OPA1622IDRCR [TI]

具有高性能、低 THD+N 和双极输入的 SoundPlus™ 音频运算放大器 | DRC | 10 | -40 to 125;
OPA1622IDRCR
型号: OPA1622IDRCR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有高性能、低 THD+N 和双极输入的 SoundPlus™ 音频运算放大器 | DRC | 10 | -40 to 125

放大器 运算放大器
文件: 总37页 (文件大小:2688K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
OPA1622  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
Burr-Brown Audio  
OPA1622 SoundPlus™ 高保真、双极输入音频运算放大器  
1 特性  
3 说明  
1
高保真音质  
超低噪声:1kHz 时为 2.8nV/Hz  
OPA1622 是一款双通道、双极输入、 SoundPlus™音  
频运算放大器。该器件在 1kHz 频率下拥有  
2.8nV/Hz 的超低噪声密度和 –119.2dB 的超低  
THD+N,同时还能够以 100mW 的输出功率驱动一个  
32Ω 负载。OPA1622 具有极高的交流电源抑制比  
(PSRR) 和共模抑制比 (CMRR) 技术规格,可消除来  
自电源的噪声,因此非常适合便携音频 应用。此外,  
该器件还具有 +145mA/–130mA 的高输出驱动能力。  
超低总谐波失真 + 噪声 (THD+N):  
–119dB142mW/通道至 32Ω/通道)  
宽增益带宽产品:  
32MHz (G = +1000)  
高转换率:10V/μs  
高容性负载驱动能力:> 600pF  
高开环增益:136dB600Ω 负载)  
低静态电流:每通道 2.6mA  
OPA1622 支持 ±2V ±18V 的宽电源电压范围,每通  
道电源电流仅为 2.6mAOPA1622 运算放大器的单位  
增益稳定,在宽范围负载条件下可保持出色的动态性  
能。OPA1622 具有关断模式,允许放大器从正常运行  
状态切换至一个待机电流典型值低于 5µA 的状态。此  
关断特性专门用于消除进入或退出关断模式时的喀哒和  
噼啪噪声。  
可降低喀哒和噼啪噪声的低功耗关断模式:每通道  
5μA  
短路保护  
宽电源电压范围:±2V ±18V  
采用小型超薄小外形尺寸无引线 (VSON)-10 封装  
2 应用  
OPA1622 内部 采用 独特布局,即使在过驱或过载条  
件下也可在通道间实现最低串扰和零交互。此器件的额  
定温度介于 –40°C +125°C 之间。  
高保真 (HiFi) 耳机驱动器  
专业音频设备  
模数混合控制台  
器件信息(1)  
音频测试和测量  
器件型号  
OPA1622  
封装  
VSON (10)  
封装尺寸(标称值)  
高端 蓝光碟播放器  
高端影音 (A/V) 接收器  
3.00mm × 3.00mm  
(1) 要了解所有可用封装,请参见数据表末尾的封装选项附录。  
OPA1622 应用于高保真耳机驱动器  
快速傅立叶变换 (FFT)1kHz32Ω 负载、50mW  
C1 470 pF  
0
œ20  
œ40  
œ60  
œ80  
R1  
R2  
ROUT  
VAC  
499  
768 ꢀ  
-
Headphone  
Output  
+
VDC  
OPA1622  
VAC  
œ100  
R3  
ROUT  
-133.6 dBc (Second Harmonic)  
œ120  
œ140  
œ160  
œ180  
499 ꢀ  
R4  
768 ꢀ  
C2  
470 pF  
Audio DAC  
Copyright © 2016, Texas Instruments Incorporated  
0
5k  
10k  
15k  
20k  
Frequency (Hz)  
C005  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS727  
 
 
 
 
 
OPA1622  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 17  
Application and Implementation ........................ 19  
8.1 Application Information............................................ 19  
8.2 Typical Application ................................................. 22  
Power Supply Recommendations...................... 26  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics: ........................................ 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 14  
7.3 Feature Description................................................. 14  
8
9
10 Layout................................................................... 26  
10.1 Layout Guidelines ................................................. 26  
10.2 Layout Example .................................................... 26  
11 器件和文档支持 ..................................................... 27  
11.1 器件支持................................................................ 27  
11.2 文档支持................................................................ 27  
11.3 社区资源................................................................ 27  
11.4 ....................................................................... 27  
11.5 静电放电警告......................................................... 28  
11.6 Glossary................................................................ 28  
12 机械、封装和可订购信息....................................... 28  
7
4 修订历史记录  
Changes from Revision A (November 2015) to Revision B  
Page  
增加了 TI 参考设计 ................................................................................................................................................................ 1  
Changed pin number of V+ pin in Pin Functions table .......................................................................................................... 3  
Changed format of Supply voltage parameter in Recommended Operating Conditions table .............................................. 4  
Changes from Original (November 2015) to Revision A  
Page  
已从产品预览更改为量产数据” ............................................................................................................................................ 1  
2
Copyright © 2015–2016, Texas Instruments Incorporated  
OPA1622  
www.ti.com.cn  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
5 Pin Configuration and Functions  
DRC Package  
10-Pin VSON  
Top View  
+INA  
V+  
1
2
3
4
5
10 œINA  
œ
œ
9
8
7
6
OUTA  
EN  
GND  
Vœ  
OUTB  
œINB  
+INB  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
GND  
EN  
NO.  
3
I
Connect to ground  
8
Shutdown (logic low), enable (logic high)  
Noninverting input, channel A  
Inverting input, channel A  
Noninverting input, channel B  
Inverting input, channel B  
Output, channel A  
+IN A  
–IN A  
+IN B  
–IN B  
OUT A  
OUT B  
V+  
1
I
10  
5
I
I
6
I
9
O
O
7
Output, channel B  
2
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
4
Exposed thermal die pad on underside; connect thermal die pad to V–.  
Soldering the thermal pad improves heat dissipation and provides specified performance.  
Thermal pad  
Copyright © 2015–2016, Texas Instruments Incorporated  
3
OPA1622  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
40  
UNIT  
V
Supply voltage, VS = (V+) – (V–)  
Voltage  
Input voltage (signal inputs, enable, ground)  
Input differential voltage  
Input current (all pins except power-supply pins)  
Output short-circuit(2)  
(V–) – 0.5  
(V+) + 0.5  
±0.5  
±10  
mA  
Current  
Continuous  
125  
Operating, TA  
–55  
–65  
Temperature  
Junction, TJ  
200  
°C  
Storage, Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Short-circuit to VS / 2 (ground in symmetrical dual supply setups), one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±4000  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4
NOM  
MAX  
36  
UNIT  
Single-supply  
Dual-supply  
Supply voltage, (V+) – (V–)  
Specified temperature  
V
±2  
±18  
125  
–40  
°C  
6.4 Thermal Information  
OPA1622  
THERMAL METRIC(1)  
DRC (SON)  
10 PINS  
47.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
58.1  
22.0  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.9  
ψJB  
22.2  
RθJC(bot)  
4.1  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2015–2016, Texas Instruments Incorporated  
 
 
OPA1622  
www.ti.com.cn  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
6.5 Electrical Characteristics:  
at TA = +25°C, VS = ±2 V to ±18 V, VCM = VOUT = midsupply, and RL = 1 kΩ (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AUDIO PERFORMANCE  
0.000024%  
–132  
G = 1, f = 1 kHz, VOUT = 3.5 VRMS, RL = 2 kΩ,  
80-kHz measurement bandwidth  
dB  
dB  
dB  
dB  
dB  
0.000025%  
–132  
G = 1, f = 1 kHz, VOUT = 3.5 VRMS, RL = 600 Ω,  
80-kHz measurement bandwidth  
0.000071%  
–123  
Total harmonic distortion +  
noise  
G = 1, f = 1 kHz, POUT = 10 mW, RL = 128 Ω,  
80-kHz measurement bandwidth  
THD+N  
0.000149%  
–116  
G = 1, f = 1 kHz, POUT = 10 mW, RL = 32 Ω,  
80-kHz measurement bandwidth  
0.000214%  
–113  
G = 1, f = 1 kHz, POUT = 10 mW, RL = 16 Ω,  
80-kHz measurement bandwidth  
SMPTE/DIN two-tone, 4:1 (60 Hz and 7 kHz),  
G = 1, VO = 3 VRMS, RL = 2 kΩ, 90-kHz measurement  
bandwidth  
0.000018%  
–135  
dB  
dB  
IMD  
Intermodulation distortion  
0.00005%  
–126  
CCIF twin-tone (19 kHz and 20 kHz), G = 1,  
VO = 3 VRMS, RL = 2 kΩ, 90-kHz measurement bandwidth  
FREQUENCY RESPONSE  
G = 1000  
G = 1  
32  
8
GBW  
SR  
Gain-bandwidth product  
MHz  
Slew rate  
G = –1  
10  
V/μs  
MHz  
ns  
Full-power bandwidth(1)  
Overload recovery time  
Channel separation (dual)  
VO = 1 VP  
G = –10  
f = 1 kHz  
1.6  
300  
140  
dB  
NOISE  
Input voltage noise  
f = 20 Hz to 20 kHz  
f = 10 Hz  
2.1  
10  
4
μVPP  
en  
Input voltage noise density(2)  
f = 100 Hz  
f = 1 kHz  
nV/Hz  
2.8  
2.5  
0.8  
f = 10 Hz  
In  
Input current noise density  
pA/Hz  
f = 1 kHz  
OFFSET VOLTAGE  
±100  
±500  
±600  
2.5  
VOS  
Input offset voltage  
μV  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
dVOS/dT Input offset voltage drift(2)  
0.5  
0.1  
μV/°C  
μV/V  
PSRR  
Power-supply rejection ratio  
3
INPUT BIAS CURRENT  
1.2  
2.0  
2.2  
IB  
Input bias current  
Input offset current  
μA  
TA = –40°C to +125°C(2)  
TA = –40°C to +125°C(2)  
±10  
±50  
±80  
IOS  
nA  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
Common-mode rejection ratio  
(V–) + 1.5  
110  
(V+) – 1  
V
CMRR  
(V–) + 1.5 V VCM (V+) – 1 V, TA = –40°C to +125°C  
127  
dB  
(1) Full-power bandwidth = SR / (2π × VP), where SR = slew rate.  
(2) Specified by design and characterization.  
Copyright © 2015–2016, Texas Instruments Incorporated  
5
OPA1622  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
www.ti.com.cn  
Electrical Characteristics: (continued)  
at TA = +25°C, VS = ±2 V to ±18 V, VCM = VOUT = midsupply, and RL = 1 kΩ (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT IMPEDANCE  
Differential  
60k || 0.8  
Ω || pF  
Ω || pF  
Common-mode  
500M || 0.9  
OPEN-LOOP GAIN  
(V–) + 2 V VO (V+) – 2 V, RL = 32 Ω, VS = ± 5 V  
114  
120  
120  
136  
AOL  
Open-loop voltage gain  
dB  
(V–) + 1.5 V VO (V+) – 1.5 V, RL = 600 Ω, VS = ± 18 V  
OUTPUT  
No load  
Positive rail  
800  
900  
800  
900  
RL = 600 Ω  
VO  
Voltage output swing from rail  
mV  
No load  
Negative rail  
RL = 600 Ω  
IOUT  
ZO  
Output current  
See 38 and 39  
See 40  
mA  
Ω
Open-loop output impedance  
Short-circuit current  
Capacitive load drive  
ISC  
VS = ±18 V  
+145 / –130  
See 24  
mA  
pF  
CLOAD  
ENABLE PIN  
0.82  
0.78  
VIH  
Logic high threshold  
V
TA = –40°C to +125°C  
0.95  
VIL  
IIH  
Logic low threshold  
Input current  
V
TA = –40°C to +125°C  
VEN = 1.8 V  
0.65  
1.5  
2.6  
5
μA  
POWER SUPPLY  
3.3  
4.2  
10  
VEN = 2.0 V, IOUT = 0 A  
TA = –40°C to +125°C(2)  
mA  
Quiescent current  
(per channel)  
IQ  
VEN = 0 V, IOUT = 0 A  
μA  
6
版权 © 2015–2016, Texas Instruments Incorporated  
OPA1622  
www.ti.com.cn  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
6.6 Typical Characteristics  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
20  
18  
16  
14  
12  
10  
8
20  
15  
10  
5
6
4
2
0
0
Offset Voltage Drift (µV/°C)  
Offset Voltage (µV)  
C013  
C013  
9250 channels  
50 channels  
1. Input Offset Voltage Histogram  
2. Input Offset Voltage Drift Histogram  
300  
œ60  
œ62  
œ64  
œ66  
œ68  
œ70  
œ72  
œ74  
œ76  
œ78  
œ80  
VCM = -16.5 V  
200  
100  
VCM = 17 V  
0
œ100  
œ200  
œ300  
0
10  
20  
œ20  
œ10  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
VCM (V)  
Temperature (°C)  
C001  
C001  
4 typical units  
4. Input Offset Voltage vs Common-Mode Voltage  
3. Input Offset Voltage vs Temperature  
100  
10  
1
10  
1
+31  
-31  
0.1  
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
Frequency (Hz)  
Frequency (Hz)  
C307  
C306  
5. Input Voltage Noise Spectral Density vs Frequency  
6. Input Current Noise Spectral Density vs Frequency  
版权 © 2015–2016, Texas Instruments Incorporated  
7
 
OPA1622  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
1000  
100  
10  
Source Resistor Noise Contribution  
Total Noise  
1
Voltage Noise Contribution  
Current Noise Contribution  
0.1  
Time (2 s/div)  
10  
100  
1k  
10k  
100k  
1M  
Source Resistance ()  
C017  
C302  
7. 0.1-Hz to 10-Hz Noise  
8. Voltage Noise vs Source Resistance  
18  
140  
225  
16  
120  
100  
80  
VS = ±15V  
14  
12  
10  
8
180  
135  
90  
60  
40  
6
VS = ±5V  
20  
4
VS = ±2V  
0
2
0
œ20  
45  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k 100k 1M 10M 100M  
Frequency (Hz)  
Frequency (Hz)  
C303  
C005  
9. Maximum Output Voltage vs Frequency  
10. Open-Loop Gain and Phase vs Frequency  
5.0  
4.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
VS = ±2 V  
VS = ±2 V  
3.0  
2.0  
1.0  
0.0  
VS = ±18 V  
VS = ±18 V  
œ1.0  
œ2.0  
œ3.0  
œ4.0  
œ5.0  
œ1.0  
œ2.0  
œ3.0  
œ4.0  
œ5.0  
0
25  
50  
75  
100 125 150  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
œ75 œ50 œ25  
Temperature (°C)  
Temperature (°C)  
C001  
C001  
600-Ω load  
11. Open-Loop Gain vs Temperature  
2-kΩ load  
12. Open-Loop Gain vs Temperature  
8
版权 © 2015–2016, Texas Instruments Incorporated  
OPA1622  
www.ti.com.cn  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
40  
0.01  
0.001  
-80  
G = +10  
G = -1, 600-Load  
G = -1  
G = +1  
G = -1, 2k-Load  
G = -1, 10k-Load  
G = +1, 600-Load  
20  
0
-100  
G = +1, 2k-Load  
G = +1, 10k-Load  
0.0001  
0.00001  
-120  
-20  
-140  
20k  
100  
1k  
10k  
100k  
1M  
10M  
20  
200  
2k  
Frequency (Hz)  
Frequency (Hz)  
C004  
C004  
C004  
C004  
3.5 VRMS, 80-kHz measurement bandwidth  
13. Closed-Loop Gain vs Frequency  
14. THD+N Ratio vs Frequency  
0.1  
-60  
0.1  
0.01  
-60  
G = -1, 128-Load  
G = -1, 32-Load  
G = -1, 16-Load  
G = +1, 128-Load  
G = +1, 32-Load  
G = +1, 16-Load  
0.01  
-80  
-80  
Inverting  
0.001  
0.0001  
-100  
-120  
-140  
0.001  
-100  
-120  
-140  
0.0001  
0.00001  
Noninverting  
2k-Load  
600-Load  
0.00001  
20  
200  
2k  
20k  
0.01  
0.1  
1
10  
Frequency (Hz)  
Output Amplitude (VRMS  
)
C004  
10 mW, 80-kHz measurement bandwidth  
1 kHz, 80-kHz measurement bandwidth  
15. THD+N Ratio vs Frequency  
16. THD+N Ratio vs Output Amplitude  
0.1  
0.01  
-60  
0.1  
-60  
2k-Load  
32-Load  
-80  
0.01  
0.001  
-80  
Inverting  
SMPTE  
0.001  
-100  
-120  
-140  
-100  
-120  
-140  
Noninverting  
0.0001  
0.00001  
0.0001  
0.00001  
128-Load  
32-Load  
16-Load  
CCIF  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Amplitude (VRMS  
)
Output Amplitude (VRMS  
)
C004  
1 kHz, 80-kHz measurement bandwidth  
90-kHz measurement bandwidth  
18. Intermodulation Distortion vs Output Amplitude  
17. THD+N Ratio vs Output Amplitude  
版权 © 2015–2016, Texas Instruments Incorporated  
9
OPA1622  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
160  
140  
120  
100  
80  
-80  
No Load  
PSRR+  
32-Load  
600-Load  
PSRR-  
-100  
-120  
-140  
-160  
60  
40  
20  
0
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
C004  
C115  
19. Channel Separation vs Frequency  
20. PSRR vs Frequency (Referred to Input)  
5
4
140  
120  
100  
80  
3
2
1
0
60  
-1  
-2  
-3  
-4  
-5  
40  
20  
0
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Temperature (°C)  
Frequency (Hz)  
C001  
C004  
21. PSRR vs Temperature  
22. CMRR vs Frequency (Referred to Input)  
1
0.8  
0.6  
0.4  
0.2  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VS = ±2 V, (Vœ) +1.5 ≤ VCM ≤ (V+) œ 1 V  
G = +1  
G = -1  
VS = ±18 V, (Vœ) +1.5 ≤ VCM ≤ (V+) œ 1V  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
200  
400  
600  
800  
1000  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
Capacitive Load (pF)  
Temperature (°C)  
C308  
C001  
24. Phase Margin vs Capacitive Load  
23. CMRR vs Temperature  
10  
版权 © 2015–2016, Texas Instruments Incorporated  
OPA1622  
www.ti.com.cn  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
Time (2.5 s/div)  
Time (2.5 s/div)  
C017  
C017  
G = 1, 10 mV  
G = 1, 10 V  
25. Small-Signal Step Response  
26. Large-Signal Step Response  
VOUT  
VIN  
VIN  
VOUT  
Time (200 ns/div)  
Time (200 ns/div)  
C017  
C017  
G = –10  
G = –10  
27. Negative Overload Recovery  
28. Positive Overload Recovery  
1.5  
1.4  
1.3  
1.2  
1.1  
1
VOUT  
VIN  
IB-  
IB+  
0.9  
Time (500 ms/div)  
0
25  
50  
75  
100  
125  
œ50  
œ25  
Temperature (ºC)  
C017  
C304  
29. No Phase Reversal  
30. IB vs Temperature  
版权 © 2015–2016, Texas Instruments Incorporated  
11  
OPA1622  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
5
1.5  
1.4  
1.3  
1.2  
1.1  
1
4
3
2
1
0
25  
50  
75  
100  
125  
œ50  
-1.5  
0
œ25  
-20  
-10  
0
10  
20  
Temperature (ºC)  
Common-Mode Voltage (V)  
C305  
C001  
VS = ±18 V  
31. IOS vs Temperature  
32. IB vs Common-Mode Voltage  
5
4.5  
4
1.3  
1.25  
1.2  
3.5  
3
VS = ±18 V  
VS = ±2 V  
2.5  
2
1.5  
1
1.15  
1.1  
0.5  
0
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
-1  
-0.5  
0
0.5  
1
1.5  
Temperature (°C)  
Common-Mode Voltage (V)  
C001  
C002  
VS = ±2 V  
34. Quiescent Current vs Temperature  
33. IB vs Common-Mode Voltage  
5
4
3
2
1
0
3
2.5  
2
125ºC  
85ºC  
1.5  
1
25ºC  
-40ºC  
0.5  
0
0.5  
1
1.5  
2
2
4
6
8
10  
12  
14  
16  
18  
20  
Enable Voltage (V)  
Supply Voltage (V)  
C002  
C001  
36. Quiescent Current vs Enable Voltage  
35. Quiescent Current vs Supply Voltage  
12  
版权 © 2015–2016, Texas Instruments Incorporated  
OPA1622  
www.ti.com.cn  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
18  
16  
14  
12  
10  
8
200  
180  
ISC, Source  
160  
140  
120  
6
ISC, Sink  
125°C  
25°C  
100  
4
80  
60  
85°C  
œ40°C  
2
0
0
20  
40  
60  
80 100 120 140 160 180 200  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
IO (mA)  
C001  
Temperature (°C)  
C001  
38. Positive Output Voltage vs Output Current  
37. Short-Circuit Current vs Temperature  
0
-2  
100  
10  
1
125°C  
25°C  
-4  
85°C  
-6  
œ40°C  
-8  
-10  
-12  
-14  
-16  
-18  
0
20  
40  
60  
80 100 120 140 160 180 200  
1
10  
100  
1k  
10k 100k 1M  
10M 100M  
IO (mA)  
C001  
Frequency (Hz)  
C001  
39. Negative Output Voltage vs Output Current  
40. Open-Loop Output Impedance vs Frequency  
版权 © 2015–2016, Texas Instruments Incorporated  
13  
OPA1622  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPA1622, dual, bipolar-input, audio operational amplifier uses a unique internal topology to deliver high  
output current with extremely low distortion while consuming minimal supply current. A single gain stage  
architecture, combining a high-gain transconductance input stage and a unity gain output stage, allows the  
OPA1622 to achieve an open-loop gain of 136 dB, even with 600-Ω loads.  
The output stage of the OPA1622 is designed specifically to source and sink large amounts of current without  
degrading amplifier linearity. High-order distortion harmonics, produced by output stage crossover distortion, are  
greatly reduced with this design. The OPA1622 output stage also provides exceptionally low open-loop output  
impedance that improves stability with capacitive loads and is protected against short-circuit events.  
A separate enable circuit maintains control of the input and output stage when the amplifier is placed into its  
shutdown mode and limits transients at the amplifier output when transitioning to and from this state. The enable  
circuit features logic levels referenced to the amplifier ground pin. This configuration simplifies the interface  
between the amplifier and the ground-referenced GPIO pins of microcontrollers. The addition of a ground pin to  
the amplifier provides several additional benefits. For example, the compensation capacitor between the input  
and output stages of the OPA1622 is referenced to the ground pin, greatly improving PSRR.  
7.2 Functional Block Diagram  
Short-Circuit Current Limit  
-
+
High-Gain Input Stage  
+IN  
+
OUT  
-
-IN  
High-Current Output  
Stage  
Compensation  
Capacitor  
GND  
EN  
-
+
Enable Circuitry  
Copyright © 2016, Texas Instruments Incorporated  
41. OPA1622 Simplified Schematic  
7.3 Feature Description  
7.3.1 Power Dissipation  
The OPA1622 is capable of high output current with power-supply voltages up to ±18 V. Internal power  
dissipation increases when operating at high supply voltages. The power dissipated in the op amp (POPA) is  
calculated using 公式 1:  
VOUT  
POPA = V - V  
ìI  
= V - V  
ì
(
)
(
)
+
OUT  
OUT  
+
OUT  
RL  
(1)  
14  
版权 © 2015–2016, Texas Instruments Incorporated  
 
OPA1622  
www.ti.com.cn  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
Feature Description (接下页)  
In order to calculate the worst-case power dissipation in the op amp, the ac and dc cases must be considered  
separately.  
In the case of constant output current (dc) to a resistive load, the maximum power dissipation in the op amp  
occurs when the output voltage is half the positive supply voltage. This calculation assumes that the op amp is  
sourcing current from the positive supply to a grounded load. If the op amp sinks current from a grounded load,  
modify 公式 2 to include the negative supply voltage instead of the positive.  
2
V
V+  
+
POPA(MAX _DC) = POPA ∆  
=
÷
2
4RL  
«
(2)  
The maximum power dissipation in the op amp for a sinusoidal output current (ac) to a resistive load occurs  
when the peak output voltage is 2/π times the supply voltage, given symmetrical supply voltages:  
2
2V  
2V+  
+
POPA(MAX _ AC) = POPA ∆  
=
÷
p2 RL  
p
«
(3)  
The dominant pathway for the OPA1622 to dissipate heat is through the package thermal pad and pins to the  
PCB. Copper leadframe construction used in the OPA1622 improves heat dissipation compared to conventional  
materials. PCB layout greatly affects thermal performance. Connect the OPA1622 package thermal pad to a  
copper pour at the most negative supply potential. This copper pour can be connected to a larger copper plane  
within the PCB using vias to improve power dissipation. 42 shows an analogous thermal circuit that can be  
used for approximating the junction temperature of the OPA1622. The power dissipated in the OPA1622 is  
represented by current source PD; the ambient temperature is represented by voltage source 25ºC; and the  
junction-to-board and board-to-ambient thermal resistances are represented by resistors θJB and θBA  
,
respectively. The board-to-ambient thermal resistance is unique to every application. The sum of θJB and θBA is  
the junction-to-ambient thermal resistance of the system. The value for junction-to-ambient thermal resistance  
reported in the Thermal Information table is determined using the JEDEC standard test PCB. The voltages in the  
analogous thermal circuit at the points TJ and TPCB represent the OPA1622 junction and PCB temperatures,  
respectively.  
TJ  
JB (22.0ºC/W)  
TPCB  
PD  
BA  
25ºC  
42. Approximate Thermal System Model of the OPA1622 Soldered to a PCB.  
7.3.2 Thermal Shutdown  
If the junction temperature of the OPA1622 exceeds 175ºC, a thermal shutdown circuit disables the amplifier in  
order to protect the device from damage. The amplifier is automatically re-enabled after the junction temperature  
falls below approximately 160ºC. If the condition that caused excessive power dissipation has not been removed,  
the amplifier oscillates between a shutdown and enabled state until the output fault is corrected.  
版权 © 2015–2016, Texas Instruments Incorporated  
15  
 
 
OPA1622  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
www.ti.com.cn  
Feature Description (接下页)  
7.3.3 Enable Pin  
The enable pin (EN) of the OPA1622 is used to toggle the amplifier enabled and disabled states. The logic levels  
defining these two states are: VEN 0.78 V (shutdown mode), and VEN 0.82 V (enabled). These threshold  
levels are referenced to the device ground pin. The enable pin can be driven by a GPIO pin from the system  
controller, discrete logic gates, or can be connected directly to the V+ supply. Do not leave the enable pin  
floating because the amplifier is prevented from being enabled. Likewise, do not place GPIO pins used to control  
the enable pin in a high-impedance state because this placement also prevents the amplifier from being enabled.  
A small current flows into the enable pin when a voltage is applied. Using the simplified internal schematic shown  
in 43, use 公式 4 to estimate the enable pin current:  
VEN - 0.7 V  
700 k  
IEN  
=
(4)  
As illustrated in 43, the enable pin is protected by diodes to the amplifier power supplies. Do not connect the  
enable pin to voltages outside the limits defined in the Specifications section.  
To  
Amplifier  
VCC  
500 k  
EN  
VEE  
VCC  
200 kꢀ  
GND  
VEE  
43. Enable Pin Simplified Internal Schematic  
7.3.4 Ground Pin  
The inclusion of a ground pin in the OPA1622 architecture allows the internal enable circuitry to be referenced to  
the system ground, eliminating the need for level shifting circuitry in many applications. The internal amplifier  
compensation capacitors are also referenced to this pin, greatly increasing the ac PSRR. For highest  
performance, connect the ground pin to a low-impedance reference point with minimal noise present. As shown  
in 43, the ground pin is protected by ESD diodes to the amplifier power supplies. Do not connect the ground  
pin to voltages outside the limits defined in the Specifications section.  
7.3.5 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress.  
These questions tend to focus on the device inputs, but can involve the supply voltage pins or even the output  
pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly.  
Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is  
helpful. 44 shows the ESD circuits contained in the OPA1622. The ESD protection circuitry involves several  
current-steering diodes connected from the input and output pins and routed back to the internal power-supply  
lines, where they meet at an absorption device internal to the operational amplifier. This protection circuitry is  
intended to remain inactive during normal circuit operation.  
16  
版权 © 2015–2016, Texas Instruments Incorporated  
 
 
OPA1622  
www.ti.com.cn  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
Feature Description (接下页)  
V+  
Power Supply  
ESD Cell  
EN  
+IN  
+
œ
OUT  
œ IN  
GND  
Vœ  
44. Equivalent Internal ESD Circuitry  
7.3.6 Input Protection  
The input pins of the OPA1622 are protected from excessive differential voltage with back-to-back diodes, as 图  
45 shows. In most circuit applications, the input protection circuitry has no consequence. However, in low-gain  
or G = +1 circuits, fast-ramping input signals can forward bias these diodes because the output of the amplifier  
cannot respond quickly enough to the input ramp. If the input signal is fast enough to create this forward-bias  
condition, the input signal current must be limited to 10 mA or less. If the input signal current is not inherently  
limited, use an input series resistor (RI) or a feedback resistor (RF) to limit the signal input current. This input  
series resistor degrades the low-noise performance of the OPA1622 and is examined in the Noise Performance  
section. 45 shows an example configuration when both current-limiting input and feedback resistors are used.  
RF  
Device  
Output  
RI  
+
Input  
45. Pulsed Operation  
7.4 Device Functional Modes  
The OPA1622 has two operating modes determined by the voltage between the enable and ground pins: a  
shutdown mode (VEN 0.78V) and an enabled mode (VEN 0.82V). The measured datasheet performance  
parameters specified in the Typical Characteristics and Specifications sections are given with the amplifier in the  
enabled mode, unless otherwise noted.  
版权 © 2015–2016, Texas Instruments Incorporated  
17  
 
OPA1622  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
www.ti.com.cn  
Device Functional Modes (接下页)  
7.4.1 Shutdown Mode  
When the enable pin voltage is below the logic low threshold, the OPA1622 enters a shutdown mode with  
minimal power consumption. In this state the output transistors of the amplifier are not powered on. However, do  
not consider the amplifier output to be high-impedance. Applying signals to the output of the OPA1622 while the  
device is in the shutdown mode can parasitically power the output stage, causing the OPA1622 output to draw  
current.  
The OPA1622 enable circuitry limits transients at the output when transitioning into or out of shutdown mode.  
However, small output transients do still accompany this transition, as illustrated in 46 and 47. Note that in  
both figures the time scale is 1 µs per division, indicating that the output transients are extremely brief in nature,  
and therefore not likely to be audible in headphone applications.  
Enable (2 V/div)  
Enable (2 V/div)  
Output (20 mV/div)  
Output (20 mV/div)  
Time (1 s/div)  
Time (1 s/div)  
C001  
C002  
46. OPA1622 Output Voltage When Enable Pin  
Transitions High (32-Ω Load Connected)  
47. OPA1622 Output Voltage When Enable Pin  
Transitions Low (32-Ω Load Connected)  
7.4.2 Output Transients During Power Up and Power Down  
To minimize the possibility of output transients that might produce an audible click or pop, ramp the supply  
voltages for the OPA1622 symmetrically to their nominal values. Asymmetrical supply ramping can cause output  
transients during power up that can be audible in headphone applications. If possible, hold the enable pin low  
while the power supplies are ramping up or down. If the enable pin is not being independently controlled (for  
example, by a GPIO pin), use a voltage divider to hold the enable pin voltage below the logic-high threshold until  
the power supplies reach the specified minimum voltage, as shown in 48.  
VCC  
22.1 k  
To enable  
pin on IC  
10.7 kꢀ  
48. Voltage Divider Used to Hold Enable Low at Power-Up or Power-Down  
18  
版权 © 2015–2016, Texas Instruments Incorporated  
 
 
OPA1622  
www.ti.com.cn  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The low noise and distortion of the OPA1622 make the device well suited for a variety of applications in  
professional and consumer audio products. However, these same performance metrics also make the OPA1622  
useful for industrial, test-and-measurement, and data-acquisition applications. The example shown here is only  
one possible application where the OPA1622 provides exceptional performance.  
8.1.1 Noise Performance  
49 shows the total circuit noise for varying source impedances with the op amp in a unity-gain configuration  
(no feedback resistor network, and therefore no additional noise contributions).  
The OPA1622 is shown with total circuit noise calculated. The op amp contributes both a voltage noise  
component and a current noise component. The voltage noise is commonly modeled as a time-varying  
component of the offset voltage. The current noise is modeled as the time-varying component of the input bias  
current, and reacts with the source resistance to create a voltage component of noise. Therefore, the lowest  
noise op amp for a given application depends on the source impedance. For low source impedance, current  
noise is negligible, and voltage noise generally dominates. The low voltage and current noise of the OPA1622 op  
amp make the device an excellent choice for use in applications where the source impedance is less than 10 kΩ.  
8.1.1.1 Noise Calculations  
The equations in 50 show the calculation of the total circuit noise using these parameters:  
en = voltage noise  
In = current noise  
RS = source impedance  
k = Boltzmann’s constant = 1.38 × 10–23 J/K  
T = temperature in kelvins (K)  
8.1.1.2 Application Curve  
1000  
100  
10  
Source Resistor Noise Contribution  
Total Noise  
1
Voltage Noise Contribution  
Current Noise Contribution  
0.1  
10  
100  
1k  
10k  
100k  
1M  
Source Resistance ()  
C302  
49. Noise Performance of the OPA1622 in a Unity-Gain Buffer Configuration  
版权 © 2015–2016, Texas Instruments Incorporated  
19  
 
OPA1622  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
www.ti.com.cn  
Application Information (接下页)  
8.1.1.3 Basic Noise Calculations  
Designing low-noise op amp circuits requires careful consideration of a variety of possible noise contributors,  
such as noise from the signal source, noise generated in the op amp, and noise from the feedback network  
resistors. The total noise of the circuit is the root sum squared combination of all noise components.  
The resistive portion of the source impedance produces thermal noise proportional to the square root of the  
resistance. 49 plots this function. The source impedance is usually fixed; consequently, select the op amp and  
the feedback resistors to minimize the respective contributions to the total noise.  
50 shows both inverting and noninverting op amp circuit configurations with gain. In circuit configurations with  
gain, the feedback network resistors also contribute noise.  
The current noise of the op amp reacts with the feedback resistors to create additional noise components.  
Choose feedback resistor values that make these noise sources negligible. The equations for total noise are  
shown for both configurations.  
Noise in Noninverting Gain Configuration  
Noise at the output:  
R2  
é
ù2  
ú
2 é  
1+  
ù2  
ú
R2  
R2  
2
)
2
2
2
2
EO = 1+  
en + e12 + e2 + i R  
+ eS + i R  
(
(
)
ê
ê
n
2
n
S
R1 û  
R1 û  
R1  
ë
ë
EO  
where  
é
ù
ú
R2  
· eS  
=
4kTRS ´ 1+  
= thermal noise of R  
S
RS  
ê
R1 û  
ë
é
ê
ë
ù
ú
R2  
VS  
· e1 = 4kTR ´  
= thermal noise of R  
1
1
R1 û  
· e2 = 4kTR2 = thermal noise of R2  
Noise in Inverting Gain Configuration  
Noise at the output:  
R2  
é
ù2  
ú
R2  
2
)
2
2
2
2
EO = 1+  
en + e12 + e2 + i R  
+ eS  
(
ê
n
2
R1 + RS û  
R1  
ë
EO  
RS  
where  
é
ê
ë
ù
ú
R2  
· eS  
=
4kTRS  
´
= thermal noise of R  
VS  
S
R1 + RS û  
é
ê
ë
ù
ú
R2  
· e1 = 4kTR ´  
= thermal noise of R  
1
1
R1 + RS û  
· e2 = 4kTR2 = thermal noise of R2  
For the OPA1622 at 1 kHz, en = 2.8 nV/Hz and in = 800 fA/Hz.  
50. Noise Calculation in Gain Configurations  
20  
版权 © 2015–2016, Texas Instruments Incorporated  
 
OPA1622  
www.ti.com.cn  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
Application Information (接下页)  
8.1.2 Total Harmonic Distortion Measurements  
The distortion produced by OPA1622 is below the measurement limit of many commercially-available distortion  
analyzers. However, a special test circuit, as shown in 51, can be used to extend the measurement  
capabilities.  
R1  
R2  
Device  
Under Test  
R2  
R1  
Gain(Signal) = 1+  
œ
R3  
+
R2  
R1 || R3  
Gain(Distortion) = 1+  
Generator  
Output  
Analyzer  
Input  
Load  
Audio  
Analyzer  
51. Distortion Test Circuit  
Consider op amp distortion an internal error source that is referred to the input. 51 shows a circuit that causes  
the op amp distortion to be 101 times (approximately 40 dB) greater than that normally produced by the op amp.  
The addition of R3 to the otherwise standard noninverting amplifier configuration alters the feedback factor or  
noise gain of the circuit. The closed-loop gain is unchanged, but the feedback available for error correction is  
reduced by a factor of 101, thus extending the resolution by 101. Note that the input signal and load applied to  
the op amp are the same as with conventional feedback without R3. Keep the value of R3 small to minimize its  
effect on the distortion measurements.  
Verify the validity of this technique by duplicating measurements at high gain or high frequency where the  
distortion is within the measurement capability of the test equipment.  
版权 © 2015–2016, Texas Instruments Incorporated  
21  
 
OPA1622  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
www.ti.com.cn  
8.2 Typical Application  
The low distortion and high output-current capabilities of the OPA1622 make this device an excellent choice for  
headphone-amplifier applications in portable or studio applications. These applications typically employ an audio  
digital-to-analog converter (DAC) and a separate headphone amplifier circuit connected to the DAC output. High-  
performance audio DACs can have an output signal that is either a varying current or voltage. Voltage output  
configurations require less external circuitry, and therefore have advantages in cost, power consumption, and  
solution size. However, these configurations can offer slightly lower performance than current output  
configurations. Differential outputs are standard on both types of DACs. Differential outputs double the output  
signal levels that can be delivered on a single, low-voltage supply, and also allow for even-harmonics common to  
both outputs to be cancelled by external circuitry. A simplified representation of a voltage-output audio DAC is  
shown in 52. Two ac voltage sources (VAC) deliver the output signal to the complementary outputs through  
their associated output impedances (ROUT). Both output signals have a dc component as well, represented by dc  
voltage source VDC. The headphone amplifier circuit connected to the output of an audio DAC must convert the  
differential output into a single-ended signal and be capable of producing signals of sufficient amplitude at the  
headphones to achieve reasonable listening levels.  
C1 470 pF  
R1  
R2  
ROUT  
VAC  
499  
768 ꢀ  
-
Headphone  
Output  
+
VDC  
OPA1622  
VAC  
R3  
ROUT  
499 ꢀ  
R4  
768 ꢀ  
C2  
470 pF  
Audio DAC  
Copyright © 2016, Texas Instruments Incorporated  
52. OPA1622 Used as a Headphone Amplifier for a Voltage-Output Audio DAC  
8.2.1 Design Requirements  
±5-V power supplies  
150-mW output power (32-Ω load)  
< –115-dB THD+N at maximum output (32-Ω load)  
< 0.01-dB magnitude deviation (20 Hz to 20 kHz)  
8.2.2 Detailed Design Procedure  
52 shows a schematic of a headphone amplifier circuit for voltage output DACs. An op amp is configured as a  
difference amplifier that converts the differential output voltage to single-ended. The values of the resistors in the  
difference amplifier circuit are determined by the specifications of the DAC, such as output voltage and output  
impedance, as well as the maximum output voltage desired at the headphone output. The op amp chosen must  
be capable of delivering the necessary current to the headphones and remain stable into typical headphone  
loads that can have capacitances as high as 400 pF. The following design process uses a hypothetical DAC with  
common values of output voltage and impedance for the design process. The specifications of the DAC are  
shown in 1:  
1. Audio DAC Specifications Used for the Design Process  
PARAMETER  
VALUE  
2 VRMS  
200 Ω  
Maximum differential output voltage  
Output impedance (ROUT  
)
Output dc offset  
1.65 V  
22  
版权 © 2015–2016, Texas Instruments Incorporated  
 
 
 
OPA1622  
www.ti.com.cn  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
The gain of the difference amplifier in 52 is determined by the resistor values, and includes the output  
impedance of the DAC. For R2 = R4 and R1 = R3, the output voltage of the headphone amplifier circuit is shown  
in 公式 5:  
R2  
VOUT = V  
DAC R1 + ROUT  
(5)  
The output voltage required for headphones depends on the headphone impedance, as well as the headphone  
efficiency (η), a measure of the sound pressure level (SPL, measured in dB) for a certain input power level  
(typically given at 1 mW). The headphone SPL at other power levels is calculated using 公式 6:  
P
IN  
SPL(dB) = h +10log  
«
÷
1 mW  
where  
η = efficiency  
PIN = input power to the headphones  
(6)  
53 shows the input power required to produce certain SPLs for different headphone efficiencies. Typically,  
over-the-ear style headphones have lower efficiencies than in-ear types with 95 dB/mW being a common value.  
150  
140  
130  
120  
110  
100  
90-dB/mW  
90  
80  
70  
60  
95-dB/mW  
100-dB/mW  
105-dB/mW  
110-dB/mW  
115-dB/mW  
0.01  
0.1  
1
10  
100  
1000  
Input Power (mW)  
C001  
53. Sound Pressure Level vs Input Power for Headphones of Various Efficiencies  
In-ear headphones can have efficiencies of 115 dB/mW or greater, and therefore have much lower power  
requirements. The output power goal for this design is 150 mW; sufficient power to produce extremely loud  
sound pressure levels in a wide range of headphones. A 32-Ω headphone impedance is used for this  
requirement because 32 Ω is a very common value in headphones for portable applications. 公式 7 shows the  
voltage required for 32-Ω headphones:  
VO = PìR = 150 mW ì32 = 2.191 VRMS  
(7)  
A tradeoff exists when selecting resistor values for this design. First, high resistor values contribute additional  
noise to the circuit, degrading the audio performance. However, extremely low resistor values draw excessive  
current from the DAC, increasing distortion. A value of 499 Ω is used for resistors R1 and R3 as a reasonable  
compromise between these two considerations. Resistor R2 and R4 can then be calculated as shown in 公式 8:  
R2  
R2  
VOUT = V  
ç1.095 =  
ç R2 = 765.4 ç 768 ꢀ  
DAC R1 +ROUT  
499 + 200 ꢀ  
(8)  
23  
版权 © 2015–2016, Texas Instruments Incorporated  
 
 
 
 
 
OPA1622  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
www.ti.com.cn  
In order to accommodate higher impedance headphones, increase the gain of the circuit to produce greater  
output voltages. However, increasing the gain also increases the noise of the circuit and limits the dynamic range  
of the circuit into lower impedance headphones. For this reason, some designers choose to select the  
headphone amplifier gain by using a switch.  
Capacitors C1 and C2 limit the bandwidth of the circuit to prevent the unnecessary amplification of interfering  
signals. The maximum value of these capacitors is determined by the limitations on frequency response  
magnitude deviation detailed in the Design Requirements section. C1 and C2 combine with resistors R2 and R4 to  
form a pole, as shown in 公式 9:  
1
fP =  
2p(R2,R4 )(C1,C2 )  
(9)  
Calculate the minimum pole frequency allowable to meet the magnitude deviation requirements using 公式 10:  
f
20 kHz  
fP í  
í
í 416.6 kHz  
2
2
1
1
-1  
-1  
«
÷
«
÷
G
0.999  
where  
G represents the gain in decimal for a –0.01-dB deviation at 20 kHz.  
(10)  
Use 公式 11 to calculate the upper limit for the value of C1 and C2 in order to meet the goal for minimal  
magnitude deviation at 20 kHz.  
1
1
C1,C2 Ç  
Ç
Ç 497 pF ç 470 pF  
2p(R2,R4)F  
2p(768 )(416.6 kHz)  
P
(11)  
8.2.3 Application Curves  
The circuit described in 52 is constructed using 0.1% tolerance thin-film resistors (0603 package) and surface-  
mount film capacitors. The performance of the circuit is measured using a high-performance audio analyzer and  
is displayed in 54 through 59. The maximum output power for three common headphone impedances is  
shown in 2  
2. Maximum Output Power and THD+N Before Clipping for Common Headphone Impedances  
LOAD IMPEDANCE  
MAXIMUM OUTPUT POWER BEFORE CLIPPING  
(mW)  
THD+N AT MAXIMUM OUTPUT POWER  
(dB)  
(Ω)  
16  
32  
95  
–114.2  
–118.7  
–119.4  
150  
11.3  
600  
The maximum output power delivered to low impedance headphone loads (16 Ω and 32 Ω) is limited by the  
output current capabilities of the amplifier. For the 600-Ω case, the maximum power delivered is limited by the  
output voltage capability of the amplifier and depends greatly on the power-supply voltages used. 55 shows  
the maximum output voltage achievable for each load before the onset of clipping (±5-V supplies), indicated by a  
sharp increase in distortion.  
As more current is delivered by the output transistors of an amplifier, additional distortion is produced. At low  
frequencies, this distortion is corrected by the feedback loop of the amplifier. However, as the loop gain of the  
amplifier begins to decline at high frequencies, the overall distortion begins to climb. The unique output stage  
design of the OPA1622 greatly reduces the additional distortion at high frequency when delivering large currents,  
as shown in 56. High-ordered harmonics (above the 2nd and 3rd) are also kept to a minimal level at high  
output powers, as shown in 57 through 59.  
24  
版权 © 2015–2016, Texas Instruments Incorporated  
 
 
 
 
OPA1622  
www.ti.com.cn  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
3
0.1  
0.01  
-60  
2.5  
2
-80  
0.001  
-100  
16-Load  
1.5  
0.0001  
0.00001  
-120  
32-Load  
600-Load  
1
-140  
10  
100  
1k  
10k  
0.01  
0.1  
1
Frequency (Hz)  
Output Voltage (VRMS)  
C001  
C002  
22.4-kHz measurement bandwidth  
54. Headphone Amplifier Transfer Function  
55. THD+N vs Output Voltage for Headphone Loads  
0
œ20  
œ40  
œ60  
œ80  
0.01  
-80  
16-Load  
600-Load  
32-Load  
0.001  
-100  
œ100  
-134 dBc (Second Harmonic)  
œ120  
œ140  
œ160  
œ180  
0.0001  
-120  
10  
100  
1k  
10k  
0
5k  
10k  
15k  
20k  
Frequency (Hz)  
Frequency (Hz)  
C003  
C004  
90-kHz measurement bandwidth, 1-VRMS output  
56. THD+N vs Frequency for Headphone Loads  
1 kHz, 32-Ω load, 10 mW  
57. Output Spectrum  
0
0
œ20  
œ20  
œ40  
œ40  
œ60  
œ60  
œ80  
œ80  
œ100  
œ120  
œ140  
œ160  
œ180  
œ100  
œ120  
œ140  
œ160  
œ180  
-126 dBc (Third Harmonic)  
-133.6 dBc (Second Harmonic)  
0
5k  
10k  
15k  
20k  
0
5k  
10k  
15k  
20k  
Frequency (Hz)  
Frequency (Hz)  
C005  
C006  
1 kHz, 32-Ω load, 50 mW  
1 kHz, 32-Ω load, 150 mW  
58. Output Spectrum  
59. Output Spectrum  
版权 © 2015–2016, Texas Instruments Incorporated  
25  
OPA1622  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
www.ti.com.cn  
9 Power Supply Recommendations  
The OPA1622 op amp operates from ±2-V to ±18-V supplies, while maintaining excellent performance. However,  
some applications do not require equal positive and negative output voltage swing. With the OPA1622, power-  
supply voltages do not need to be equal. For example, the positive supply could be set to +25 V with the  
negative supply at –5 V.  
In all cases, the common-mode voltage must be maintained within the specified range. Key parameters are  
specified over the temperature range of TA = –40°C to +125°C. Parameters that vary with operating voltage or  
temperature are shown in the Typical Characteristics section.  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close  
to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-supply  
applications. The bypass capacitors are used to reduce the coupled noise by providing low-impedance power  
sources local to the analog circuitry, because noise can propagate into analog circuitry through the power  
pins of the circuit as a whole and the op amp specifically.  
Connect the IC ground pin to a low-impedance, low-noise, system reference point, such as an analog ground.  
Place the external components as close to the device as possible. As shown in 60, keep feedback  
resistors close to the inverting input to minimize parasitic capacitance and the feedback loop area.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
For proper amplifier function, connect the package thermal pad to the most negative supply voltage (VEE).  
10.2 Layout Example  
IN-  
IN+  
Place feedback  
resistors to minimize  
feedback loop area  
GND  
VEE  
Place bypass  
capacitors as close to  
IC as possible  
+IN  
V+  
-IN  
OUT  
EN  
œ
A
OUT  
IC ground pin  
connected to low-  
impedance, low-noise  
system ground  
ENABLE  
GND  
B
Vœ  
OUT  
-IN  
OUT  
œ
+IN  
VEE  
Copper pour for thermal  
pad must be connected to  
negative supply (VEE)  
GND  
IN+  
IN-  
60. Operational Amplifier Board Layout for a Difference Amplifier Configuration  
26  
版权 © 2015–2016, Texas Instruments Incorporated  
 
OPA1622  
www.ti.com.cn  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 TINA-TI™(免费软件下载)  
TINA™是一款简单、功能强大且易于使用的电路仿真程序,此程序基于 SPICE 引擎。TINA-TI TINA 软件的一  
款免费全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。TINA-TI 提供所有传  
统的 SPICE 直流、瞬态和频域分析,以及其他设计功能。  
TINA-TI 可从 Analog eLab Design Center(模拟电子实验室设计中心)免费下载,它提供全面的后续处理能力,  
使得用户能够以多种方式形成结果。虚拟仪器提供选择输入波形和探测电路节点、电压和波形的功能,从而创建一  
个动态的快速入门工具。  
这些文件需要安装 TINA 软件(由 DesignSoft™提供)或者 TINA-TI 软件。请从 TINA-TI 文  
件夹 中下载免费的 TINA-TI 软件。  
11.1.1.2 TI 高精度设计  
欲获取 TI 高精度设计,请访问 http://www.ti.com.cn/ww/analog/precision-designs/TI 高精度设计是由 TI 公司高  
精度模拟 应用 专家创建的模拟解决方案,提供了许多实用电路的工作原理、组件选择、仿真、完整印刷电路板  
(PCB) 电路原理图和布局布线、物料清单以及性能测量结果。  
11.2 文档支持  
11.2.1 相关文档ꢀ  
相关文档如下:  
《反馈曲线图定义运算放大器交流性能》SBOA015  
《电路板布局布线技巧》SLOA089  
《用于电压输出音频 DAC 的耳机放大器参考设计》TIDUAW1  
《面向耳机应用的差分放大器稳定化 处理》,SLYT630  
《降低 CMOS 模拟开关的失真度》SLYT612  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
SoundPlus, E2E are trademarks of Texas Instruments.  
TINA-TI is a trademark of Texas Instruments, Inc and DesignSoft, Inc.  
蓝光碟 is a trademark of Blu-ray Disc Association.  
TINA, DesignSoft are trademarks of DesignSoft, Inc.  
All other trademarks are the property of their respective owners.  
版权 © 2015–2016, Texas Instruments Incorporated  
27  
OPA1622  
ZHCSEE5B NOVEMBER 2015REVISED MAY 2016  
www.ti.com.cn  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
28  
版权 © 2015–2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Aug-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA1622IDRCR  
OPA1622IDRCT  
ACTIVE  
ACTIVE  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
O1622  
O1622  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Aug-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA1622IDRCR  
OPA1622IDRCT  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA1622IDRCR  
OPA1622IDRCT  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000  
250  
335.0  
182.0  
335.0  
182.0  
25.0  
20.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010J  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4218878/B 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218878/B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218878/B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA1622IDRCT

具有高性能、低 THD+N 和双极输入的 SoundPlus™ 音频运算放大器 | DRC | 10 | -40 to 125
TI

OPA1632

High-Perfomance, Fully-Differential AUDIO OP AMP
TI

OPA1632

High-Performance, Fully-Differential AUDIO OP AMP
BB

OPA1632D

High-Perfomance, Fully-Differential AUDIO OP AMP
TI

OPA1632D

High-Performance, Fully-Differential AUDIO OP AMP
BB

OPA1632DG4

High-Performance, Fully-Differential AUDIO OP AMP
BB

OPA1632DG4

High-Performance, Fully-Differential AUDIO OP AMP
TI

OPA1632DGN

High-Perfomance, Fully-Differential AUDIO OP AMP
TI

OPA1632DGN

High-Performance, Fully-Differential AUDIO OP AMP
BB

OPA1632DGNG4

High-Performance, Fully-Differential AUDIO OP AMP
BB

OPA1632DGNG4

High-Performance, Fully-Differential AUDIO OP AMP
TI

OPA1632DGNR

High-Perfomance, Fully-Differential AUDIO OP AMP
TI