the  
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
31  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
OFF state.  
ACTIVE  
SLEEP  
The device is powered by a valid supply on the system power rail (VCC_SENSE >  
VSYS_HI) and has received a start-up event. The device has switched to the ACTIVE state  
and has full capacity to supply the processor and other platform modules.  
The device is powered by a valid supply on the system power rail (VCCA > VSYS_LO) and  
is in low-power mode. All configured resources are set to the low-power mode, which can be  
ON, SLEEP, or OFF depending on the specific resource setting. If a given resource is  
maintained active (ON) during low-power mode, then all linked subsystems are automatically  
maintained active.  
5-2 shows the state diagram for the power control state-machine.  
NO SUPPLY  
VCCA > POR_threshold  
VCCA < POR  
BACKUP  
VCCA < POR  
VCCA > VSYS_LO  
VCCA < VSYS_LO  
VCCA < POR  
VCCA < VSYS_LO  
OFF  
VCCA < VSYS_LO  
ON request and  
VCC_SENSE > VSYS_HI  
OFF request  
ACTIVE  
OFF request  
WAKE request  
SLEEP request  
SLEEP  
5-2. State Diagram for the Power Control State-Machine  
Power sequences define how a resource state switches between the OFF, ACTIVE, and SLEEP states,  
but these sequences have no effect during the NO SUPPLY or BACKUP states. When the device is  
brought into the OFF state from a NO SUPPLY or BACKUP state, internal hardware manages the state  
transition automatically before the EPC takes control of the device power sequencing as the device arrives  
the OFF state.  
The allowed power transitions include the following:  
OFF to ACTIVE (OFF2ACT)  
ACTIVE to OFF (ACT2OFF)  
32  
Detailed Description  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
ACTIVE to SLEEP (ACT2SLP)  
SLEEP to ACTIVE (SLP2ACT)  
SLEEP to OFF (SLP2OFF)  
Each power transition consists of a sequence of one or several register accesses that controls the  
resources according to the EPC supervision. Because these sequences are stored in nonvolatile memory  
(OTP), these sequences cannot be altered.  
As an additional safety feature, an error detection routine of the OTP bit integrity is available with this  
device. If enabled, this routine is executed to compare the current OTP values with the preprogrammed  
values at the beginning of every OFF2ACT power sequence. When an OTP bit integrity error is detected,  
the OTP register, CRC_CONTROL, can be preprogramed to select the following options:  
Skip Error Detection and execute all power sequence  
Execute Error Detection and execute all power-up sequence, even if an error is detected  
Execute Error Detection. If an error is detected, execute power-up sequence until the VIO supply rail is  
up  
Execute Error Detection. If an error is detected, stop power-up sequence altogether  
When an error is detected, an interrupt (INT2.OTP_ERROR) is sent to the host processor regardless of  
the CRC_CONTROL setting.  
5.3.2 State Transition Requests  
5.3.2.1 ON Requests  
ON requests are used to switch on the device, which transitions the device from the OFF to the ACTIVE  
state. 5-1 lists the ON requests.  
5-1. ON Requests  
EVENT  
MASKABLE  
POLARITY  
COMMENT  
DEBOUNCE  
PWRON (pin)  
No  
Low  
Level sensitive  
N/A  
Yes (INTx_MASK register.  
Default: Masked)  
Part of interrupts (event)  
POWERHOLD (pin)  
Event  
High  
Edge sensitive  
Level sensitive  
N/A  
No  
3 - 5 ms typical  
If one of the events listed in 5-1 occurs, the event powers on the device unless one of the gating  
conditions listed in 5-2 is present. 5-12 lists interrupt sources that can be configured as ON  
requests.  
5-2. ON Requests Gating Conditions  
EVENT  
MASKABLE  
POLARITY  
Low  
COMMENT  
VSYS_HI (event)  
HOTDIE (event)  
PWRDOWN (pin)  
RESET_IN (pin)  
No  
No  
No  
No  
VCC_SENSE < VSYS_HI  
High  
Device temperature exceeds the HOTDIE level  
OTP configurable  
OTP configurable  
5.3.2.2 OFF Requests  
OFF requests are used to switch off the device, meaning a transition from SLEEP or ACTIVE to OFF  
state. 5-3 lists the OFF requests. OFF requests have the highest priority, which means these requests  
have no gating conditions. Any OFF request is executed even though a valid SLEEP or ON request is  
present. The device goes to the OFF state and then, when the OFF request is cleared, the device reacts  
to an ON request, if one occurs.  
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
33  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
 
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
5-3. OFF Requests  
MASKAB  
SWITCH OFF  
RESET  
EVENT  
POLARITY  
DEBOUNCE  
RESET LEVEL(2)  
OTP configurable  
OTP configurable  
OTP configurable  
OTP configurable  
LE  
DELAY(1)  
SEQUENCE(3)  
PWRON (pin)  
(long press key)  
No  
Low  
OTP configurable  
N/A  
LPK_TIME (OTP)  
SWOFF_DLY  
OTP configurable  
OTP configurable  
OTP configurable  
OTP configurable  
PWRDOWN  
(pin)  
WATCHDOG TIMEOUT(4)  
(internal event)  
No  
N/A  
No  
SWOFF_DLY  
SWOFF_DLY  
0
N/A  
N/A  
THERMAL SHUTDOWN  
(internal event)  
N/A  
1 ms for ACT2OFF  
26 ms for  
RESET_IN  
(pin)  
No  
OTP configurable  
SWOFF_DLY  
OTP configurable  
OTP configurable  
OFF2ACT  
SW_RST  
(register bit)  
DEV_ON(5)  
(register bit)  
No  
No  
No  
N/A  
N/A  
N/A  
N/A  
N/A  
0
0
0
OTP configurable  
SWORST  
OTP configurable  
SD  
VSYS_LO  
(internal event)  
OTP configurable  
OTP configurable  
POWERHOLD(6)  
(pin)  
No  
Low  
N/A  
0
SWORST  
SD  
GPADC_SHUTDOWN  
Yes  
N/A  
SWOFF_DLY  
OTP configurable  
OTP configurable  
(1) SWOFF_DLY is the same for all requests. When configured (in the PMU_CONFIG register) to a specific value (0, 1, 2, or 4 s), the value  
is applied to all OFF requests.  
(2) The reset level is selectable as HWRST (a wide set of registers is reset to default values) or SWORTS (a more limited set of registers is  
reset). See 5.3.7.  
(3) The OFF requests in the reset sequence are configured to force the EPC to execute either a shutdown (SD) or a cold restart (CR).  
Configuration occurs in the SWOFF_COLDRST register.  
When configured to generate a shutdown, the EPC executes a transition to the OFF state (SLP2OFF or ACT2OFF power sequence)  
and remains in the OFF state.  
When configured to generate a cold restart, the EPC executes a transition to the OFF state (SLP2OFF or ACT2OFF power  
sequence) and restarts, transitioning to the ACTIVE state (OFF2ACT power sequence) if none of the ON request gating conditions  
are present.  
(4) The watchdog is disabled by default. Software can enable watchdog and lock (write protect) watchdog register (WATCHDOG).  
(5) The DEV_ON event has a lower priority than other ON events, meaning that DEV_ON forces the device to go to the OFF state only if no  
other ON conditions keep the device active (POWERHOLD).  
(6) The POWERHOLD event has a lower priority than other ON events, meaning that POWERHOLD forces the device to go to the OFF  
state only if no other ON conditions keep the device active (DEV_ON).  
5.3.2.3 SLEEP and WAKE Requests  
The device transitions from the ACTIVE to the SLEEP state after receiving a SLEEP request. Upon this  
request, internal resources as well as user-defined resources will enter the low-power mode as predefined  
by the user. The states of the resources during ACTIVE and SLEEP states are defined in the LDO*_CTRL  
and SMPSx_CTRL registers.  
5-4 lists the SLEEP requests. Any of theses events trigger the ACT2SLP sequence unless pending  
interrupts (unmasked) are present. Once the device enters the SLEEP state, only an interrupt or an  
NSLEEP signal can generate a WAKE request to wake up the device (exit from the SLEEP state). A  
WAKE request (only during the SLEEP state) wakes up the device and triggers a SLP2ACT or a  
SLP2OFF power sequence.  
5-4. SLEEP Requests  
EVENT  
MASKABLE  
POLARITY  
COMMENT  
NSLEEP (pin)  
Yes (Default: Masked)  
Low  
Level sensitive  
For each resource, a transition from the ACTIVE state to the SLEEP state or from the SLEEP state to the  
ACTIVE state is controlled in two different ways which are described as follows:  
Through EPC sequencing (ACT2SLP or SLP2ACT power sequence) when the resource is associated  
to the NSLEEP signal.  
34  
Detailed Description  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
 
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
Through direct control of the resource power mode (ACTIVE or SLEEP) in which case the user can  
bypass SLEEP and WAKE sequencing by having resources assigned to two external control signals  
(ENABLE1 and ENABLE2). These signals have a direct control on the power modes (ACTIVE or  
SLEEP) of any resources associated to them and they trigger an immediate switch from one mode to  
the other, regardless of the EPC sequencing.  
Therefore, all resources can be associated to three external pins (NSLEEP, ENABLE1, and ENABLE2)  
and can switch between the SLEEP and ACTIVE states. 5-5 outlines the type of state transition each  
resource undergoes according to the logic combination of the NSLEEP, ENABLE1 and ENABLE2  
assignments.  
5-5. Resources SLEEP and ACTIVE Assignments(1)  
ENABLE1  
ASSIGNMENT  
ENABLE2  
ASSIGNMENT  
NSLEEP  
ENABLE1  
ENABLE2  
NSLEEP  
STATE  
TRANSITION  
None  
ASSIGNMENT PIN STATE PIN STATE PIN STATE  
0
0
0
1
Don't care  
Don't care  
Don't care  
Don't care  
Don't care  
ACTIVE  
SLEEP  
ACTIVE  
0
0
0 1  
Sequenced  
SLEEP ↔  
ACTIVE  
0
0
1
1
1
1
0
0
0
1
0
1
Don't care  
Don't care  
0 1  
0 1  
Don't care  
Immediate  
SLEEP ↔  
ACTIVE  
0
1
0 1  
Sequenced  
None  
0 1  
ACTIVE  
SLEEP ↔  
ACTIVE  
0 1  
0 1  
Don't care  
0
1
Immediate  
None  
ACTIVE  
SLEEP ↔  
ACTIVE  
Don't care  
Immediate  
SLEEP ↔  
ACTIVE  
0
1
0 1  
Sequenced  
None  
0 1  
ACTIVE  
Don't care  
SLEEP ↔  
ACTIVE  
0 1  
0 1  
0
0
1
Immediate  
None  
ACTIVE  
SLEEP ↔  
ACTIVE  
0 1  
Immediate  
None  
1
0 1  
ACTIVE  
1
1
0
Don't care  
SLEEP ↔  
ACTIVE  
0 1  
0 1  
0
0
1
0
Immediate  
None  
ACTIVE  
SLEEP ↔  
ACTIVE  
0 1  
Sequenced  
0
1
1
1
0
1
0 1  
0 1  
0 1  
ACTIVE  
ACTIVE  
ACTIVE  
None  
None  
None  
SLEEP ↔  
ACTIVE  
0
0 1  
0
Immediate  
0
1
1
0 1  
0 1  
0 1  
1
0
1
ACTIVE  
ACTIVE  
ACTIVE  
None  
None  
None  
1
1
1
SLEEP ↔  
ACTIVE  
0 1  
0
0
Immediate  
0 1  
0 1  
0 1  
0
1
1
1
0
1
ACTIVE  
ACTIVE  
ACTIVE  
None  
None  
None  
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
35  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
(1) Notes:  
The polarity of the NSLEEP, ENABLE1, and ENABLE2 signals is configurable through the POLARITY_CTRL register. By default:  
ENABLE1 and ENABLE2 are active high, meaning a transition from 0 to 1 requests a transition from SLEEP state to ACTIVE  
state.  
NSLEEP is active low, meaning a transition from 1 to 0 requests a transition from ACTIVE state to SLEEP state.  
Resource assignments to the NSLEEP, ENABLE1, and ENABLE2 signals are configured in the ENABLEx_YYY_ASSIGN and  
NSLEEP_YYY_ASSIGN registers (where x = 1 or 2 and YYY = RES, SMPS, or LDO).  
Several resources can be assigned to the same ENABLE signal (ENABLE1 or ENABLE2) and therefore, when triggered, they all  
switch their power mode at the same time.  
When resources are assigned only to the NSLEEP signal, the respective switching order is controlled and defined in the power  
sequence.  
When a resource is not assigned to any signal (NSLEEP, ENABLE1, or ENABLE2), it never switches from the ACTIVE state to the  
SLEEP state. The resource always remains in ACTIVE mode.  
5.3.3 Power Sequences  
A power sequence is an automatic preprogrammed sequence the TPS65917-Q1 device configures its  
resources, which include the states of the SMPSs, LDOs, 32-kHz clock, and part of the GPIOs (REGEN  
signals). For a detailed description of the GPIOs signals, please refer to 5.9.  
5-3 shows an example of an OFF2ACT transition followed by an ACT2OFF transition. The sequence is  
triggered through PWRON pin and the resources controlled (for this example) are: SMPS3 (VIO), LDO1,  
SMPS2, LDO2, REGEN1, LDO5, and LDO3. The time between each resource enable and disable (TinstX)  
is also part of the preprogrammed sequence definition.  
When a resource is not assigned to any power sequence, it remains in off mode. The user (through  
software) can enable and configure this resource independently when the power sequence completes.  
OFF2ACT power sequence  
ACT2OFF power sequence  
X
X
X
X
PWRON  
SMPS3  
LDO1  
Tinst16  
Tinst15  
Tinst1  
Tinst2  
Tinst3  
Tinst4  
Tinst5  
Tinst6  
SMPS2  
Tinst14  
LDO2  
REGEN1  
LDO5  
Tinst13  
Tinst12  
Tinst11  
LDO3  
Tinst7  
Tinst8  
Tinst10  
Tinst9  
SYNCCLKOUT  
RESET_OUT  
INT  
PWRON_IT = 1  
Interrupt Acknowledge  
Interrupt Acknowledge  
PWRON_IT = 1  
5-3. Power Sequence Example  
As the power sequences of the TPS65917-Q1 device are defined according to the processor  
requirements, the total time for the completion of the power sequence will vary across various system  
definitions.  
36  
Detailed Description  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
5.3.4 Device Power Up Timing  
5-4 shows the timing diagram of the TPS65917-Q1 after the first supply detection.  
VCC_SENSE  
VRTC  
RC 32kHz  
t
1
VIO  
RESET_OUT  
t
2
5-4. TPS65917-Q1 Power-Up Sequence After FSD  
The time t1 is the delay from VCC crossing the POR threshold to VIO rising up. The time t1 must be at  
least 6 ms. If the time from VCC to VIO is less than 6 ms, the VIO buffers will be supplied while the OTP  
is still being initialized, which could cause glitches on any VIO output buffer. Supplying VIO at least 6 ms  
after supplying VCC ensures that the OTP is initialized and output buffers are held low when VIO is  
supplied.  
The time t2 is the delay between the start of the power-up sequence and the RESET_OUT release. The  
RESET_OUT resource is released when the power-up sequence is complete. The duration of the power-  
up sequence depends on OTP programming.  
5.3.5 Power-On Acknowledge  
The PMIC is designed to support the following power-on acknowledge modes: POWERHOLD mode and  
AUTODEVON mode.  
5.3.5.1 POWERHOLD Mode  
In POWERHOLD mode, the power-on acknowledge is received through a dedicated pin, POWERHOLD.  
When an ON request is received, the device initiates the power-up sequence and asserts the  
RESET_OUT pin high while the device is in the ACTIVE state (reset released). The device remains in  
ACTIVE state for a fixed delay of 8 seconds and then automatically shuts down. During this timeframe, to  
keep the device active, the host processor must assert and keep the POWERHOLD pin high. The device  
interprets a the high to low transition of the POWERHOLD pin as an OFF request.  
5-5 shows the POWERHOLD mode timing diagram.  
