OP07C_V01 [TI]

OP07x Precision Operational Amplifiers;
OP07C_V01
型号: OP07C_V01
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

OP07x Precision Operational Amplifiers

文件: 总22页 (文件大小:1067K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
OP07C, OP07D  
SLOS099G OCTOBER 1983REVISED NOVEMBER 2014  
OP07x Precision Operational Amplifiers  
1 Features  
3 Description  
These devices offer low offset and long-term stability  
by means of low-noise, chopperless,  
1
Low Noise  
a
No External Components Required  
bipolar-input-transistor amplifier circuit. For most  
applications, external components are not required  
for offset nulling and frequency compensation. The  
true differential input, with a wide input-voltage range  
and outstanding common-mode rejection, provides  
maximum flexibility and performance in high-noise  
environments and in noninverting applications. Low  
bias currents and extremely high input impedances  
are maintained over the entire temperature range.  
Replace Chopper Amplifiers at a Lower Cost  
Wide Input-Voltage Range: 0 to ±14 V (Typ)  
Wide Supply-Voltage Range: ±3 V to ±18 V  
2 Applications  
Wireless Base Station Control Circuits  
Optical Network Control Circuits  
Instrumentation  
Device Information(1)  
Sensors and Controls  
PART NUMBER  
PACKAGE (PIN)  
BODY SIZE  
Precision Filters  
SO (8)  
6.20 mm × 5.30 mm  
4.90 mm × 3.91 mm  
9.81 mm × 6.35 mm  
OP07x  
SOIC (8)  
PDIP (8)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
4 Simplified Schematic  
1
3
OFFSET N1  
IN+  
+
6
OUT  
2
8
IN−  
OFFSET N2  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
OP07C, OP07D  
SLOS099G OCTOBER 1983REVISED NOVEMBER 2014  
www.ti.com  
Table of Contents  
9.2 Functional Block Diagram ......................................... 7  
9.3 Feature Description................................................... 7  
9.4 Device Functional Modes.......................................... 7  
10 Application and Implementation.......................... 8  
10.1 General Application................................................. 8  
10.2 Typical Application ................................................. 8  
11 Power Supply Recommendations ..................... 10  
12 Layout................................................................... 11  
12.1 Layout Guidelines ................................................. 11  
12.2 Layout Example .................................................... 11  
13 Device and Documentation Support ................. 12  
13.1 Related Links ........................................................ 12  
13.2 Trademarks........................................................... 12  
13.3 Electrostatic Discharge Caution............................ 12  
13.4 Glossary................................................................ 12  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Simplified Schematic............................................. 1  
Revision History..................................................... 2  
Pin Functions ......................................................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 Handling Ratings....................................................... 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Operating Characteristics.......................................... 6  
Typical Characteristics.......................................... 6  
Detailed Description .............................................. 7  
9.1 Overview ................................................................... 7  
8
9
14 Mechanical, Packaging, and Orderable  
Information ........................................................... 12  
5 Revision History  
Changes from Revision F (January 2014) to Revision G  
Page  
Added Applications, Device Information table, Pin Functions table, Handling Ratings table, Thermal Information  
table, Typical Characteristics, Feature Description section, Device Functional Modes, Application and  
Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation  
Support section, and Mechanical, Packaging, and Orderable Information section................................................................ 1  
Changes from Revision E (May 2004) to Revision F  
Page  
Deleted Ordering Information table. ....................................................................................................................................... 1  
2
Submit Documentation Feedback  
Copyright © 1983–2014, Texas Instruments Incorporated  
Product Folder Links: OP07C OP07D  
 
OP07C, OP07D  
www.ti.com  
SLOS099G OCTOBER 1983REVISED NOVEMBER 2014  
6 Pin Functions  
D OR P PACKAGE  
(TOP VIEW)  
OFFSET N1  
IN−  
OFFSET N2  
1
2
3
4
8
7
6
5
V
CC+  
IN+  
OUT  
NC  
V
CC−  
NCNo internal connection  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
IN+  
NO.  
3
2
5
1
8
6
7
4
I
I
Noninverting input  
Inverting input  
IN–  
NC  
I
Do not connect  
OFFSET N1  
OFFSET N2  
OUT  
External input offset voltage adjustment  
External input offset voltage adjustment  
Output  
I
O
VCC  
+
Positive supply  
VCC  
Negative supply  
Copyright © 1983–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: OP07C OP07D  
OP07C, OP07D  
SLOS099G OCTOBER 1983REVISED NOVEMBER 2014  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0
MAX UNIT  
(2)  
VCC+  
22  
V
Supply voltage  
(2)  
VCC–  
–22  
0
Differential input voltage(3)  
Input voltage range (either input)(4)  
±30  
±22  
V
V
VI  
Duration of output short circuit(5)  
Unlimited  
150  
TJ  
Operating virtual-junction temperature  
Lead temperature 1.6 mm (1/16 in) from case for 10 s  
°C  
°C  
260  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, unless otherwise noted, are with respect to the midpoint between VCC+ and VCC−  
.
(3) Differential voltages are at IN+ with respect to IN.  
(4) The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.  
(5) The output may be shorted to ground or to either power supply.  
7.2 Handling Ratings  
PARAMETER  
DEFINITION  
MIN  
MAX UNIT  
TSTG  
Storage temperature range  
–65  
150  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
0
0
1000  
Electrostatic  
Discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JESD22-  
C101, all pins(2)  
1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
V
VCC+  
VCC–  
VIC  
3
–3  
18  
–18  
13  
Supply voltage  
Common-mode input voltage  
Operating free-air temperature  
VCC± = ±15 V  
–13  
0
TA  
70  
°C  
7.4 Thermal Information  
THERMAL METRIC(1)  
D
P
UNIT  
°C/W  
RθJA  
Junction-to-ambient thermal resistance  
97  
85  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).  
4
Submit Documentation Feedback  
Copyright © 1983–2014, Texas Instruments Incorporated  
Product Folder Links: OP07C OP07D  
 
 
OP07C, OP07D  
www.ti.com  
SLOS099G OCTOBER 1983REVISED NOVEMBER 2014  
7.5 Electrical Characteristics  
at specified free-air temperature, VCC± = ±15 V (unless otherwise noted)(1)  
OP07C  
TYP MAX  
OP07D  
TYP  
(2)  
PARAMETER  
TEST CONDITIONS  
TA  
UNIT  
MIN  
MIN  
MAX  
150  
25°C  
60  
85  
VIO  
Input offset voltage  
VO = 0 V  
RS = 50 Ω  
RS = 50 Ω  
µV  
0°C to 70°C  
250  
Temperature coefficient  
of input offset voltage  
αVIO  
VO = 0 V  
0°C to 70°C  
0.5  
0.4  
2.5  
µV/°C  
Long-term drift of input  
offset voltage  
See  
µV/mo  
mV  
Offset adjustment range  
RS = 20 kΩ,  
See Figure 2  
25°C  
25°C  
±4  
0.8  
1.6  
6
8
IIO  
Input offset current  
nA  
pA/°C  
nA  
0°C to 70°C  
Temperature coefficient  
of input offset current  
αIIO  
0°C to 70°C  
12  
50  
25°C  
±1.8  
±2.2  
±12  
±14  
IIB  
Input bias current  
0°C to 70°C  
Temperature coefficient  
of input bias current  
αIIB  
0°C to 70°C  
18  
50  
pA/°C  
V
25°C  
±13  
±13  
±14  
±13.5  
±13  
±13  
±14  
Common-mode input  
voltage range  
VICR  
0°C to 70°C  
±13 ±13.5  
±12 ±13  
R
R
R
R
L 10 kΩ  
L 2 kΩ  
L 1 kΩ  
L 2 kΩ  
±12  
25°C  
±11.5  
±12.8  
±12  
±11.5 ±12.8  
±12  
VOM  
Peak output voltage  
V
0°C to 70°C  
25°C  
±11  
100  
±12.6  
±11 ±12.6  
VCC = 15 V, VO = 1.4 V to 11.4 V,  
L 500 kΩ  
400  
400  
R
Large-signal differential  
voltage amplification  
AVD  
V/mV  
25°C  
0°C to 70°C  
25°C  
120  
100  
0.4  
8
400  
400  
0.6  
33  
120  
100  
0.4  
7
400  
400  
0.6  
31  
VO = ±10, RL = 2 kΩ  
B1  
ri  
Unity-gain bandwidth  
Input resistance  
MHz  
25°C  
MΩ  
25°C  
100  
97  
120  
120  
7
94  
110  
106  
7
Common-mode  
rejection ratio  
CMRR  
kSVS  
PD  
VIC = ±13 V, RS = 50 Ω  
dB  
0°C to 70°C  
25°C  
94  
32  
51  
32  
51  
Supply-voltage sensitivity  
VCC+ = ±3 V to ±18 V, RS = 50 Ω  
µV/V  
mW  
(ΔVIO/ΔVCC  
)
0°C to 70°C  
10  
10  
VO = 0, No load  
80  
150  
8
80  
150  
8
Power dissipation  
25°C  
VCC+ = ±3 V, VO = 0, No load  
4
4
(1) Because long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a  
warranty. It is an engineering estimate of the averaged trend line of drift versus time over extended periods after the first 30 days of  
operation.  
(2) All characteristics are measured with zero common-mode input voltage, unless otherwise specified.  
Copyright © 1983–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: OP07C OP07D  
OP07C, OP07D  
SLOS099G OCTOBER 1983REVISED NOVEMBER 2014  
www.ti.com  
7.6 Operating Characteristics  
at specified free-air temperature, VCC = 5 V (unless otherwise noted)  
OP07C  
TYP  
10.5  
10.2  
9.8  
OP07D  
TYP  
10.5  
10.3  
9.8  
PARAMETER  
TEST CONDITIONS(1)  
UNIT  
f = 10 Hz  
Vn  
Input offset voltage  
f = 100 Hz  
nV/Hz  
µV  
f = 1 kHz  
VN(PP)  
Peak-to-peak equivalent input noise voltage  
Equivalent input noise current  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
0.38  
0.35  
0.15  
0.13  
15  
0.38  
0.35  
0.15  
0.13  
15  
In  
f = 100 Hz  
nV/Hz  
f = 1 kHz  
IN(PP)  
SR  
Peak-to-peak equivalent input noise current  
Slew rate  
f = 0.1 Hz to 10 Hz  
pA  
RL 2 kΩ  
0.3  
0.3  
V/µs  
(1) All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise noted.  
8 Typical Characteristics  
200  
Low  
Mean  
High  
150  
100  
50  
0
-50  
-50  
0
50  
100  
150  
T (°C)  
D001  
Figure 1. Input-Offset Voltage vs. Temperature  
6
Submit Documentation Feedback  
Copyright © 1983–2014, Texas Instruments Incorporated  
Product Folder Links: OP07C OP07D  
OP07C, OP07D  
www.ti.com  
SLOS099G OCTOBER 1983REVISED NOVEMBER 2014  
9 Detailed Description  
9.1 Overview  
These devices offer low offset and long-term stability by means of a low-noise, chopperless, bipolar-input-  
transistor amplifier circuit. For most applications, external components are not required for offset nulling and  
frequency compensation. The true differential input, with a wide input-voltage range and outstanding common-  
mode rejection, provides maximum flexibility and performance in high-noise environments and in noninverting  
applications. Low bias currents and extremely high input impedances are maintained over the entire temperature  
range.  
These devices are characterized for operation from 0°C to 70°C.  
9.2 Functional Block Diagram  
V
CC+  
IN–  
OUT  
IN+  
OFFSET N1  
OFFSET N2  
V
CC–  
Component Count  
Transistors  
Resistors  
Diode  
22  
11  
1
Capacitor  
1
9.3 Feature Description  
9.3.1 Offset-Voltage Null Capability  
The input offset voltage of operational amplifiers (op amps) arises from unavoidable mismatches in the  
differential input stage of the op-amp circuit caused by mismatched transistor pairs, collector currents, current-  
gain betas (β), collector or emitter resistors, et cetera. The input offset pins allow the designer to adjust for these  
mismatches by external circuitry. See the Application and Implementation section for more details on design  
techniques.  
9.3.2 Slew Rate  
The slew rate is the rate at which an operational amplifier can change its output when there is a change on the  
input. The OP07 has a 0.3-V/μs slew rate.  
9.4 Device Functional Modes  
The OP07 is powered on when the supply is connected. It can be operated as a single supply operational  
amplifier or dual supply amplifier depending on the application.  
Copyright © 1983–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: OP07C OP07D  
OP07C, OP07D  
SLOS099G OCTOBER 1983REVISED NOVEMBER 2014  
www.ti.com  
10 Application and Implementation  
10.1 General Application  
The input offset voltage of operational amplifiers (op amps) arises from unavoidable mismatches in the  
differential input stage of the op-amp circuit caused by mismatched transistor pairs, collector currents, current-  
gain betas (β), collector or emitter resistors, etc. The input offset pins allow the designer to adjust for these  
mismatches by external circuitry. These input mismatches can be adjusted by putting resistors or a potentiometer  
between the inputs as shown in Figure 2. A potentiometer can be used to fine tune the circuit during testing or for  
applications which require precision offset control. More information about designing using the input-offset pins,  
see Nulling Input Offset Voltage of Operational Amplifiers (SLOA045).  
20 k  
V
CC+  
OFFSET N1  
3
OFFSET  
1
N2  
8
IN+  
+
7
6
OUT  
2
IN−  
4
V
CC  
Figure 2. Input Offset-Voltage Null Circuit  
10.2 Typical Application  
The voltage follower configuration of the operational amplifier is used for applications where a weak signal is  
used to drive a relatively high current load. This circuit is also called a buffer amplifier or unity gain amplifier. The  
inputs of an operational amplifier have a very high resistance which puts a negligible current load on the voltage  
source. The output resistance of the operational amplifier is almost negligible, so it can provide as much current  
as necessary to the output load.  
10 k  
12 V  
VOUT  
+
VIN  
Figure 3. Voltage Follower Schematic  
8
Submit Documentation Feedback  
Copyright © 1983–2014, Texas Instruments Incorporated  
Product Folder Links: OP07C OP07D  
 
OP07C, OP07D  
www.ti.com  
SLOS099G OCTOBER 1983REVISED NOVEMBER 2014  
Typical Application (continued)  
10.2.1 Design Requirements  
Output range of 2 V to 11 V  
Input range of 2 V to 11 V  
10.2.2 Detailed Design Procedure  
10.2.2.1 Output Voltage Swing  
The output voltage of an operational amplifier is limited by its internal circuitry to some level below the supply  
rails. For this amplifier, the output voltage swing is within ±12 V, which accommodates the input and output  
voltage requirements.  
10.2.2.2 Supply and Input Voltage  
For correct operation of the amplifier, neither input must be higher than the recommended positive supply rail  
voltage or lower than the recommended negative supply rail voltage. The chosen amplifier must be able to  
operate at the supply voltage that accommodates the inputs. Because the input for this application goes up to  
11 V, the supply voltage must be 12 V. Using a negative voltage on the lower rail, rather than ground, allows the  
amplifier to maintain linearity for inputs below 2 V.  
10.2.3 Application Curves for Output Characteristics  
12  
10  
8
0.4  
0.3  
0.2  
0.1  
6
0.0  
4
±0.1  
±0.2  
±0.3  
2
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
VIN (V)  
VIN (V)  
C001  
C002  
Figure 4. Output Voltage vs Input Voltage  
Figure 5. Current Drawn by the Input of the Voltage  
Follower (IIO) vs the Input Voltage  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
2
4
6
8
10  
12  
VIN (V)  
C003  
Figure 6. Current Drawn from Supply (ICC) vs the Input Voltage  
Copyright © 1983–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: OP07C OP07D  
OP07C, OP07D  
SLOS099G OCTOBER 1983REVISED NOVEMBER 2014  
www.ti.com  
11 Power Supply Recommendations  
The OP07 is specified for operation from ±3 to ±18 V; many specifications apply from 0°C to 70°C.  
CAUTION  
Supply voltages larger than ±22 V can permanently damage the device (see the  
Absolute Maximum Ratings).  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high  
impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Layout  
Guidelines.  
10  
Submit Documentation Feedback  
Copyright © 1983–2014, Texas Instruments Incorporated  
Product Folder Links: OP07C OP07D  
OP07C, OP07D  
www.ti.com  
SLOS099G OCTOBER 1983REVISED NOVEMBER 2014  
12 Layout  
12.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the  
operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low-impedance  
power sources local to the analog circuitry.  
Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. On multilayer PCBs, one or more layers are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds, paying attention to the flow of the ground current. For more detailed information, refer to  
Circuit Board Layout Techniques, (SLOA089).  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If  
it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicularly, as  
opposed to in parallel, with the noisy trace.  
Place the external components as close to the device as possible. Keeping RF and RG close to the inverting  
input minimizes parasitic capacitance, as shown in Layout Example.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
12.2 Layout Example  
RIN  
RG  
VIN  
+
VOUT  
RF  
Figure 7. Operational Amplifier Schematic for Noninverting Configuration  
Place components close to  
device and to each other to  
reduce parasitic errors  
Run the input traces as far  
away from the supply lines  
as possible  
RF  
VS+  
OFFSET N1  
OFFSET N2  
VCC+  
OUT  
Use low-ESR, ceramic  
bypass capacitor  
RG  
GND  
VIN  
IN1í  
IN1+  
RIN  
GND  
NC  
VCCí  
Only needed for  
dual-supply  
operation  
GND  
VS-  
(or GND for single supply)  
VOUT  
Ground (GND) plane on another layer  
Figure 8. Operational Amplifier Board Layout for Noninverting Configuration  
Copyright © 1983–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: OP07C OP07D  
 
OP07C, OP07D  
SLOS099G OCTOBER 1983REVISED NOVEMBER 2014  
www.ti.com  
13 Device and Documentation Support  
13.1 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 1. Related Links  
Technical  
Documents  
Support &  
Community  
Parts  
Product Folder  
Sample & Buy  
Tools & Software  
OP07C  
OP07D  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
13.2 Trademarks  
All trademarks are the property of their respective owners.  
13.3 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
13.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms and definitions.  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser based versions of this data sheet, refer to the left hand navigation.  
12  
Submit Documentation Feedback  
Copyright © 1983–2014, Texas Instruments Incorporated  
Product Folder Links: OP07C OP07D  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Aug-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OP-07DP  
OP-07DPS  
ACTIVE  
PDIP  
SO  
P
8
8
8
8
50  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
N / A for Pkg Type  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
OP-07DP  
ACTIVE  
ACTIVE  
ACTIVE  
PS  
PS  
PS  
80  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
NIPDAU  
OP-07D  
OP-07D  
OP-07D  
OP-07DPSR  
OP-07DPSRG4  
SO  
2000  
2000  
Green (RoHS  
& no Sb/Br)  
SO  
Green (RoHS  
& no Sb/Br)  
OP07-W  
OP07CD  
ACTIVE WAFERSALE  
YS  
D
0
8
3603  
75  
TBD  
Call TI  
Call TI  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
PDIP  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-1-260C-UNLIM  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
OP07C  
OP07C  
OP07C  
OP07C  
OP07C  
OP07C  
OP07CP  
OP07CP  
OP07D  
OP07D  
OP07D  
OP07DP  
OP07CDE4  
OP07CDG4  
OP07CDR  
OP07CDRE4  
OP07CDRG4  
OP07CP  
D
D
D
D
D
P
P
D
D
D
P
8
8
8
8
8
8
8
8
8
8
8
75  
75  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
NIPDAU | SN  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
OP07CPE4  
OP07DD  
50  
Green (RoHS  
& no Sb/Br)  
N / A for Pkg Type  
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
OP07DDR  
OP07DDRE4  
OP07DP  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Pb-Free  
(RoHS)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Aug-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OP07DPE4  
ACTIVE  
PDIP  
P
8
50  
Pb-Free  
(RoHS)  
NIPDAU  
N / A for Pkg Type  
0 to 70  
OP07DP  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OP07CDR  
OP07CDRG4  
OP07DDR  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
2500  
2500  
2500  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
6.4  
6.4  
6.4  
5.2  
5.2  
5.2  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OP07CDR  
OP07CDRG4  
OP07DDR  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
2500  
2500  
2500  
340.5  
340.5  
340.5  
338.1  
338.1  
338.1  
20.6  
20.6  
20.6  
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY