ONET1131ECRSMR [TI]

具有集成时钟和数据恢复 (CDR) 功能的外部调制激光驱动器 | RSM | 32 | -40 to 100;
ONET1131ECRSMR
型号: ONET1131ECRSMR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成时钟和数据恢复 (CDR) 功能的外部调制激光驱动器 | RSM | 32 | -40 to 100

时钟 ATM 异步传输模式 驱动 CD 电信 电信集成电路 驱动器
文件: 总50页 (文件大小:2396K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
ONET1131EC 集成时钟和数据恢复 (CDR) 功能的  
外部调制激光器驱动器  
1 特性  
2 应用  
1
集成调制器驱动器,其最小输出幅值最高可达 2  
Vpp(单端),偏置电流最高可达 150mA(拉电  
流)。  
10Gbps 无源光纤网络 (PON)、针对 FTTx 部署的  
光线路终端 (OLT) 收发器  
XFP SFP+ 10Gbps 同步光纤网络 (SONET)  
OC-192 光学收发器  
支持外部调制激光器,包括电吸收调制器激光器  
(EML) 和基于 Mach-Zahnder 调制器 (MZM) 的激  
光器。  
XFP SFP+ 10GBASE-ER/ZR 光学收发器  
8x 10x 光纤通道光学收发器  
集成 CDR 功能,支持 9.80Gbps 11.7Gbps 无  
参考运行  
3 说明  
集成数模转换器 (DAC) 和模数转换器 (ADC) 的双  
线制数字接口,可实现控制和诊断管理  
ONET1131EC 是一款 2.5V EML 调制器驱动器,支持  
发送时钟和数据恢复 (CDR) 功能,无需基准时钟即可  
9.8Gbps 11.7Gbps 范围内运行。该器件在 CDR  
旁路模式下能够以较低数据速率运行,其双线制串行接  
口支持针对 多项功能 (如输出极性选择和输入均衡)  
进行数字控制。  
输出极性选择  
用于调节 CDR 带宽的可编程抖动传输带宽  
CDR 旁路模式,支持以低数据速率运行  
具有可选监视器光电二极管 (PD) 范围的自动功率  
控制 (APC) 回路  
发送路径由 1 个可调节输入均衡器(可均衡长达  
300mm  
可编程发送输入均衡器  
发送器交叉点调节和去加重功能  
包括激光安全 特性  
12 英寸)FR4 印刷电路板微带或带状传输线)、1  
个多速率 CDR 1 个输出调制器驱动器组成。该器件  
以交叉点调节和去加重的形式提供输出波形控制,从而  
增加光学眼图波罩裕度。该器件提供激光器偏置电流并  
集成自动功率控制 (APC) 回路,以补偿平均光学功率  
随电压、温度和时间的变化。  
电源监视器和温度传感器  
2.5V 单电源  
工作温度范围:-40°C 100°C  
表面贴装 4mm x 4mm 32 引脚四方扁平无引线  
(QFN) 封装(间距为 0.4mm)  
ONET1131EC 内置模数转换器和数模转换器,支持管  
理收发器,无需使用专用微控制器。  
器件信息(1)  
器件型号  
封装  
VQFN (32)  
封装尺寸(标称值)  
ONET1131EC  
4.00mm x 4.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
简化框图  
Optical Module  
n-bit  
parallel  
data  
5ata  
59-  
ꢀÜó  
PD  
DEMUX  
+ Optical  
CDR  
t!  
ÇL!  
/lock  
/lock  
Optical Transceiver  
wh{!  
hptical Ciber  
n-bit  
parallel  
data  
Laser + Optical  
MUX  
EQ  
CDR  
[5  
5ata  
ꢀÜó  
/lock  
/lock  
ONET1131EC  
Çh{!  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEQ6  
 
 
 
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 16  
7.4 Device Functional Modes........................................ 21  
7.5 Programming .......................................................... 21  
7.6 Register Mapping.................................................... 22  
Application Information and Implementations . 36  
8.1 Application Information............................................ 36  
8.2 Typical Application, Transmitter Differential Mode.. 36  
Power Supply Recommendations...................... 40  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Function........................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ..................................... 5  
6.2 ESD Ratings ............................................................ 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 DC Electrical Characteristics .................................... 6  
6.6 AC Electrical Characteristics..................................... 8  
6.7 Timing Requirements................................................ 9  
6.8 Timing Diagram Definitions..................................... 10  
6.9 Typical Characteristics............................................ 11  
Detailed Description ............................................ 15  
7.1 Overview ................................................................. 15  
7.2 Functional Block Diagram ....................................... 15  
8
9
10 Layout................................................................... 41  
10.1 Layout Guidelines ................................................. 41  
10.2 Layout Example .................................................... 41  
11 器件和文档支持 ..................................................... 42  
11.1 接收文档更新通知 ................................................. 42  
11.2 社区资源................................................................ 42  
11.3 ....................................................................... 42  
11.4 静电放电警告......................................................... 42  
11.5 Glossary................................................................ 42  
12 机械、封装和可订购信息....................................... 42  
7
4 修订历史记录  
日期  
修订版本  
注释  
2016 9 月  
*
首次发布。  
2
Copyright © 2016, Texas Instruments Incorporated  
 
ONET1131EC  
www.ti.com.cn  
ZHCSFG0 SEPTEMBER 2016  
5 Pin Configuration and Function  
The ONET1131EC is packaged in a small footprint 4 mm x 4 mm 32 pin RoHS compliant QFN package with a  
lead pitch of 0.4 mm.  
RSM Package  
32 PIN VQFN  
(Top View)  
32 31 30 29 28 27 26 25  
NC  
24  
23  
LOL  
MONB  
GND  
1
2
COMP  
22 GND  
3
4
NC  
21  
DIN+  
DIN-  
20 NC  
5
6
GND  
PD  
19 GND  
SCK  
SDA  
18  
17  
7
8
MONP  
9
10 11 12 13 14 15 16  
Pin Functions  
NUMBER  
LOL  
NAME  
Type  
DESCRIPTION  
Loss of lock indicator. High level indicates the transmitter CDR is out of lock. Open  
drain output. Requires an external 4.7 kΩ to 10 kΩ pull-up resistor to VCC for proper  
operation. This pin is 3.3 V tolerant.  
1
Digital-out  
MONB  
GND  
2
Analog-out  
Supply  
Bias current monitor.  
Circuit ground.  
3, 6, 19, 22  
4
Non-inverted transmitter data input. On-chip differentially 100 Ω terminated to TXIN–.  
Must be AC coupled.  
DIN+  
DIN–  
Analog-in  
Analog-in  
Inverted transmitter data input. On-chip differentially 100 Ω terminated to TXIN+. Must  
be AC coupled.  
5
PD  
7
Analog  
Analog-out  
Analog-in  
Analog  
Photodiode input. Pin can source or sink current dependent on register setting.  
Photodiode current monitor.  
MONP  
LF  
8
9
10  
Transmitter loop filter capacitor.  
BIAS  
VCC  
Sinks or sources the bias current for the laser in both APC and open loop modes.  
2.5 V ± 5% supply.  
11, 14, 27, 30  
Supply  
Inverted transmitter data output. Internally terminated in single-ended operation  
mode.  
OUT–  
12  
CML-out  
OUT+  
VDD  
13  
15  
CML-out  
Supply  
Non-Inverted transmitter data output.  
2.5 V ± 5% supply for the digital circuitry.  
Output amplitude control. Output amplitude can be adjusted by applying a voltage of  
0 to 2 V to this pin. Leave open when not used.  
AMP  
16  
Analog-in  
Copyright © 2016, Texas Instruments Incorporated  
3
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
Pin Functions (continued)  
NUMBER  
SDA  
NAME  
Type  
DESCRIPTION  
2-wire interface serial data input. Requires an external 4.7-kΩ to10-kΩ pull-up resistor  
17  
18  
Digital-in/out  
to VCC. This pin is 3.3-V tolerant.  
2-wire interface serial clock input. Requires an external 4.7-kΩ to10-kΩ pull-up  
resistor to VCC. This pin is 3.3-V tolerant.  
SCK  
NC  
Digital-in  
20, 21, 24, 25,  
26, 28, 29  
Do not connect  
Compensation pin used to control the bandwidth of the APC loop. Connect a 0.01-µF  
capacitor to ground.  
COMP  
23  
Analog  
Transmitter fault detection flag. High level indicates that a fault has occurred. Open  
drain output. Requires an external 4.7 kΩ to 10 kΩ pull-up resistor to VCC for proper  
operation. This pin is 3.3-V tolerant.  
FLT  
DIS  
31  
Digital-out  
Disables the bias current when set to high state. Includes a 250-kΩ pull-up resistor to  
VCC. Requires an external 4.7 kΩ to 10 kΩ pull-up resistor to VCC for proper  
operation Toggle to reset a fault condition. This is an ORed function with the  
TXBIASEN bit (bit 2 in register 1). This pin is 3.3-V tolerant.  
32  
Digital-in  
4
Copyright © 2016, Texas Instruments Incorporated  
ONET1131EC  
www.ti.com.cn  
ZHCSFG0 SEPTEMBER 2016  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)(2)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.5  
–0.5  
MAX  
3
UNIT  
V
Supply voltage  
Voltage  
at VCC, VDD  
at 3.3-V tolerant pins LOL, SDA, SCK, FLT, DIS  
3.6  
V
at all other pins MONB, DIN+, DIN–, PD, MONP, LF, BIAS,  
OUT–, OUT+, AMP, COMP  
–0.5  
3
V
Maximum current at transmitter input pins DIN+, DIN–  
10  
mA  
mA  
Maximum current at transmitter output  
OUT+, OUT–  
125  
pins  
Maximum junction temperature, TJ  
Storage temperature, Tstg  
125  
150  
°C  
°C  
–65  
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
UNIT  
Electrostatic  
discharge  
V(ESD)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.37  
2
TYP  
MAX  
UNIT  
VCC  
VIH  
VIL  
Supply Voltage  
2.5  
2.63  
V
V
V
Digital input high voltage  
Digital input low voltage  
DIS, SCK, SDA, 3.3-V tolerant IOs  
0.8  
Control bit TXPDRNG = 1x, step size = 3 µA  
Control bit TXPDRNG = 01, step size = 1.5 µA  
Control bit TXPDRNG = 00, step size = 0.75 µA  
TXCDR_DIS = 0  
3080  
1540  
770  
Photodiode current range  
µA  
9.8  
1
11.7  
11.7  
2
Serial Data rate  
Gbps  
TXCDR_DIS = 1  
VAMP  
tR(IN)  
Amplitude control input voltage range  
0
V
Input rise time  
20%–80%  
20%–80%  
30  
30  
45  
ps  
ps  
°C  
tF(IN  
)
Input fall time  
45  
TC  
Temperature at thermal pad  
–40  
100  
Copyright © 2016, Texas Instruments Incorporated  
5
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
UNIT  
6.4 Thermal Information  
RSM (VQFN)  
32 PINS  
37.2  
THERMAL METRIC(1)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
30.1  
7.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
7.6  
RθJCbot  
2.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 DC Electrical Characteristics  
Over recommended operating conditions, open loop operation, VOUT = 2 VPP single-ended, I(BIAS) = 80 mA, unless otherwise  
noted. Typical operating condition is at VCC = 2.5 V and TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCC  
Supply voltage  
2.37  
2.5  
2.63  
V
Supply current in single-ended TX  
mode with CDRs enabled  
158  
380  
197  
493  
119  
298  
164  
193  
508  
237  
623  
193  
376  
200  
526  
mA  
mW  
mA  
mW  
mA  
mW  
mA  
TXMODE = 1, TXCDR_DIS = 0, TX VOUT = 2  
VPP single-ended, I(BIAS) = 0 mA  
Power dissipation in single-ended TX  
mode with CDRs enabled  
Supply current in differential TX mode  
with CDRs enabled  
TXMODE = 0, TXCDR_DIS = 0, TX VOUT = 2  
VPP single-ended, I(BIAS) = 0 mA  
Power dissipation in differential TX  
mode with CDRs enabled  
IVCC  
Supply current in single-ended TX  
mode with CDRs disabled  
TXMODE = 1, TXCDR_DIS = 1, TX VOUT = 2  
VPP single-ended, I(BIAS) = 0 mA  
Power dissipation in single-ended TX  
mode with CDRs disabled  
Supply current in differential TX mode  
with CDRs disabled  
TXMODE = 0, TXCDR_DIS = 1, TX VOUT = 2  
VPP single-ended, I(BIAS) = 0 mA;  
Power dissipation in differential TX  
mode with CDRs disabled  
410  
100  
mW  
R(IN)  
Data input resistance  
Data input termination mismatch  
Ooutput resistance  
Differential between DIN+ / DIN–  
Ω
5%  
20  
R(OUT)  
Single-ended at OUT+ or OUT–  
DIS pull up to VCC  
60  
Ω
Digital input current  
–20  
2.1  
µA  
LOL, FLT pull-up to VCC  
,
VOH  
Digital output high voltage  
V
ISOURCE = 37.5 μA  
LOL, FLT pull-up to VCC  
ISINK = 350 μA  
,
VOL  
Digital output low voltage  
Minimum bias current  
0.4  
5
V
(1)  
I(BIAS-MIN)  
See  
mA  
mA  
Source. BIASPOL = 0, DAC set to maximum,  
open and closed loop  
145  
95  
150  
100  
I(BIAS-MAX)  
Maximum bias current  
Sink. BIASPOL = 1, DAC set to maximum,  
open and closed loop  
mA  
I(BIAS-DIS)  
Bias current during disable  
Average power stability  
100  
µA  
dB  
V
APC loop enabled  
±0.5  
±3  
Source. TXBIASPOL = 0  
Sink. TXBIASPOL = 1  
VCC - 0.45  
Bias pin compliance voltage  
Temperature sensor accuracy  
0.45  
V
With 1-point external mid-scale calibration  
°C  
(1) The bias current can be set below the specified minimum according to the corresponding register setting; however, in closed loop  
operation settings below the specified value may trigger a fault.  
6
Copyright © 2016, Texas Instruments Incorporated  
ONET1131EC  
www.ti.com.cn  
ZHCSFG0 SEPTEMBER 2016  
DC Electrical Characteristics (continued)  
Over recommended operating conditions, open loop operation, VOUT = 2 VPP single-ended, I(BIAS) = 80 mA, unless otherwise  
noted. Typical operating condition is at VCC = 2.5 V and TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Photodiode reverse bias voltage  
Photodiode fault current level  
APC active, I(PD) = 1500 μA  
1.3  
2.3  
V
(2)  
Percent of target I(PD)  
150%  
12.5%  
25%  
V(PD)  
I(MONP) / I(PD) with control bit PDRNG = 1X  
I(MONP) / I(PD) with control bit PDRNG = 01  
I(MONP) / I(PD) with control bit TXPDRNG = 00  
With external mid-scale calibration  
10%  
20%  
15%  
30%  
60%  
15%  
Photodiode current monitor ratio  
40%  
50%  
Monitor diode DMI accuracy  
Bias current monitor ratio  
–15%  
I(MONB) / I(BIAS) (nominal 1/100 = 1%), V(MONB)  
< 1.5V  
0.9%  
1%  
1..1%  
Bias current DMI accuracy  
I
(BIAS) 20 mA  
–15%  
–2%  
15%  
2%  
Power supply monitor accuracy  
With external mid-scale calibration  
VCC voltage level which triggers power-on  
reset  
VCC(RST)  
VCC reset threshold voltage  
VCC reset threshold voltage hysteresis  
Fault voltage at MONB  
1.8  
100  
1.2  
2.1  
V
mV  
V
VCC(RSTHYS)  
V(MONB-FLT)  
TXFLTEN = 1, TXDMONB = 0, Fault occurs  
if voltage at MONB exceeds this value  
1.15  
1.15  
1.25  
1.25  
TXFLTEN = 1, TXMONPFLT = 1, TXDMONP  
= 0, Fault occurs if voltage at MONP  
exceeds this value  
V(MONP-FLT)  
Fault voltage at MONP  
1.2  
V
(2) Specified by design over process, supply and temperature variation  
Copyright © 2016, Texas Instruments Incorporated  
7
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
6.6 AC Electrical Characteristics  
Over recommended operating conditions, open loop operation, VOUT = 2 VPP single-ended, I(BIAS) = 80 mA unless otherwise  
noted. Typical operating condition is at VCC = 2.5 V and TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Gbps  
dB  
TX INPUT SPECIFICATIONS  
CDR lock range  
CPRI, Ethernet, SONET, Fibre Channel  
0.05 GHz < f 0.1 GHz  
0.1 GHz < f 5.5 GHz  
9.80  
20  
12  
8
11.7  
SDD11  
Differential input return loss  
15  
15  
5.5 GHz < f < 12 GHz  
SDD11  
SDD11  
Differential to common mode conversion  
Common mode input return loss  
Input AC common mode voltage tolerance  
Total Non-DDJ  
0.1 GHz < f < 12 GHz  
10  
3
dB  
dB  
0.1 GHz < f < 12 GHz  
15  
mV  
Total jitter less ISI  
0.45  
0.65  
UIPP  
UIPP  
UIPP  
mVPP  
dB  
T(JTX)  
S(JTX)  
VIN  
Total Jitter  
Sinusoidal Jitter Tolerance  
Differential input voltage swing  
EQ high freq boost  
With addition of input jitter, See Figure 1  
Maximum setting; 7 GHz  
100  
6
1000  
EQ(boost)  
9
TX OUTPUT SPECIFICATIONS  
Differential output return loss  
Minimum output amplitude  
0.01 GHz < f < 12 GHz  
12  
dB  
VO(MIN)  
AC Coupled Outputs, 50-Ω single-ended load  
0.5  
VPP  
TX OUTPUT SPECIFICATIONS in SINGLE-ENDED MODE of OPERATION (TXMODE = 1)  
VO(MAX)  
Maximum output amplitude  
Output amplitude stability  
High Cross Point Control Range  
Low Cross Point Control Range  
Cross Point Stability  
AC Coupled Outputs, 50-Ω load, single-ended  
AC Coupled Outputs, 50-Ω load, single-ended  
50-Ω load, single-ended  
2
70%  
-5  
VPP  
230  
75%  
35%  
mVPP  
50-Ω load, single-ended  
40%  
5
50-Ω load, single-ended  
pp  
dB  
TXDEADJ[0..3] = 1111, TXPKSEL = 0  
TXDEADJ[0..3] = 1111, TXPKSEL = 1  
5
6
Output de-emphasis  
TX OUTPUT SPECIFICATIONS in DIFFERENTIAL MODE of OPERATION (TXMODE = 0)  
VO(MAX)  
Maximum output amplitude  
Output amplitude stability  
High Cross Point Control Range  
Low Cross Point Control Range  
Cross Point Stability  
AC Coupled Outputs, 100-Ω differential load  
AC Coupled Outputs, 100-Ω differential load  
100-Ω differential load  
3.6  
65%  
–5  
VPP  
230  
75%  
35%  
mVPP  
100-Ω differential load  
40%  
5
100-Ω differential load  
pp  
dB  
TXDEADJ[0..3] = 1111, TXPKSEL = 0  
TXDEADJ[0..3] = 1111, TXPKSEL = 1  
5
6
Output de-emphasis  
CDR SPECIFICATIONS  
BW(TX)  
J(PTX)  
Jitter Transfer Bandwidth  
9.95 Gbps, PRBS31  
8
1
MHz  
dB  
Jitter Peaking  
> 120 kHz  
JGEN(rms)  
JGEN(PP)  
Random RMS jitter generation  
Total jitter generation  
Clock pattern, 50 kHz to 80 MHz  
Clock pattern, 50 kHz to 80 MHz, BER = 10-12  
6
mUIrms  
mUIPP  
60  
8
Copyright © 2016, Texas Instruments Incorporated  
ONET1131EC  
www.ti.com.cn  
ZHCSFG0 SEPTEMBER 2016  
6.7 Timing Requirements  
Over recommended operating conditions, typical operating condition is at VCC = 2.5 V and TA = 25°C  
MIN  
TYP  
50  
MAX  
UNIT  
CAPC 0.01 µF, IPD = 500 µA, PD coupling ratio CR = 150,  
PDRNG = 01  
t(APC)  
APC time constant  
µs  
t(INIT1)  
t(INIT2)  
t(OFF)  
Power-on to initialize  
Initialize to transmit  
Transmitter disable time  
Disable negate time  
DIS pulse width  
Power-on to registers ready to be loaded  
Register load STOP command to part ready to transmit valid data  
Rising edge of DIS to I(BIAS) 0.1 × I(BIAS-NOMINAL)  
Falling edge of DIS to I(BIAS) 0.9 × I(BIAS-NOMINAL)  
Time DIS must held high to reset part  
0.2  
1
2
5
1
ms  
ms  
µs  
1
t(ON)  
ms  
ns  
t(RESET)  
t(FAULT)  
100  
Fault assert time  
Time from fault condition to FLT high  
50  
µs  
OUTPUT SPECIFICATIONS in SINGLE-ENDED MODE of OPERATION (TXMODE = 1)  
tR(OUTTX)  
tF(OUTTX)  
Output rise time  
Output fall time  
20% - 80%, AC Coupled Outputs, 50-Ω load, single-ended  
20% - 80%, AC Coupled Outputs, 50-Ω load, single-ended  
30  
30  
42  
42  
ps  
ps  
TXEQ_DIS = 1, 11.3 Gbps, PRBS9 pattern, 150-mVpp,  
600-mVpp, 1200-mVpp differential input voltage  
4
7
12  
ISI(TX)  
Intersymbol interference  
ps  
TXEQ_DIS = 0, 11.3 Gbps, PRBS9 pattern, 150-mVpp,  
600-mVpp, 1200-mVpp differential input voltage, maximum  
equalization with 18-inch transmission line at the input.  
Serial data output random  
jitter  
R(JTX)  
0.4  
0.75  
psRMS  
ps  
TXPKSEL = 0  
TXPKSEL = 1  
28  
35  
Output de-emphasis width  
OUTPUT SPECIFICATIONS in DIFFERENTIAL MODE of OPERATION (TXMODE = 0)  
tR(OUTTX)  
tF(OUTTX)  
Output rise time  
Output fall time  
20%–80%, AC Coupled Outputs, 100-Ω differential load  
20%–80%, AC Coupled Outputs, 100-Ω differential load  
30  
30  
42  
42  
ps  
ps  
TXEQ_DIS = 1, 11.3 Gbps, PRBS9 pattern, 150-mVpp,  
600-mVpp, 1200-mVpp differential input voltage  
4
7
10  
ISI(TX)  
Intersymbol interference  
ps  
TXEQ_DIS = 0, 11.3 Gbps, PRBS9 pattern, 150-mVpp,  
600-mVpp, 1200-mVpp differential input voltage, maximum  
equalization with 18-inch transmission line at the input.  
Serial data output random  
jitter  
R(JTX)  
0.4  
0.75  
psRMS  
ps  
TXPKSEL = 0  
TXPKSEL = 1  
28  
35  
Output Peaking Width  
CDR SPECIFICATIONS  
t(Lock,TX) CDR Acquisition time  
LOL assert time  
2
ms  
500  
μs  
Copyright © 2016, Texas Instruments Incorporated  
9
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
Figure 1. Input Sinusoidal Jitter Tolerance (INF-8077i Rev. 4.5 XFP MSA)  
SDA  
SCK  
tBUFœ  
tLOW  
tf  
tHDSTA  
tr  
tHIGH  
P
S
S
P
tHDDAT  
tSUDAT  
tHDSTA  
tSUSTA  
tSUSTO  
Figure 2. 2-Wire Interface Diagram  
6.8 Timing Diagram Definitions  
MIN  
TYP  
MAX  
UNIT  
kHz  
µs  
fSCK  
SCK clock frequency  
400  
tBUF  
Bus free time between START and STOP conditions  
1.3  
0.6  
tHDSTA  
Hold time after repeated START condition. After this period, the first  
clock pulse is generated  
µs  
tLOW  
tHIGH  
tSUSTA  
tHDDAT  
tSUDAT  
tR  
Low period of the SCK clock  
High period of the SCK clock  
Setup time for a repeated START condition  
Data HOLD time  
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
Data setup time  
100  
Rise time of both SDA and SCK signals  
Fall time of both SDA and SCK signals  
Setup time for STOP condition  
300  
300  
tF  
tSUSTO  
0.6  
10  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ONET1131EC  
www.ti.com.cn  
ZHCSFG0 SEPTEMBER 2016  
6.9 Typical Characteristics  
Typical operating condition is at VCC = 2.5 V, TA = 25°C, VOUT = 2 VPP Single-ended, DIN = 600 mVPP differential, CDR  
enabled (unless otherwise noted).  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
0
20  
40  
60  
80 100 120 140 160 180 200  
0
20  
40  
60  
80 100 120 140 160 180 200  
TXMOD Register 12 Setting (Decimal)  
TXMOD Register 12 Setting (Decimal)  
D010  
D011  
TXMODE = 0  
TXMODE = 1  
Figure 3. Deterministic Jitter vs Modulation Current  
Figure 4. Deterministic Jitter vs Modulation Current  
8
6
4
2
0
8
6
4
2
0
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Free-Air Temperature (°C)  
Free-Air Temperature (°C)  
D012  
D013  
TXMODE = 0  
Figure 5. Deterministic Jitter vs Temperature  
TXMODE = 1  
Figure 6. Deterministic Jitter vs Temperature  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
20 40 60 80 100 120 140 160 180 200 220  
Modulation Current Register Setting (Decimal)  
-40  
-20  
0
20  
40  
60  
80  
100  
Free-Air Temperature (°C)  
D014  
D015  
TXMODE = 1  
Figure 7. Random Jitter vs Modulation Current  
TXMODE = 1  
Figure 8. Random Jitter vs Temperature  
Copyright © 2016, Texas Instruments Incorporated  
11  
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
Typical operating condition is at VCC = 2.5 V, TA = 25°C, VOUT = 2 VPP Single-ended, DIN = 600 mVPP differential, CDR  
enabled (unless otherwise noted).  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
Rise Time  
Fall Time  
Rise Time  
Fall Time  
0
0
0
20 40 60 80 100 120 140 160 180 200 220  
TXMOD Register 12 Setting - Decimal  
-40  
-20  
0
20  
40  
60  
80  
100  
Free-Air Temperature (°C)  
D016  
D017  
TXMODE = 1  
TXMODE = 1  
Figure 9. Rise-Time and Fall-Time vs Modulation Current  
Figure 10. Rise-Time and Fall-Time vs Temperature  
180  
180  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
0
200  
400  
600  
800  
1000  
1200  
0
200  
400  
600  
800  
1000  
1200  
TXBIAS Register 15 and 16 Setting (Decimal)  
TXBIAS Register 15 and 16 Setting (Decimal)  
D018  
D019  
Figure 11. Source Bias Current in Open Loop Mode vs Bias  
Register Setting  
Figure 12. Sink Bias Current in Open Loop Mode vs Bias  
Register Setting  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0
20  
40  
60  
80  
100 120 140 160 180  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Photodiode Current (mA)  
1
Bias Current (mA)  
D020  
D021  
TXPDRNG[0..1] = 00  
Figure 13. Bias-Monitor Current I(MONB) vs Bias Current  
Figure 14. Photodiode-Monitor Current I(MONP) vs PD Current  
12  
Copyright © 2016, Texas Instruments Incorporated  
ONET1131EC  
www.ti.com.cn  
ZHCSFG0 SEPTEMBER 2016  
Typical Characteristics (continued)  
Typical operating condition is at VCC = 2.5 V, TA = 25°C, VOUT = 2 VPP Single-ended, DIN = 600 mVPP differential, CDR  
enabled (unless otherwise noted).  
4.5  
2.5  
4
2
3.5  
3
1.5  
1
2.5  
2
1.5  
1
0.5  
0
0.5  
0
0
20 40 60 80 100 120 140 160 180 200 220  
TXMOD Register 12 Setting (Decimal)  
0
20 40 60 80 100 120 140 160 180 200 220  
TXMOD Register 12 Setting (Decimal)  
D022  
D023  
TXMODE = 0  
TXMODE = 1  
Figure 15. Output Voltage vs Modulation Current  
Figure 16. Output Voltage vs Modulation Current  
300  
290  
280  
270  
260  
250  
240  
230  
220  
260  
250  
240  
230  
220  
210  
200  
190  
180  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Free Air Temperature (°C  
Free Air Temperature (°C)  
D024  
D025  
TXMODE = 0  
Bias Current = 0  
TXMODE = 1  
Bias Current = 0  
Figure 17. Supply Current vs Temperature  
Figure 18. Supply Current vs Temperature  
180  
160  
140  
120  
100  
80  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
60  
40  
20  
0
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
TXBMF Register 17 Setting (Decimal)  
TXPMF Register 18 Setting (Decimal)  
D026  
D027  
Figure 19. Bias Current Monitor Fault vs TXBMF Register  
Setting  
Figure 20. Photodiode Current Monitor Fault vs TXPMF  
Register Setting  
Copyright © 2016, Texas Instruments Incorporated  
13  
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
Typical operating condition is at VCC = 2.5 V, TA = 25°C, VOUT = 2 VPP Single-ended, DIN = 600 mVPP differential, CDR  
enabled (unless otherwise noted).  
TXMODE = 0  
15 ps/Div  
TXMODE = 1  
15 ps/Div  
Figure 21. Eye-Diagram at 11.3 Gbps  
Figure 22. Eye-Diagram at 11.3 Gbps  
14  
Copyright © 2016, Texas Instruments Incorporated  
ONET1131EC  
www.ti.com.cn  
ZHCSFG0 SEPTEMBER 2016  
7 Detailed Description  
7.1 Overview  
A simplified block diagram of the ONET1131EC is shown in Functional Block Diagram.  
The ONET1131EC consists of a transmitter path, an analog reference block, an analog to digital converter, and a  
2-wire serial interface and control logic block with power-on reset.  
The transmit path consists of an adjustable input equalizer, a multi-rate CDR and an output modulator driver. The  
output driver provides a differential output voltage but can be operated in a single-ended mode to reduce the  
power consumption. Output waveform control, in the form of cross-point adjustment and de-emphasis are  
available to improve the optical eye mask margin. Bias current for the laser is provided and an integrated  
automatic power control (APC) loop to compensate for variations in average optical power over voltage,  
temperature and time is included.  
The ONET1131EC contains an analog to digital converter to support transceiver digital diagnostics and can  
report the supply voltage, laser bias current, laser photodiode current and internal temperature.  
The 2-wire serial interface is used to control the operation of the device and read the status of the control  
registers.  
7.2 Functional Block Diagram  
ë//  
aodulꢀtor  
5river  
60  
60ꢀ  
hÜÇ+  
hÜÇ-  
[C  
5Lb+  
5Lb-  
Referenceless  
CDR and  
Retimer  
Equalizer  
100ꢀ  
!at  
!at  
aodulꢀtion  
ꢀnd .iꢀs  
/urrent  
Denerꢀtor &  
!ꢁ/  
.L!{  
C[Ç  
.L!{  
C[Ç  
t5  
/5w_/Çw[  
2-íire Lnterfꢀce &  
/ontrol [ogic  
ë55  
t5  
/hat  
ahb.  
/hat  
ahb.  
ahbt  
99ꢁwha  
ahb.  
ahbt  
ahbt  
[h[  
ꢁoꢂer-hn  
weset  
.ꢀnd-Dꢀp, !nꢀlog  
!nꢀlog to  
5igitꢀl  
/onversion  
weferences, ꢁoꢂer {upply  
aonitor & Çemperꢀture  
{ensor  
t{a  
Ç{  
{/Y  
{5!  
[h[  
DIS  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
15  
 
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Equalizer  
The data signal is applied to an input equalizer by means of the input signal pins DIN+ / DIN–, which provide on-  
chip differential 100-Ω line termination. The equalizer is enabled by default and can be disabled by setting the  
transmitter equalizer disable bit TXEQ_DIS = 1 (bit 1 of register 10). Equalization of up to 300 mm (12 inches) of  
microstrip or stripline transmission line on FR4 printed circuit boards can be achieved. The amount of  
equalization is set through register settings TXCTLE [0..3] (register 11). The device can accept input amplitude  
levels from 100 mVpp up to 1000 mVpp.  
7.3.2 CDR  
The clock and data recovery function consists of a Phase-Locked Loop (PLL) and retimer. The CDR can be  
operated without a reference clock and the Voltage Controlled Oscillator (VCO) can cover 9.8 Gbps to 11.7 Gbps  
data rates. The PLL is phase locked to the incoming data stream and attenuates the high frequency jitter on the  
data, producing a recovered clean clock with substantially reduced jitter. An external capacitor for the PLL loop  
filter is connected to the LF pin. A value of 2.2 nF is recommended. The clean clock is used to retime the  
incoming data, producing an output signal with reduced jitter, and in effect, resetting the jitter budget for the  
transmitter.  
The CDR is enabled by default. The CDR can be disabled and bypassed by setting the transmitter CDR disable  
bit TXCDR_DIS = 1 (bit 4 of register 10). Alternatively, the CDR can be left powered on but bypassed by setting  
the transmitter CDR bypass bit TX_CDRBP = 1 (bit 3 of register 10); however, this function only works if the  
receiver CDR bypass bit RX_CDRBP (bit 3 of register 4) is also set to 1.  
The CDR is designed to meet the XFP Datacom requirements and Telecom requirements for a maximum of 1-dB  
jitter peaking at a frequency greater than 120 kHz. The CDR is not designed to meet the Telecom regenerator  
requirements of jitter peaking less than 0.03 dB at a frequency less than 120 kHz. The default CDR bandwidth is  
typically 4.5 MHz and can be adjusted using the SEL_RES[0..2] bits (bits 5 to 7 of register 51). Adjusting these  
bits changes the bandwidth of both the transmitter and receiver CDRs.  
For the majority of applications, the default settings in register 19 for the transmitter CDR can be used. However,  
for some applications or for test purposes, some modes of operation may be useful. The frequency detector for  
the PLL is set to an automatic mode of operation by default. When a signal is applied to the transmitter input the  
frequency detector search algorithm will be initiated to determine the frequency of the data. The default algorithm  
ensures a fast CDR lock time of less than 2 ms. The fast lock can be disabled by setting the transmitter CDR fast  
lock disable bit TXFL_DIS = 1 (bit 3 of register 19). Once the frequency has been detected then the frequency  
detector will be disabled and the supply current will decrease by approximately 10mA. In some applications, such  
as when there are long periods of idle data, it may be advantageous to keep the frequency detector permanently  
enabled by setting the transmitter frequency detector enable bit TXFD_EN = 1 (bit 5 of register 19). For test  
purposes, the frequency detector can be permanently disabled by setting the transmitter frequency detector  
disable bit TXFD_DIS = 1 (bit 4 of register 19). For fast lock times the frequency detector can be set to one of  
two preselected data rates using the transmitter frequency detection mode selection bits TXFD_MOD[0..1] (bits 6  
and 7 of register 19). If it is desired to use the retimer at lower data rates than the standard 9.8 to 11.7Gbps then  
the transmitter divider ratio should be adjusted accordingly through TXDIV[0..2] (bits 0 to 2 of register 19). For  
example, for re-timed operation at 2.5 Gbps the divider should be set to divide by 4.  
7.3.3 Modulator Driver  
The modulation current is sunk from the common emitter node of the limiting output driver differential pair by  
means of a modulation current generator, which is digitally controlled by the 2-wire serial interface.  
The collector nodes of the output stages are connected to the transmitter output pins TXOUT+ and TXOUT–.  
The collectors have internal 50Ω back termination resistors to VCC_TX. The outputs are optimized to drive a 50  
Ω single-ended load and to obtain the maximum single-ended output voltage of 2.0Vpp, AC coupling and  
inductive pull-ups to VCC are required. For reduced power consumption the DC resistance of the inductive pull-  
ups should be minimized to provide sufficient headroom on the TXOUT+ and TXOUT– pins.  
The polarity of the output pins can be inverted by setting the transmitter output polarity switch bit, TXOUTPOL  
(bit 5 of register 10) to 1. In addition, the output driver can be disabled by setting the transmitter output driver  
disable bit TXOUT_DIS = 1 (bit 6 of register 10).  
16  
Copyright © 2016, Texas Instruments Incorporated  
ONET1131EC  
www.ti.com.cn  
ZHCSFG0 SEPTEMBER 2016  
Feature Description (continued)  
The output driver is set to differential output by default. In order to reduce the power consumption for single-  
ended applications driving an electroabsorptive modulated laser (EML) the output drive register 13 should be set  
to single-ended mode. The single-ended output signal is enabled by setting the transmitter mode select bit  
TXMODE = 1 (bit 6 of register 13). The positive output is active by default. To enable the negative output and  
disable the positive output set TXOUTSEL = 1 (bit 7 of register 13).  
Output de-emphasis can be applied to the signal by adjusting the transmitter de-emphasis bits TXDEADJ[0..3]  
(bits 0 to 3 of register 13). In addition, the width of the applied de-emphasis can be increased by setting the  
transmitter output peaking width TXPKSEL = 1 (bit 6 of register 11). The wide peaking width would typically be  
useful for a more capacitive transmitter load. How de-emphasis is applied is controlled through the TXSTEP bit  
(bit 5 of register 13). Setting TXSTEP = 1 delays the time of the applied de-emphasis and has more of an impact  
on the falling edge. A graphical representation of the two de-emphasis modes is shown in Figure 23. Using de-  
emphasis can help to optimize the transmitted output signal; however, it will add to the power consumption.  
The output edge speed can be set to slow mode of operation through the TXSLOW bit (bit 4 of register 13). For  
transmitter modulation output settings (TXMOD - register 12) below 0xC0 it is recommended to set TXSLOW = 1  
to reduce the output jitter.  
Register 13  
Register 13  
Bits 0œ3  
Bits 0œ3  
Register 11  
Bit 6  
Register 11  
Bit 6  
Transmitter De-Emphasis  
Register 13 Bit 5 = 0  
Transmitter De-Emphasis  
Register 13 Bit 5 = 1  
Figure 23. Transmitter De-Emphasis Modes  
7.3.4 Modulation Current Generator  
The modulation current generator provides the current for the high speed output driver described above. The  
circuit can be digitally controlled through the 2-wire interface block or controlled by applying an analog voltage in  
the range of 0 to 2 V to the AMP pin. The default method of control is through the 2-wire interface. To use the  
AMP pin set the transmitter amplitude control bit TXAMPCTRL = 1 (bit 0 of register 10).  
An 8-bit wide control bus, TXMOD[0..7] (register 12), is used to set the desired modulation current and the output  
voltage.  
The entire transmitter signal path, including CDR, can be disabled and powered down by setting TX_DIS = 1 (bit  
7 of register 10).  
Copyright © 2016, Texas Instruments Incorporated  
17  
 
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
Feature Description (continued)  
7.3.5 DC Offset Cancellation and Cross Point Control  
The ONET1131EC transmitter has DC offset cancellation to compensate for internal offset voltages. The offset  
cancellation can be disabled by setting TXOC_DIS = 1 (bit 2 of register 10).  
The crossing point can be moved toward the one level by setting TXCPSGN = 1 (bit 7 of register 14) and it can  
be moved toward the zero level by setting TXCPSGN = 0. The percentage of shift depends upon the register  
settings of the transmitter cross-point adjustment bits TXCPADJ[0..6] (register 14).  
7.3.6 Bias Current Generation and APC Loop  
The bias current for the laser is turned off by default and has to be enabled by setting the laser bias current  
enable bit TXBIASEN = 1 (bit 2 of register 1). In open loop operation, selected by setting TXOLENA = 1 (bit 4 of  
register 1), the bias current is set directly by the 10-bit wide control word TXBIAS[0..9] (register 15 and register  
16). In Automatic Power Control (APC) mode, selected by setting TXOLENA = 0, the bias current depends on  
the register settings TXBIAS[0..9] and the coupling ratio (CR) between the laser bias current and the photodiode  
current. CR = IBIAS/IPD. If the photodiode cathode is connected to VCC and the anode is connected to the PD pin  
(PD pin is sinking current) set TXPDPOL = 1 (bit 0 of register 1). If the photodiode anode is connected to ground  
and the cathode is connected to the PD pin (PD pin is sourcing current), set TXPDPOL = 0.  
Three photodiode current ranges can be selected by means of the photodiode current range bits TXPDRNG[0..1]  
(bits 5 and 6 of register 1). The photodiode range should be chosen to keep the laser bias control DAC,  
TXBIAS[0..9], close to the center of its range. This keeps the laser bias current set point resolution high. For  
details regarding the bias current setting in open-loop mode as well as in closed-loop mode, see the Register  
Mapping table.  
The ONET1131EC has the ability to source or sink the bias current. The default condition is for the BIAS pin to  
source the current (TXBIASPOL = 0). To act as a sink, set TXBIASPOL = 1 (bit 1 of register 1).  
The bias current is monitored using a current mirror with a gain equal to 1/100. By connecting a resistor between  
MONB and GND, the bias current can be monitored as a voltage across the resistor. A low temperature  
coefficient precision resistor should be used. The bias current can also be monitored as a 10 bit unsigned digital  
word by setting the transmitter bias current digital monitor selection bit TXDMONB = 1 (bit 5 of register 16) and  
removing the resistor from MONB to ground.  
The photodiode current is monitored using a current mirror with various gains that are dependent upon the  
photodiode current range being used. By connecting a resistor between MONP and GND, the photodiode current  
can be monitored as a voltage across the resistor. A low temperature coefficient precision resistor should be  
used. The photodiode current can also be monitored as a 10 bit unsigned digital word by setting the transmitter  
photodiode current digital monitor selection bit TXDMONP = 1 (bit 6 of register 16) and removing the resistor  
from MONP to ground.  
7.3.7 Laser Safety Features and Fault Recovery Procedure  
The ONET1131EC provides built in laser safety features. The following fault conditions are detected if the  
transmitter fault detection enable bit TXFLTEN = 1 (bit 3 of register 1):  
1. Voltage at MONB exceeds the bandgap voltage (1.2 V) or, alternately, if TXDMONB = 1 and the bias current  
exceeds the bias current monitor fault threshold set by TXBMF[0..7] (register 17). When using the digital  
monitor, the resistor from the MONB pin to ground must be removed.  
2. Voltage at MONP exceeds the bandgap voltage (1.2 V) and the analog photodiode current monitor fault  
trigger bit, TXMONPFLT (bit 7 of register 1), is set to 1. Alternately, a fault can be triggered if TXDMONP = 1  
and the photodiode current exceeds the photodiode current monitor fault threshold set by TXPMF[0..7]  
(register 18). When using the digital monitor, the resistor from the MONP pin to ground must be removed.  
3. Photodiode current exceeds 150% of its set value,  
4. Bias control DAC drops in value by more than 50% in one step.  
If the fault detection is being used then to avoid a fault from occurring at start-up it is recommended to set up the  
required bias current and APC loop conditions first and enable the laser bias current (TXBIASEN = 1) as the last  
step in the sequence of commands.  
18  
Copyright © 2016, Texas Instruments Incorporated  
ONET1131EC  
www.ti.com.cn  
ZHCSFG0 SEPTEMBER 2016  
Feature Description (continued)  
If one or more fault conditions occur and the transmitter fault enable bit TXFLTEN is set to 1, the ONET1131EC  
responds by:  
1. Setting the bias current to zero.  
2. Asserting and latching the TX_FLT pin.  
3. Setting the TX_FLT bit (bit 5 of register 43) to 1.  
Fault recovery is performed by the following procedure:  
1. The transmitter disable pin TX_DIS and/or the transmitter bias current enable bit TXBIASEN are toggled for  
at least the fault latch reset time.  
2. The TX_FLT pin de-asserts while the transmitter disable pin TX_DIS is asserted or the transmitter bias  
current enable bit TXBIASEN is de-asserted.  
3. If the fault condition is no longer present, the part returns to normal operation with its prior output settings  
after the disable negate time.  
4. If the fault condition is still present, TX_FLT re-asserts once TX_DIS is set to a low level and/or TXBIASEN is  
set to 0 and the part will not return to normal operation.  
7.3.8 Analog Block  
7.3.8.1 Analog Reference and Temperature Sensor  
The ONET1131EC is supplied by a single 2.5 V ±5% supply voltage connected to the VCC and VDD pins. This  
voltage is referred to ground (GND) and can be monitored as a 10 bit unsigned digital word through the 2-wire  
interface.  
On-chip bandgap voltage circuitry generates a reference voltage, independent of the supply voltage, from which  
all other internally required voltages and bias currents are derived.  
In order to minimize the module component count, the ONET1131ECprovides an on-chip temperature sensor.  
The temperature can be monitored as a 10 bit unsigned digital word through the 2-wire interface.  
7.3.8.2 Power-On Reset  
The ONET1131EC has power on reset circuitry which ensures that all registers are reset to default values during  
startup. After the power-on to initialize time (tINIT1), the internal registers are ready to be loaded. The part is ready  
to transmit data after the initialize to transmit time (tINIT2), assuming that the enable chip bit EN_CHIP = 1 (bit 0 of  
register 0). In addition, the disable pin DIS must be set to zero.  
The ONET1131EC bias current can be disabled by setting the DIS pin high. The internal registers are not reset.  
After the transmitter disable pin DIS is set low the part returns to its prior output settings.  
7.3.8.3 Analog to Digital Converter  
The ONET1131EC has an internal 10 bit analog to digital converter (ADC) that converts the analog monitors for  
temperature, power supply voltage, bias current and photodiode current into a 10 bit unsigned digital word. The  
first 8 most significant bits (MSBs) are available in register 40 and the 2 least significant bits (LSBs) are available  
in register 41. Depending on the accuracy required, 8 bits or 10 bits can be read. However, due to the  
architecture of the 2-wire interface, in order to read the 2 registers, 2 separate read commands have to be sent.  
The ADC is enabled by default so to monitor a particular parameter, select the parameter with ADCSEL[0..2]  
(bits 0 to 2 of register 3). Table 1 shows the ADCSEL bits and the parameter that is monitored.  
Table 1. ADC Selection Bits and the Monitored Parameter  
ADCSEL2  
ADCSEL1  
ADCSEL0  
MONITORED PARAMETER  
Temperature  
0
0
0
0
0
0
1
1
0
1
0
1
Supply voltage  
Bias current  
Photodiode current  
Copyright © 2016, Texas Instruments Incorporated  
19  
 
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
To digitally monitor the photodiode current, ensure that TXDMONP = 1 (bit 6 of register 16) and that a resistor is  
not connected to the MONP pin. To digitally monitor the bias current, ensure that TXDMONB = 1 (bit 5 of register  
16) and that a resistor is not connected to the MONB pin. The ADC is disabled by default. To enable the ADC,  
set the ADC oscillator enable bit OSCEN = 1 (bit 6 of register 3) and set the ADC enable bit ADCEN = 1 (bit 7 of  
register 3).  
The digital word read from the ADC can be converted to its analog equivalent through the following formulas.  
7.3.8.3.1 Temperature  
Temperature (°C) = (0.5475 × ADCx) – 273  
(1)  
(2)  
7.3.8.3.2 Power Supply Voltage  
Power supply voltage (V) = (1.36m × ADCx) + 1.76  
7.3.8.3.3 Photodiode Current Monitor  
IPD(μA) = 2 x [ (0.62 × ADCx) – 16] for TXPDRNG00  
IPD(μA) = 4 x [ (0.62 × ADCx) – 16] for TXPDRNG01  
IPD(μA) = 8 x [ (0.62 × ADCx) – 16] for TXPDRNG1x  
(3)  
(4)  
(5)  
7.3.8.3.4 Bias Current Monitor  
IBIAS (mA) = (0.2 × ADCx) – 4.5  
(6)  
Where: ADCx = the decimal value read from the ADC  
7.3.8.4 2-Wire Interface and Control Logic  
The ONET1131EC uses a 2-wire serial interface for digital control. The two circuit inputs, SDA and SCK, are  
driven, respectively, by the serial data and serial clock from a microprocessor, for example. The SDA and SCK  
pins require external 4.7-kΩ to 10-kΩ pull-up resistor to VCC for proper operation.  
The 2-wire interface allows write access to the internal memory map to modify control registers and read access  
to read out the control signals. The ONET1131EC is a slave device only which means that it cannot initiate a  
transmission itself; it always relies on the availability of the SCK signal for the duration of the transmission. The  
master device provides the clock signal as well as the START and STOP commands. The protocol for a data  
transmission is as follows:  
1. START command  
2. Seven (7) bit slave address (0001000) followed by an eighth bit which is the data direction bit (R/W). A zero  
indicates a WRITE and a 1 indicates a READ.  
3. 8 bit register address  
4. 8 bit register data word  
5. STOP command  
Regarding timing, the ONET1131EC is I2C compatible. The typical timing is shown in Figure 2 and a complete  
data transfer is shown in Figure 24. Parameters for Figure 2 are defined in the Timing Diagram Definitions.  
7.3.8.5 Bus Idle  
Both SDA and SCK lines remain HIGH  
7.3.8.6 Start Data Transfer  
A change in the state of the SDA line, from HIGH to LOW, while the SCK line is HIGH, defines a START  
condition (S). Each data transfer is initiated with a START condition.  
7.3.8.7 Stop Data Transfer  
A change in the state of the SDA line from LOW to HIGH while the SCK line is HIGH defines a STOP condition  
(P). Each data transfer is terminated with a STOP condition; however, if the master still wishes to communicate  
on the bus, it can generate a repeated START condition and address another slave without first generating a  
STOP condition.  
20  
Copyright © 2016, Texas Instruments Incorporated  
ONET1131EC  
www.ti.com.cn  
ZHCSFG0 SEPTEMBER 2016  
7.3.8.8 Data Transfer  
Only one data byte can be transferred between a START and a STOP condition. The receiver acknowledges the  
transfer of data.  
7.3.9 Acknowledge  
Each receiving device, when addressed, is obliged to generate an acknowledge bit. The transmitter releases the  
SDA line and a device that acknowledges must pull down the SDA line during the acknowledge clock pulse in  
such a way that the SDA line is stable LOW during the HIGH period of the acknowledge clock pulse. Setup and  
hold times must be taken into account. When a slave-receiver doesn’t acknowledge the slave address, the data  
line must be left HIGH by the slave. The master can then generate a STOP condition to abort the transfer. If the  
slave-receiver does acknowledge the slave address but some time later in the transfer cannot receive any more  
data bytes, the master must abort the transfer. This is indicated by the slave generating the not acknowledge on  
the first byte to follow. The slave leaves the data line HIGH and the master generates the STOP condition, see  
Figure 2.  
7.4 Device Functional Modes  
The ONET1131EC has two main functional modes of operation: differential transmitter output and single-ended  
transmitter output.  
7.4.1 Differential Transmitter Output  
Operation with differential output is the default mode of operation. This mode is intended for externally modulated  
lasers requiring differential drive such as Mach Zehnder modulators.  
7.4.2 Single-Ended Transmitter Output  
In order to reduce the power consumption for single-ended EML applications the output driver should be set to  
single-ended mode. The single-ended output signal can be enabled by setting the transmitter mode select bit  
TXMODE = 1 (bit 6 of register 13). The positive output is active by default. To enable the negative output and  
disable the positive output set TXOUTSEL = 1 (bit 7 of register 13).  
7.5 Programming  
Write Sequence  
1
1
1
8
1
8
1
1
7
S
Slave Address  
Wr  
A
Register Address  
A
Data Byte  
A
P
Read Sequence  
1
1
1
8
1
1
1
1
8
1
1
7
7
S
Slave Address  
Wr  
A
Register Address  
A
S
Slave Address  
Rd  
A
Data Byte  
N
P
Legend  
S
Start Condition  
Wr  
Rd  
A
Write Bit (Bit Value = 0)  
Read Bit (Bit Value = 1)  
Acknowledge  
N
Not Acknowledge  
Stop Condition  
P
Figure 24. Programming Sequence  
Copyright © 2016, Texas Instruments Incorporated  
21  
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
7.6 Register Mapping  
7.6.1 R/W Control Registers  
7.6.1.1 Core Level Register 0 (offset = 0100 0001 [reset = 41h]  
Figure 25. Core Level Register 0  
7
6
5
4
3
2
1
0
GLOBAL SW_PIN RESET  
RWSC  
Reserved  
I2C RESET  
RWSC  
EN_CHIP  
RW  
RW  
RWSC  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset. RWSC = Read/Write self clearing (always reads back to zero)  
Table 2. Core Level Register 0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Global Reset SW  
7
GLOBAL SW_PIN RESET  
Reserved  
RWSC  
0
1 = reset, resets all I2C and EEPROM modules to default  
0 = normal operation (self-clearing, always reads back ‘0’)  
6:3  
2
R/W  
1
0
Reserved  
Reserved  
RWSC  
Chip reset bit  
1
0
I2C RESET  
EN_CHIP  
RWSC  
R/W  
0
1
1 = resets all I2C registers to default  
0 = normal operation (self-clearing, always reads back ‘0’)  
Enable chip bit  
1 = Chip enabled  
0 = Chip disabled  
22  
Copyright © 2016, Texas Instruments Incorporated  
ONET1131EC  
www.ti.com.cn  
ZHCSFG0 SEPTEMBER 2016  
7.6.1.2 Core Level Register 1 (offset = 0000 0000) [reset = 0h]  
Figure 26. Core Level Register 1  
7
6
5
4
3
2
1
0
TXMONPFLT  
R/W  
TXPDRNG1  
R/W  
TXPDRNG0  
R/W  
TXOLENA  
R/W  
TXFLTEN  
R/W  
TXBIASEN  
R/W  
TTXBIASPOL  
R/W  
TXPDPOL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 3. Core Level Register 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Analog photodiode current monitor fault trigger bit  
1 = Fault trigger on MONP pin is enabled  
0 = Fault trigger on MONP pin is disabled  
7
TXMONPFLT  
R/W  
0
Photodiode current range bits  
1X: up to 3080 μA / 3 μA resolution  
01: up to 1540 μA / 1.5 μA resolution  
00: up to 770 μA / 0.75 μA resolution  
6
5
TXPDRNG1  
TXPDRNG0  
R/W  
0
Open loop enable bit  
4
3
2
1
0
TXOLENA  
TXFLTEN  
TXBIASEN  
TXBIASPOL  
TXPDPOL  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
1 = Open loop bias current control  
0 = Closed loop bias current control  
Fault detection enable bit  
1 = Fault detection on  
0 = Fault detection off  
Laser Bias current enable bit  
1 = Bias current enabled. Toggle to 0 to reset a fault condition.  
0 = Bias current disabled  
Laser Bias current polarity bit  
1 = Bias pin sinks current  
0 = Bias pin sources current  
Photodiode polarity bit  
1 = Photodiode cathode connected to VCC  
0 = Photodiode anode connected to GND  
Copyright © 2016, Texas Instruments Incorporated  
23  
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
7.6.1.3 Core Level Register 2 (offset = 0000 0000 ) [reset = 0h]  
Figure 27. Core Level Register 2  
7
6
5
4
3
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 4. Core Level Register 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Reserved  
R/W  
0
Reserved  
7.6.1.4 Core Level Register 3 (offset = 0000 0000) [reset = 0h]  
Figure 28. Core Level Register 3  
7
6
5
4
3
2
1
0
ADCEN  
R/W  
OSCEN  
R/W  
Reserved  
R/W  
ADCRST  
R/W  
Reserved  
R/W  
ADCSEL2  
R/W  
ADCSEL1  
R/W  
ADCSEL0  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 5. Core Level Register 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
ADC enabled bit  
1 = ADC enabled  
0 = ADC disabled  
7
ADCEN  
R/W  
0h  
ADC oscillator bit  
6
5
4
OSCEN  
R/W  
R/W  
R/W  
0h  
0h  
0h  
1 = Oscillator enabled  
0 = Oscillator disabled  
Reserved  
ADCRST  
Reserved  
ADC reset  
1 = ADC reset  
0 = ADC no reset  
3
2
1
Reserved  
ADCSEL2  
ADCSEL1  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Reserved  
ADC input selection bits <2:0>  
000 selects the temperature sensor  
001 selects the power supply monitor  
010 selects IMONB  
0
ADCSEL0  
R/W  
0h  
011 selects IMONP  
1XX are reserved  
24  
Copyright © 2016, Texas Instruments Incorporated  
ONET1131EC  
www.ti.com.cn  
ZHCSFG0 SEPTEMBER 2016  
7.6.2 RX Registers  
7.6.2.1 RX Register 4 (offset = 0000 0000) [reset = 0h]  
Figure 29. RX Register 4  
7
6
5
4
3
2
1
0
DIS  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6. RX Register 4 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Set bit to 1  
Reserved  
DIS  
0
0
6:0  
Reserved  
7.6.2.2 RX Register 5 (offset = 0000 0000) [reset = 0h]  
Figure 30. Reserved Register 5 - 9  
7
6
5
4
3
2
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7. Reserved Register 5 - 9 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Reserved  
R/W  
0
Reserved  
Copyright © 2016, Texas Instruments Incorporated  
25  
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
7.6.3 TX Registers  
7.6.3.1 TX Register 10 (offset = 0000 0000) [reset = 0h]  
Figure 31. TX Register 10  
7
6
5
4
3
2
1
0
TX_DIS  
R/W  
TXOUT_DIS  
R/W  
TXOUTPOL  
R/W  
TXCDR_DIS  
R/W  
TX_CDRBP  
R/W  
TXOC_DIS  
R/W  
TXEQ_DIS  
R/W  
TXAMPCTRL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8. TX Register 10 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
TX disable bit  
7
TX_DIS  
R/W  
0
1 = TX disabled (power-down)  
0 = TX enabled  
TX Output Driver disable bit  
1 = output disabled  
0 = output enabled  
6
5
4
TXOUT_DIS  
TXOUTPOL  
TXCDR_DIS  
R/W  
R/W  
R/W  
0
0
0
TX Output polarity switch bit  
1 = inverted polarity  
0 = normal polarity  
TX CDR disable bit  
1 = TX CDR is disabled and bypassed  
0 = TX CDR is enabled  
TX CDR bypass bit  
1 = TX-CDR bypassed. RX_CDRBP must be set to 1 for this function to  
operate.  
3
TX_CDRBP  
R/W  
0
0 = TX-CDR not bypassed  
TX OC disable bit  
2
1
0
TXOC_DIS  
TXEQ_DIS  
TXAMPCTRL  
R/W  
R/W  
R/W  
0
0
0
1 = TX Offset Cancellation disabled  
0 = TX Offset Cancellation enabled  
TX Equalizer disable bit  
1 = TX Equalizer is disabled and bypassed  
0 = TX Equalizer is enabled  
TX AMP Ctrl  
1 = TX AMP Control is enabled (analog amplitude control)  
0 = TX AMP Control is disabled (digital amplitude control)  
26  
Copyright © 2016, Texas Instruments Incorporated  
ONET1131EC  
www.ti.com.cn  
ZHCSFG0 SEPTEMBER 2016  
7.6.3.2 TX Register 11 (offset = 0000 0000) [reset = 0h]  
Figure 32. TX Register 11  
7
6
5
4
3
2
1
0
TXAMPRNG  
R/W  
TXPKSEL  
R/W  
TXTCSEL1  
R/W  
TXTCSEL0  
R/W  
TXCTLE3  
R/W  
TXCTLE2  
R/W  
TXCTLE1  
R/W  
TXCTLE0  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 9. TX Register 11 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
TX output AMP range  
7
TXAMPRNG  
R/W  
0
1 = Half TX output amplitude range  
0 = Full TX output amplitude range  
TX output peaking width  
1 = wide peaking width  
0 = narrow peaking width  
6
TXPKSEL  
R/W  
0
5
4
3
2
1
0
TXTCSEL1  
TXTCSEL0  
TXCTLE3  
TXCTLE2  
TXCTLE1  
TXCTLE0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
TXOUT temperature compensation select bit 1  
TXOUT temperature compensation select bit 0  
TX input CTLE setting  
0000 = minimum  
1111 = maximum  
7.6.3.3 TX Register 12 (offset = 0000 0000) [reset = 0h]  
Figure 33. TX Register 12  
7
6
5
4
3
2
1
0
TXMOD7  
R/W  
TXMOD76  
R/W  
TXMOD5  
R/W  
TXMOD4  
R/W  
TXMOD3  
R/W  
TXMOD2  
R/W  
TXMOD1  
R/W  
TXMOD0  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 10. TX Register 12 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
TXMOD7  
TXMOD6  
TXMOD5  
TXMOD4  
TXMOD3  
TXMOD2  
TXMOD1  
TXMOD0  
0
0
0
0
0
0
0
0
6
5
4
TX Modulation current setting: sets the output voltage  
Output Voltage: 2.4 Vpp / 9.5 mVpp steps  
3
2
1
0
Copyright © 2016, Texas Instruments Incorporated  
27  
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
7.6.3.4 TX Register 13 (offset = 0h) [reset = 0]  
Figure 34. TX Register 13  
7
6
5
4
3
2
1
0
TXOUTSEL  
R/W  
TXMODE  
R/W  
TXSTEP  
R/W  
TXSLOW  
R/W  
TXDEADJ3  
R/W  
TXDEADJ2  
R/W  
TXDEADJ1  
R/W  
TXDEADJ0  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. TX Register 13 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
TX output selection bit  
7
TXOUTSEL  
R/W  
0
1 = The negative output TXOUT– is active  
0 = The positive output TXOUT+ is active  
TX output mode selection bit  
1 = Single-ended mode  
0 = Differential mode  
6
5
4
TXMODE  
TXSTEP  
TXSLOW  
R/W  
R/W  
R/W  
0
0
0
TX output de-emphasis mode selection bit  
1 = Delayed de-emphasis  
0 = Normal de-emphasis  
TX edge speed selection bit  
1 = Slow edge speed  
0 = Normal operation  
3
2
1
0
TXDEADJ3  
TXDEADJ2  
TXDEADJ1  
TXDEADJ0  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
TX de-emphasis setting  
0000 = minimum  
1111 = maximum  
7.6.3.5 TX Register 14 (offset = 0000 0000) [reset = 0h]  
Figure 35. TX Register 14  
7
6
5
4
3
2
1
0
TXCPSGN  
R/W  
TXCPADJ6  
R/W  
TXCPADJ5  
R/W  
TXCPADJ4  
R/W  
TXCPADJ3  
R/W  
TXCPADJ2  
R/W  
TXCPADJ61  
R/W  
TXCPADJ60  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 12. TX Register 14 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
TXCPSGN  
TXCPADJ6  
TXCPADJ5  
TXCPADJ4  
TXCPADJ3  
TXCPADJ2  
TXCPADJ1  
TXCPADJ0  
0
0
0
0
0
0
0
0
TX Eye cross-point adjustment setting  
TXCPSGN = 1 (positive shift)  
6
Maximum shift for 1111111  
5
Minimum shift for 0000000  
TXCPSGN = 0 (negative shift)  
4
3
Maximum shift for 1111111  
Minimum shift for 0000000  
2
1
0
28  
Copyright © 2016, Texas Instruments Incorporated  
ONET1131EC  
www.ti.com.cn  
ZHCSFG0 SEPTEMBER 2016  
7.6.3.6 TX Register 15 (offset = 0000 0000) [reset = 0h]  
Figure 36. TX Register 15  
7
6
5
4
3
2
1
0
TXBIAS9  
R/W  
TXBIAS8  
R/W  
TXBIAS7  
R/W  
TXBIAS6  
R/W  
TXBIAS5  
R/W  
TXBIAS4  
R/W  
TXBIAS3  
R/W  
TXBIAS2  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 13. TX Register 15 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
TXBIAS9  
TXBIAS8  
TXBIAS7  
TXBIAS6  
TXBIAS5  
TXBIAS4  
TXBIAS3  
TXBIAS2  
0
0
0
0
0
0
0
0
Bias current settings (8MSB; 2LSBs are in register 16)  
Closed loop (APC):  
Coupling ratio CR = IBIAS / IPD, TXBIAS = 0..1023, IBIAS 150 mA:  
TXPDRNG = 00; IBIAS = 0.75 μA x CR x TXBIAS  
TXPDRNG = 01; IBIAS = 1.5 μA x CR x TXBIAS  
TXPDRNG = 1X; IBIAS = 3 μA x CR x TXBIAS  
6
5
4
3
Open Loop:  
IBIAS ~ 147 μA x TXBIAS in source mode  
IBIAS ~ 147 μA x TXBIAS in sink mode  
2
1
0
7.6.3.7 TX Register 16 (offset = 0000 0000) [reset = 0h]  
Figure 37. TX Register 16  
7
6
5
4
3
2
1
0
Reserved  
R/W  
TXDMONP  
R/W  
TXDMONB  
R/W  
Reserved  
R/W  
TXBIAS1  
R/W  
TXBIAS1  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 14. TX Register 16 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Reserved  
R/W  
0
Reserved  
Digital photodiode current monitor selection bit (MONP)  
6
5
TXDMONP  
TXDMONB  
R/W  
R/W  
0
0
1 = Digital photodiode monitor is active (no external resistor is needed)  
0 = Analog photodiode monitor is active (external resistor is required)  
Digital bias current monitor selection bit (MONB)  
1 = Digital bias current monitor is active (no external resistor is needed)  
0 = Analog bias current monitor is active (external resistor is required)  
4:2  
1
Reserved  
TXBIAS1  
TXBIAS0  
R/W  
R/W  
R/W  
0
0
0
Reserved  
Laser Bias current setting (2 LSBs)  
0
Copyright © 2016, Texas Instruments Incorporated  
29  
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
7.6.3.8 TX Register 17 (offset = 0000 0000) [reset = 0h]  
Figure 38. TX Register 17  
7
6
5
4
3
2
1
0
TXBMF7  
R/W  
TXBMF6  
R/W  
TXBMF5  
R/W  
TXBMF4  
R/W  
TXBMF3  
R/W  
TXBMF2  
R/W  
TXBMF1  
R/W  
TXBMF0  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 15. TX Register 17 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
TXBMF7  
TXBMF6  
TXBMF5  
TXBMF4  
TXBMF3  
TXBMF2  
TXBMF1  
TXBMF0  
0
0
0
0
0
0
0
0
Bias current monitor fault threshold  
With TXDMONB = 1  
Register sets the value of the bias current that will trigger a fault.  
The external resistor on the MONB pin must be removed to use this  
feature.  
6
5
4
3
2
1
0
7.6.3.9 TX Register 18 (offset = 0000 0000) [reset = 0h]  
Figure 39. TX Register 18  
7
6
5
4
3
2
1
0
TXPMF7  
R/W  
TXPMF6  
R/W  
TXPMF5  
R/W  
TXPMF4  
R/W  
TXPMF3  
R/W  
TXPMF2  
R/W  
TXPMF1  
R/W  
TXPMF0  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 16. TX Register 18 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
TXPMF7  
TXPMF6  
TXPMF5  
TXPMF4  
TXPMF3  
TXPMF2  
TXPMF1  
TXPMF0  
0
0
0
0
0
0
0
0
Power monitor fault threshold  
With TXDMONP = 1  
Register sets the value of the photodiode current that will trigger a fault.  
The external resistor on the MONP pin must be removed to use this  
feature.  
6
5
4
3
2
1
0
30  
Copyright © 2016, Texas Instruments Incorporated  
ONET1131EC  
www.ti.com.cn  
ZHCSFG0 SEPTEMBER 2016  
7.6.3.10 TX Register 19 (offset = 0000 0000) [reset = 0h]  
Figure 40. TX Register 19  
7
6
5
4
3
2
1
0
TXFD_MOD1  
R/W  
TXFD_MOD0  
R/W  
TXFD_EN  
R/W  
TXFD_DIS  
R/W  
0TXFL_DIS  
R/W  
TXDIV2  
R/W  
TXDIV1  
R/W  
TXDIV0  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 17. TX Register 19 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
TXFD_MOD1  
R/W  
0
TX frequency detection mode selection  
00 = auto selection enabled  
01 = Pre-selected to 10.3 Gbps  
10 = Pre-select to 11.1 Gbps  
11 = test mode (do not use)  
6
TXFD_MOD0  
R/W  
0
TX frequency detector enable bit  
5
4
3
TXFD_EN  
TXFD_DIS  
TXFL_DIS  
R/W  
R/W  
R/W  
0
0
0
1 =TX frequency detector is always enabled  
0 = TX frequency detector in automatic mode  
TX frequency detector disable bit  
1 = TX frequency detector is always disabled  
0 = TX frequency detector is in automatic mode  
TX CDR fast lock disable bit  
1 = TX CDR fast lock disabled  
0 = TX CDR in fast lock mode  
2
1
TXDIV2  
TXDIV1  
R/W  
R/W  
0
0
TX Divider Ratio  
000: Full-Rate,  
001: Divide by 2  
010: Divide by 4  
011: Divide by 8  
100: Divide by 16  
101: Divide by 32  
0
TXDIV0  
R/W  
0
Copyright © 2016, Texas Instruments Incorporated  
31  
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
7.6.4 Reserved Registers  
7.6.4.1 Reserved Registers 20-39  
Figure 41. Reserved Registers 20-39  
7
6
5
4
3
2
1
0
Reserved  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 18. Reserved Registers 20-39 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Reserved  
R
0
Reserved  
32  
Copyright © 2016, Texas Instruments Incorporated  
ONET1131EC  
www.ti.com.cn  
ZHCSFG0 SEPTEMBER 2016  
7.6.5 Read Only Registers  
7.6.5.1 Core Level Register 40 (offset = 0000 0000) [reset = 0h]  
Figure 42. Core Level Register 40  
7
ADC9  
R
6
ADC8  
R
5
ADC5  
R
4
ADC4  
R
3
ADC3  
R
2
ADC2  
R
1
ADC1  
R
0
ADC0  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 19. Core Level Register 40 Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
Description  
Digital representation of the ADC input source (read only)  
ADC9 (MSB)  
ADC8  
0
0
0
0
0
0
0
0
6
R
5
ADC7  
R
4
ADC6  
R
3
ADC5  
R
2
ADC4  
R
1
ADC3  
R
0
ADC2  
R
7.6.5.2 Core Level Register 41 (offset = 0000 0000) [reset = 0h]  
Figure 43. Core Level Register 41  
7
6
5
4
3
2
1
ADC1  
R
0
ADC0  
R
Reserved  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 20. Core Level Register 41 Field Descriptions  
Bit  
7:2  
1
Field  
Type  
R
Reset  
0h  
Description  
Resereved  
ADC1  
Reserved  
R
0h  
Digital representation of the ADC input source (read only)  
0
ADC0 (LSB)  
R
0h  
7.6.5.3 RX Registers 42 (offset = 0000 0000) [reset = 0h]  
Figure 44. RX Registers 42  
7
6
5
4
3
2
1
0
Reserved  
R
RCLR  
R
RCLR  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; RCLR = Read clear  
Table 21. RX Registers 42 Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
6
RCLR  
R
5
4
RCLR  
R
3:0  
Copyright © 2016, Texas Instruments Incorporated  
33  
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
7.6.5.4 TX Register 43 (offset = 0000 0000) [reset = 0h]  
Figure 45. Core Level Register 43  
7
TXCDRLock  
R
6
TXCDRLock  
R
5
TX_FLT  
R
4
TX_DRVDIS  
R
3
2
1
0
Reserved  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; RCLR = Read clear  
Table 22. TX Registers 43 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
TX CDR lock status bit  
1 = TX CDR is not locked  
0 = TX CDR is locked  
7
TXCDRLock  
R
0
Latched low status of bit 7. Cleared when read.  
6
5
TXCDRLock (latched Low)  
TX_FLT  
RCLR  
R
0
0
Latched low bit set to 0 when raw status goes low and keep it low even if  
raw status goes high.  
TX fault status bit  
1 = TX fault detected  
0 = TX fault not detected  
TX driver disable status bit  
4
TX_DRVDIS  
Reserved  
R
R
0
0
1 = TX fault logic disables the driver  
0 = TX fault logic does not disable the driver  
3:0  
Reserved  
34  
Copyright © 2016, Texas Instruments Incorporated  
ONET1131EC  
www.ti.com.cn  
ZHCSFG0 SEPTEMBER 2016  
7.6.6 Adjustment Registers  
7.6.6.1 Adjustment Registers 44-50  
Figure 46. Adjustment Registers 44-50  
7
6
5
4
3
2
1
0
Reserved  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 23. Adjustment Registers 44-50 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Reserved  
R
0
Reserved  
7.6.6.2 Adjustment Register 51 (offset = 0100 0000) [reset = 40h]  
Figure 47. Adjustment Register 51  
7
SEL_RES_2  
R
6
SEL_RES_1  
R
5
SEL_RES_0  
R
4
3
2
Reserved  
R
1
0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 24. Adjustment Register 51 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
SEL_RES_2  
SEL_RES_1  
0
1
CDR Loop Filter Resistor  
000: 75,  
001: 150  
6
010: 225  
011: 300  
100: 375  
101: 450  
5
SEL_RES_0  
R/W  
0
110: 525  
111: 600  
Default = 225  
4:0  
Reserved  
R/W  
0
Reserved  
7.6.6.3 Adjustment Registers 52-55  
Figure 48. Adjustment Registers 52-55  
7
6
5
4
3
2
1
0
Reserved  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 25. Adjustment Registers 52-55 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Reserved  
R
0
Reserved  
Copyright © 2016, Texas Instruments Incorporated  
35  
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
8 Application Information and Implementations  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The ONET1131EC is designed to be used in conjunction with a Transmitter Optical Sub-Assembly (TOSA). The  
ONET1131EC, TOSA, microcontroller and power management circuitry will typically be used in an XFP or SFP+  
10 Gbps optical transceiver. Figure 49 shows the ONET1131EC in differential mode of operation modulating a  
differentially driven Mach Zehnder (MZ) modulator TOSA and Figure 51 and Figure 52 show the device in single-  
ended output mode with an Electroabsorptive Modulated Laser (EML) TOSA. Figure 51 has the photodiode  
cathode available and Figure 52 has the photodiode anode available.  
8.2 Typical Application, Transmitter Differential Mode  
VCC_T  
VCC  
4.7k  
4.7kꢁ  
4.7kꢁ  
to10kꢁ  
to10kꢁ  
to10kꢁ  
TX_FLT  
TX_DIS  
VCC  
0.1F  
0.1F  
[h[  
b/  
/hat  
Db5  
LOL  
0.01F  
ahb.  
Db5  
5Lb+  
5Lb-  
Db5  
t5  
0.1F  
0.1F  
b/  
b/  
DIN+  
DIN-  
ONET1131EC  
Db5  
{/Y  
{5!  
SCK  
SDA  
ahbt  
4.7kꢁ  
to10kꢁ  
4.7kꢁ  
to10kꢁ  
VCC  
2.2nF  
VDD  
0.1F  
VCC  
0.1F  
0.1F  
0.1F  
MZ MOD+  
MZ MOD-  
Copyright © 2016, Texas Instruments Incorporated  
Figure 49. Typical Application Circuit in Differential Mode  
36  
Copyright © 2016, Texas Instruments Incorporated  
 
ONET1131EC  
www.ti.com.cn  
ZHCSFG0 SEPTEMBER 2016  
Typical Application, Transmitter Differential Mode (continued)  
8.2.1 Design Requirements  
Table 26. Design Parameters  
PARAMETER  
VALUE  
Supply voltage  
2.5 V  
Transmitter input voltage  
Transmitter output voltage  
100 mVpp to 1000 mVpp differential  
1 Vpp to 3.6 Vpp differential  
8.2.2 Detailed Design Procedure  
In the transmitter differential mode of operation, the output driver is intended to be used with a differentially  
driven Mach Zehnder (MZ) modulator TOSA. On the input side, the DIN+ and DIN- pins are required to be AC  
coupled to the signal from the host system and the input voltage should be between 100 mVpp and 1000 mVpp  
differential. On the output side, the OUT+ pin is AC coupled to the modulator positive input and the OUT– pin is  
AC coupled to the modulator negative input. A bias-T from VCC to both the OUT+ and OUT– pins is required to  
supply sufficient headroom voltage for the output driver transistors. It is recommended that the inductance in the  
bias-T have low DC resistance to limit the DC voltage drop and maximize the voltage supplied to the OUT+ and  
OUT– pins. If the voltage on these pins drops below approximately 2.1 V then the output rise and fall times can  
be adversely affected.  
8.2.3 Application Curve  
Figure 50. Differential Mode Transmitter Output Eye Diagram  
Copyright © 2016, Texas Instruments Incorporated  
37  
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
8.2.4 Typical Application, Transmitter Single-Ended Mode  
VCC_T  
VCC  
4.7kto  
10kꢁ  
4.7kꢁ  
to10kꢁ  
4.7kto  
10kꢁ  
TX_FLT  
TX_DIS  
VCC  
0.1F  
0.1F  
[h[  
b/  
/hat  
Db5  
LOL  
0.01F  
ahb.  
Db5  
5Lb+  
5Lb-  
Db5  
t5  
0.1F  
0.1F  
b/  
b/  
DIN+  
DIN-  
ONET1131EC  
Db5  
{/Y  
{5!  
PD  
SCK  
SDA  
ahbt  
4.7kꢁ  
to10kꢁ  
4.7kꢁ  
to10kꢁ  
VCC  
VDD  
VCC  
0.1F  
Modulator Anode  
0.1F  
PD  
2.2nF  
0.1F  
0.1F  
50ꢁ  
Laser  
PD  
EA BIAS  
EML TOSA  
0.1F  
-3V  
Copyright © 2016, Texas Instruments Incorporated  
Figure 51. Typical Application Circuit in Single-Ended Mode with an EML and the PD Monitor Cathode  
Available  
38  
Copyright © 2016, Texas Instruments Incorporated  
ONET1131EC  
www.ti.com.cn  
ZHCSFG0 SEPTEMBER 2016  
VCC_T  
VCC  
4.7k  
to10kꢁ  
4.7kꢁ  
to10kꢁ  
4.7kꢁ  
to10kꢁ  
TX_FLT  
0.1F  
0.1F  
TX_DIS  
VCC  
[h[  
b/  
/hat  
Db5  
LOL  
0.01F  
ahb.  
Db5  
5Lb+  
5Lb-  
Db5  
t5  
0.1F  
b/  
b/  
DIN+  
DIN-  
ONET1131EC  
0.1F  
Db5  
{/Y  
{5!  
PD  
SCK  
ahbt  
SDA  
4.7kꢁ  
4.7kꢁ  
to10kꢁ  
to10kꢁ  
VCC  
VDD  
VCC  
0.1F  
Modulator Anode  
0.1F  
2.2nF  
0.1F  
0.1F  
50ꢁ  
Laser  
PD  
PD  
EA BIAS  
EML TOSA  
0.1F  
Copyright © 2016, Texas Instruments Incorporated  
Figure 52. Typical Application Circuit in Single-Ended Mode with an EML and the PD Monitor Anode  
Available  
Copyright © 2016, Texas Instruments Incorporated  
39  
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
8.2.4.1 Design Requirements  
Table 27. Design Parameters  
PARAMETER  
VALUE  
Supply voltage  
2.5 V  
Transmitter input voltage  
Transmitter output voltage  
100 mVpp to 1000 mVpp differential  
0.5 Vpp to 2 Vpp single-ended  
8.2.4.2 Detailed Design Procedure  
In the transmitter single-ended mode of operation, the output driver is intended to be used with a single-ended  
driven Electroabsorptive Modulated Laser (EML) TOSA. On the input side, the DIN+ and DIN– pins are required  
to be AC coupled to the signal from the host system and the input voltage should be between 100 mVpp and  
1000 mVpp differential. On the output side, it is recommended that the OUT+ pin is AC coupled to the modulator  
input and the OUT– pin can be left unterminated or terminated to VCC through a 50-Ω resistor. A bias-T from  
VCC to the OUT+ pin is required to supply sufficient headroom voltage for the output driver transistors. It is  
recommended that the inductance in the bias-T have low DC resistance to limit the DC voltage drop and  
maximize the voltage supplied to the TXOUT+ pin. If the voltage on this pins drops below approximately 2.1V  
then the output rise and fall times can be adversely affected.  
8.2.4.3 Application Curves  
Figure 53. Single-Ended Mode Transmitter Output Eye Diagram  
9 Power Supply Recommendations  
The ONET1131EC is designed to operate from an input supply voltage range between 2.37 V and 2.63 V. To  
reduce digital coupling into the analog circuitry, there are separate supplies for the transmitter, and digital  
circuitry. VCC is used to supply power to the transmitter, and VDD is used to supply power to the digital block.  
Power supply decoupling capacitors should be placed as close as possible to the respective power supply pins.  
40  
Copyright © 2016, Texas Instruments Incorporated  
ONET1131EC  
www.ti.com.cn  
ZHCSFG0 SEPTEMBER 2016  
10 Layout  
10.1 Layout Guidelines  
For optimum performance, use 50-Ω transmission lines (100-Ω differential) for connecting the high speed inputs  
and outputs. The length of transmission lines should be kept as short as possible to reduce loss and pattern-  
dependent jitter.  
If the single-ended mode of operation is being used (TXMODE = 1) then it is recommended to terminate the  
unused output with a 50-Ω resistor to VCC. Figure 54 shows a typical layout for the high speed inputs and  
outputs.  
10.2 Layout Example  
!/-coupling  
capacitors  
ÇóLb+  
Crom  
Iost  
ÇóLb-  
ÇóhÜÇ-  
.ias-Ç  
Cerrites  
50O to ë//  
Çermination  
Figure 54. Board Layout  
版权 © 2016, Texas Instruments Incorporated  
41  
 
ONET1131EC  
ZHCSFG0 SEPTEMBER 2016  
www.ti.com.cn  
11 器件和文档支持  
11.1 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
42  
版权 © 2016, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ONET1131ECRSMR  
ONET1131ECRSMT  
ACTIVE  
VQFN  
VQFN  
RSM  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 100  
-40 to 100  
ONET  
1131EC  
ACTIVE  
RSM  
NIPDAU  
ONET  
1131EC  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RSM 32  
4 x 4, 0.4 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224982/A  
www.ti.com  
PACKAGE OUTLINE  
RSM0032B  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
B
4.1  
3.9  
A
0.45  
0.25  
0.25  
0.15  
PIN 1 INDEX AREA  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
4.1  
3.9  
(0.1)  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.8 0.05  
2X 2.8  
(0.2) TYP  
4X (0.45)  
28X 0.4  
9
16  
SEE SIDE WALL  
DETAIL  
8
17  
EXPOSED  
THERMAL PAD  
2X  
SYMM  
33  
2.8  
24  
0.25  
32X  
1
SEE TERMINAL  
DETAIL  
0.15  
0.1  
C A B  
25  
32  
PIN 1 ID  
(OPTIONAL)  
0.05  
SYMM  
0.45  
0.25  
32X  
4219108/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSM0032B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.8)  
SYMM  
32  
25  
32X (0.55)  
1
32X (0.2)  
24  
(
0.2) TYP  
VIA  
(1.15)  
SYMM  
33  
(3.85)  
28X (0.4)  
17  
8
(R0.05)  
TYP  
9
16  
(1.15)  
(3.85)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219108/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSM0032B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.715)  
4X ( 1.23)  
(R0.05) TYP  
25  
32  
32X (0.55)  
1
24  
32X (0.2)  
(0.715)  
(3.85)  
33  
SYMM  
28X (0.4)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(3.85)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 33:  
77% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219108/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY