OPA124UA/2K5E4 [TI]

OPERATIONAL AMPLIFIER;
OPA124UA/2K5E4
型号: OPA124UA/2K5E4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

OPERATIONAL AMPLIFIER

放大器 光电二极管
文件: 总9页 (文件大小:105K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
OPA124  
OPA124  
Low Noise Precision Difet ®  
OPERATIONAL AMPLIFIER  
FEATURES  
APPLICATIONS  
LOW NOISE: 6nV/Hz (10kHz)  
LOW BIAS CURRENT: 1pA max  
LOW OFFSET: 250µV max  
PRECISION PHOTODIODE PREAMP  
MEDICAL EQUIPMENT  
OPTOELECTRONICS  
DATA ACQUISITION  
TEST EQUIPMENT  
LOW DRIFT: 2µV/°C max  
HIGH OPEN-LOOP GAIN: 120dB min  
HIGH COMMON-MODE REJECTION:  
100dB min  
AVAILABLE IN 8-PIN PLASTIC DIP  
AND 8-PIN SOIC PACKAGES  
Substrate  
+VCC  
DESCRIPTION  
8
7
The OPA124 is a precision monolithic FET opera-  
tional amplifier using a Difet (dielectrical isolation)  
manufacturing process. Outstanding DC and AC per-  
formance characteristics allow its use in the most  
critical instrumentation applications.  
–In  
2
+In  
3
Noise-Free Cascode(2)  
Bias current, noise, voltage offset, drift, open-loop  
gain, common-mode rejection and power supply re-  
jection are superior to BIFET and CMOS amplifiers.  
Difet fabrication achieves extremely low input bias  
currents without compromising input voltage noise  
performance. Low input bias current is maintained  
over a wide input common-mode voltage range with  
unique cascode circuitry. This cascode design also  
allows high precision input specifications and reduced  
susceptibility to flicker noise. Laser trimming of thin-  
film resistors gives very low offset and drift.  
Output  
6
2k  
2kΩ  
2kΩ  
Trim(1)  
10kΩ  
10kΩ  
1
Trim(1)  
5
2kΩ  
–VCC  
4
OPA124 Simplified Circuit  
Compared to the popular OPA111, the OPA124 gives  
comparable performance and is available in an 8-pin  
PDIP and 8-pin SOIC package.  
NOTES: (1) Omitted on SOIC. (2) Patented.  
BIFET® National Semiconductor Corp.,  
Difet® Burr-Brown Corp.  
International Airport Industrial Park  
Mailing Address: PO Box 11400, Tucson, AZ 85734  
FAXLine: (800) 548-6133 (US/Canada Only)  
Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706  
Tel: (520) 746-1111  
Twx: 910-952-1111  
Internet: http://www.burr-brown.com/  
Cable: BBRCORP  
Telex: 066-6491  
FAX: (520) 889-1510  
Immediate Product Info: (800) 548-6132  
© 1993 Burr-Brown Corporation  
PDS-1203C  
Printed in U.S.A. March, 1998  
SBOS028  
SPECIFICATIONS  
ELECTRICAL  
At VCC = ±15VDC and TA = +25°C, unless otherwise noted.  
OPA124U, P  
TYP  
OPA124UA, PA  
OPA124PB  
TYP  
PARAMETER  
CONDITION  
MIN  
MAX  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
INPUT NOISE  
Voltage, fO = 10Hz(4)  
40  
15  
8
80  
40  
15  
8
1.2  
3.3  
15  
0.8  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
µVrms  
µVp-p  
f
f
f
f
O = 100Hz(4)  
O = 1kHz(4)  
O = 10kHz(5)  
B = 10Hz to 10kHz(5)  
B = 0.1Hz to 10Hz  
Current, fB = 0.1Hz to 10Hz  
O = 0.1Hz thru 20kHz  
6
0.7  
1.6  
9.5  
0.5  
f
fAp-p  
fA/Hz  
f
OFFSET VOLTAGE(1)  
Input Offset Voltage  
vs Temperature  
Supply Rejection  
vs Temperature  
VCM = 0VDC  
A = TMIN to TMAX  
CC = ±10V to ±18V  
A = TMIN to TMAX  
VCM = 0VDC  
VCM = 0VDC  
±200  
±4  
110  
100  
±800  
±7.5  
±150  
±2  
±500  
±4  
±100  
±1  
±250  
±2  
µV  
µV/°C  
dB  
T
V
T
88  
84  
90  
86  
100  
90  
dB  
BIAS CURRENT(1)  
Input Bias Current  
±1  
±1  
±5  
±5  
±0.5  
±0.5  
±2  
±1  
±0.35  
±0.25  
±1  
pA  
pA  
OFFSET CURRENT(1)  
Input Offset Current  
±0.5  
IMPEDANCE  
Differential  
Common-Mode  
1013 || 1  
1014 || 3  
|| pF  
|| pF  
VOLTAGE RANGE  
Common-Mode Input Range  
Common-Mode Rejection  
vs Temperature  
±10  
92  
86  
±11  
110  
100  
94  
100  
90  
V
dB  
dB  
V
IN = ±10VDC  
T
A = TMIN to TMAX  
OPEN-LOOP GAIN, DC  
Open-Loop Voltage Gain  
RL 2kΩ  
106  
125  
120  
dB  
FREQUENCY RESPONSE  
Unity Gain, Small Signal  
Full Power Response  
Slew Rate  
1.5  
32  
1.6  
0.0003  
6
10  
MHz  
kHz  
V/µs  
%
µs  
µs  
20Vp-p, RL = 2kΩ  
16  
1
VO = ±10V, RL = 2kΩ  
THD  
Settling Time, 0.1%  
0.01%  
Gain = –1, RL = 2kΩ  
10V Step  
Overload Recovery,  
50% Overdrive(2)  
Gain = –1  
5
µs  
RATED OUTPUT  
Voltage Output  
Current Output  
Output Resistance  
Load Capacitance Stability  
Short Circuit Current  
R
L = 2kΩ  
±11  
±5.5  
±12  
±10  
100  
1000  
40  
V
mA  
pF  
mA  
V
O = ±10VDC  
DC, Open Loop  
Gain = +1  
10  
POWER SUPPLY  
Rated Voltage  
Voltage Range, Derated  
Current, Quiescent  
±15  
VDC  
VDC  
mA  
±5  
±18  
3.5  
I
O = 0mADC  
2.5  
TEMPERATURE RANGE  
Specification  
Storage  
TMIN and TMAX  
–25  
–65  
+85  
+125  
°C  
°C  
θ Junction-Ambient: PDIP  
SOIC  
90  
100  
°C/W  
°C/W  
Specification same as OPA124U, P  
NOTES: (1) Offset voltage, offset current, and bias current are measured with the units fully warmed up. For performance at other temperatures see Typical Performance  
Curves. (2) Overload recovery is defined as the time required for the output to return from saturation to linear operation following the removal of a 50% input overdrive.  
(3) For performance at other temperatures see Typical Performance Curves. (4) Sample tested, 98% confidence. (5) Guaranteed by design.  
®
2
OPA124  
CONNECTION DIAGRAMS  
Top View  
DIP  
Top View  
SOIC  
NC  
–In  
1
2
3
4
8
7
6
5
Substrate  
+VS  
Offset Trim  
–In  
1
2
3
4
8
7
6
5
Substrate  
+VS  
+In  
–VS  
Output  
NC  
+In  
Output  
–VS  
Offset Trim  
NC = No Connect  
PACKAGE/ORDERING INFORMATION  
BIAS  
OFFSET  
PACKAGE  
DRAWING NUMBER(1)  
TEMPERATURE  
RANGE  
CURRENT  
pA, max  
DRIFT  
µV/°C, max  
PRODUCT  
PACKAGE  
OPA124U  
OPA124P  
OPA124UA  
OPA124PA  
OPA124PB  
8-Lead SOIC  
8-Pin Plastic DIP  
8-Lead SOIC  
182  
006  
182  
006  
006  
–25°C to +85°C  
–25°C to +85°C  
–25°C to +85°C  
–25°C to +85°C  
–25°C to +85°C  
5
5
2
2
1
7.5  
7.5  
4
8-Pin Plastic DIP  
8-Pin Plastic DIP  
4
2
NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.  
ABSOLUTE MAXIMUM RATINGS(1)  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Burr-Brown  
recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
Supply ........................................................................................... ±18VDC  
Internal Power Dissipation(2) ......................................................... 750mW  
Differential Input Voltage(3) .......................................................... ±36VDC  
Input Voltage Range(3) ................................................................. ±18VDC  
Storage Temperature Range .......................................... –65°C to +150°C  
Operating Temperature Range ....................................... –40°C to +125°C  
Lead Temperature (soldering, 10s)................................................ +300°C  
Output Short Circuit Duration(4) ............................................... Continuous  
Junction Temperature .................................................................... +175°C  
ESD damage can range from subtle performance degrada-  
tion to complete device failure. Precision integrated circuits  
may be more susceptible to damage because very small  
parametric changes could cause the device not to meet its  
published specifications.  
NOTES: (1) Stresses above these ratings may cause permanent damage.  
(2) Packages must be derated based on θJA = 90°C/W for PDIP and 100°C/W  
for SOIC. (3) For supply voltages less than ±18VDC, the absolute maximum  
input voltage is equal to +18V > VIN > –VCC – 6V. See Figure 2. (4) Short circuit  
may be to power supply common only. Rating applies to +25°C ambient.  
Observe dissipation limit and TJ.  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes  
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change  
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant  
any BURR-BROWN product for use in life support devices and/or systems.  
®
3
OPA124  
TYPICAL PERFORMANCE CURVES  
At TA = +25°C, and VCC = ±15VDC, unless otherwise noted.  
INPUT CURRENT NOISE SPECTRAL DENSITY  
100  
INPUT VOLTAGE NOISE SPECTRAL DENSITY  
1k  
100  
10  
10  
U, P  
PB  
1
PB  
0.1  
1
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
TOTAL(1) INPUT VOLTAGE NOISE SPECTRAL  
DENSITY vs SOURCE RESISTANCE  
TOTAL(1) INPUT VOLTAGE NOISE (PEAK-TO-PEAK)  
vs SOURCE RESISTANCE  
1k  
100  
10  
1k  
100  
10  
RS = 10MΩ  
NOTE: (1) Includes contribution  
from source resistance.  
RS = 1MΩ  
RS = 100kΩ  
PB  
PB  
RS = 100Ω  
fB = 0.1Hz to 10Hz  
NOTE: (1) Includes contribution  
from source resistance.  
1
1
104  
105  
106  
Source Resistance ()  
107  
108  
109  
1010  
0.1  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
VOLTAGE AND CURRENT NOISE SPECTRAL  
DENSITY vs TEMPERATURE  
TOTAL INPUT VOLTAGE NOISE SPECTRAL DENSITY  
AT 1kHz vs SOURCE RESISTANCE  
1k  
100  
10  
12  
10  
8
100  
EO  
fO = 1kHz  
10  
RS  
1
OPA124PB +  
Resistor  
6
0.1  
Resistor Noise Only  
1
4
0.01  
–50  
–25  
0
25  
50  
75  
100  
125  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Source Resistance ()  
Temperature (°C)  
®
4
OPA124  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, and VCC = ±15VDC, unless otherwise noted.  
BIAS AND OFFSET CURRENT  
vs TEMPERATURE  
BIAS AND OFFSET CURRENT  
vs INPUT COMMON-MODE VOLTAGE  
1k  
100  
10  
1k  
10  
1
10  
100  
10  
1
PB  
Bias Current  
1
1
Offset Current  
0.1  
0.01  
0.1  
0.01  
0.1  
0.01  
0.1  
0.01  
–50  
–25  
0
25  
50  
75  
100  
125  
–15  
–10  
–5  
0
5
10  
15  
Ambient Temperature (°C)  
Common-Mode Voltage (V)  
POWER SUPPLY REJECTION  
vs FREQUENCY  
COMMON-MODE REJECTION  
vs FREQUENCY  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
COMMON-MODE REJECTION  
vs INPUT COMMON-MODE VOLTAGE  
OPEN-LOOP FREQUENCY RESPONSE  
140  
120  
100  
80  
120  
110  
100  
90  
–45  
–90  
Phase  
Margin  
60  
Gain  
65°  
40  
–135  
–180  
80  
20  
70  
0
–15  
–10  
–5  
0
5
10  
15  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Common-Mode Voltage (V)  
Frequency (Hz)  
®
5
OPA124  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, and VCC = ±15VDC, unless otherwise noted.  
GAIN-BANDWIDTH AND SLEW RATE  
vs SUPPLY VOLTAGE  
GAIN-BANDWIDTH AND SLEW RATE  
vs TEMPERATURE  
3
2
1
0
3
2
1
0
4
4
3
2
1
0
0
5
10  
15  
20  
–50  
–25  
0
25  
50  
75  
100  
125  
Supply Voltage (±VCC  
)
Ambient Temperature (°C)  
MAXIMUM UNDISTORTED OUTPUT  
VOLTAGE vs FREQUENCY  
OPEN-LOOP GAIN vs TEMPERATURE  
30  
140  
130  
120  
110  
100  
20  
10  
0
1k  
10k  
Frequency (Hz)  
100k  
1M  
–50  
–25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
SMALL SIGNAL TRANSIENT RESPONSE  
LARGE SIGNAL TRANSIENT RESPONSE  
60  
15  
10  
5
40  
20  
0
0
–20  
–40  
–60  
–5  
–10  
–15  
0
1
2
3
4
5
0
10  
20  
Time (µs)  
30  
40  
50  
Time (µs)  
®
6
OPA124  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, and VCC = ±15VDC, unless otherwise noted.  
SUPPLY CURRENT vs TEMPERATURE  
SETTLING TIME vs CLOSED-LOOP GAIN  
4
3
2
1
0
100  
80  
60  
40  
20  
0
0.01%  
0.1%  
–50  
–25  
0
25  
50  
75  
100  
125  
1
10  
100  
1k  
Closed-Loop Gain (V/V)  
Ambient Temperature (°C)  
INPUT OFFSET VOLTAGE CHANGE  
DUE TO THERMAL SHOCK  
INPUT OFFSET VOLTAGE WARM-UP DRIFT  
150  
20  
10  
U, P  
75  
0
PB  
+25°C  
+85°C  
0
TA = +25°C to TA = +85°C  
Air Environment  
–75  
–150  
–10  
–20  
–1  
0
1
2
3
4
5
0
1
2
3
4
5
6
Time From Thermal Shock (Minutes)  
Time From Power Turn-On (Minutes)  
®
7
OPA124  
+VCC  
APPLICATIONS INFORMATION  
NOTE: No trim on SOIC.  
7
OFFSET VOLTAGE ADJUSTMENT  
2
3
6
1
The OPA124 offset voltage is laser-trimmed and will require  
no further trim for most applications. In order to reduce  
layout leakage errors, the offset adjust capability has been  
removed from the SOIC versions (OPA124UA and  
OPA124U). The PDIP versions (OPA124PB, OPA124PA,  
and OPA124P) do have pins available for offset adjustment.  
As with most amplifiers, externally trimming the remaining  
offset can change drift performance by about 0.3µV/°C for  
each 100µV of adjusted offset. The correct circuit configu-  
ration for offset adjust for the PDIP packages is shown in  
Figure 1.  
OPA124P  
5
10kto 1Mtrim potentiometer.  
(100krecommended).  
±10mV typical trim range.  
4
VCC  
FIGURE 1. Offset Voltage Trim for PDIP packages.  
2
IIN  
Maximum Safe Current  
1
0
V
INPUT PROTECTION  
Conventional monolithic FET operational amplifiers require  
external current-limiting resistors to protect their inputs  
against destructive currents that can flow when input FET  
gate-to-substrate isolation diodes are forward-biased. Most  
–1  
Maximum Safe Current  
BIFET amplifiers can be destroyed by the loss of –VCC  
.
Unlike BIFET amplifiers, the Difet OPA124 requires input  
current limiting resistors only if its input voltage is greater  
than 6V more negative than –VCC. A 10kseries resistor  
will limit input current to a safe level with up to ±15V input  
levels, even if both supply voltages are lost (Figure 2).  
–2  
–15  
–10  
–5  
0
5
10  
15  
Input Voltage (V)  
FIGURE 2. Input Current vs Input Voltage with ±VCC Pins  
Grounded.  
Static damage can cause subtle changes in amplifier input  
characteristics without necessarily destroying the device. In  
precision operational amplifiers (both bipolar and FET types),  
this may cause a noticeable degradation of offset voltage and  
drift. Static protection is recommended when handling any  
precision IC operational amplifier.  
Non-Inverting  
Buffer  
2
2
3
8
8
Out  
Out  
6
6
OPA124  
OPA124  
GUARDING AND SHIELDING  
3
In  
In  
In  
As in any situation where high impedances are involved,  
careful shielding is required to reduce “hum” pickup in input  
leads. If large feedback resistors are used, they should also  
be shielded along with the external input circuitry.  
Bottom View  
Inverting  
1
8
2
Leakage currents across printed circuit boards can easily  
exceed the bias current of the OPA124. To avoid leakage  
problems, the OPA124 should be soldered directly into a  
printed circuit board. Utmost care must be used in planning  
the board layout. A “guard” pattern should completely  
surround the high impedance input leads and should be  
connected to a low impedance point which is at the signal  
input potential.  
Out  
6
OPA124  
7
6
5
8
3
4
Board layout for PDIP input guarding: guard top and bottom of board.  
FIGURE 3. Connection of Input Guard.  
The amplifier substrate should be connected to any input  
shield or guard via pin 8 minimizing both leakage and noise  
pickup (see Figure 3).  
If guarding is not required, pin 8 should be connected to  
ground.  
®
8
OPA124  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

OPA124UAE4

OPERATIONAL AMPLIFIER
TI

OPA124UAG4

OPERATIONAL AMPLIFIER
TI

OPA124UB

Operational Amplifier, 1 Func, 250uV Offset-Max, BIPolar, PDSO8,
BB

OPA124UE4

OPERATIONAL AMPLIFIER
TI

OPA124UG4

Low Noise Precision Difet Operational Amplifier 8-SOIC -25 to 85
TI

OPA128

Difet Electrometer-Grade OPERATIONAL AMPLIFIER
BB

OPA128JM

Difet Electrometer-Grade OPERATIONAL AMPLIFIER
BB

OPA128JM-BI

暂无描述
BB

OPA128JM-BS

Operational Amplifier, 1 Func, 2200uV Offset-Max, MBCY8,
BB

OPA128JM-BSS3

Operational Amplifier, 1 Func, 2200uV Offset-Max, MBCY8,
BB

OPA128JM-BSS4

Operational Amplifier, 1 Func, 2200uV Offset-Max, MBCY8,
BB

OPA128KM

Difet Electrometer-Grade OPERATIONAL AMPLIFIER
BB