Switch-on  
event  
Device maintained  
ACTIVE for 8 seconds  
Device switch off starts  
with no delay  
Power-up sequence  
RESET_OUT  
POWERHOLD  
5-5. POWERHOLD Mode Timing Diagram  
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
37  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
 
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
5.3.5.2 AUTODEVON Mode  
In AUTODEVON mode, at the end of the power-up sequence, the DEV_CTRL.DEV_ON register bit is  
automatically set to 1 and the device remains in the ACTIVE state until the host processor clears this bit.  
No dedicated signal from processor is required to maintain the PMIC in the ACTIVE state.  
5-6 and 5-7 show the AUTODEVON mode timing diagrams.  
Switch-on  
event  
Device maintained  
ACTIVE for 8 seconds  
Device switch off starts  
with no delay  
Power-up sequence  
RESET_OUT  
DEV_ON  
I2C-SPI access  
5-6. AUTODEVON Mode Timing Diagram  
The DEV_ON bit can also be configured so that it is not auto-updated (set to 1) at the end of the power-up  
sequence. In this case, the device functions similarly to when it is in the POWERHOLD mode, except that  
the host has control over the device using the DEV_CTRL.DEV_ON register bit instead of the  
POWERHOLD pin. Therefore, to maintain the device in the ACTIVE state, the host must set and keep this  
bit at 1.  
Switch-on  
event  
Device maintained  
ACTIVE for 8 seconds  
Device switch off starts  
with no delay  
Power-up sequence  
RESET_OUT  
DEV_ON  
I2C-SPI access  
I2C-SPI access  
5-7. DEV_ON Mode Timing Diagram  
5.3.6 BOOT Configuration  
All TPS65917-Q1 resource settings are stored in registers. Therefore, any platform-related settings are  
linked to an action which alters these registers. This action is either a static update (register initialization  
value) or a dynamic update of the register (from the user or a power sequence).  
Resources and platform settings are stored in nonvolatile memory (OTP). These settings are defined as  
follows:  
Static platform settings These settings define, for example, the SMPS and LDO default voltages, GPIO  
functionality, and TPS65917-Q1 switch-on events.  
Sequence platform settings These settings define TPS65917-Q1 power sequences between state  
transitions An example includes the OFF2ACT sequence when transitioning from OFF state  
to ACTIVE state. Each power sequence is composed of several register accesses that  
define the resources (and the corresponding registers) that must be updated during the  
respective state transition. Small modifications from the main sequence can be defined with  
the BOOT pin as long as the OTP memory size constraint is respected. The user can  
overwrite these settings when the power sequence completes.  
38  
Detailed Description  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
 
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
Static  
platform  
settings  
Platform settings  
are modifiable by  
microcontroller  
during OFF,  
ACTIVE, and  
SLEEP transition  
(Default config for  
all boot; I/O mux,  
default voltage)  
Reload during  
OFF state transition  
(According to respective reset  
domain SWORST / HWRST)  
Selectable  
platform  
settings  
Switch ON event,  
supply threshold  
Power IC  
Initialization done at reset  
Resource  
configuration and  
control registers  
RD  
BOOT  
RD  
Microcontroller  
Voltage modification,  
resource  
enable and disable  
Registers updates during  
OFF, ACTIVE, and SLEEP  
transition  
Sequence  
Platform  
Settings  
(State transition  
microprogram)  
5-8. Boot Pins Control  
5.3.6.1 Boot Pin Usage and Connection  
5-6 lists the associated configurations of the boot pins.  
5-6. Boot Pins Associated Configurations  
BOOT  
OTP CONFIGURATION  
OTP5 (0x00~0x2F)  
OTP5 (0x30~0x5F)  
POWER SEQUENCE SELECTOR  
0
1
Sel_0  
Sel_1  
The BOOT pin must be grounded or pulled up.  
The status of the BOOT pin is latched at the end of the transition from OFF to ACTIVE mode and stored in  
the BOOT_STATUS register.  
The BOOT pin can also be used as static selectors during execution of the power sequence. This static  
selection provides from within a static power sequence, to branch to different instructions. This static  
selection allows the selection of power sequences (or subpart of power sequences) without altering the  
power sequences themselves in OTP.  
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
39  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
5.3.7 Reset Levels  
The TPS65917-Q1 resource control registers are defined by the following three categories:  
Power-on request (POR) registers  
Hardware (HW) registers  
Switchoff (SWO) registers  
These registers are associated to three levels of reset which are described as follows  
Power-on reset (POR) A POR occurs when the device receives supplies and transition from the NO  
SUPPLY state to the BACKUP state. The POR is the global device reset which resets all  
registers.  
The values of the registers in this domain will retain their value under HWRST and SWORST  
event. This ensures the information which contains the cause of the switch off event is  
retained when the device is reset to its default operating state.  
The following registers are reset only during POR event:  
SMPS_THERMAL_STATUS  
SMPS_SHORT_STATUS  
SMPS_POWERGOOD_MASK  
LDO_SHORT_STATUS  
SWOFF_STATUS  
This list is indicative only; a full list and bit details can be found in the TPS65917-Q1 Register  
Map (SLVUAH1).  
Hardware reset (HWRST) A HWRST occurs when any OFF request is configured to generate a  
hardware reset. Configuration of the reset level is programmed in the SWOFF_HWRST  
register. This reset triggers a transition to the OFF state from either the ACTIVE or SLEEP  
state, and therefore executes the ACT2OFF or SLP2OFF sequence.  
A HWRST will reset all registers in the HWRST and the SWORST domain, but leave the  
registers in the POR domain unchanged.  
The following registers are in the HWRST domain:  
SMPS control registers expect MODE_ACTIVE and MODE_SLEEP bits  
LDO control registers expect MODE_ACTIVE and MODE_SLEEP bits  
VSYS_LO Threshold  
PMU_CONFIG & PMU_CTRL  
NSLEEP, ENABLE1, and ENABLE2 resource assignment registers  
Input and Output, including the GPIO pins, Configuration and Control registers  
Interrupt Control, Status and Mask Registers  
OTP CRC results register  
GPADC Configuration and Results registers  
This list is indicative only; a full list and bit details can be found in the TPS65917-Q1 Register  
Map (SLVUAH1).  
Switch-off reset (SWORST) A SWORST occurs when any OFF request is configured to not generate a  
hardware reset. Configuration is done in the SWOFF_HWRST register. This reset acts like  
the HWRST, except only the SWO registers are reset. The TPS65917-Q1 goes into the OFF  
state, from either ACTIVE or SLEEP, and therefore executes the ACT2OFF or SLP2OFF  
sequence.  
A SWORST only resets registers in the SWORST domain, but leave the registers in the  
HWRST and POR domains unchanged.  
The following registers are in the SWORST domain:  
SMPS control registers for voltage levels and operating mode control  
LDO control registers for voltage levels and operating mode control  
DEV_CTRL & POWER_CTRL registers  
VSYS_MON enable and result register  
WATCHDOG configuration register  
PLL and REGEN Control registers  
This list is indicative only; a full list and bit details can be found in the TPS65917-Q1 Register  
40  
Detailed Description  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
Map (SLVUAH1).  
5-7 lists the reset levels, and 5-9 shows the reset levels versus registers.  
5-7. Reset Levels  
LEVEL  
RESET TAG  
REGISTERS AFFECTED  
COMMENT  
0
POR  
POR, HW, SWO  
This reset level is the lowest level, for which all registers are reset.  
During hardware reset (HWRST), all registers are reset except the POR  
registers.  
1
2
HWRST  
HW, SWO  
SWO  
SWORST  
Only the SWO registers are reset.  
POR reset  
HWRST reset  
SWORST reset  
POR registers  
HW registers  
SWO registers  
5-9. Reset Levels versus Registers  
5.3.8 INT  
The INT output is the interrupt request to the processor. By default, the INT pin is push-pull output and  
active low (when interrupt is pending, output is driven low). By default, the line is masked when the PMIC  
is in sleep state (configurable by setting the INT_MASK_IN_SLEEP bit). Individual interrupt sources can  
be masked according to 5-12 .  
5.3.9 Warm Reset  
The TPS65917-Q1 device can execute a warm reset. The main purpose of this reset is to recover the  
device from a locked or unknown state by reloading default configuration. The warm reset is triggered by  
the NRESWARM pin. During a warm reset, the OFF2ACT sequence is executed regardless of the state  
(ACTIVE or SLEEP) and the device returns to or remains in the ACTIVE state. Resources that are not part  
of the OFF2ACT sequence are not impacted by a warm reset and retain the previous state. Resources  
that are part of power-up sequence go to active mode, and output voltage level is reloaded from OTP or  
kept in the previous value depending on the WR_S bit in the SMPSx_CTRL or LDOx_CTRL register.  
5.3.10 RESET_IN  
The RESET_IN function causes a switch-off event (either a cold reset or shutdown). 5-3 shows that the  
RESET_IN behavior is programmable. The RESET_IN input has a 1-ms debounce that is independent of  
the selected polarity. In addition, after the device goes into the OFF state, a 25-ms masking period occurs  
before a new RESET_IN event is accepted, which is equivalent to a 26-ms debounce for an OFF2ACT  
request.  
5.4 Power Resources (Step-Down and Step-Up SMPS Regulators, LDOs)  
The power resources provided by the TPS65917-Q1 device include inductor-based SMPSs and linear  
LDOs. These supply resources provide the required power to the external processor cores, external  
components, and to modules embedded in the TPS65917-Q1 device. 5-8 lists the power resources  
provided by the TPS65917-Q1 device.  
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
41  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
 
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
5-8. Power Resources  
RESOURCE  
TYPE  
VOLTAGE  
CURRENT  
COMMENTS  
0.7 to 1.65 V, 10-mV steps  
1 to 3.3 V, 20-mV steps  
Can be used as 1 dual-phase (7 A) or 2  
single-phase (3.5 A) regulators  
SMPS1, SMPS2  
SMPS  
7 A  
0.7 to 1.65 V, 10-mV steps  
1 to 3.3 V, 20-mV steps  
SMPS3  
SMPS4  
SMPS5  
SMPS  
SMPS  
SMPS  
3 A  
1.5 A  
2 A  
0.7 to 1.65 V, 10-mV steps  
1 to 3.3 V, 20-mV steps  
0.7 to 1.65 V, 10-mV steps  
1 to 3.3 V, 20-mV steps  
LDO1, LDO2  
LDO3  
LDO  
LDO  
LDO  
LDO  
0.9 to 3.3 V, 50-mV steps  
0.9 to 3.3 V, 50-mV steps  
0.9 to 3.3 V, 50-mV steps  
0.9 to 3.3 V, 50-mV steps  
300 mA  
200 mA  
200 mA  
100 mA  
LDO4  
LDO5  
Low-noise LDO  
5.4.1 Step-Down Regulators  
The synchronous step-down converter used in the power-management core has high efficiency while  
enabling operation with cost-competitive and small external components. The SMPSx_IN supply pins of all  
the converters should be individually connected to the VSYS supply (VCCA pin). Two of these  
configurable step-down converters can be multiphased to create up to a 7-A rail. All of the step-down  
converters can synchronize to an external clock source between 1.7 MHz and 2.7 MHz, or an internal  
fallback clock at 2.2 MHz.  
The step-down converter supports two operating modes, which can be selected independently. These two  
operating modes are defined as follows:  
Forced PWM mode: In forced PWM mode, the device avoids pulse skipping and allows easy filtering of  
the switch noise by external filter components. The drawback is the higher IDDQ at low-  
output current levels.  
Eco-mode (lowest quiescent-current mode): Each step-down converter can be individually controlled  
to enter a low quiescent-current mode. In ECO-mode, the quiescent current is reduced and  
the output voltage is supervised by a comparator while most of the control circuitry disabled  
to save power. The regulators should not be enabled under ECO-mode to ensure the  
stability of the output. ECO-mode should only be enabled when a converter has less than 5  
mA of load current and VO can remain constant. In addition, ECO-mode should be disabled  
before a load-transient step to allow the converter to respond in a timely manner to the  
excess current draw.  
To ensure proper operation of the converter while it is in ECO-mode, the output voltage level must be less  
then 70% of the input supply voltage level. If the VO of the converter is greater than 2.8 V, a safety feature  
of the device monitors the supply voltage of the converter and automatically switch off the converter if the  
input voltage falls below 4 V. The purpose of this safety mechanism is to prevent damage to the converter  
because of design limitation while the converter is in ECO mode.  
In addition to the operating modes, the following parameters can be selected for the regulators:  
Powergood: See 5.4.1.3.  
Output discharge: Each switching regulator is equipped with an output discharge enable bit. When this  
bit is set to 1, the output of the regulator is discharged to ground with the equivalent of a 9-Ω resistor  
when the regulator is disabled. If the regulator enable bit is set, the discharge bit of the regulator is  
ignored.  
Output-current monitoring: The GPADC can monitor the SMPS output current. One SMPS at a time  
can be selected for measurement from the following: SMPS1, SMPS2, SMPS1&2, SMPS3, and  
SMPS5. Selection is controlled through the GPADC_SMPS_ILMONITOR_EN register.  
42  
Detailed Description  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
Enable control of the Step-down converters: The step-down converter enable and disable is part of the  
flexible power-up and power-down state-machine. Each converter can be programmed such that it is  
powered up automatically to a preselected voltage in one of the time slots after a power-on condition  
occurs. Alternatively, each SMPS can be controlled by a dedicated pin. The NSLEEP, ENABLE1, and  
ENABLE2 pins can be mapped to any resource (LDOs, SMPS converter, 32-kHz clock output, or  
GPIO) to enable or disable the pin. Each SMPS can also be enabled and disabled through access to  
the I2C registers.  
5.4.1.1 Output Voltage and Mode Selection  
One-time programmable (OTP) bits define the default output voltage and enabling of the regulator during  
the start-up sequence.  
After start up, while the SMPS is in forced PWM mode, software can change the output voltage by setting  
the RANGE and VSEL bits in the SMPSx_VOLTAGE register. When the SMPS enters ECO mode, the  
output voltage cannot be changed. Setting the SMPSx_VOLTAGE.VSEL register to 0x0 disables the  
SMPS (turns off). The value for the RANGE bit cannot be changed when the SMPS is active. To change  
the operating voltage range, the SMPS must be disabled.  
The operating mode (ECO, forced PWM, or off) of an SMPS when the TPS65917-Q1 device is in ACTIVE  
state can be selected in the SMPSx_CTRL register by setting the MODE_ACTIVE[1:0] bit field.  
The operating mode of an SMPSx when the TPS65917-Q1 device is in the SLEEP state is controlled by  
the MODE_SLEEP[1:0] bit field, depending on the SMPS assignment to the NSLEEP, ENABLE1, and  
ENABLE2 pins (see 5-5).  
The soft-start slew rate (t(ramp)) is fixed.  
The pulldown discharge resistance for off mode is enabled and disabled in the SMPS_PD_CTRL register.  
By default, discharge is enabled. Two pulldown resistors, one at SMPSx_SW and one at SMPS_FDBK  
node, are enabled or disabled together. For multiphase SMPS, pulldown is in the master phase.  
SMPS behavior for warm reset (reload default values or keep current values) is defined by the  
SMPSx_CTRL.WR_S bit.  
5.4.1.2 Clock Generation for SMPS  
In PWM mode, the SMPSs are synchronized on an external input clock, SYNCDCDC (muxed with  
GPIO_3), whereas in ECO mode, the switching frequency is based on an internal RC oscillator.  
For PWM mode, a PLL is present to buffer the external clock input from SYNCDCDC pin, and to create 5  
clock signals for the 5 SMPSs with different phases.  
5-10 shows the frequency of SYNCDCDC input clock (fSYNC) and the frequency of PLL output signal  
(fSW).  
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
43  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
tSETTLE  
fSAT,HI  
fA  
fSW  
fFALLBACK  
fSAT,LO  
fSAT,HI  
fA  
tSETTLE  
fSYNC  
fSAT,LO  
No Clock  
5-10. Synchronized Clock Frequency  
When no clock is present on the SYNCDCDC pin, the PLL generates a clock with a frequency equal to the  
fallback frequency (fFALLBACK).  
When a clock is present on the SYNCDCDC pin with a frequency between the low and high PLL  
saturation frequencies (fSAT,LO and fSAT,HI), then the PLL is synchronized on the SYNCDCDC clock and  
generates a clock with frequency equal to fSYNC  
If fSYNC is higher than fSAT,HI, then the PLL generates a clock with a frequency equal to fSAT,HI  
If fSYNC is smaller than fSAT,LO, then the PLL generates a clock with a frequency equal to fSAT,LO  
.
.
.
Dithering can be achieved by changing the frequency of the clock provided on the SYNCDCDC pin. The  
sync clock dither specification parameters are based on a triangular dither pattern, but other patterns that  
comply with the minimum and maximum sync frequency range and the maximum dither slope can also be  
used, as seen in 5-11.  
MDITHER  
tDITHER  
fSYNC  
ADITHER  
fSYNC,MAX  
fSYNC,MIN  
t
5-11. Synchronized Clock Frequency Range and Dither  
44  
Detailed Description  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
5.4.1.3 Current Monitoring and Short Circuit Detection  
SMPS1, SMPS2, SMPS1&2, and SMPS3 include several other features.  
The SMPS sink current limitation is controlled with the SMPS_NEGATIVE_CURRENT_LIMIT_EN register.  
The limitation is enabled by default.  
Channel 4 of the GPADC can be used to monitor the output current of SMPS1, SMPS2, SMPS1&2,  
SMPS3, or SMPS5. Load current monitoring is enabled for a given SMPS in the SMPS_ILMONITOR_EN  
register. SMPS output-power monitoring is intended to be used during the steady state of the output  
voltage, and is supported in PWM mode only.  
Use 公式 1 to calculate the SMPS output-current result.  
ILOAD = IFS × GPADC code / (212 – 1) – IOS  
(1)  
where  
IFS= IFS0 × K  
IOS = IOS0 × K  
K is the number of SMPS active phases  
Use 公式 2 to calculate the temperature compensated result.  
ILOAD = IFS × GPADC code / ([212 – 1] × [1 + TC_R0 × (TEMP-25)]) – IOS  
(2)  
For the values of IFS0 and IOS0, see Section 4.10.  
The SMPS thermal monitoring is enabled (default) and disabled with the SMPS_THERMAL_EN register.  
When enabled, the SMPS thermal status is available in the SMPS_THERMAL_STATUS register.  
SMPS12, SMPS3, and SMPS5 have thermal protection. A unique thermal sensor is shared and protecting  
both SMPS1 and SMPS2. SMPS4 has no dedicated thermal protection.  
Each SMPS has a detection for load current above ILIM, indicating overcurrent or a shorted SMPS output.  
The SMPS_SHORT_STATUS register indicates any SMPS short condition. Depending on the setting of  
the INT2_MASK.SHORT register, an interrupt is generated upon any shorted SMPS. If a short occurs on  
any enabled SMPSs, the corresponding short status bit is set in the SMPS_SHORT_STATUS register. A  
switch-off signal is then sent to the corresponding SMPS, and it remains off until the corresponding bit in  
the SMPS_SHORT_STATUS register is cleared. This register is cleared on read, or by issuing a POR.  
The same behavior applies to LDO shorts using the LDO_SHORT_STATUS registers.  
A short must occur on any enabled SMPS or LDO for at least 155 us to 185 us for the short detection to  
shut off the rail. During startup of the device, there is a 2 ms counter that masks any short-circuit  
shutdown. This counter starts when the device is enabled and the counter is reset when any SMPSx or  
LDOx rail becomes ACTIVE. When no rail has been enabled for 2 ms, the counter reaches its threshold  
and the short-circuit shutdown is no longer masked for the enabled SMPSs and LDOs.  
5.4.1.4 POWERGOOD  
The TPS65917-Q1 device includes an external POWERGOOD pin which indicates if the outputs of the  
SMPS are within the acceptable range of the programmed output voltage, and if the current loading for the  
SMPS is within the range of the current limit. Users can select whether POWERGOOD reports the result  
of both voltage and current monitoring or only current monitoring. This selection applies to all SMPSs in  
the SMPS_POWERGOOD_MASK2 register.POWERGOOD_TYPE_SELECT register. When both the  
voltage and current are monitored, the POWERGOOD signal indicates whether or not all SMPS outputs  
are within a certain percentage, as specified by the VSMPSPG parameter, of the programmed value while  
the load current is below ILIM  
.
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
45  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
 
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
All POWERGOOD sources can be masked in the SMPS_POWERGOOD_MASK1 and  
SMPS_POWERGOOD_MASK2 registers. By default, only the SMPS1 rail (or SMPS12 rail if in dual  
phase) is monitored. When an SMPS is disabled, it should be masked in the  
SMPS_POWERGOOD_MASKx registers to prevent the SMPS from forcing the POWERGOOD pin to go  
inactive. When the SMPS voltage is transitioning from one target voltage to another because of a DVS  
command, voltage monitoring is internally masked and POWERGOOD is not impacted.  
The GPADC result for SMPS output current monitoring can be included in POWERGOOD by setting the  
SMPS_COMPMODE bit to 1. The GPADC can monitor only one SMPS.  
5-12 is the block diagram of the circuitry which constructs the logic output of the POWERGOOD pin.  
CAUTION  
When operating in dual phase, the SMPS12 current monitor may cause  
POWERGOOD to change to a low level (with default polarity) when  
transitioning from dual phase operation to single phase operation. TI  
recommends masking SMPS12 as  
a
POWERGOOD source, using  
SMPS_POWERGOOD_MASK1, or debouncing the POWERGOOD signal if this  
POWERGOOD toggle is not desired in the application design.  
46  
Detailed Description  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
POWERGOOD_TYPE_SELECT  
1
0
SMPS1 ILIM1  
SMPS1 POWERGOOD1  
SMPS_POWERGOOD_MASK[0]*  
SMPS_POWERGOOD_MASK[1]  
SMPS_POWERGOOD_MASK[3]  
1
0
SMPS2 ILIM2  
POWERGOOD  
SMPS2 POWERGOOD2  
1
0
SMPS3 ILIM3  
SMPS3 POWERGOOD3  
1
0
SMPS4 ILIM4  
SMPS4 POWERGOOD4  
SMPS_POWERGOOD_MASK[4]  
SMPS_POWERGOOD_MASK[6]  
1
0
SMPS5 ILIM5  
SMPS5 POWERGOOD5  
SMPS_ILMON_SEL  
SMPS_COMPMODE  
*When operating in dual phase, SMPS_POWERGOOD_MASK[0] controls the monitoring of SMPS12.  
SMPS_POWERGOOD_MASK[1] is masked internally with dual phase operation.  
5-12. POWERGOOD Block Diagram  
5.4.1.5 DVS-Capable Regulators  
The Step-down converters, SMPS1, SMPS2, or SMPS1&2 and SMPS3, are DVS-capable and have some  
additional parameters for control. The slew rate of the output voltage during a voltage level change is fixed  
at 2.5 mV/μs. The control for two different voltage levels (roof and floor) with the NSLEEP, ENABLE1, and  
ENABLE2 signals is available. When the roof-floor control is not used (ROOF_FLOOR_EN = 0), the CMD  
bit in the SMPSx_FORCE register can select two different voltage levels.  
Below are the steps for programming two difference output voltage levels (roof and floor) for the DVS-  
capable step-down converters:  
The NSLEEP, ENABLE1, or ENABLE2 pins can be used for roof-floor control of SMPS. For roof-floor  
operation, set the SMPSx_CTRL.ROOF_FLOOR_EN register, and assign SMPS to NSLEEP,  
ENABLE1, and ENABLE2 in the NSLEEP_SMPS_ASSIGN, ENABLE1_SMPS_ASSIGN, and  
ENABLE2_SMPS_ASSIGN registers, respectively. When the controlling pin is active, the value for the  
SMPS output is defined by the SMPSx_VOLTAGE register. When the controlling pin is not active, the  
value for the SMPS output is defined by the SMPSx_FORCE register.  
Set the second value for the output voltage with the SMPSx_FORCE.VSEL register. Setting this  
register to 0x0 turns off the SMPS.  
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
47  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Select which register, SMPSx_VOLTAGE or SMPSx_FORCE, to use with the SMPSx_FORCE.CMD  
bit. The default is the voltage setting of SMPSx_VOLTAGE. For the CMD bit to work, ensure that the  
SMPSx_CTRL.ROOF_FLOOR_EN bit is set to 0.  
5-13 shows the SMPS controls for DVS.  
Voltage Control Through I2C  
SMPSx_CTRL.ROOF_FLOOR_EN = 0  
SMPSx_FORCE.VSEL, when SMPSx_FORCE.CMD = 0  
SMPSx_VOLTAGE.VSEL(1), when SMPSx_FORCE.CMD = 1  
SMPSx_VOLTAGE.VSEL  
SMPSx_OUT  
Discharge control (pulldown)  
SMPS_PD_CTRL.SMPSx (disable/  
enabled)  
t
(ramp)  
Tstart  
I2C(2)  
Voltage Control Through External Pin  
SMPSx_CTRL.ROOF_FLOOR_EN = 1  
SMPSx_VOLTAGE.VSEL (ACTIVE mode)  
SMPSx_FORCE.VSEL (SLEEP mode)  
SMPSx_VOLTAGE.VSEL  
SMPSx_OUT  
Discharge control (pulldown)  
SMPS_PD_CTRL.SMPSx (disable/  
enabled)  
t
(ramp)  
Tstart  
EN(3)  
(1) VSEL[6:0] (voltage selection):  
SMPSx_VOLTAGE.RANGE = 0: OFF, 0.5 V to 1.65 V in 10-mV steps  
SMPSx_VOLTAGE.RANGE = 1: 1 to 3.3 V in 20-mV steps  
(2) I2C: Control through access to SMPSx_VOLTAGE, SMPSx_FORCE registers  
(3) EN: Control through NSLEEP, ENABLE1, and ENABLE2 pins (see 5-5)  
5-13. SMPS Controls for DVS  
5.4.1.5.1 Non DVS-Capable Regulators  
SMPS4 and SMPS5 are non-DVS-capable regulators. The slew rate of the output voltage is not controlled  
internally, and the converter achieves the new output voltage in JUMP mode. When changes to the output  
voltage are required, programming the changes to the output voltages of SMPS4 and SMPS5 at a rate  
slower than 2.5 mV/μs is recommended to avoid voltage overshoot or undershoot.  
5.4.1.6 Step-Down Converters SMPS1, SMPS2 or SMPS1&2  
The step-down converters, SMPS1 and SMPS2, can be used in two different configurations which are  
described as follows:  
SMPS1 and SMPS2 in single-phase configuration with each SMPS supporting a 3.5-A load current  
SMPS1&2 in dual-phase configuration supporting 7-A load current  
SMPS1 and SMPS2 can be used as separate converters. In dual-phase configuration the two interleaved  
synchronous buck-regulator phases with built-in current sharing operate in opposite phases. For light  
loads, the converter automatically changes to single-phase operation.  
5-14 shows the connections for dual-phase configurations.  
48  
Detailed Description  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
CIN1  
VSYS  
SMPS1_IN  
L1  
SMPS1_SW  
SMPS1  
[Master]  
SMPS1_GND  
Vapps1  
CIN2  
VSYS  
COUT  
SMPS2_IN  
L2  
SMPS2_SW  
SMPS2  
[Slave]  
SMPS2_GND  
SMPS1_FDBK  
SMPS2_FDBK  
5-14. SMPS1&2 Dual-Phase Configuration  
Below are the steps to program the SMPS1 and SMPS2 for single-phase or dual-phase operation:  
The OTP bit defines single-phase (SMPS1 and SMPS2) or dual-phase (SMPS1&2) operation. If dual-  
phase mode is selected, the SMPS12 registers control SMPS1&2.  
By default, SMPS1&2 operates in dual-phase mode for higher load currents and switches automatically  
to single-phase mode for low load currents. Forcing multiphase operation or single-phase operation is  
possible by setting the SMPS_CTRL.SMPS12_PHASE_CTRL[1:0] bits when the SMPS1&2 are  
loaded. Under no-load condition, do not force the multiphase operation because it causes SMPS12 to  
exhibit instability.  
5.4.1.7 Step-Down Converters SMPS3, SMPS4, and SMPS5  
SMPS3 is a buck converter supporting up to 3-A load current. SMPS4 and SMPS5 are also buck  
converters, with SMPS4 supporting up to 1.5-A load current, and SMPS5 supporting up to 2-A load  
current. SMPS3 is DVS-capable.  
5.4.2 Low Dropout Regulators (LDOs)  
All LDOs are integrated. They can be connected to the system supply, to an external buck boost SMPS,  
or to another preregulated voltage source. The output voltages of all LDOs can be selected, regardless of  
the LDO input voltage level, VIN. No hardware protection is available to prevent software from selecting an  
improper output voltage if the VIN minimum level is lower than the total DC-output voltage (TDCOV(LDOx)  
)
plus the dropout voltage ( DV(LDOx)). In such conditions, the output voltage is lower and nearly equal to the  
input supply. The output voltage of the regulator cannot be modified while the LDO is enabled from one  
voltage range (0.9 to 2.1 V) to the other voltage range (2.2 to 3.3 V). The regulator must be restarted in  
these cases. If an LDO is not needed, the external components do not need to be mounted. The  
TPS65917-Q1 device is not damaged by such configuration. The other functions do not depend on the  
unused LDOs and work properly.  
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
49  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
5.4.2.1 LDOVANA  
The LDOVANA voltage regulator is dedicated to supply the analog functions of the TPS65917-Q1 device,  
such as the GPADC and other analog circuitry. The LDOVANA regulator is automatically enabled and  
disabled as needed. The automatic control optimizes the overall current consumption if the SLEEP state.  
5.4.2.2 LDOVRTC  
The LDOVRTC regulator supplies always-on functions, such as wake-up functions. This power resource is  
active as soon as a valid energy source is present.  
This resource has two modes which are Normal mode and backup mode. The LDOVRTC regulator  
functions in normal mode when supplied from the main system power rail and is able to supply all digital  
components of the TPS65917-Q1 device. The LDOVRTC regulator functions backup mode when supplied  
from system power rail that is above the power-on reset threshold but below the system low threshold and  
is only able to supply always-on components.  
The LDOVRTC regulator supplies the digital components of the TPS65917-Q1 device. In the BACKUP  
state, the digital activity is reduced to maintaining the wake up functions only. In the OFF state, the turn-on  
events and detection mechanism are added to the previous current load in the BACKUP state. In the  
BACKUP and OFF states, the external load on the LDOVRTC pin should not exceed 0.5 mA.  
In the ACTIVE state, the LDOVRTC switches automatically into active mode. The reset is released and  
the clocks are available. In SLEEP state, the LDOVRTC is kept active. The reset is released and only the  
32-kHz clock is available. To reduce power consumption, the user is still able to select low-power mode  
through the software.  
If VCC is discharged rapidly and then resupplied, a POR may not be reliably generated. In  
this case a pulldown resistor can be added on the LDOVRTC output. See 5.15 for details.  
5.4.2.3 LDO1 and LDO2  
The LDO1 and LDO2 regulators have bypass capability to connect the input voltage to the output. This  
ability is useful, for example, as an input-output (I/O) supply of an SD card and preregulated with a 2.7 to  
3.3 V supply. This ability allows switching between 1.8 V (normal LDO mode) and the preregulated supply  
(bypass mode).  
5.4.2.4 Low-Noise LDO (LDO5)  
LDO5 is specifically designed to supply noise sensitive circuits. This supply can be used to power circuits  
such as PLLs, oscillators, or other analog modules that require low noise on the supply.  
5.4.2.5 Other LDOs  
All other LDOs have the same output voltage capability which is from 0.9 to 3.3 V in 50-mV steps.  
5.5 SMPS and LDO Input Supply Connections  
To avoid leakage, all SMPSx_IN supply pins and the VCCA pin must be externally connected together.  
The LDO preregulation from a boosted supply (voltage at LDOx_IN > voltage at VCCA) is supported if the  
output voltage of the LDO is 2.2 V (minimum).  
5.6 First Supply Detection  
The TPS65917-Q1 device can be configured to detect and wake up from a first supply-detection (FSD)  
event.  
50  
Detailed Description  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
When an automatic start from an FSD event is enabled, the PMIC powers up automatically when a supply  
is inserted, without waiting for a PWRON button press or other start-up event. An FSD event is detected  
when the VCCA pin voltage increases above the VSYS_LO threshold. Transition to ACTIVE state requires  
that the VCC_SENSE voltage increases above the VSYS_HI voltage.  
The FSD feature is enabled through unmasking the corresponding interrupt. This event triggers the  
interrupt, FSD, to the interrupt (INT) line. When an FSD interrupt occurs, the source can be determined  
using the FSD_STATUS bit in the PMU_SECONDARY_INT register. An interrupt from an FSD event, if  
not masked, is a wake-up event. Interrupt masking is pre-programmed in the one time programmable  
memory (OTP) of the device. Any HWRST event sets the interrupt mask bits to the default (OTP) value.  
The FSD event can also be masked through the PMU_SECONDARY_INT register by setting the  
FSD_MASK bit.  
5.7 Long-Press Key Detection  
The TPS65917-Q1 device can detect a long press on a key (or pin), PWRON. Upon detection, the device  
generates a LONG_PRESS_KEY interrupt and then switches the system off. The key-press duration is  
configured through the LONG_PRESS_KEY.LPK_TIME bits.  
5.8 12-Bit Sigma-Delta General-Purpose ADC (GPADC)  
The features of the GPADC include the following:  
The GPADC consists of a 12-bit sigma-delta ADC combined with a 8-input analog multiplexer. The  
running frequency of the GPADC is 2.5MHz. The GPADC lets the host processor monitor analog signals  
using analog-to-digital conversion on the input source. After the conversion is complete, an interrupt is  
generated to signal the host processor that the result of the conversion is ready to be accessed through  
the I2C interface.  
The GPADC supports 8 analog inputs. Two of these inputs are available on external pins and the  
remaining inputs are dedicated to VSYS supply voltage monitoring and internal resource monitoring.  
5-15 shows the block diagram of the GPADC.  
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
51  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
ADC voltage reference  
ADCIN1  
ch0  
ch1  
ch2  
ch3  
ADCIN2  
Reserved  
VCC_SENSE  
Software  
conversion result  
12-bit sigma-  
delta ADC  
DC-DC current probe  
ch4  
ch5  
PMIC internal die temperature 1  
PMIC internal die temperature 2  
Test network  
ch6  
ch7  
AUTO conversion result  
AUTO conversion request  
Software conversion request  
Interrupt  
ADC control  
5-15. Block Diagram of the GPADC  
The conversion requests are initiated by the host processor either by software through the I2C or by  
periodical measurements.  
Two kinds of conversion requests occur with the following priority:  
1. Asynchronous conversion request (SW), see 5.8.1  
2. Periodic conversion (AUTO), see 5.8.2  
5-9 lists the GPADC channel assignments.  
Use 公式 3 to convert from the GPADC code to the internal die temperature using GPADC channels 5 and  
6.  
GPADC Code  
212  
»
ÿ
ì 1.25 - 0.753 V  
÷
Ÿ
«
Die Temperature (èC) =  
2.64 mV  
(3)  
5-9. GPADC Channel Assignments  
INPUT VOLTAGE  
FULL RANGE  
INPUT VOLTAGE  
CHANNEL  
TYPE  
SCALER  
OPERATION  
(1)  
PERFORMANCE RANGE(2)  
0 (ADCIN1)  
1 (ADCIN2)  
2
External(3)  
External(3)  
Reserved  
0 to 1.25 V  
0 to 1.25 V  
0.01 to 1.215 V  
0.01 to 1.215 V  
No  
No  
General purpose  
General purpose  
(1) The minimum and maximum voltage full range corresponds to typical minimum and maximum output codes (0 and 4095).  
(2) The performance voltage is a range where gain error drift, offset drift, INL and DNL parameters are ensured.  
(3) If VANALDO is off, maximum current to draw from GPADC_INx is 1 mA for reliability. For current higher than 1 mA, LDOVANA must be  
in the SLEEP or ACTIVE state.  
52  
Detailed Description  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
 
TPS65917-Q1  
www.ti.com.cn  
CHANNEL  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
5-9. GPADC Channel Assignments (continued)  
INPUT VOLTAGE  
FULL RANGE  
INPUT VOLTAGE  
TYPE  
SCALER  
OPERATION  
PERFORMANCE RANGE(2)  
(1)  
2.5 to 5 V when  
2.5 to 4.86 V when  
HIGH_VCC_SENSE = 0  
2.3 V to (VCCA – 1 V) when  
HIGH_VCC_SENSE = 1  
3
HIGH_VCC_SENSE = 0  
2.3 V to (VCCA – 1 V) when  
HIGH_VCC_SENSE = 1  
System supply voltage  
(VCC_SENSE)  
Internal  
4
(VCC_SENSE)  
4
5
Internal  
Internal  
0 to 1.25 V  
No  
No  
DC-DC current probe  
PMIC internal die  
temperature 1  
0 to 1.25 V  
0 to 1.215 V  
PMIC internal die  
temperature 2  
6
7
Internal  
Internal  
0 to 1.25 V  
0 to 1.215 V  
No  
5
0 to VCCA V  
0.055 to VCCA V  
Test network  
5.8.1 Asynchronous Conversion Request (SW)  
The user can request an asynchronous conversion. This conversion is not critical for start-of-conversion  
positioning.  
The user must select the channel to be converted through the software and then request the conversion  
through the GPADC_SW_SELECT register. An GPADC_EOC_SW interrupt is generated when the  
conversion result is ready, and the result is stored in the GPADC_SW_CONV0_LSB and  
GPADC_SW_CONV0_MSB registers.  
CAUTION  
A defect in the digital controller of TPS65917-Q1 device may cause an  
unreliable result from the first asynchronous conversion request after the device  
exit from a warm reset. Texas Instruments recommends that user rely on  
subsequent requests to obtain accurate result from the asynchronous  
conversion after a device warm reset.  
For detailed information regarding this issue, see Guide to Using the GPADC in  
TPS65903x and TPS6591x Devices SLIA087.  
5.8.2 Periodic Conversion (AUTO)  
The user can enable periodic conversions to compare one or two channels with a predefined threshold  
level. One or two channels can be selected by programming the GPADC_AUTO_SELECT register. The  
thresholds and polarity of the conversion can be programmable through the  
GPADC_THRES_CONV0_LSB, GPADC_THRES_CONV0_MSB, GPADC_THRES_CONV1_LSB, and  
GPADC_THRES_CONV1_MSB registers. In addition, software must select the conversion interval with  
the GPADC_AUTO_CTRL register and enable the periodic conversion with the AUTO_CONV0_EN and  
AUTO_CONV1_EN bits.  
The GPADC does not need to be enabled separately. The control logic enables and disables the GPADC  
automatically to save power. The latest conversion result is always stored in the  
GPADC_AUTO_CONV0_LSB,  
GPADC_AUTO_CONV0_MSB,  
GPADC_AUTO_CONV1_LSB,  
and  
GPADC_AUTO_CONV1_MSB registers. All selected channels are queued and converted from channel 0  
to 7. The first (lower) converted channel result is placed in the GPADC_AUTO_CONV0 register and the  
second result is placed in the GPADC_AUTO_CONV1 register. Therefore, it is recommended to place the  
lower channel for conversion in the AUTO_CONV0_SEL bit field of the GPADC_AUTO_SELECT register,  
and the higher channel for conversion in the AUTO_CONV1_SEL bit field.  
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
53  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
If the conversion result triggers the threshold level, an INT interrupt is generated and the conversion result  
is stored. If the interrupt is not cleared or the results are not read before another auto-conversion is  
complete, then the registers store only the latest results, discarding the previous ones. The auto-  
conversion is never stopped by an uncleared interrupt or unread registers.  
Programming the triggering of the threshold level can also generate shutdown. This programming is  
available independently for the CONV0 and CONV1 channels and is enabled by setting the SHUTDOWN  
bits in the GPADC_AUTO_CTRL register. During sleep and off modes, only channels 0 to 4 can be  
converted. For channels 5 and 6, conversion is possible in sleep state if the thermal sensor is not  
disabled.  
5.8.3 Calibration  
The GPADC channels are calibrated in the production line using a 2-point calibration method. The  
channels are measured with two known values (X1 and X2) and the difference (D1 and D2) to the ideal  
values (Y1 and Y2) are stored in the OTP memory. 5-16 shows the principle of the calibration.  
Measured  
code  
Calibration points  
Measured points  
Y2  
D2 = Y2 œ X2  
Ideal  
curve  
Measured  
curve  
Y1  
D1 = Y1 œ X1  
Offset  
Ideal  
code  
X1  
X2  
5-16. ADC Calibration Scheme  
Some of the GPADC channels can use the same calibration data. Use 公式 4 and 公式 5 to calculate the  
corrected result.  
D2 -D1  
(
(
)
k = 1+  
X2 - X1  
)
Gain:  
(4)  
(5)  
b = D1- k -1 ì X1  
(
)
Offset:  
If the measured code is a, the corrected code a' is calculated using 公式 6.  
a - b  
(
)
a' =  
k
(6)  
5-10 lists the parameters, X1 and X2, and the register for D1 and D2 required in the calculation for all  
the channels.  
5-10. GPADC Calibration Parameters  
CHANNEL  
X1  
X2  
D1  
D2  
COMMENTS  
0, 1  
2064 (0.63 V)  
3112 (0.95 V)  
GPADC_TRIM1  
GPADC_TRIM2  
54  
Detailed Description  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
 
 
 
 
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
5-10. GPADC Calibration Parameters (continued)  
CHANNEL  
X1  
X2  
D1  
D2  
COMMENTS  
When  
3
2064 (2.52 V)  
3112 (3.8 V)  
GPADC_TRIM3  
GPADC_TRIM4  
HIGH_VCC_SENSE = 0  
When  
3
2064 (2.52 V)  
3112 (3.8 V)  
GPADC_TRIM5  
GPADC_TRIM6  
HIGH_VCC_SENSE = 1  
5.9 General-Purpose I/Os (GPIO Pins)  
The TPS65917-Q1 device integrates seven configurable general-purpose I/Os that are multiplexed with  
alternative features as listed in 5-11  
5-11. General Purpose I/Os Multiplexed Functions  
PIN  
PRIMARY FUNCTION  
SECONDARY FUNCTION  
Input: PWRDOWN (Power down signal)  
GPIO_0  
General-purpose I/O Port 0  
Input: ENABLE2 (Peripheral power request input 2)  
Output: REGEN1 (External regulator enable output 4)  
Input: RESET_IN (Reset input)  
GPIO_1  
GPIO_2  
GPIO_3  
General-purpose I/O Port 1  
General-purpose I/O Port 2  
General-purpose I/O Port 3  
Input: NRESWARM (Warm reset input)  
Input: VBUS_SENSE (VBUS input)  
Input: ENABLE1 (Peripheral power request input 1)  
Input/Output: I2C2_SDA_SDO (DVS control I2C serial bidirectional data) or SPI  
output data signal  
Input: ENABLE2 (Peripheral power request input 2)  
Output: REGEN1 (External regulator enable output 1)  
Input: SYNCDCDC (SMPS clock synchronization input)  
Output: REGEN2 (External regulator enable output 2)  
Input/Output: I2C2_SCL_SCE (DVS control I2C serial clock) or SPI chip-select signal  
Input: POWERHOLD (Power hold input)  
GPIO_4  
GPIO_5  
General-purpose I/O Port 4  
General-purpose I/O Port 5  
Output: REGEN3 (External regulator enable output 3)  
Input: NSLEEP (Sleep mode request signal)  
GPIO_6  
General-purpose I/O Port 6  
Output: POWERGOOD (Indicator signal for valid regulator output voltages)  
Output: REGEN3 (External regulator enable output 3)  
For GPIOs characteristics, refer to:  
Pin description,  
Electrical characteristics, Section 4.14 and Section 4.15  
Pullup and pulldown characteristics, Section 4.16  
Each GPIO event can generate an interrupt on a rising edge, falling edge, or both; each line is individually  
maskable (as described in 5.11). A GPIO-interrupt applies only when the primary function (general-  
purpose I/O) has been selected.  
All GPIOs can be used as wake-up events.  
GPIO_2 and GPIO_4 are in the VIO domain (only the I/O supply is required to be available)  
and therefore these GPIOs cannot be used as ON requests from the OFF mode.  
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
55  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
The REGEN1 output is muxed in GPIO_0 and GPIO_3, the REGEN2 output is muxed in GPIO_4, and the  
REGEN3 output is muxed in GPIO_5 and GPIO_6. When the GPO_0, GPIO_3, GPIO_4, GPIO_5, and  
GPIO_6 pins are configured as REGEN1, REGEN2, or REGEN3, these pins can be programmed as part  
of the power-up sequence to enable external devices such as external SMPSs. The REGEN1 and  
REGEN3 signals are at the VRTC voltage level and the REGEN2 signal is at the VIO voltage level.  
The PRIMARY_SECONDARY_PAD1 and PRIMARY_SECONDARY_PAD2 registers control selection  
between primary and secondary functions.  
When configured as primary functions, all GPIOs are controlled through the following set of registers:  
GPIO_DAT_DIR: Configures individually each GPIO direction (read and write)  
GPIO_DATA_IN: Data line-in when configured as an input (read only)  
GPIO_DATA_OUT: Data line-out when configured as an output (read and write)  
GPIO_DEBOUNCE_EN: Enables individually each GPIO debouncing (read and write)  
GPIO_CTRL: Global GPIO control to enable and disable all GPIOs (read and write)  
GPIO_CLEAR_DATA_OUT: Clears individually each GPIO data out (write only)  
GPIO_SET_DATA_OUT: Sets individually each GPIO data out (write only)  
PU_PD_GPIO_CTRL1, PU_PD_GPIO_CTRL2: Configures each line pullup and pulldown (read and  
write)  
OD_OUTPUT_GPIO_CTRL: Enables individual output open drain (read and write)  
When configured as secondary functions, none of the GPIO control registers (see 5-11) affect GPIO  
lines. The line configurations (pullup, pulldown, or open drain) for secondary functions are held in a  
separate register set as well as specific function settings.  
5.10 Thermal Monitoring  
The TPS65917-Q1 device includes several thermal monitoring functions for internal thermal protection of  
the PMIC.  
The TPS65917-Q1 device integrates two thermal detection modules to monitor the temperature of the die.  
These modules are placed on opposite sides of the device and close to the LDO and SMPS modules. An  
over-temperature condition at either module first generates a warning to the system and then, if the  
temperature continues to rise, a switch-off of the PMIC device can occur before damage to the die.  
Two thermal protection levels are available. One of these protections is a hot-die (HD) function which  
sends an interrupt to software. Software is expected to close any noncritical running tasks to reduce  
power. The second protection is a thermal shutdown (TS) function which immediately begins device  
switch-off.  
By default, thermal protection is always enabled except in the BACKUP or OFF state. Disabling thermal  
protection in sleep state is possible for minimum power consumption.  
To use thermal monitoring in the system do the following:  
Set the value for the hot-die temperature threshold with the  
OSC_THERM_CTRL.THERM_HD_SEL[1:0] bits.  
Disable thermal shutdown in sleep state by setting the THERM_OFF_IN_SLEEP bit to 1 in the  
OSC_THERM_CTRL register.  
During operation, if the die temperature increases beyond HD_THR_SEL, an interrupt (INT1.HOTDIE) is  
sent to the host processor. Immediate action to reduce the PMIC power dissipation by shutting down  
some functions must occur.  
If the die temperature of the PMIC device rises further (above 148°C), an immediate shutdown occurs.  
Indication of a thermal shutdown event indication is written to the status register,  
INT1_STATUS_HOTDIE. The system cannot restart until the temperature falls below the HD_THR_SEL  
threshold.  
56  
Detailed Description  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
5.10.1 Hot-Die Function (HD)  
The HD detector monitors the temperature of the die and provides a warning to the host processor  
through the interrupt system when the temperature reaches a critical value. The threshold value must be  
set to less than the thermal shutdown threshold. Hysteresis is added to the HD detection to avoid  
generating multiple interrupts.  
The integrated HD function provides the host PM software with an early warning overtemperature  
condition. This monitoring system is connected to the interrupt controller (INTC) and can send an interrupt  
when the temperature is higher than the programmed threshold. The TPS65917-Q1 device allows the  
programming of four junction-temperature thresholds to increase the flexibility of the system: in nominal  
conditions, the threshold triggering of the interrupt can be set from 117°C to 130°C. The HD hysteresis is  
10°C in typical conditions.  
When the power-management software triggers an interrupt, immediate action must be taken to reduce  
the amount of power drawn from the PMIC device (for example, noncritical applications must be closed).  
5.10.2 Thermal Shutdown  
The thermal shutdown detector monitors the temperature on the die. If the junction reaches a temperature  
at which damage can occur, a switch-off transition is initiated and a thermal shutdown event is written into  
a status register.  
The system cannot restart until the die temperature falls below the HD threshold.  
5.11 Interrupts  
5-12 lists the TPS65917-Q1 interrupts.  
These interrupts are split into four register groups (INT1, INT2, INT3, and INT4) and each group has three  
associated control registers which are defined as follows:  
INTx_STATUS Reflects which interrupt source has triggered an interrupt event  
INTx_MASK Used to mask any source of interrupt, to avoid generating an interrupt on a specified source  
INTx_LINE_STATE Reflects the real-time state of each line associated to each source of interrupt  
The INT4 register group has two additional registers, INT4_EDGE_DETECT1 and  
INT4_EDGE_DETECT2, to independently configure rising and falling edge detection (respectively).  
All interrupts are logically combined on a single output line, INT (default is active low). The INT line is used  
as an external interrupt line to warn the host processor of any interrupt event that has occurred within the  
device. The host processor must read the interrupt status registers (INTx_STATUS) through the control  
interface (I2C) to identify the interrupt source. Any interrupt source can be masked by programming the  
corresponding mask register, INTx_MASK. When an interrupt is masked, the associated event-detection  
mechanism is disabled. Therefore the corresponding STATUS bit is not updated and the INT line is not  
triggered if the masked event occurs. If an event occurs while the corresponding interrupt is masked, that  
event is not recorded. If an interrupt is masked after it has been triggered (the event has occurred and has  
not been cleared), the STATUS bit would reflect the event until the bit is cleared. While the event is  
masked, the STATUS bit will not be over-written when a new event occurs.  
Because some interrupts are sources of ON requests (see 5-12), source masking can mask a specific  
device switch-on event. Because an active interrupt line, INT, is treated as an ON request, any interrupt  
that is not masked must be cleared to allow the execution of a sleep sequence of the device, when  
requested.  
The polarity of the INT line and clearing method of interrupts can be configured using the INT_CTRL  
register.  
An INT line can be triggered in either SLEEP or ACTIVE state, depending on the setting of the  
OSC_THERM_CTRL.INT_MASK_IN_SLEEP bit.  
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
57  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
When a new interrupt occurs while the INT line is still active (not all interrupts are cleared), then the  
following occurs:  
If the new interrupt source is the same as the one that has already triggered the INT line, the interrupt  
can be discarded or stored as a pending interrupt depending on the setting of the  
INT_CTRL.INT_PENDING bit.  
When the INT_CTRL.INT_PENDING bit is active, then any new interrupt event occurring on the  
same source (while the INT line is still active) is stored as a pending interrupt. Because only one  
level of pending interrupts can be stored for a given source, when more than two events occur on  
the same source, only the last event is stored. While an interrupt is pending, two accesses are  
required (either read or write) to clear the STATUS bit: one access for the actual interrupt and the  
other for the pending interrupt. Two consecutive read-write (R/W) operations to the same register  
clear only one interrupt. Another register must be accessed between the two R/W clear operations.  
For example of a clear-on-read operation, when the INT signal is active, read all four  
INTx_STATUS registers in sequence to collect the status of all potential interrupt sources. The read  
access clears the full register for the active or actual interrupt. If the INT line is still active, repeat  
the read sequence to check and clear pending interrupts.  
When the INT_CTRL.INT_PENDING bit is inactive (default), then any new interrupt event occurring  
on the same source (while the INT line is still active) is discarded. Two consecutive R/W operations  
to the same register only clear one interrupt. Another register must be accessed between the two  
R/W-to-clear operations.  
If the new interrupt source is different from the one that already triggered the INT line, then the  
interrupt is stored immediately in the corresponding STATUS bit.  
To clear the interrupt line, all status registers must be cleared. The clearing of all status registers occurs  
by using a clear-on-read or a clear-on-write method. The clearing method is selectable though the  
INT_CTRL.INT_CLEAR bit. When this bit is set, the clearing method applies to all bits for all interrupts.  
The two different clear operations are defined as follows:  
Clear-on-read Read operation on a single status register clears all bits for only this specific register (8  
bits). Therefore, a read operation of all the four status registers is required to clear all the  
interrupts requests. When the four read operations are complete, if the INT line is still active  
then another interrupt event has occurred during the read process. Therefore, the read  
sequence must be repeated.  
Clear-on-write This method is bit-based; setting a specific bit to 1 clears only the written bit. Therefore,  
to clear a complete status register, write 0xFF. Writing 0xFF to all four status registers is  
required to clear all the interrupt requests. When the four write operations are complete, if  
the INT line is still active then another interrupt event has occurred during the write process.  
Therefore the write sequence must be repeated.  
58  
Detailed Description  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
5-12. Interrupt Sources  
INTERRUPT  
ASSOCIATED EVENT  
EDGES DETECTION  
ON REQUEST  
REG. GROUP REG. BIT  
DESCRIPTION  
System voltage monitoring interrupt  
Triggered when the system voltage crosses the configured threshold in the VSYS_MON register.  
VSYS_MON  
HOTDIE  
Internal event  
Rising and falling  
Never  
Never  
6
Hot-die temperature interrupt  
The embedded thermal monitoring module has detected a die temperature above the hot-die detection  
threshold. An interrupt is generated in ACTIVE and SLEEP states, not in OFF state.  
Internal event  
Rising and Falling  
5
Power-down interrupt  
Triggered when event is detected on the PWRDOWN pin.  
PWRDOWN  
PWRDOWN (pin)  
PWRON (pin)  
Rising and falling  
Falling  
Never  
Never  
INT1  
4
2
Power-on long key-press interrupt  
Triggered when PWRON is low during more than the long-press delay, LONG_PRESS_KEY.LPK_TIME.  
LONG_PRESS_KEY  
Power-on interrupt  
Always (INT mask, don't  
care)  
PWRON  
SHORT  
FSD  
PWRON (pin)  
Internal event  
Internal event  
Falling  
Rising  
Rising  
1
6
5
Triggered when the PWRON button is pressed (low) while the device is on. An interrupt is generated in ACTIVE  
and SLEEP states, not in OFF state.  
Short interrupt  
Yes (if INT not masked)  
Yes (if INT not masked)  
Triggered when at least one of the power resources (SMPS or LDO) outputs is shorted.  
First supply detection interrupt  
Triggered when a first supply detection is detected. This functions is selected by  
PMU_SECONDARY_INT.FSD_MASK.  
INT2  
RESET_IN interrupt  
Triggered when event is detected on the RESET_IN pin.  
RESET_IN  
WDT  
RESET_IN (pin)  
Internal event  
Internal event  
VBUS (pin)  
Rising  
Rising  
Never  
Never  
4
2
1
7
2
Watchdog time-out interrupt  
Triggered when watchdog time-out expires.  
OTP bit error detection interrupt  
Triggered when an OTP bit error is detected.  
OTP_ERROR  
VBUS  
Rising  
Never  
VBUS wake-up comparator interrupt  
Active in OFF state. Triggered when VBUS present.  
Rising and falling  
N/A  
Yes (if INT not masked)  
Yes (if INT not masked)  
GPADC software end-of-conversion interrupt  
Triggered when the conversion result is available.  
GPADC_EOC_SW  
Internal event  
GPADC automatic periodic conversion 1  
INT3  
GPADC_AUTO_1  
GPADC_AUTO_0  
Internal event  
Internal event  
N/A  
N/A  
Yes (if INT not masked)  
Yes (if INT not masked)  
1
0
Triggered when the result of a conversion is either above or below (depending on configuration) reference  
threshold GPADC_AUTO_CONV1_LSB and GPADC_AUTO_CONV1_MSB.  
GPADC automatic periodic conversion 0  
Triggered when the result of a conversion is either above or below (depending on configuration) reference  
threshold GPADC_AUTO_CONV0_LSB and GPADC_AUTO_CONV0_MSB.  
GPIO_6  
GPIO_5  
GPIO_4  
GPIO_3  
GPIO_2  
GPIO_1  
GPIO_0  
GPIO_6 (pin)  
GPIO_5 (pin)  
GPIO_4 (pin)  
GPIO_3 (pin)  
GPIO_2 (pin)  
GPIO_1 (pin)  
GPIO_0 (pin)  
Rising, falling, or both Yes (if INT not masked)  
Rising, falling, or both Yes (if INT not masked)  
Rising, falling, or both Yes (if INT not masked)  
Rising, falling, or both Yes (if INT not masked)  
Rising, falling, or both Yes (if INT not masked)  
Rising, falling, or both Yes (if INT not masked)  
Rising, falling, or both Yes (if INT not masked)  
6
5
4
3
2
1
0
GPIO_6 rising-edge detection interrupt, falling-edge detection interrupt, or detection interrupt for both edges  
GPIO_5 rising-edge detection interrupt, falling-edge detection interrupt, or detection interrupt for both edges  
GPIO_4 rising-edge detection interrupt, falling-edge detection interrupt, or detection interrupt for both edges  
GPIO_3 rising-edge detection interrupt, falling-edge detection interrupt, or detection interrupt for both edges  
GPIO_2 rising-edge detection interrupt, falling-edge detection interrupt, or detection interrupt for both edges  
GPIO_1 rising-edge detection interrupt, falling-edge detection interrupt, or detection interrupt for both edges  
GPIO_0 rising-edge detection interrupt, falling-edge detection interrupt, or detection interrupt for both edges  
INT4  
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
59  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
5.12 Control Interfaces  
The TPS65917-Q1 device has two, exclusive selectable (from factory settings) interfaces; 2 high-speed  
I2C interfaces (I2C1_SCL_SCK or I2C1_SDA_SDI and I2C2_SCL_SCE or I2C2_SDA_SDO) or 1 SPI  
(I2C1_SCL_SCK, I2C1_SDA_SDI, I2C2_SDA_SDO, or I2C2_SCL_SCE). Both are used to fully control  
and configure the device and have access to all the registers. When the I2C configuration is selected  
(either I2C1_SCL_SCK or I2C1_SDA_SDI) a general purpose control (GPC) interface is dedicated to  
configure the device and the I2C2_SCL_SCE or I2C2_SDA_SDO interface, dynamic voltage scaling  
(DVS) is dedicated to dynamically change the output voltage of the SMPS converters. The DVS I2C  
interface has access only to the voltage scaling registers of the SMPS converters (R/W mode).  
5.12.1 I2C Interfaces  
The GPC I2C interface (I2C1_SCL_SCK and I2C1_SDA_SDI) is dedicated to access the configuration  
registers of all the resources of the system.  
The DVS I2C interface (I2C2_SCL_SCE and I2C_SDA_SDO) is dedicated to access the DVS registers  
independently from the GPC I2C.  
The control interfaces comply with the HS-I2C specification and support the following features:  
Mode: Slave only (receiver and transmitter)  
Speed:  
Standard mode (100 kbps)  
Fast mode (400 kbps)  
High-speed mode (3.4 Mbps)  
Addressing: 7-bit mode addressing device  
The following features are not supported:  
10-bit addressing  
General call  
Master mode (bus arbitration and clock generation)  
I2C is a 2-wire serial interface developed by NXP (formerly Philips Semiconductor) (see I2C-Bus  
Specification and user manual, Rev 03, June 2007). The bus consists of a data line (SDA) and a clock line  
(SCL) with pullup structures. When the bus is idle, the SDA and SCL lines are pulled high. All the I2C-  
compatible devices connect to the I2C bus through open-drain I/O pins, SDA and SCL. A master device,  
usually a microcontroller or a digital signal processor, controls the bus. The master is responsible for  
generating the SCL signal and device addresses. The master also generates specific conditions that  
indicate the start and stop of data transfers. A slave device receives data, transmits data, or both on the  
bus under control of the master device. The data transfer protocol for standard and fast modes is exactly  
the same. In this data sheet, these modes are referred to as F/S mode. The protocol for high-speed (HS)  
mode is different from F/S mode.  
5.12.1.1 I2C Implementation  
The TPS65917-Q1 standard I2C 7-bit slave device address is set to 010010xx (binary) where the two  
least-significant bits are used for page selection.  
The device is organized in five internal pages of 256 bytes (registers) as follows:  
Slave device address 0x48: Power registers  
Slave device address 0x49: Interfaces and auxiliaries  
Slave device address 0x4A: Trimming and test  
Slave device address 0x4B: OTP  
Slave device address 0x12: DVS  
The device address for the DVS I2C interface is set to 0x12.  
60  
Detailed Description  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
If one of the addresses conflicts with another device I2C address, remapping each address to a fixed  
alternative address is possible as listed in 5-13. The I2C for DVS is fixed because it is a dedicated  
interface.  
5-13. I2C Address Configuration  
REGISTER  
BIT  
PAGE  
ADDRESSES  
ID_I2C1[0] = 0: 0x48  
ID_I2C1[0] = 1: 0x58  
ID_I2C1[1] = 0: 0x49  
ID_I2C1[1] = 1: 0x59  
ID_I2C1[2] = 0: 0x4A  
ID_I2C1[2] = 1: 0x5A  
ID_I2C1[3] = 0: 0x4B  
ID_I2C1[3] = 1: 0x5B  
ID_I2C2 = 0: 0x12  
ID_I2C1[0]  
Power registers  
ID_I2C1[1]  
ID_I2C1[2]  
Interfaces and auxiliaries  
Trimming and test  
I2C_SPI  
ID_I2C1[3]  
ID_IDC2  
OTP  
DVS  
5.12.1.2 F/S Mode Protocol  
The master initiates a data transfer by generating a START condition. The START condition is when a  
high-to-low transition occurs on the SDA line while SCL is high (see 5-17). All I2C-compatible devices  
should recognize a START condition.  
The master then generates SCL pulses and transmits the 7-bit address and the read or write direction bit  
(R/W) on the SDA line. During all transmissions, the master ensures that data is valid. A valid data  
condition requires the SDA line to be stable during the entire high period of the clock pulse (see 5-18).  
All devices recognize the address sent by the master and compare it to the internal fixed addresses of the  
respective device. Only the slave device with a matching address generates an acknowledge signal (see  
5-19) by pulling the SDA line low during the entire high period of the ninth SCL cycle. When this  
acknowledge signal is detected, the communication link between the master and the slave device has  
been established.  
The master generates further SCL cycles to either transmit data to the slave (R/W bit 1) or receive data  
from the slave (R/W bit 0). In either case, the receiver must acknowledge the data sent by the transmitter.  
An acknowledge signal can be generated by the master or the slave, depending on which device is the  
receiver. Nine-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue for as  
long as required.  
To signal the end of the data transfer, the master generates a STOP condition by pulling the SDA line  
from low to high while the SCL line is high (see 5-17). Pulling the line from low to high while SCL is  
high releases the bus and stops the communication link with the addressed slave. All I2C-compatible  
devices must recognize the STOP condition. Upon the receipt of a STOP condition, the slave device must  
wait for a START condition followed by a matching address.  
Attempting to read data from the register addresses not listed in this section results in a read out of 0xFF.  
5.12.1.3 HS Mode Protocol  
When the bus is idle, the SDA and SCL lines are pulled high by the pullup devices.  
The master generates a START condition followed by a valid serial byte containing the HS master code,  
00001XXX. This transmission is made in F/S mode at no more than 400 kbps. No device is allowed to  
acknowledge the HS master code, but all devices must recognize it and switch the internal setting to  
support 3.4-Mbps operation.  
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
61  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
The master then generates a REPEATED START condition (a REPEATED START condition has the  
same timing as the START condition). After the REPEATED START condition, the protocol is the same as  
F/S mode, except that transmission speeds up to 3.4 Mbps are allowed. A STOP condition ends the HS  
mode and switches all the internal settings of the slave devices to support F/S mode. Instead of using a  
STOP condition, REPEATED START conditions are used to secure the bus in HS mode.  
Attempting to read data from register addresses not listed in this section results in a read out of 0xFF.  
DATA  
CLK  
S
P
START  
STOP  
condition  
condition  
5-17. START and STOP Conditions  
DATA  
CLK  
Data line stable;  
Change of data allowed  
data valid  
5-18. Bit Transfer on the Serial Interface  
Data output  
by transmitter  
Not Acknowledge  
Data output  
by receiver  
Acknowledge  
SCL from  
master  
1
2
8
9
S
Clock pulse for  
acknowledgement  
START  
condition  
5-19. Acknowledge on the I2C Bus  
62  
Detailed Description  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
Recognize START or  
REPEATED START  
condition  
Recognize SOP or  
REPEATED START  
condition  
Generate  
ACKNOWLEDGE signal  
P
SDA  
MSB  
Acknowledgement  
signal from slave  
Sr  
Address  
R/W  
1
2
7
8
9
1
2
3 to 8  
9
SCL  
ACK  
S or  
Sr  
ACK  
Sr or  
P
Clock line held low while  
interrupts are serviced  
START or REPEATED  
START condition  
STOP or REPEATED  
START condition  
5-20. Bus Protocol  
5.12.2 Serial Peripheral Interface (SPI)  
The SPI is a 4-wire slave interface used to access and configure the device. The SPI allows read-and-  
write access to the configuration registers of all resources of the system.  
The SPI uses the following signals:  
SCE (I2C2_SCL_SCE): Chip enable which is the input driven by host master. This signal is used to  
initiate and terminate a transaction  
SCK (I2C1_SCL_SCK): Clock which is the input driven by host master. This signal is as master clock  
for data transaction  
SDI (I2C1_SDA_SDI): Data input which is the input driven by host master. This signal is as data line  
from master to slave  
SDO (I2C2_SDA_SDO): Data output which is the output driven by TPS65917-Q1. This signal is as  
data line from slave to master and defaults to high impedance  
5.12.2.1 SPI Modes  
This SPI supports two access modes which are single access and burst access. All shifts occur with the  
most significant bit (MSB) first (data, address, page). These two access modes have the following  
features:  
Single access (read or write)  
This mode consists of fetching and storing one single data location. The protocol is shown in 5-  
21.  
The R/W bit is always provided first, followed by page address and register address fields. When  
the R/W bit = 0, a read access is performed. When the R/W bit = 1, a write access is performed.  
One burst bit indicates if the following transfer is a single access (BURST = 0) or a burst access  
(BURST = 1).  
Four unused bits follow the burst bit and the 8-bit data is finally either shifted in (write) or out (read).  
For a write access, the data output line SDO is invalid (useless) during the whole transaction.  
For a read access, the data output line SDO is invalid during the unused bits (time slot used for  
data fetch) and then becomes active or valid after the unused bits.  
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
63  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Burst access (read or write)  
This mode consists of fetching and storing several data at contiguous locations. The protocol is  
shown in 5-22.  
The R/W bit is always provided first, followed by page address and register address fields. When  
the R/W bit 0, a read access is performed. When the R/W bit 1, a write access is performed.  
One burst bit indicates if the following transfer is a single access (BURST = 0) or a burst access  
(BURST = 1).  
Four unused bits follow the burst bit and packets of 8-bit data are finally either shifted in (write) or  
out (read).  
The transaction remains active as long as the SCE signal is maintained high by the host.  
The address is automatically incremented internally for each new 8-bit packet received.  
The host must pull the SCE signal low after a complete 8-bit data is transferred, otherwise the last  
transaction is discarded.  
For a write access, the data output line SDO is invalid (useless) during the whole transaction.  
For a read access, the data output line SDO is invalid during the unused bits (time slot used for  
data fetch) and then becomes active or valid after the unused bits.  
5.12.2.2 SPI Protocol  
5-21 shows the SPI protocol for a single read and write access. 5-22 shows the SPI protocol for a  
burst read and write access.  
SPI write  
SCE  
SCK  
SDI  
RW Page  
Burst  
Register address (8)  
Unused bits (5)  
Data (8)  
(SDI)  
Palmas samples SDI on SCK rising edge  
: Master to assert data on falling edge  
SPI read  
SCE  
SCK  
SDI  
RW Page  
Burst  
Register address (8)  
Unused bits (5)  
Don‘t Care  
(SDI)  
SDO  
Data (8)  
(SDO)  
Palmas samples SDI on SCK rising edge  
PMIC asserts SDO so that it is available on SCK rising edge  
: Master to assert data on falling edge  
: Master must sample data on rising edge  
5-21. SPI Single Read and Write Access  
64  
Detailed Description  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
SPI write  
SCE  
SCK  
SDI  
Data (8)  
Data (8)  
RW Page  
Burst  
Data (8)  
Register address (8)  
Unused bits (5)  
(SDI)  
Palmas samples SDI on SCK rising edge  
: Master to assert data on falling edge  
SPI read  
SCE  
SCK  
SDI  
Data (8)  
Data (8)  
Data (8)  
Data (8)  
RW Page  
Burst  
Data (8)  
Data (8)  
Register address (8)  
Unused bits (5)  
(SDI)  
SDO  
(SDO)  
Palmas samples SDI on SCK rising edge  
PMIC asserts SDO so that it is available on SCK rising edge  
: Master to assert data on falling edge  
: Master must sample data on rising edge  
5-22. SPI Burst Read and Write Access  
5.13 OTP Configuration Memory  
The register mapping for the device describes the OTP configuration bits. These bits are highlighted as  
the value X during reset in the register mapping (the value of the bit is the copy of the OTP configuration  
memory).  
5.14 Watchdog Timer (WDT)  
The watchdog timer has two modes of operation: periodic mode and interrupt mode.  
In periodic mode, an interrupt is generated with a regular period N, defined by the setting of  
WATCHDOG.TIMER. This interrupt is generated at the beginning of the period (when the watchdog  
internal counter equals 1). The IC initiates a shutdown at the end of the period (when the internal counter  
reaches N) only if the interrupt is not cleared within the defined time frame (0 to N). In this mode, when the  
interrupt is cleared, the internal counter is not reset. The counter continues counting until it reaches the  
maximum value (defined by the TIMER setting) and automatically rolls over to 0 to start a new counting  
period. Regardless of when the interrupt is cleared within a given period (N), the next interrupt is  
generated only when the ongoing period completes (reaches N). The internal watchdog counter is  
initialized and kept at 0 as long as the RESET_OUT pin is low. The watchdog counter begins counting  
when the RESET_OUT pin is released.  
In interrupt mode, any interrupt source resets the watchdog counter and starts the counting. If the sources  
of the interrupts are not cleared (meaning the INT line is released) before the end of the predefined  
period, N (set by WATCHDOG.TIMER setting), then the device initiates a shutdown. If the sources of the  
interrupts are cleared within the predefined period, then the watchdog counter is discarded (dc) and no  
shutdown sequence is initiated.  
By default, the watchdog is disabled. The watchdog can be enabled by setting the ENABLE bit of the  
WATCHDOG register to 1, and this selection is write protected by setting the LOCK bit to 1. Reset of the  
device returns these bits to default values.  
5-23 and 5-24 show the watchdog timings.  
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
65  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Watchdog internal  
0
1
...  
i
...  
N
0
1
...  
...  
N
0
counter  
IT not cleared  
in allowed  
timeframe  
New  
watchdog IT  
Watchdog IT  
cleared  
New  
watchdog IT  
INT pin (active high)  
Device Switch off  
RESET_OUT pin  
5-23. Watchdog Timings—Periodic Mode  
Watchdog internal  
counter  
X
0
1
...  
i
dc  
dc  
0
1
...  
N
0
IT not cleared  
in allowed  
timeframe  
New IT (reset  
WDT counter)  
New IT (reset  
WDT counter)  
INT pin (active high)  
RESET_OUT pin  
IT  
cleared  
Device switch off  
5-24. Watchdog Timings—Interrupt Mode  
5.15 System Voltage Monitoring  
Comparators that monitor the voltage on the VCC_SENSE, and VCCA pins control the power state  
machine of the TPS65917-Q1 device. For electrical parameters, see Section 4.12.  
POR  
When the supply at the VCCA pin is below the POR threshold, the TPS65917-Q1 device is  
in the NO SUPPLY state. All functionality is off. The device moves from the NO SUPPLY  
state to the BACKUP state when the voltage in VCCA rises above the POR threshold.  
VSYS_LO When the voltage on the VCCA pin rises above VSYS_LO, the device enters from the  
BACKUP state to the OFF state. When the device is in an ACTIVE, SLEEP, or OFF state  
and the voltage on VCCA decreases below the VSYS_LO level, the device enters backup  
mode. When the device transitions from the ACTIVE state to the BACKUP state, all active  
SMPS and LDO regulators, except LDOVRTC, are disabled simultaneously. There is a 180-  
µs deglitch time after VCCA becomes less than VSYS_LO and before the regulators are  
disabled. The level of VSYS_LO is OTP programmable.  
VSYS_MON During power up, the value of VSYS_HI OTP is used as a threshold for the VSYS_MON  
comparator which is gating PMIC start-up (that is, as a threshold for transition from the OFF  
state to the ACTIVE state). The VSYS_MON comparator monitors the VCC_SENSE pin.  
After power up, software can configure the comparator threshold in the VSYS_MON register.  
VBUS_DET The VBUS_DET comparator is monitoring the VBUS_SENSE (secondary function of GPIO1)  
pin. This comparator is active when VCCA is greater than the POR threshold. Triggering the  
threshold level generates an interrupt. It can wake up the device from the SLEEP state, but  
can also switch on the device from the OFF state.  
5-25 shows a block diagram of the system comparators and 5-26 shows the state transitions.  
66  
Detailed Description  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
OTP bits  
Register bits  
VCCA  
POR  
Power-On Reset Threshold  
VCCA  
VSYS_LO  
VSYS_LO  
VCC_SENSE  
VSYS_MON  
VSYS_MON  
Default VSYS_HI  
VBUS_SENSE  
VBUS_DET  
VBUS_WKUP_UP  
5-25. System Comparators  
VSYS_HI  
VSYS_MON  
VSYS_LO  
Start-Up Event  
POR  
INT  
STATE  
NO SUPPLY  
BACKUP  
OFF  
ACTIVE / SLEEP  
BACKUP  
NO SUPPLY  
5-26. State Transitions  
To generate a POR from a falling VCC, VCC is sampled every 1 ms and compared to the POR  
threshold. In case VCC is discharged and resupplied quickly, a POR may not be reliably  
generated if VCC crosses the POR threshold between samples. Another way to generate  
POR is to discharge the LDOVRTC regulator to 0 V after VCC is removed. With no external  
load, this could take seconds for the LDOVRTC output to discharge to 0 V. The PMIC should  
not be restarted after VCC is removed but before LDOVRTC is discharged to 0 V. If  
necessary, TI recommends adding a pulldown resistor from the LDOVRTC output to GND  
with a minimum of 3.9 kΩ to speed up the LDOVRTC discharge time.  
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
67  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
The value of the pulldown resistor should be chosen based on the desired discharge time and acceptable  
current draw in the OFF state, but no greater than 0.5 mA. Use 公式 7 to calculate the pulldown resistor  
based on the desired discharge time.  
tdischarge (ms)  
RPD (kW) =  
CO (mF) ì 3  
where  
tdischarge = discharge time of the VRTC output  
RPD = pulldown resistance from the VRTC output to GND  
CO = output capacitance on the VRTC line (typically 2.2 µF)  
(7)  
Because LDOVRTC is always on when VCC is supplied, additional current is drawn through the pulldown  
resistor. The output current of LDOVRTC while the PMIC is in OFF state should not exceed 0.5 mA. Use  
公式 8 to calculate the pulldown current.  
1.8 V  
IPD  
=
RPD  
where  
IPD = current through the pulldown resistor  
RPD = pulldown resistance from the VRTC regulator  
(8)  
To use comparators in the system:  
The VSYS_HI and VSYS_LO thresholds are defined in the OTP. Software cannot change these levels.  
After startup, the VSYS_MON comparator is automatically disabled. Software can select new threshold  
levels using the VSYS_MON register and then enable the comparators.  
To have the same coding for rising and falling edge, the VSYS_MON comparator does not include  
hysteresis and thus can generate multiple interrupts when the voltage level is at threshold level. New  
interrupt generation has a 125-µs debounce time. This time lets software mask the interrupt and  
update the threshold level or disable the comparator before receiving a new interrupt.  
5-27 shows more details on VSYS_MON comparator. When the VSYS_MON comparator is enabled,  
and the internal buffer is bypassed, the input impedance at VCC_SENSE pin is 500 kΩ (typical). When the  
comparator is disabled, the VCC_SENSE pin is in the high-impedance state. If GPADC is enabled to  
measure channel 2 or channel 3, 40 kΩ is added in parallel to the corresponding comparator. See 5-9  
for GPADC input range.  
To enable system voltage sensing above 5.25 V, an external resistive divider can be used. Internal buffers  
can be enabled by setting the OTP bit HIGH_VCC_SENSE to 1 to provide high impedance for the external  
resistive dividers. The maximum input level for the internal buffer is VCCA – 1 V.  
68  
Detailed Description  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
 
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
VCCA  
VCC_SENSE  
1
0
VSYS_MON  
VSYS_MON  
HIGH_VCC_SENSE(1)  
Default VSYS_HI  
500 k  
30 kꢀ  
10 kꢀ  
Scale down,  
divide by 4  
GPADC_IN3  
GPADC  
(1) HIGH_VCC_SENSE = 0: buffer bypassed (not enabled). HIGH_VCC_SENSE = 1: buffer enabled, bypass disabled (Hi-Z at SENSE  
input)  
5-27. VSYS_MON Comparator Details  
5.16 Register Map  
5.16.1 Functional Register Mapping  
For the register descriptions, refer to the TPS65917-Q1 Register Map.  
5.17 Device Identification  
The following registers can differentiate the TPS65917-Q1 device being used.  
5-14. TPS65917-Q1 Device ID  
REGISTER NAME  
REGISTER DESCRIPTION  
VALUE  
For all TPS65917-Q1 devices, this register will have the  
same value.  
PRODUCT_ID_MSB  
0x09  
For all TPS65917-Q1 devices, this register will have the  
same value.  
PRODUCT_ID_LSB  
DESIGNREV  
0x17  
Revision 1.0  
Revision 1.1  
0x0  
0x1  
This register distinguishes which silicon  
version is used.  
This register will be representative of the OTP version  
programmed on the device.  
SW_REVISION  
OTP dependent - See User's Guide  
版权 © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
69  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6 Applications, Implementation, and Layout  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
6.1 Application Information  
The TPS65917-Q1 device is an integrated power management integrated circuits (PMIC), available in a  
48-pin, 0.5-mm pitch, 7-mm × 7-mm QFN package. It is designed specifically for automotive applications.  
It has five configurable step-down converter rails, with two of these SMPSs capable of combining power  
rails and supply up to 7 A of output current in multi-phase mode. These step-down converters can be  
synchronized to an external clock between 1.7 MHz to 2.7 MHz, or an internal fallback clock at 2.2 MHz.  
The TPS65917-Q1 device also has five external LDOs which can be supplied from the system supply or a  
pre-regulated supply. Two of these LDOs can be configured in bypass mode. One of the five LDOs also  
provides low noise output.  
The TPS65917-Q1 device also come with a 12-bit GPADC with two external channels, seven configurable  
GPIOs, two I2C interface channels or one SPI interface channel, a PLL for external clock sync and phase  
delay capability, and a programmable power sequencer and control for supporting different processors  
and applications.  
As TPS65917-Q1 device is a highly integrated PMIC device, it is very important that customers should  
take necessary actions to ensure the PMIC is operating under the recommended operating conditions to  
ensure desired performance from the device. Additional cooling strategies may be necessary to maintain  
the junction temperature below maximum limit allowed for the device. To minimize the interferences when  
turning on a power rail while the device is in operation, optimal PCB layout and grounding strategy are  
essential and are recommended in 6.3. In addition, customer may take steps such as turning on  
additional rails only when the systems is operating in light load condition.  
Details on how to use this device as a power management device for a application processor are  
described throughout this device specification. The following sections provides the typical application use  
case with the recommended external components and layout guidelines. A design checklist for the  
TPS65917-Q1 device is also available on which provides application design guidance and cross checks.  
70  
Applications, Implementation, and Layout  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
6.2 Typical Application  
Typical Application  
Processor  
TPS65917-Q1  
12-V Power  
Source  
SMPS1  
DVS/AVS 3.5 A  
CPU and Vision Processor  
GPADC  
Voltage Monitor  
Voltage Monitor  
Voltage Monitor  
ADCIN2  
ADCIN1  
SMPS2  
DVS/AVS 3.5 A  
Core  
GPADC  
Preregulator  
3.3 V  
SMPS3  
DVS/AVS 3 A  
GPU and SRAM  
I2C2 and DVS  
Dedicated DVFS  
Interface Controller  
and Registers  
I2C2 Data  
I2C2 CLK  
GPIO2  
GPIO4  
Dedicated DVFS  
Interface  
SMPS4  
1.5 A  
1.8-V IO  
SMPS5  
2 A  
DDR & DDR Interface  
LDO1, Bypass mode, 300 mA  
LDO2, Bypass mode, 300 mA  
LDO3, 200 mA  
Peripheral Supplies  
(SD card, camera,  
radar, and others)  
3.3-V IO  
LDO4, 200 mA  
LDO5, Low Noise 100 mA  
PLL, Oscillator, DAC, ADC  
SYNCCLKOUT  
OSC + PLL CLKSYS  
Interrupt Handler  
INT  
GPADC  
External  
Power  
Supply  
œ
Voltage Monitor  
VBG  
PWRDOWN,  
POWERHOLD,  
RESET_IN,  
ENABLE1&2,  
NSLEEP,  
BBS and Bandgap REFSYS  
+
I2C2 and  
SPI  
Interface  
Controller  
NRESWARM  
I2C CLK  
I2C Data  
POWERGOOD  
Power Switch  
Safety MCU  
Optional  
Clock  
Monitor  
EN  
Optional  
External  
Regulator  
External Peripherals  
CLK_SYNC_IN  
Copyright © 2017, Texas Instruments Incorporated  
6-1. Application Diagram in a Typical ADAS System  
版权 © 2015–2019, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
71  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.2.1 Design Requirements  
For a typical ADAS application shown in 6-1, 6-1 lists the key design parameters of the power  
resources.  
6-1. Design Parameters  
DESIGN PARAMETER  
Supply voltage  
Switching frequency  
SMPS1 voltage  
SMPS1 current  
SMPS2 voltage  
SMPS2 current  
SMPS3 voltage  
SMPS3 current  
SMPS4 voltage  
SMPS4 current  
SMPS5 voltage  
SMPS5 current  
LDO1 voltage  
VALUE  
3.3 V to 5 V  
2.2 MHz  
1.15 V  
Up to 3.5 A  
1.15 V  
Up to 3.5 A  
1.06 V  
Up to 3 A  
1.8 V  
Up to 1.5 A  
1.35 V or 1.5 V  
Up to 2 A  
1.8 V or 3.3 V  
Up to 300 mA  
1.8 V  
LDO1 current  
LDO2 voltage  
LDO2 current  
Up to 300 mA  
1.8 V  
LDO3 voltage  
LDO3 current  
Up to 200 mA  
3.3 V  
LDO4 voltage  
LDO4 current  
Up to 200 mA  
1.8 V  
LDO5 voltage  
LDO5 current  
Up to 100 mA  
72  
Applications, Implementation, and Layout  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
6.2.2 Detailed Design Procedure  
6-2 lists the recommended external components.  
6-2. Recommended External Components  
REFERENCE  
COMPONENTS  
EIA size  
code(2)  
MASS  
COMPONENT(1)  
MANUFACTURER  
PART NUMBER  
VALUE  
SIZE (mm)  
PRODUCTION(3)  
INPUT POWER SUPPLIES EXTERNAL COMPONENTS  
C1, C2  
C3  
VSYS and VCCA tank capacitor(4)  
Murata  
Murata  
GCM21BR70J106KE22  
GCM155R71C104KA55  
10 µF, 6V3  
0805  
2 × 1.25 × 1.25  
1 × 0.5 × 0.5  
Available(5)  
Available(5)  
Decoupling capacitor  
100 nF, 16 V  
0402  
BANDGAP EXTERNAL COMPONENTS  
C7 Capacitor  
SMPS EXTERNAL COMPONENTS  
(5)  
Murata  
GCM155R71C104KA55  
100 nF, 16 V  
0402  
1 × 0.5 × 0.5  
Available  
(5)  
C8, C9, C10, C11, C12  
C13, C14, C15, C16, C17  
L1, L2, L3, L4, L5  
Input capacitor  
Murata  
Murata  
VISHAY  
GCM21BC71A475MA735 4.7 µF 10 V  
0805  
1210  
2 × 1.25 × 1.25  
3.2 × 2.5 × 2.5  
4.45 × 4.1 × 1.2  
Available  
Output capacitor  
Inductor  
GCM32ER70J476KE19  
IHLP1616ABER1R0M11  
47 uF 10 V  
1 µH  
Available(5)  
Available(5)  
LDO EXTERNAL COMPONENTS  
C18, C19  
Input capacitor  
Output capacitor  
Murata  
Murata  
GCM188R70J225KE22  
GCM188R70J225KE22  
2.2 µF 6V3  
2.2 µF 6V3  
0603  
0603  
1.6 × 0.8 × 0.8  
1.6 × 0.8 × 0.8  
Available(5)  
Available(5)  
C4, C5, C20, C21, C22,  
C23, C24  
(1) Component minimum and maximum tolerance values are specified in the electrical parameters section of each IP.  
(2) The PACK column describes the external component package type.  
(3) This column refers to the criteria.  
(4) The tank capacitors filter the VSYS and VCCA input voltage of the LDO and SMPS core architectures.  
(5) Component used on the validation boards.  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
Applications, Implementation, and Layout  
73  
产品主页链接: TPS65917-Q1  
 
 
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.2.2.1 SMPS Input Capacitors  
All SMPS inputs require an input decoupling capacitor to minimize input ripple voltage. Using a 10-V, 4.7-  
µF capacitor for each SMPS is recommended. Depending on the input voltage of the SMPS, a 6.3-V or  
10-V capacitor can be used. See 6-2 for the specific part number of the recommended input capacitor.  
For optimal performance, the input capacitors should be placed as close to the SMPS input pins as  
possible. See the 6.3.1 section for more information about component placement.  
6.2.2.2 SMPS Output Capacitors  
All SMPS outputs require an output capacitor to hold up the output voltage during a load step or changes  
to the input voltage. To ensure stability across the entire switching frequency range, the TPS65917-Q1  
device requires an output capacitance value between 33 µF and 57 µF. To meet this requirement across  
temperature and DC bias voltage, using a 47-µF capacitor for each SMPS is recommended. Remember  
that each SMPS requires an output capacitor, not just each output rail. For example, SMPS12 is a dual-  
phase regulator and an output capacitor is required for the SMPS1 output and the SMPS2 output. Note,  
this requirement excludes any capacitance seen at the load and only refers to the capacitance seen close  
to the device. Additional capacitance placed near the load can be supported, but the end application or  
system should be evaluated for stability. See 6-2 for the specific part number of the recommended  
output capacitor.  
6.2.2.3 SMPS Inductors  
Again, to ensure stability across the entire switching frequency range, using a 1-µH inductor on each  
SMPS is recommended. Remember that each SMPS requires an inductor, not just each output rail. For  
example, SMPS12 is a dual-phase regulator and an inductor is required for the SMPS1_SW pins and the  
SMPS2_SW pins. See 6-2 for the specific part number of the recommended inductor.  
6.2.2.4 LDO Input Capacitors  
All LDO inputs require an input decoupling capacitor to minimize input ripple voltage. Using a 2.2-µF  
capacitor for each LDO is recommended. Depending on the input voltage of the LDO, a 6.3-V or 10-V  
capacitor can be used. See 6-2 for the specific part number of the recommended input capacitors.  
For optimal performance, the input capacitors should be placed as close to the LDO input pins as  
possible. See the 6.3.1 section for more information about component placement.  
6.2.2.5 LDO Output Capacitors  
All LDO outputs require an output capacitor to hold up the output voltage during a load step or changes to  
the input voltage. Using a 2.2-µF capacitor for each LDO output is recommended. Note, this requirement  
excludes any capacitance seen at the load and only refers to the capacitance seen close to the device.  
Additional capacitance placed near the load can be supported, but the end application or system should  
be evaluated for stability. See 6-2 for the specific part number of the recommended output capacitors.  
6.2.2.6 VCCA  
VCCA is the supply for the analog input voltage of the device. This pin requires a 10-µF decoupling  
capacitor.  
Texas Instruments recommends to always power down the TPS65917-Q1 before removing power from  
VCCA. If the input voltage to the device is removed while the device is ACTIVE, the device will shut off  
when VCCA reaches the VSYS_LO threshold. As mentioned in the 5.15 section, once VCCA reaches  
VSYS_LO, there is about 180 us delay before all the output rails are disabled simultaneously.  
There are two scenarios to consider in the system-level design in the event of unexpected loss of power.  
74  
Applications, Implementation, and Layout  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
6.2.2.6.1 Meeting the Power-Down Sequence  
To prevent a sequencing violation, it is important to block reverse current and implement a disable signal  
to the PMIC. A Schottky diode can block reverse current when the input is removed. Additionally,  
capacitors can help maintain the input voltage level while the power-down sequence occurs. Depending  
on the system design, there are a couple ways to implement a disable signal.  
For a system where the TPS65917-Q1 is powered by the system input voltage, a supervisor can be used  
to create a logic signal, indicating if the power is at a good level. An example of this solution is shown in  
6-2.  
VIN  
(5 V)  
VCC  
PMIC  
GND  
Supervisor  
ENABLE  
6-2. Supporting Uncontrolled Power Down When the PMIC is Supplied by the System Input Voltage  
An alternative solution is possible when a pre-regulator is present. In the case of the pre-regulator, the  
pre-regulator output capacitance can also act as the energy storage to maintain VCCA for the necessary  
time. The total supply capacitance should be calculated to support the worst-case leakage current during  
power down so that the voltage is maintained until the power-down sequence completes. 6-3 shows an  
example of this configuration.  
VIN  
(12 V)  
5 V  
Buck  
VCC  
PGOOD  
PMIC  
GND  
ENABLE  
6-3. Supporting Uncontrolled Power Down when the PMIC is Supplied by a Preregulator  
To determine the capacitance needed at the output of the pre-regulator, use 公式 9. This equation is used  
to ensure that the power down sequence is complete before the device is disabled.  
C = I × ΔT / (VCCA – VSYS_LO)  
where  
C is total capacitance on VCCA, including preregulator output capacitance and PMIC input capacitance  
I is the total current on the PMIC input supply  
ΔT is the time it takes the power-down sequence to complete  
VCCA is the voltage at the VCCA pin  
VSYS_LO is the threshold where the device is disabled  
(9)  
6.2.2.6.2 Maintaining Sufficient Input Voltage  
In the event of high loading during loss of input voltage, there is a risk to go below the voltage level  
necessary for the internal logic of the device to work properly before the device is disabled. This means  
that when the VCCA voltage supply level becomes lower than the VSYS_LO threshold, the input voltage  
may continue dropping to very low voltages during the 180 us ±10% delay before the device is disabled.  
版权 © 2015–2019, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
75  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
 
 
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
If a large input voltage drop occurs before the device is disabled, the internal logic can no longer properly  
drive the FETs of the SMPS, and it is possible that the high-side FET and low-side FET of the SMPS are  
on at the same time. In the event that the high-side and low-side FETs for an SMPS are on at the same  
time, there is a direct path from SMPSx_IN to GND, allowing cross-conduction and possible damage of  
the device.  
In order to prevent damage or irregular switching behavior, it is important that the voltage at the  
SMPSx_IN pin stays above 1.8 V, including negative transients, before the device is disabled. The  
minimum voltage seen at the SMPSx_IN pin is dependent on VCCA and the PCB inductance between the  
SMPSx_IN pin and the input capacitor. Use 公式 10 to determine the minimum capacitance needed on  
VCCA to ensure that the device continues switching properly before it is disabled.  
C = I × ΔT / (VSYS_LO – VCCAMIN  
)
where  
C is total capacitance on VCCA, including preregulator output capacitance and PMIC input capacitance  
I is the total current on the PMIC input supply  
ΔT is the maximum debounce time after VCCA = VSYS_LO before the device switches off (198us)  
VSYS_LO is the threshold where the device is disabled  
VCCAMIN is the minimum VCCA voltage to keep the SMPSx_IN transients above 1.8 V  
(10)  
When measuring the SMPSx_IN and VCCA during power down, use active differential probes and a high  
resolution oscilloscope (4GS/sec or more). VCCA can be measured over the 10uF input capacitor.  
However, SMPSx_IN must be measured at the pin in order to measure the transients on this rail  
accurately. To measure SMPSx_IN, place the negative lead of the differential probe at a nearby GND,  
such as the GND of the SMPSx_IN input capacitor. Place the positive lead of the differential probe directly  
on the exposed metal of the SMPSx_IN pin. With this set up, verify that SMPSx_IN, including the ripple on  
this signal, does not drop below 1.8V before the SMPS stops switching. See 6-4 for an example of how  
to take this measurement. For ways to decrease the amplitude of the transient spikes, see 6-3 for  
recommended parasitic inductance requirements.  
SMPSx_IN  
VCCA  
1.8 V minimum  
SMPSx_SW  
6-4. Waveform of SMPSx_IN Transients  
6.2.2.7 VIO_IN  
VIO_IN is the supply for the interface IO circuits inside the device. This pin requires a 0.1-µF decoupling  
capacitor.  
76  
Applications, Implementation, and Layout  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
 
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
6.2.2.8 GPADC  
To perform a software conversion with the GPADC, use the following steps:  
1. Enable software conversion mode – GPADC_SW_SELECT.SW_CONV_EN  
2. Select the channel to convert – GPADC_SW_SELECT.SW_CONV0_SEL  
For channel 0, set up the current source in the GPADC_CTRL1 register if needed.  
3. For minimum latency, the GPADC can be set to always on (instead of default enabled from conversion  
request) by GPADC_CTRL1.GPADC_FORCE.  
4. Unmask software conversion interrupt – INT3_MASK.GPADC_EOC_SW  
5. Start conversion – GPADC_SW_SELECT.SW_START_CONV0.  
6. An interrupt is generated at the end of the conversion INT3_STATUS.GPADC_EOC_SW.  
7. Read conversion result – GPADC_SW_CONV0_MSB and GPADC_SW_CONV0_LSB  
8. Expected result = dec(GPADC_SW_CONV0_MSB[3:0].GPADC_SW_CONV0_LSB[7:0])/ 4096 × 1.25  
× scaler  
To perform an auto conversion with the GPADC, use the following steps:  
1. Select the channel to convert – GPADC_AUTO_SELECT.AUTO_CONV0_SEL  
2. Configure auto conversion frequency – GPADC_AUTO_CTRL.COUNTER_CONV  
3. Set the threshold level for comparison – GPADC_THRESH_CONV0_MSB.THRESH_CONV0_MSB,  
GPADC_THRESH_CONV0_LSB.THRESH_CONV0_LSB  
Level = expected voltage threshold / (1.25 × scaler) × 4096 (in hexadecimal)  
4. Set if the interrupt is triggered when conversion is above or below threshold –  
GPADC_THRESH_CONV0_MSB.THRESH_CONV0_POL  
5. Triggering the threshold level can also be programmed to generate shutdown –  
GPADC_AUTO_CTRL.SHUTDOWN_CONV0  
6. Unmask AUTO_CONV_0 interrupt – INT3_MASK.GPADC_AUTO_0  
7. Enable AUTO CONV0 – GPADC_AUTO_CTRL.AUTO_CONV0_EN  
8. When selected channel crosses programmed threshold, interrupt is generated –  
INT3_STATUS.GPADC_AUTO_0  
9. Conversion results are available – GPADC_AUTO_CONV0_MSB, GPADC_AUTO_CONV0_LSB  
10. If shutdown was enabled, chip switches off after SWOFF_DLY, unless interrupt is cleared  
Both examples above are for CONV0; a similar procedure applies to CONV1.  
版权 © 2015–2019, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
77  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.2.3 Application Curves  
V
(20 mV/div)  
O
V
O
(20 mV/div)  
0.8-mA to 2-A load step,  
t = t = 400 ns  
0.5-mA to 500- mA load step,  
t = t = 100 ns  
I
(2 A/div)  
O
r
f
I
O
(2 A/div)  
r
f
VI = 3.15 V  
ƒS = 2.2 MHz  
VO = 1.05 V  
VI = 3.15 V  
ƒS = 2.2 MHz  
VO = 1.05 V  
6-6. Typical SMPS Load Transient Response for SMPS12  
6-5. Typical SMPS Load Transient Response for SMPS12  
in Dual Phase Mode  
in Dual Phase Mode  
V
(20 mV/div)  
V
(20 mV/div)  
O
O
0.5-mA to 500-mA load step,  
I
(500 mA/div)  
I
(500 mA/div)  
O
O
t = t = 100 ns  
r
f
0.5-mA to 500-mA load step,  
t = t = 1 µs  
r
f
VI = 5.25 V  
ƒS = 2.2 MHz  
VO = 0.7 V  
VI = 3.15 V  
ƒS = 2.2 MHz  
VO = 0.7 V  
6-8. Typical SMPS Load Transient Response for SMPS4  
6-7. Typical SMPS Load Transient Response for  
SMPS1, SMPS2, SMPS3, and SMPS5  
78  
Applications, Implementation, and Layout  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
6.3 Layout  
6.3.1 Layout Guidelines  
As in every switch-mode-supply design, general layout rules apply:  
Use a solid ground-plane for the power ground (PGND)  
Connect those grounds at a star-point that is located ideally underneath the device.  
Place input capacitors as close as possible to the input pins of the device. This placement is  
paramount and more important than the output-loop.  
Place the inductor and output capacitor as close as possible to the phase node (or switch-node) of the  
device.  
Keep the loop-area formed by the phase-node, inductor, output-capacitor, and PGND as small as  
possible.  
For traces and vias on power-lines, keep inductance and resistance as small as possible by using wide  
traces. Avoid switching layers but, if needed, use plenty of vias.  
The goal of these guidelines is a layout that minimizes emissions, maximizes EMI immunity, and  
maintains a safe operating area (SOA) for the device.  
To minimize the spiking at the phase-node for both the high-side (VIN to SWx) and low-side (SWx to  
PGND), the decoupling of VIN is the most important guideline. Appropriate decoupling and thorough  
layout should ensure that the spikes never exceed 7V across the high-side and low-side FETs.  
6-9 shows a set of guidelines regarding parasitic inductance and resistance that are recommended.  
Parasitic Inductance: < 0.5 nH  
Parasitic resistance: < 2 mΩ  
Parasitic resistance:  
As small as possible for  
the best efficiency  
SMPSx_SW  
SMPSx_IN  
SMPSx_SW  
SMPSx_GND  
Connection to power plane  
Parasitic resistance:  
As small as possible for the  
best efficiency  
For multiple 22-µF  
capacitors, keep the  
parasitic resistance  
< 1 mamong  
Parasitic inductance: < 0.1 nH  
Parasitic resistance: < 1 mΩ  
capacitors  
6-9. Parasitic Inductance and Resistance  
6-3 lists the maximum allowable parasitic (inductance measured at 100 MHz) and the achievable  
values in an optimized layout.  
版权 © 2015–2019, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
79  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6-3. Maximum Allowable Parasitic  
MAXIMUM ALLOWABLE  
MAXIMUM ALLOWABLE  
RESISTANCE  
OPTIMIZED LAYOUT  
(EVM) INDUCTANCE  
OPTIMIZED LAYOUT (EVM)  
RESISTANCE  
CONNECTION  
INDUCTANCE  
N/A for SOA  
N/A for SOA  
PowerPlane to CIN  
N/A  
Maintain a low resistance value for N/A  
efficiency  
Maintain a low resistance  
value for efficiency  
SMPS1  
0.2 nH  
0.2 nH  
0.2 nH  
0.2 nH  
0.2 nH  
0.3 nH  
0.3 nH  
0.4 nH  
0.3 nH  
0.4 nH  
SMPS1  
SMPS2  
SMPS3  
SMPS4  
SMPS5  
SMPS1  
SMPS2  
SMPS3  
SMPS4  
SMPS5  
SMPS1  
SMPS2  
SMPS3  
SMPS4  
SMPS5  
N/A for SOA  
1.1 mΩ  
1.6 mΩ  
1.5 mΩ  
1.8 mΩ  
1.5 mΩ  
0.4 mΩ  
0.4 mΩ  
0.5 mΩ  
0.6 mΩ  
0.5 mΩ  
1 mΩ  
SMPS2  
SMPS3  
SMPS4  
SMPS5  
SMPS1  
SMPS2  
SMPS3  
SMPS4  
SMPS5  
CIN to SMPSx_IN  
0.5 nH  
2 mΩ  
CIN to PGND  
0.5 nH  
2 mΩ  
0.7 mΩ  
1 mΩ  
N/A for SOA  
SMPSx_SW to inductor  
Inductor to COUT  
N/A  
N/A  
Maintain a low resistance value for N/A  
efficiency  
0.7 mΩ  
1.4 mΩ  
N/A for SOA  
Maintain a low resistance value for N/A  
efficiency  
Maintain a low resistance  
value for efficiency  
SMPS1  
0.8 nH  
0.6 nH  
0.5 nH  
0.4 nH  
0.5 nH  
SMPS1  
SMPS2  
SMPS3  
SMPS4  
SMPS5  
0.7 mΩ  
0.8 mΩ  
0.6 mΩ  
0.6 mΩ  
0.5 mΩ  
SMPS2  
SMPS3  
SMPS4  
SMPS5  
Use dedicated GND plane to  
keep inductance low  
COUT to GND  
1 mΩ  
GND (CIN) to GND  
Use dedicated GND plane to  
keep inductance low  
Use dedicated GND plane to  
keep inductance low  
1 mΩ  
mΩ  
(COUT  
)
Texas Instruments recommends measuring the voltages across the high-side FET (voltage at SMPSx_IN  
versus SMPSx_SW) and the low-side FET (SMPSx_SW versus PGND) with a high bandwidth, high  
sampling-rate scope with a low-capacitance probe (ideally a differential probe). Measure the voltages as  
close as possible to the device pins and verify the amplitude of the spikes. A small-loop ground connection  
to PGND is essential.  
When measuring the voltage difference between the SMPSx_IN and SMPSx_SW pins, there should be a  
maximum of 7 V when measuring at the pins. Similarly, when measuring the voltage difference between  
the SMPSx_SW and PGND pins, there should be a maximum of 7 V when measuring at the pins.  
For more information on cursor-positioning, see 6-10 and 6-11.  
80  
Applications, Implementation, and Layout  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
7 V maximum  
SMPSx_IN - SMPSx_SW  
Measure across the high-side FET (SMPSx_IN – SMPSx_SW) as close to the IC as possible. The preferred  
measurement is with a differential probe. The negative side of the probe should be at SMPSx_SW and the positive  
side of the probe should measure SMPSx_IN. As shown in this image, the voltage across the high-side FET should  
not exceed 7 V. Repeat the measurement for all SMPSs in use.  
6-10. Measuring the High-Side FET (Differentially)  
7 V maximum  
SMPSx_SW - SMPSx_GND  
Measure across the low-side FET (SMPSx_SW – GND) as close to the IC as possible. The preferred measurement is  
with a differential probe. The negative side of the probe should be at GND and the positive side of the probe should  
measure SMPSx_SW. As shown in this image, the voltage across the low-side FET should not exceed 7 V.Repeat  
the measurement for all SMPSs in use.  
6-11. Measuring the Low-Side FET (Differentially)  
版权 © 2015–2019, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
81  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.3.2 Layout Example  
See 6-12 and 6-13 for the actual placement and routing on the EVM.  
Input  
Capacitors  
Output  
Capacitors  
Inductors  
6-12. Top Layer Overview of Inductor and Capacitor Placement and Routing of SMPSs  
6-13. Bottom Layer Overview of Capacitor Placement and Routing of LDOs  
6.4 Power Supply Coupling and Bulk Capacitors  
The TPS65917-Q1 device is designed to work with an analog supply-voltage range of 3.135 V to 5.25 V.  
The input supply should be well regulated and connected to the VCCA pin, as well as SMPS and LDO  
input pins with appropriate bypass capacitors as recommended in 6-2. If the input supply is located  
more than a few inches from the TPS65917-Q1 device, additional capacitance may be required in addition  
to the recommended input capacitors at the VCCA pin and the SMPS and LDO input pins.  
82  
Applications, Implementation, and Layout  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
 
 
TPS65917-Q1  
www.ti.com.cn  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
7 器件和文档支持  
7.1 器件支持  
7.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构  
成此类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
7.1.2 器件命名规则  
本数据表使用下列缩略词和术语。有关术语、缩写和定义的详细列表,请参阅TI 术语表》。  
ADC  
APE  
DVS  
GPIO  
LDO  
PM  
模数转换器  
应用处理器引擎  
数字电压调节  
通用输入/输出  
低压降线性稳压器  
电源管理  
PMIC  
PSRR  
RTC  
SMPS  
NA  
电源管理集成电路  
电源抑制比  
实时时钟  
开关模式电源  
不适用  
OTP  
ESR  
PMU  
PFM  
PWM  
SPI  
一次性可编程  
等效串联电阻  
电源管理单元  
脉频调制  
脉宽调制  
串行外设接口  
嵌入式电源控制器  
首次电源检测  
EPC  
FSD  
7.2 文档支持  
7.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《电池供电的汽车类 ADAS 和信息娱乐系统处理器电源参考设计》  
德州仪器 (TI)TPS65903x TPS6591x 器件中的 GPADC 使用指南》  
德州仪器 (TI)《适用于处理器的 TPS65917-Q1 电源管理单元 (PMU) 安全手册》  
德州仪器 (TI)TPS65917-Q1 EVM 用户指南》  
德州仪器 (TI)TPS65917-Q1 寄存器映射》  
德州仪器 (TI)《为 DRA7xx TDA2x/TDA2Ex 供电的 TPS65917-Q1 用户指南》  
德州仪器 (TI)《为 DRA71xDRA79x TDA2E-17 供电的 TPS65919-Q1 TPS65917-Q1 用户指  
南》  
德州仪器 (TI)《为 TDA3x 供电的 TPS65919-Q1 TPS65917-Q1 用户指南》  
7.3 接收文档更新通知  
版权 © 2015–2019, Texas Instruments Incorporated  
器件和文档支持  
83  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
TPS65917-Q1  
ZHCSGJ3D JULY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周  
接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
7.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the  
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;  
see TI's Terms of Use.  
TI E2E™ Online Community The TI engineer-to-engineer (E2E) community was created to foster  
collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge,  
explore ideas and help solve problems with fellow engineers.  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信  
息。  
7.5 商标  
Eco-mode, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
7.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
7.7 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
8 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通  
知,且不会对此文档进行修订。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
84  
机械、封装和可订购信息  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65917-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Feb-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
O917A130TRGZRQ1  
O917A130TRGZTQ1  
O917A131TRGZRQ1  
O917A131TRGZTQ1  
O917A132TRGZRQ1  
O917A132TRGZTQ1  
O917A133TRGZRQ1  
O917A133TRGZTQ1  
O917A14DTRGZRQ1  
O917A14DTRGZTQ1  
O917A14FTRGZRQ1  
O917A14FTRGZTQ1  
O917A151TRGZRQ1  
O917A152TRGZRQ1  
O917A152TRGZTQ1  
O917A154TRGZRQ1  
O917A154TRGZTQ1  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
TPS65917  
OTP 30 1.1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
TPS65917  
OTP 30 1.1  
TPS65917  
OTP 31 1.1  
TPS65917  
OTP 31 1.1  
TPS65917  
OTP 32 1.1  
TPS65917  
OTP 32 1.1  
TPS65917  
OTP 33 1.1  
TPS65917  
OTP 33 1.1  
TPS65917  
OTP 4D 1.1  
TPS65917  
OTP 4D 1.1  
TPS65917  
OTP 4F 1.1  
TPS65917  
OTP 4F 1.1  
2500 RoHS & Green  
2500 RoHS & Green  
TPS65917  
OTP 51 1.1  
TPS65917  
OTP 52 1.1  
250  
RoHS & Green  
TPS65917  
OTP 52 1.1  
2500 RoHS & Green  
TPS65917  
OTP 54 1.1  
250  
RoHS & Green  
TPS65917  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Feb-2022  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OTP 54 1.1  
O917A186TRGZRQ1  
ACTIVE  
VQFN  
RGZ  
48  
2500 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 105  
TPS65917  
OTP 86 1.1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
O917A130TRGZRQ1  
O917A130TRGZTQ1  
O917A131TRGZRQ1  
O917A131TRGZTQ1  
O917A132TRGZRQ1  
O917A132TRGZTQ1  
O917A133TRGZRQ1  
O917A133TRGZTQ1  
O917A14DTRGZRQ1  
O917A14DTRGZTQ1  
O917A14FTRGZRQ1  
O917A14FTRGZTQ1  
O917A151TRGZRQ1  
O917A152TRGZRQ1  
O917A152TRGZTQ1  
O917A154TRGZRQ1  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
2500  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
2500  
250  
2500  
250  
2500  
250  
2500  
250  
2500  
250  
2500  
2500  
250  
2500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
O917A154TRGZTQ1  
O917A186TRGZRQ1  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
250  
180.0  
330.0  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
O917A130TRGZRQ1  
O917A130TRGZTQ1  
O917A131TRGZRQ1  
O917A131TRGZTQ1  
O917A132TRGZRQ1  
O917A132TRGZTQ1  
O917A133TRGZRQ1  
O917A133TRGZTQ1  
O917A14DTRGZRQ1  
O917A14DTRGZTQ1  
O917A14FTRGZRQ1  
O917A14FTRGZTQ1  
O917A151TRGZRQ1  
O917A152TRGZRQ1  
O917A152TRGZTQ1  
O917A154TRGZRQ1  
O917A154TRGZTQ1  
O917A186TRGZRQ1  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
2500  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
367.0  
210.0  
367.0  
210.0  
367.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
367.0  
185.0  
367.0  
185.0  
367.0  
38.0  
35.0  
38.0  
35.0  
38.0  
35.0  
38.0  
35.0  
38.0  
35.0  
38.0  
35.0  
38.0  
38.0  
35.0  
38.0  
35.0  
35.0  
2500  
250  
2500  
250  
2500  
250  
2500  
250  
2500  
250  
2500  
2500  
250  
2500  
250  
2500  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
RGZ0048D  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
9
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
7.1  
6.9  
A
B
0.5  
0.3  
PIN 1 INDEX AREA  
7.1  
6.9  
0.30  
0.18  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
5.6 0.1  
2X 5.5  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
EXPOSED  
THERMAL PAD  
2X  
49  
SYMM  
5.5  
SEE TERMINAL  
DETAIL  
1
36  
0.30  
48X  
0.18  
37  
48  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.1  
C A B  
0.5  
0.3  
48X  
0.05  
4219046/B 11/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGZ0048D  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
5.6)  
SYMM  
48  
37  
48X (0.6)  
1
36  
48X (0.24)  
6X  
(1.22)  
44X (0.5)  
SYMM  
10X  
(1.33)  
49  
(6.8)  
(R0.05)  
TYP  
(
0.2) TYP  
VIA  
25  
12  
13  
24  
10X (1.33)  
6X (1.22)  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219046/B 11/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGZ0048D  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.665 TYP)  
(1.33) TYP  
16X ( 1.13)  
37  
48  
48X (0.6)  
49  
36  
1
48X (0.24)  
44X (0.5)  
(1.33)  
TYP  
(0.665)  
TYP  
SYMM  
(6.8)  
(R0.05) TYP  
25  
12  
METAL  
TYP  
13  
24  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49  
66% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:15X  
4219046/B 11/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY