OPA1656ID [TI]

SoundPlus™ 超低噪声和失真、Burr-Brown™ 音频运算放大器 | D | 8 | -40 to 125;
OPA1656ID
型号: OPA1656ID
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SoundPlus™ 超低噪声和失真、Burr-Brown™ 音频运算放大器 | D | 8 | -40 to 125

放大器 光电二极管 运算放大器
文件: 总43页 (文件大小:3326K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
OPA165x 超低噪声、低失真、FET 输入、  
Burr-Brown™ 音频运算放大器  
1 特性  
3 说明  
• 超低噪声  
OPA1655 OPA1656 (OPA165x) Burr-Brown运  
算放大器专为音频和工业应用而设计在这些应用中  
保持信号保真度至关重要。FET 入架构可达到  
2.9nV/Hz 的低电压噪声密度和 6fA/Hz 电流噪声密  
能够在各种电路内将噪声降到超低。OPA165x 采  
用高带宽和高开环增益设计20kHz 时的失真率低  
0.000035% (129dB) 并且可提高全音频带宽内的  
音频信号保真。该器件还具有出色的输出电流驱动功  
2kΩ 负载下提供 250mV 电源电压范围内的轨  
到轨输出摆幅并且可以提100mA 输出电流。  
– 电压噪声10 kHz 2.9nV/Hz  
– 电流噪声1 kHz 6 fA/Hz  
• 低失真:  
1kHz 0.000029% (131dB)  
20kHz 0.000035% (129dB)  
• 高开环增益150dB  
• 高输出电流100mA  
• 低输入偏置电流10pA  
• 压摆率24 V/μs  
• 增益带宽积53 MHz  
• 轨到轨输出  
• 宽电源电压范围:  
±2.25V ±18V 4.5V 36V  
• 静态电流每通3.9 mA  
OPA165x 可在 ±2.25V ±18V 的超宽电源电压范围  
内工作可在仅为 3.9mA 电源电流4.5V 至  
36V下工作从而满足许多类型的音频产品的电源限  
制。它的额定工作温度范围40°C +125°C。  
器件信息  
封装(1)  
2 应用  
器件型号  
OPA1655  
OPA1656  
通道  
D (SOIC, 8)  
专业麦克风和无线系统  
专业音频混合器/控制平面  
吉他放大器和其他乐器放大器  
A/V 接收器  
书架立体声音响系统  
专业音频放大器  
单通道  
双通道  
DBVSOT-235)  
DSOIC8)  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
DJ 设备  
转盘  
特殊功能模块  
Pad  
100  
10  
1
Bass  
Input  
+
+
Output  
OPA165x  
OPA165x  
Treble  
Baxandall 音调控制  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
C020  
超低输入电压噪声  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS901  
 
 
 
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................19  
8 Application and Implementation..................................20  
8.1 Application Information............................................. 20  
8.2 Typical Applications.................................................. 21  
8.3 Power Supply Recommendations.............................28  
8.4 Layout....................................................................... 28  
9 Device and Documentation Support............................30  
9.1 Device Support......................................................... 30  
9.2 Documentation Support............................................ 31  
9.3 接收文档更新通知..................................................... 31  
9.4 支持资源....................................................................31  
9.5 Trademarks...............................................................31  
9.6 Electrostatic Discharge Caution................................31  
9.7 术语表....................................................................... 31  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information: OPA1655.................................. 5  
6.5 Thermal Information: OPA1656.................................. 5  
6.6 Electrical Characteristics.............................................6  
6.7 Typical Characteristics................................................9  
7 Detailed Description......................................................16  
7.1 Overview...................................................................16  
7.2 Functional Block Diagram.........................................16  
7.3 Feature Description...................................................16  
Information.................................................................... 31  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (December 2021) to Revision C (September 2022)  
Page  
OPA1655 DBV (SOT-23, 5) 封装从“预发布”更改为“量产数据”正在供货........................................1  
Changes from Revision A (July 2019) to Revision B (December 2021)  
Page  
• 添加OPA1655 器件的量产数据正在供货和相关内容...............................................................................1  
Changes from Revision * (March 2019) to Revision A (July 2019)  
Page  
• 将器件状态从“预告信息预发布”更改为“量产数据正在供货.........................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA1655 OPA1656  
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
OUT  
Vœ  
1
2
3
5
V+  
NC  
IN  
+IN  
V–  
1
2
3
4
8
7
6
5
NC  
V+  
+IN  
4
œIN  
+
OUT  
NC  
Not to scale  
5-2. OPA1655 DBV (5-Pin SOT-23) Package,  
Not to scale  
Top View  
5-1. OPA1655 D (8-Pin SOIC) Package, Top View  
Pin Functions: OPA1655  
PIN  
NO.  
DBV (SOT-23)  
TYPE  
DESCRIPTION  
NAME  
D (SOIC)  
2
3
6
4
7
4
3
1
2
5
Input  
Input  
Inverting input  
IN  
+IN  
OUT  
V–  
V+  
Noninverting input  
Output  
Power  
Power  
Output  
Negative (lowest) power supply  
Positive (highest) power supply  
OUT A  
œIN A  
+IN A  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT B  
œIN B  
+IN B  
Not to scale  
5-3. OPA1656 D (8-Pin SOIC) Package, Top View  
Pin Functions: OPA1656  
PIN  
TYPE  
DESCRIPTION  
NAME  
IN A  
+IN A  
IN B  
+IN B  
OUT A  
OUT B  
V–  
NO.  
2
Input  
Input  
Inverting input, channel A  
Noninverting input, channel A  
Inverting input, channel B  
Noninverting input, channel B  
Output, channel A  
3
6
Input  
5
Input  
1
Output  
Output  
Power  
Power  
7
Output, channel B  
4
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
8
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA1655 OPA1656  
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
40  
UNIT  
V
Supply voltage, VS = (V+) (V)  
Voltage  
Input  
(V+) + 0.5  
10  
V
(V) 0.5  
10  
Input (all pins except power-supply pins)  
mA  
Current  
Output short-circuit(2)  
Continuous  
Operating, TA  
125  
150  
150  
°C  
°C  
°C  
55  
Temperature  
Junction, TJ  
Storage, Tstg  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Short-circuit to VS / 2 (groundinsymmetrical dual-supply setups), one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allowssafemanufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allowssafemanufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
36  
UNIT  
V
Single supply  
Dual supply  
VS  
TA  
Supply voltage  
±2.25  
40  
±18  
125  
Operating temperature  
°C  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA1655 OPA1656  
 
 
 
 
 
 
 
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.4 Thermal Information: OPA1655  
OPA1655  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
120.9  
58.9  
DBV (SOT23)  
5 PINS  
143.4  
68.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
65.1  
39.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
13.5  
20.4  
ψJT  
64.2  
39.0  
ψJB  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Thermal Information: OPA1656  
OPA1656  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
119.9  
51.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
65.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
10.0  
ψJT  
64.2  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA1655 OPA1656  
 
 
 
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.6 Electrical Characteristics  
at TA = 25°C, VS = ±18 V, RL = 2 kΩ, and VCM = VOUT = VS/2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AUDIO PERFORMANCE  
0.000029%  
131  
G = 1, RL = 600 Ω, VO = 3.5 VRMS, f = 1 kHz,  
80-kHz measurement bandwidth  
dB  
dB  
dB  
dB  
dB  
dB  
0.0001%  
120  
G = 1, RL = 600 Ω, VO = 3.5 VRMS, f = 20 kHz,  
80-kHz measurement bandwidth  
THD+N  
Total harmonic distortion + noise  
0.000029%  
131  
G = 1, RL = 2 kΩ, VO = 3.5 VRMS, f = 1 kHz,  
80-kHz measurement bandwidth  
0.000035%  
129  
G = 1, RL = 2 kΩ, VO = 3.5 VRMS, f = 20 kHz,  
80-kHz measurement bandwidth  
0.000018%  
135  
SMPTE/DIN two-tone, 4:1  
(60 Hz and 7 kHz)  
G = 1  
IMD  
Intermodulation distortion  
VO = 3.5 VRMS  
CCIF twin-tone  
0.000020%  
134  
(19 kHz and 20 kHz)  
FREQUENCY RESPONSE  
Gain-bandwidth product  
G = 100  
53  
20  
MHz  
MHz  
V/µs  
MHz  
ns  
GBW  
SR  
Unity gain bandwidth  
Slew rate  
G = 1  
24  
G = 1, 10-V step  
VO = 1 VP  
G = 10  
Full-power bandwidth(1)  
Overload recovery time  
Channel separation  
Settling time  
3.8  
100  
f = 1 kHz  
dB  
135  
800  
ns  
0.01%, G = 1, 10-V step  
NOISE  
f = 20 Hz to 20 kHz  
f = 0.1 Hz to 10 Hz  
f = 100 Hz  
0.53  
1.9  
11.8  
4.3  
2.9  
6
µVRMS  
µVPP  
Input voltage noise  
nV/Hz  
en  
Input voltage noise density  
Input current noise density  
f = 1 kHz  
nV/Hz  
fA/Hz  
f = 10 kHz  
in  
OFFSET VOLTAGE  
f = 1 kHz  
VOS  
Input offset voltage  
VS = ±2.25 V to ±18 V  
±0.5  
0.3  
±1  
2
mV  
VS = ±2.25 V to ±18 V  
TA = 40°C to +125°C  
dVOS/dT  
PSRR  
Input offset voltage drift(2)  
Power-supply rejection ratio  
µV/°C  
µV/V  
VS = ±2.25 V to ±18 V  
0.3  
5
INPUT BIAS CURRENT  
OPA1655  
VCM = 0 V  
±10  
±10  
±10  
±10  
IB  
Input bias current(3)  
pA  
pA  
OPA1656  
±20  
±20  
OPA1655  
VCM = 0 V  
IOS  
Input offset current  
OPA1656  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
Common-mode rejection ratio  
V
(V)  
(V+) 2.25  
CMRR  
106  
120  
dB  
(V) VCM (V+) 2.25  
INPUT IMPEDANCE  
Differential  
Common-mode  
OPEN-LOOP GAIN  
100 || 9.1  
6 || 1.9  
MΩ|| pF  
1012Ω|| pF  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA1655 OPA1656  
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.6 Electrical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, RL = 2 kΩ, and VCM = VOUT = VS/2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
(V) + 1.3 V VO (V+) 1.3 V  
RL = 600 Ω  
134  
150  
AOL  
Open-loop voltage gain  
dB  
(V) + 0.5 V VO (V+) 0.5 V  
RL = 2 kΩ  
134  
154  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA1655 OPA1656  
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.6 Electrical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, RL = 2 kΩ, and VCM = VOUT = VS/2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
VO  
Voltage output  
V
(V) + 0.25  
(V+) 0.25  
ZO  
Open-loop output impedance  
Short-circuit current(4)  
Capacitive load drive  
f = 1 MHz  
26  
±100  
100  
Ω
mA  
pF  
ISC  
CL  
POWER SUPPLY  
IO = 0 A, VS = ±2.25 V to ±18 V  
3.9  
4.6  
5.0  
IQ Quiescent current (per channel)  
mA  
IO = 0 A, TA = 40°C to +125°C(2)  
(1) Full-power bandwidth = SR / (2π× VP), where SR = slew rate.  
(2) Specified by design and characterization.  
(3) Input bias current test conditions can vary from nominal ambient conditions as a result of junction temperature differences.  
(4) One channel at a time.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA1655 OPA1656  
 
 
 
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
at TA = 25°C, VS = ±15 V, RL = 2 kΩ, and VCM = VS/2 (unless otherwise noted)  
100  
10  
1
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
Time (1 s/div)  
C020  
D029  
6-1. Input Voltage Noise Density vs Frequency  
6-2. 0.1-Hz to 10-Hz Noise  
1000  
50  
40  
30  
20  
10  
0
Voltage Noise Contribution  
Resistor Noise Contribution  
Current Noise Contribution  
Total Noise Contribution  
Vs=ê18 V  
Vs=ê15 V  
Vs=ê2.25 V  
500  
200  
100  
50  
20  
10  
5
2
1
0.5  
0.2  
0.1  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
Source Resistance (W)  
D113  
D120  
6-4. Maximum Output Voltage vs Frequency  
6-3. Voltage Noise vs Source Resistance  
180  
150  
120  
90  
180  
150  
120  
90  
60  
40  
20  
0
Gain  
Phase  
G = +1  
G= -1  
G= +10  
G= +100  
60  
60  
30  
30  
0
0
-30  
-30  
-20  
100m  
1
10  
100  
1k  
Frequency (Hz)  
10k 100k 1M 10M  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D104  
D106  
CL = 10 pF  
CL = 10 pF  
6-5. Open-Loop Gain and Phase vs Frequency  
6-6. Closed-Loop Gain vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA1655 OPA1656  
 
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 2 kΩ, and VCM = VS/2 (unless otherwise noted)  
0.01  
-80  
1
-40  
G = -1, 600-W Load  
G = -1, 600-W Load  
G = -1, 2k-W Load  
G = -1, 10k-W Load  
G = +1, 600-W Load  
G = +1, 2k-W Load  
G = +1, 10k-W Load  
G = -1, 2k-W Load  
G = -1, 10k-W Load  
G = +1, 600-W Load  
G = +1, 2k-W Load  
G = +1, 10k-W Load  
0.1  
-60  
0.001  
-100  
-120  
-140  
0.01  
-80  
0.001  
0.0001  
1E-5  
-100  
-120  
-140  
0.0001  
0.00001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
100m  
1
Output Amplitude (VRMS)  
10  
D109  
D110  
VOUT = 3 VRMS  
Bandwidth = 80 kHz  
f = 1 kHz  
Bandwidth = 80 kHz  
6-7. THD+N Ratio vs Frequency  
6-8. THD+N Ratio vs Output Amplitude  
0.001  
0.0005  
-100  
-120  
-140  
-160  
-180  
-200  
0.005  
G = -1, HD2  
G = -1, HD3  
G = -1, HD4  
G = -1, HD5  
G = +1, HD2  
G = +1, HD3  
G = +1, HD4  
G = +1, HD5  
G = -1, VIN = 1 VPP (0.354 VRMS  
)
)
)
)
0.003  
0.002  
G = -1, VIN = 5 VPP (1.768 VRMS  
0.0002  
0.0001  
5E-5  
G = +1, VIN = 1 VPP (0.354 VRMS  
G = +1, VIN = 5 VPP (1.768 VRMS  
0.001  
0.0007  
0.0005  
-100  
-120  
2E-5  
1E-5  
5E-6  
0.0003  
0.0002  
2E-6  
1E-6  
5E-7  
0.0001  
7E-5  
5E-5  
2E-7  
1E-7  
5E-8  
3E-5  
2E-5  
2E-8  
1E-8  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
ê5  
ê10  
ê18  
VS (V)  
D111  
D141  
VOUT = 3 VRMS  
Bandwidth = 80 kHz  
f = 1 kHz  
Bandwidth = 80 kHz  
RL = 2 kΩ  
6-9. Individual Harmonic Amplitude vs Frequency  
6-10. THD+N vs Supply Voltage  
0.1  
0.01  
-60  
0
CCIF  
SMPTE  
-20  
-40  
-80  
-60  
-80  
0.001  
0.0001  
1E-5  
-100  
-120  
-140  
-100  
-120  
-140  
-160  
-180  
-200  
10m  
100m  
Output Amplitude (VRMS  
1
10  
20  
100  
1k  
Frequency (Hz)  
10k  
50k  
)
D140  
D142  
Bandwidth = 80 kHz  
G = 1, VOUT = 3 VRMS  
Bandwidth = 80 kHz  
RL = 2 kΩ  
6-11. Intermodulation Distortion vs Amplitude  
6-12. FFT, 1-kHz Sine Wave  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA1655 OPA1656  
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 2 kΩ, and VCM = VS/2 (unless otherwise noted)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
1k  
10k  
Frequency (Hz)  
80k  
0
20k  
40k  
Frequency (Hz)  
60k  
80k  
D143  
D143  
G = 1, VOUT = 3 VRMS  
Bandwidth = 80 kHz  
VOUT = 3 VRMS  
Bandwidth = 80 kHz  
RL = 2 kΩ  
RL = 2 kΩ  
6-13. FFT, 10-kHz Sine Wave  
6-14. FFT, CCIF Input (19 kHz + 20 kHz)  
-60  
-80  
160  
140  
120  
100  
80  
PSRR+  
PSRR-  
CMRR  
-100  
-120  
-140  
-160  
-180  
60  
40  
20  
0
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
D114  
D107  
VOUT = 3 VRMS  
G = 1  
6-15. Channel Separation vs Frequency  
6-16. CMRR and PSRR vs Frequency (Referred to Input)  
147  
146  
145  
144  
143  
126  
125  
124  
123  
122  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D028  
D027  
6-17. Power Supply Rejection Ratio vs Temperature  
6-18. Common Mode Rejection Ratio vs Temperature  
(Referred to Input)  
(Referred to Input)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA1655 OPA1656  
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 2 kΩ, and VCM = VS/2 (unless otherwise noted)  
15  
10  
5
30  
25  
20  
15  
10  
5
-2  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
2
-1000 -750 -500 -250  
0
250  
500  
750 1000  
Offset Voltage Drift (mV/èC)  
Input Offset Voltage (mV)  
D004  
D001  
Count = 32  
Count = 7955  
6-20. Input Offset Voltage Drift Distribution  
6-19. Input Offset Voltage Distribution  
1
0.5  
0
100  
75  
-40èC  
50  
25  
0
-25  
-50  
-75  
-100  
-0.5  
-1  
125èC  
25èC  
85èC  
-18 -15 -12 -9 -6 -3  
0
3
6
Input Common-Mode Voltage (V)  
9
12 15 18  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D019  
D017  
5 typical units shown  
6-21. Input Offset vs Temperature  
6-22. Input Offset vs Common Mode Voltage  
VIN  
VOUT  
VIN  
VOUT  
Time (1 ms/div)  
Time (1 ms/div)  
D137  
D135  
G = 1  
CL = 20 pF  
CL = 100 pF  
G = 1  
6-23. Small-Signal Step Response (100 mV)  
6-24. Small-Signal Step Response (100 mV)  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA1655 OPA1656  
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 2 kΩ, and VCM = VS/2 (unless otherwise noted)  
VIN  
VOUT  
VIN  
VOUT  
Time (1 ms/div)  
Time (1 ms/div)  
D136  
D139  
G = 1  
CL = 100 pF  
CL = 100 pF  
RL = 2 kΩ  
G = 1  
6-25. Large-Signal Step Response  
6-26. Large-Signal Step Response  
158  
156  
154  
152  
150  
148  
146  
144  
100  
50  
IB+  
IB-  
IOS  
20  
10  
5
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature(èC)  
D024  
D033  
6-28. IB and IOS vs Temperature  
6-27. Open-Loop Gain vs Temperature  
30  
20  
10  
0
4
3.9  
3.8  
3.7  
3.6  
IB-  
IB+  
IOS  
VS = 4.5 V  
VS = 36 V  
-10  
-20  
-30  
-18 -15 -12 -9 -6 -3  
0
3
6
Input Common-Mode Voltage (V)  
9
12 15 18  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D023  
D031  
6-29. IB and IOS vs Common-Mode Voltage  
6-30. Supply Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA1655 OPA1656  
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 2 kΩ, and VCM = VS/2 (unless otherwise noted)  
4.5  
18  
17  
16  
15  
14  
13  
12  
4
25èC  
-40èC  
3.5  
3
125èC  
2.5  
2
85èC  
1.5  
0
4
8
12  
16  
20  
Supply Voltage (V)  
24  
28  
32  
36  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Output Current (mA)  
D030  
D025  
6-31. Supply Current vs Supply Voltage  
85èC  
6-32. Output Voltage vs Output Current (Sourcing)  
-12  
-13  
-14  
-15  
-16  
-17  
-18  
140  
Sinking  
Sourcing  
132  
124  
116  
108  
100  
92  
125èC  
84  
25èC  
76  
-40èC  
68  
60  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Output Current (mA)  
D041  
D026  
6-34. Short-Circuit Current vs Temperature  
6-33. Output Voltage vs Output Current (Sinking)  
75  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
RISO = 0 W  
RISO = 25 W  
RISO = 50 W  
50  
25  
0
-25  
10  
100  
Load Capacitance, CL (pF)  
1000  
10  
100  
Load Capacitance, CL (pF)  
500  
D037  
D105  
G = 1  
G = 1  
6-36. Percent Overshoot vs Capacitive Load  
6-35. Phase Margin vs Capacitive Load  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA1655 OPA1656  
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 2 kΩ, and VCM = VS/2 (unless otherwise noted)  
60  
RISO = 0 W  
RISO = 25 W  
RISO = 50 W  
50  
40  
30  
20  
10  
0
VIN  
VOUT  
Time (400 ns/div)  
10  
100  
Load Capacitance, CL (pF)  
1000  
D134  
D131  
G = 10  
G = 1  
6-38. Negative Overload Recovery  
6-37. Percent Overshoot vs Capacitive Load  
1000  
100  
10  
VIN  
VOUT  
1
0.1  
Time (400 ns/div)  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
D138  
D112  
G = 10  
6-40. Open-Loop Output Impedance vs Frequency  
6-39. Positive Overload Recovery  
VIN  
VOUT  
Time (400 ns/div)  
D138  
G = 1  
6-41. No Phase Reversal  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA1655 OPA1656  
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPA1655 and OPA1656 (OPA165x) use a three-gain-stage architecture to achieve very low noise and  
distortion. The Functional Block Diagram shows a simplified schematic of the OPA165x (one channel shown).  
The devices consist of a low-noise input stage and feedforward pathway coupled to a high-current output stage.  
This topology exhibits superior distortion performance under a wide range of loading conditions compared to  
other operational amplifiers.  
7.2 Functional Block Diagram  
Feed-  
forward  
Path  
CM1  
CM2  
+IN  
Output  
Stage  
Input  
Stage  
Gain  
Stage  
OUT  
-IN  
7.3 Feature Description  
7.3.1 Phase Reversal Protection  
The OPA165x have internal phase-reversal protection. Many op amps exhibit phase reversal when the input is  
driven beyond the linear common-mode range. This condition is most often encountered in noninverting circuits  
when the input is driven beyond the specified common-mode voltage range, causing the output to reverse into  
the opposite rail. The input of the OPA165x prevents phase reversal with excessive common-mode voltage.  
Instead, the appropriate rail limits the output voltage. This performance is shown in 7-1.  
20  
15  
10  
5
0
-5  
-10  
-15  
VIN  
VOUT  
-20  
Time (125 s/div)  
C004  
7-1. Output Waveform Devoid of Phase Reversal During an Input Overdrive Condition  
7.3.2 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress.  
These questions tend to focus on the device inputs, but can involve the supply voltage pins or even the output  
pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA1655 OPA1656  
 
 
 
 
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
A good understanding of this basic ESD circuitry and the relevance to an electrical overstress event is helpful. 图  
7-2 illustrates the ESD circuits contained in the OPA165x (indicated by the dashed line area). The ESD  
protection circuitry involves several current-steering diodes connected from the input and output pins and routed  
back to the internal power-supply lines, where the diodes meet at an absorption device internal to the  
operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation.  
TVS  
RF  
+VS  
R1  
RS  
20 Ω  
20 Ω  
INœ  
IN+  
+
Power-Supply  
ESD Cell  
RL  
+
VIN  
œ
œVS  
TVS  
7-2. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
An ESD event produces a short-duration, high-voltage pulse that is transformed into a short-duration, high-  
current pulse when discharging through a semiconductor device. The ESD protection circuits are designed to  
provide a current path around the operational amplifier core to prevent damage. The energy absorbed by the  
protection circuitry is then dissipated as heat.  
When an ESD voltage develops across two or more amplifier device pins, current flows through one or more  
steering diodes. Depending on the path that the current takes, the absorption device can activate. The  
absorption device has a trigger, or threshold voltage, that is above the normal operating voltage of the OPA165x  
but below the device breakdown voltage level. When this threshold is exceeded, the absorption device quickly  
activates and clamps the voltage across the supply rails to a safe level.  
When the operational amplifier connects into a circuit, as shown in 7-2, the ESD protection components are  
intended to remain inactive and do not become involved in the application circuit operation. However,  
circumstances may arise where an applied voltage exceeds the operating voltage range of a given pin. If this  
condition occurs, there is a risk that some internal ESD protection circuits can turn on and conduct current. Any  
such current flow occurs through steering-diode paths and rarely involves the absorption device.  
7-2 shows a specific example where the input voltage (VIN) exceeds the positive supply voltage (V+) by 500  
mV or more. Much of what happens in the circuit depends on the supply characteristics. If V+ can sink the  
current, one of the upper input steering diodes conducts and directs current to V+. Excessively high current  
levels can flow with increasingly higher VIN. As a result, the data sheet specifications recommend that  
applications limit the input current to 10 mA.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA1655 OPA1656  
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
If the supply is not capable of sinking the current, VIN can begin sourcing current to the operational amplifier and  
then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to  
levels that exceed the operational amplifier absolute maximum ratings.  
Another common question involves what happens to the amplifier if an input signal is applied to the input when  
the power supplies (V+ or V) are at 0 V. Again, this question depends on the supply characteristic when at 0 V,  
or at a level below the input signal amplitude. If the supplies appear as high impedance, then the input source  
supplies the operational amplifier current through the current-steering diodes. This state is not a normal bias  
condition; most likely, the amplifier does not operate normally. If the supplies are low impedance, then the  
current through the steering diodes can become quite high. The current level depends on the ability of the input  
source to deliver current, and any resistance in the input path.  
If there is any uncertainty about the ability of the supply to absorb this current, add external Zener diodes to the  
supply pins; see 7-2. Select the Zener voltage so that the diode does not turn on during normal operation.  
However, the Zener voltage must be low enough so that the Zener diode conducts if the supply pin begins to rise  
above the safe-operating, supply-voltage level.  
7.3.3 EMI Rejection Ratio (EMIRR)  
The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational  
amplifiers. An adverse effect that is common to many operational amplifiers is a change in the offset voltage as a  
result of RF signal rectification. An operational amplifier that is more efficient at rejecting this change in offset as  
a result of EMI has a higher EMIRR and is quantified by a decibel value. Measuring EMIRR can be performed in  
many ways, but this document provides the EMIRR IN+, which specifically describes the EMIRR performance  
when the RF signal is applied to the noninverting input pin of the operational amplifier. In general, only the  
noninverting input is tested for EMIRR for the following three reasons:  
Operational amplifier input pins are known to be the most sensitive to EMI, and typically rectify RF signals  
better than the supply or output pins.  
The noninverting and inverting operational amplifier inputs have symmetrical physical layouts and exhibit  
nearly matching EMIRR performance.  
EMIRR is easier to measure on noninverting pins than on other pins because the noninverting input pin can  
be isolated on a printed-circuit-board (PCB). This isolation allows the RF signal to be applied directly to the  
noninverting input pin with no complex interactions from other components or connecting PCB traces.  
A more formal discussion of the EMIRR IN+ definition and test method is provided in the EMI Rejection Ratio of  
Operational Amplifiers application report, available for download at www.ti.com.  
The EMIRR IN+ of the OPA165x is plotted versus frequency in 7-3. If available, any dual and quad  
operational amplifier device versions have nearly identical EMIRR IN+ performance. The OPA165x unity-gain  
bandwidth is 20 MHz. EMIRR performance below this frequency denotes interfering signals that fall within the  
operational amplifier bandwidth.  
140  
120  
100  
80  
60  
40  
20  
10M  
100M  
Frequency (Hz)  
1G  
10G  
D115  
7-3. OPA165x EMIRR vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA1655 OPA1656  
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7-1 lists the EMIRR IN+ values for the OPA165x at particular frequencies commonly encountered in real-  
world applications. Applications listed in 7-1 can be centered on or operated near the particular frequency  
shown. This information can be of special interest to designers working with these types of applications, or  
working in other fields likely to encounter RF interference from broad sources, such as the industrial, scientific,  
and medical (ISM) radio band.  
7-1. OPA165x EMIRR IN+ for Frequencies of Interest  
FREQUENCY  
APPLICATION OR ALLOCATION  
EMIRR IN+  
400 MHz  
Mobile radio, mobile satellite, space operation, weather, radar, UHF  
36 dB  
GSM, radio communication and navigation, GPS (to 1.6 GHz), ISM,  
aeronautical mobile, UHF  
900 MHz  
42 dB  
1.8 GHz  
2.4 GHz  
3.6 GHz  
GSM, mobile personal comm. broadband, satellite, L-band  
52 dB  
64 dB  
67 dB  
802.11b/g/n, Bluetooth® mobile personal comm., ISM, amateur radio and satellite, S-band  
Radiolocation, aero comm./nav., satellite, mobile, S-band  
802.11a/n, aero communication and navigation, mobile communication,  
space and satellite operation, C-band  
5 GHz  
77 dB  
7.3.3.1 EMIRR IN+ Test Configuration  
7-4 shows the circuit configuration for testing the EMIRR IN+. An RF source is connected to the operational  
amplifier noninverting input pin using a transmission line. The operational amplifier is configured in a unity-gain  
buffer topology with the output connected to a low-pass filter (LPF) and a digital multimeter (DMM). A large  
impedance mismatch at the operational amplifier input causes a voltage reflection; however, this effect is  
characterized and accounted for when determining the EMIRR IN+. The resulting dc offset voltage is sampled  
and measured by the multimeter. The LPF isolates the multimeter from residual RF signals that can interfere with  
multimeter accuracy. See the EMI Rejection Ratio of Operational Amplifiers application report for more details.  
Ambient temperature: 25˘C  
+VS  
œ
50  
Low-Pass Filter  
+
RF source  
DC Bias: 0 V  
Modulation: None (CW)  
-VS  
Sample /  
Averaging  
Digital Multimeter  
Not shown: 0.1 µF and 10 µF  
supply decoupling  
Frequency Sweep: 201 pt. Log  
7-4. EMIRR IN+ Test Configuration Schematic  
7.4 Device Functional Modes  
The OPA165x have a single functional mode and are operational when the power-supply voltage is greater than  
4.5 V. The maximum specified power-supply voltage for the OPA165x is 36 V.  
In all cases, the common-mode voltage must be maintained within the specified range. In addition, key  
parameters are specified over the temperature range of TA = 40°C to +125°C.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA1655 OPA1656  
 
 
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
8.1.1 Basic Noise Calculations  
Low-noise circuit design requires careful analysis of all noise sources. External noise sources can dominate in  
many cases; consider the effect of source resistance on overall op amp noise performance. Total noise of the  
circuit is the root-sum-square combination of all noise components.  
8-1 shows noninverting (A) and inverting (B) op amp circuit configurations with gain. In circuit configurations  
with gain, the feedback network resistors contribute noise. In general, the current noise of the op amp reacts with  
the feedback resistors to create additional noise components.  
The selected feedback resistor values make these noise sources negligible. Low impedance feedback resistors  
load the output of the amplifier. The equations for total noise are shown for both configurations.  
(A) Noise in Noninverting Gain Configuration  
Noise at the output is given as EO, where  
R1  
R2  
2
42  
41 42  
A0 + kA4 2 o2  
+
E0 45 + lE0 d  
hp  
2
2
2
¨
: ;  
1
:
;
:
;
:
;
>
?
84/5  
'
1
= l1 + p A5  
+
æ4  
1
41  
41 + 42  
GND  
œ
EO  
8
: ;  
2
A5  
=
4 G$ 6(-) 45  
¥
d
h
Thermal noise of RS  
+
*V  
¾
RS  
4
1 42  
8
: ;  
3
¨
4 G$ 6(-) d  
A4  
=
2
h
d
h
Thermal noise of R1 || R2  
æ4  
1
41 + 42  
*V  
¾
+
,
h
VS  
Source  
GND  
G$ = 1.38065 10F23  
: ;  
4
d
œ
Boltzmann Constant  
-
Temperature in kelvins  
: ;  
>
?
-
5
6(-) = 237.15 + 6%)  
(B) Noise in Inverting Gain Configuration  
Noise at the output is given as EO, where  
R1  
R2  
2
:
;
42  
45 + 41 42  
'
1
= l1 +  
p A0 2 + kA4  
2 o2 + FE0 H  
+4 æ4  
5
IG  
¨
: ;  
6
:
;
>
84/5  
?
1
45 + 41  
45 + 41 + 42  
RS  
œ
EO  
:
;
45 + 41 42  
8
+
: ;  
7
¨
4 G$ 6(-) H  
A4  
=
I
d
h
Thermal noise of (R1 + RS) || R2  
+4 æ4  
5
1
2
45 + 41 + 42  
*V  
¾
+
VS  
œ
,
GND  
G$ = 1.38065 10F23  
d
h
: ;  
8
Boltzmann Constant  
Source  
GND  
-
: ;  
9
>
?
6(-) = 237.15 + 6%)  
-
Temperature in kelvins  
Copyright © 2017, Texas Instruments Incorporated  
where  
eN is the voltage noise of the amplifier. For the OPA165x, eN = 4.3 nV/Hz at 1 kHz.  
iN is the current noise of the amplifier. For the OPA165x, iN = 6 fA/Hz at 1 kHz.  
Note: For additional resources on noise calculations, see TI's Precision Labs Series.  
8-1. Noise Calculation in Gain Configurations  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA1655 OPA1656  
 
 
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.2 Typical Applications  
8.2.1 Preamplifier Circuit for Vinyl Record Playback With Moving-Magnet Phono Cartridges  
The noise and distortion performance of the OPA165x is exceptional in applications with high source  
impedances, which makes these devices an excellent choice in preamplifier circuits for moving magnet phono  
cartridges. The high source impedance of the cartridge, and high gain required by the RIAA playback curve at  
low frequency, requires an amplifier with both low input current noise and low input voltage noise.  
15 V  
C5  
100  
MM Phono Input  
R5  
100  
F
OPA165x  
+
+IN  
IN  
Output  
R1  
47 k  
C1  
150 pF  
VOUT  
R6  
100 k  
15 V  
R2  
R3  
118 k  
10 k  
C2  
27 nF  
C3  
7.5 nF  
R4  
127  
C4  
100  
F
8-2. Preamplifier Circuit for Vinyl Record Playback With Moving-Magnet Phono Cartridges  
(Single Channel Shown)  
8.2.1.1 Design Requirements  
Gain: 40 dB (1 kHz)  
RIAA accuracy: ±0.5 dB (100 Hz to 20 kHz)  
Power supplies: ±15 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA1655 OPA1656  
 
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.2.1.2 Detailed Design Procedure  
Vinyl records are recorded using an equalization curve specified by the Recording Institute Association of  
America (RIAA). The purpose of this equalization curve is to decrease the amount of space occupied by a  
groove on the record and therefore maximize the amount of information able to be stored. Proper playback of  
music stored on the record requires a preamplifier circuit that applies the inverse transfer function of the  
recording equalization curve. The combination of the recording equalization and the playback equalization  
results in a flat frequency response over the audio range, as 8-3 shows.  
20  
15  
Playback Curve  
10  
5
0
Combined Response  
-5  
-10  
Recording Curve  
-15  
-20  
10  
100  
1000  
10000  
Frequency (Hz)  
C009  
8-3. RIAA Recording and Playback Curves Normalized at 1 kHz  
The basic RIAA playback curve implements three time constants: 75 μs, 380 μs, and 3180 μs. An IEC  
amendment was later added to the playback curve and implements a pole in the curve at 20 Hz with the intent of  
protecting loudspeakers from excessive low frequency content. Rather than strictly adhering to the IEC  
amendment, this design moves this pole to a lower frequency to improve low frequency response and still  
provide protection for loudspeakers.  
Resistor R1 and capacitor C1 are selected to provide the proper input impedance for the moving magnet  
cartridge. Cartridge loading is specified by the manufacturer in the cartridge datasheet and is absolutely crucial  
for proper response at high frequency. 47 kΩis a common value for the input resistor, and the capacitive loading  
is usually specified from 200 pF to 300 pF per channel. This capacitive loading specification includes the  
capacitance of the cable connecting the turntable to the preamplifier, as well as any additional parasitic  
capacitances at the preamplifier input. Therefore, the value of C1 must be less than the loading specification to  
account for these additional capacitances.  
The output network consisting of R5, R6, and C5 serves to ac couple the preamplifier circuit to any subsequent  
electronics in the signal path. 100-Ω resistor R5 limits in-rush current into coupling capacitor C5 and prevents  
parasitic capacitance from cabling from causing instability. R6 prevents charge accumulation on C5. Capacitor  
C5 is chosen to be the same value as C4; for simplicity however, the value of C5 must be large enough to avoid  
attenuating low-frequency information.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA1655 OPA1656  
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
The feedback resistor elements must be selected to provide the correct response within the audio bandwidth. In  
order to achieve the correct frequency response, the passive components in 8-2 must satisfy 方程1, 方程式  
2, and 方程3:  
R × C = 3180 μs  
(1)  
(2)  
(3)  
2
2
R × C = 75 μs  
3
3
R
R
× C + C = 318 μs  
2
3 2 3  
R2, R3, and R4 must also be selected to meet the design requirements for gain. The gain at 1 kHz is determined  
by subtracting 20 dB from gain of the circuit at very low-frequency (near dc), as shown in 方程4:  
A
= A 20 dB  
(4)  
1kHz  
LF  
Therefore, the low frequency gain of the circuit must be 60 dB to meet the goal of 40 dB at 1 kHz and is  
determined by resistors R2, R3, and R4 as shown in 方程5:  
R
+ R  
2
3
A
= 1 +  
= 1000 60 dB  
(5)  
LF  
R
4
Because there are multiple combinations of passive components that satisfy these equations, a spreadsheet or  
other software calculation tool is the easiest method to examine resistor and capacitor combinations.  
Capacitor C4 forces the gain of the circuit to unity at dc in order to limit the offset voltage at the output of the  
preamplifier circuit. The high-pass corner frequency created by this capacitor is calculated by 方程6:  
1
F
=
(6)  
HP  
2πR C  
4 4  
The circuit described in 8-2 is constructed with 1% tolerance resistors and 5% tolerance NP0, C0G ceramic  
capacitors without any additional hand sorting. The large value of C4 typically requires an electrolytic type to be  
used. However, electrolytic capacitors have the potential to introduce distortion into the signal path. This circuit is  
constructed using a bipolar electrolytic capacitor specifically intended for audio applications.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA1655 OPA1656  
 
 
 
 
 
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.2.1.3 Application Curves  
The deviation from the ideal RIAA transfer function curve is shown in 8-4 and normalized to an ideal gain of  
40 dB at 1 kHz. The measured gain at 1 kHz is 0.05 dB less than the design goal, and the maximum deviation  
from 100 Hz to 20 kHz is 0.18 dB. The deviation from the ideal curve can be improved by hand-sorting resistor  
and capacitor values to their ideal values. The value of C4 can also be increased to reduce the deviation at low  
frequency.  
A spectrum of the preamplifier output signal is shown in 8-5 for a 10 mVRMS, 1-kHz input signal (1-VRMS  
output). All distortion harmonics are below the preamplifier noise floor.  
1.5  
1
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0.5  
0
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-0.5  
100  
1k  
Frequency (Hz)  
10k  
10  
100  
1k  
Frequency (Hz)  
10k  
D201  
D202  
8-5. Output Spectrum for a 10-mVRMS  
1kHz Input Signal  
,
8-4. Measured Deviation  
From Ideal RIAA Response  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA1655 OPA1656  
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.2.2 Composite Headphone Amplifier  
8-6 shows the BUF634A buffer inside the feedback loop of the OPA165x to increase the available output  
current for low-impedance headphones. If the BUF634A is used in wide-bandwidth mode, no additional  
components beyond the feedback resistors are required to maintain loop stability.  
12 V  
100  
0.1  
F
F
0.1  
F
OPA165x  
+
Input  
Output  
BUF634A  
R1  
100 k  
0.1  
F
RBW  
0.1  
F
100  
F
12 V  
R3  
R2  
500  
500  
8-6. Composite Headphone Amplifier (Single-Channel Shown)  
8.2.2.1 Application Curves  
-85  
0
-30  
249 W RL  
32 W RL  
16 W RL  
249 W RL  
-90  
-60  
-95  
-90  
-100  
-105  
-110  
-120  
-150  
-180  
20 Hz  
100 Hz  
1 kHz  
20 kHz  
0
5000  
10000  
Frequency (Hz)  
15000  
20000  
Frequency (Hz)  
C051  
C052  
8-7. THD+N vs Frequency for a  
5VPP (1.77VRMS) Input Signal  
8-8. FFT for a 5-VPP (1.77-VRMS),  
1kHz Input Signal  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA1655 OPA1656  
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.2.3 Baxandall Tone Control  
8-9 gives an example of ultra-low noise and THD tone control. This circuit provides 20 dB of gain at the first  
stage, followed by two separate tone controls for bass and treble. The passive circuit is designed to yield a flat  
gain response with the potentiometers both set to 50%.  
Bass  
100 k  
1.69 k  
15.4 k  
11 k  
11 k  
10 nF  
10 nF  
10 µF  
15 V  
11 k  
Input  
+
Output  
1/2  
OPA1656  
10 µF  
1/2  
OPA1656  
+
4.7 nF  
1.69 k  
15 V  
3.65 k  
3.65 k  
500 k  
Treble  
8-9. Dual Potentiometer Baxandall Tone Control  
8.2.3.1 Application Curves  
40  
10% Bass / 90% Treble  
50% Bass / 50% Treble  
90% Bass / 10% Treble  
36  
32  
28  
24  
20  
16  
12  
8
4
0
100  
1k  
Frequency (Hz)  
10k  
D203  
8-10. Amplitude vs Frequency for Various Tone-Control Settings  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: OPA1655 OPA1656  
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.2.4 Guitar Input to XLR Output  
The OPA165x are an excellent choice for guitar input circuits as a result of the high input impedance and ultra-  
low noise performance. 8-11 gives an example of a basic guitar input circuit to differential XLR schematic. The  
logarithmic taper potentiometer shown in this circuit provides 6 dB of gain at 0%, and 40 dB of gain at 100%.  
The rail-to-rail output swing of the OPA165x allows for a high amplitude swing at the outputs of the differentially  
configured amplifiers, while maintaining very low distortion performance. A 10-µF dc blocking capacitor is used  
in the feedback of the noninverting stage to remove any dc offset as a result of the amplifier offset voltage.  
However, this dc blocking capacitor can be eliminated for applications that are not sensitive to low dc offsets.  
100 k  
10 µF  
1 k  
1 k  
10 pF  
¼ Inch  
Jack  
+
49  
1/2  
OPA1656  
1 M  
XLR  
Output  
1 k  
1 k  
10 pF  
5 V  
49  
1/2  
+
OPA1656  
5 V  
8-11. Guitar Input to XLR Output Schematic  
8.2.4.1 Application Curves  
0.1  
0.08  
0.06  
0.04  
0.02  
0
3.3  
3
Input Voltage  
Output Voltage 1  
Output Voltage 2  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-0.12  
-0.14  
-0.16  
-0.18  
-0.2  
-0.3  
-0.6  
-0.9  
-1.2  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
D200  
8-12. 1-kHz Input Signal Transient Simulation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: OPA1655 OPA1656  
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.3 Power Supply Recommendations  
The OPA165x are specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications apply from  
40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in the Typical Characteristics section.  
The OPA165x operate with as little as 4.5 V between the supplies and with up to 36 V between the supplies.  
However, some applications do not require equal positive and negative output voltage swing. With the OPA165x,  
power-supply voltages are not required to be equal. For example, the positive supply can be set to 25 V with the  
negative supply at 5 V.  
8.4 Layout  
8.4.1 Layout Guidelines  
For best operational performance of the device, use good printed-circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and of op amp  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources  
local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup. Physically  
separate digital and analog grounds, observing the flow of the ground current.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed  
to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As illustrated in 8-13, keeping RF and  
RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
Cleaning the PCB following board assembly is recommended for best performance.  
Any precision integrated circuit can experience performance shifts resulting from moisture ingress into the  
plastic package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended  
to remove moisture introduced into the device packaging during the cleaning process. A low-temperature,  
post-cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
8.4.1.1 Power Dissipation  
The OPA165x op amps are capable of driving 600-Ω loads with a power-supply voltage up to ±18 V and full  
operating temperature range. Internal power dissipation increases when operating at high supply voltages.  
Copper leadframe construction used in the OPA165x improves heat dissipation compared to conventional  
materials. Circuit board layout can also help minimize junction temperature rise. Wide copper traces help  
dissipate the heat by acting as an additional heat sink. Temperature rise can be further minimized by soldering  
the devices to the circuit board rather than using a socket.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: OPA1655 OPA1656  
 
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.4.2 Layout Example  
VIN A  
VIN B  
+
+
VOUT A  
VOUT B  
RG  
RG  
RF  
RF  
(Schematic Representation)  
Place components  
close to device and to  
each other to reduce  
parasitic errors.  
Output A  
Use low-ESR,  
ceramic bypass  
capacitor. Place as  
close to the device  
as possible.  
VS+  
GND  
OUTPUT A  
V+  
RF  
Output B  
GND  
-IN A  
+IN A  
Vœ  
OUTPUT B  
-IN B  
RF  
RG  
GND  
VIN A  
RG  
+IN B  
VIN B  
Keep input traces short  
and run the input traces  
as far away from  
the supply lines  
Use low-ESR,  
GND  
ceramic bypass  
capacitor. Place as  
close to the device  
as possible.  
VSœ  
Ground (GND) plane on another layer  
as possible.  
8-13. Operational Amplifier Board Layout for Noninverting Configuration  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: OPA1655 OPA1656  
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Development Support  
9.1.1.1 PSpice® for TI  
PSpice® for TI 是可帮助评估模拟电路性能的设计和仿真环境。在进行布局和制造之前创建子系统设计和原型解决  
方案可降低开发成本并缩短上市时间。  
9.1.1.2 TINA-TI™ Simulation Software (Free Download)  
TINA-TIsimulation software is a simple, powerful, and easy-to-use circuit simulation program based on a  
SPICE engine. TINA-TI simulation software is a free, fully-functional version of the TINAsoftware, preloaded  
with a library of macromodels, in addition to a range of both passive and active models. TINA-TI simulation  
software provides all the conventional dc, transient, and frequency domain analysis of SPICE, as well as  
additional design capabilities.  
Available as a free download from the Design tools and simulation web page, TINA-TI simulation software offers  
extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments  
offer the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic  
quick-start tool.  
备注  
These files require that either the TINA software or TINA-TI software be installed. Download the free  
TINA-TI simulation software from the TINA-TI™ software folder.  
9.1.1.3 DIP-Adapter-EVM  
Speed up your op amp prototyping and testing with the DIP-Adapter-EVM, which provides a fast, easy and  
inexpensive way to interface with small, surface-mount devices. Connect any supported op amp using the  
included Samtec terminal strips or wire them directly to existing circuits. The DIP-Adapter-EVM kit supports the  
following industry-standard packages: D or U (SOIC-8), PW (TSSOP-8), DGK (VSSOP-8), DBV (SOT-23-6,  
SOT-23-5 and SOT-23-3), DCK (SC70-6 and SC70-5), and DRL (SOT563-6).  
9.1.1.4 DIYAMP-EVM  
The DIYAMP-EVM is a unique evaluation module (EVM) that provides real-world amplifier circuits, enabling the  
user to quickly evaluate design concepts and verify simulations. This EVM is available in three industry-standard  
packages (SC70, SOT23, and SOIC) and 12 popular amplifier configurations, including amplifiers, filters, stability  
compensation, and comparator configurations for both single and dual supplies.  
9.1.1.5 TI Reference Designs  
TI reference designs are analog solutions created by TIs precision analog applications experts. TI reference  
designs offer the theory of operation, component selection, simulation, complete PCB schematic and layout, bill  
of materials, and measured performance of many useful circuits. TI reference designs are available online at  
https://www.ti.com/reference-designs.  
9.1.1.6 Filter Design Tool  
The filter design tool is a simple, powerful, and easy-to-use active filter design program. The filter design tool  
allows the user to create optimized filter designs using a selection of TI operational amplifiers and passive  
components from TI's vendor partners.  
Available as a web-based tool from the Design tools and simulation web page, the filter design tool allows the  
user to design, optimize, and simulate complete multistage active filter solutions within minutes.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: OPA1655 OPA1656  
 
 
OPA1655, OPA1656  
ZHCSJH0C MARCH 2019 REVISED SEPTEMBER 2022  
www.ti.com.cn  
9.2 Documentation Support  
9.2.1 Related Documentation  
The following documents are recommended for reference when using the OPA165x, and are available for  
download at www.ti.com.  
Texas Instruments, Source Resistance and Noise Considerations in Amplifiers technical brief  
Texas Instruments, Single-Supply Operation of Operational Amplifiers application bulletin  
Texas Instruments, Op Amp Performance Analysis application bulletin  
Texas Instruments, Compensate Transimpedance Amplifiers Intuitively application report  
Texas Instruments, Tuning in Amplifiers application bulletin  
Texas Instruments, Feedback Plots Define Op Amp AC Performance application bulletin  
Texas Instruments, Active Volume Control for Professional Audio design guide  
9.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.5 Trademarks  
Burr-Brown, TINA-TI, and TI E2Eare trademarks of Texas Instruments.  
TINAis a trademark of DesignSoft, Inc.  
Bluetooth® is a registered trademark of Bluetooth SIG, Inc.  
PSpice® is a registered trademark of Cadence Design Systems, Inc.  
所有商标均为其各自所有者的财产。  
9.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: OPA1655 OPA1656  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA1655DBVR  
OPA1655DBVT  
OPA1655DR  
OPA1656ID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
5
5
8
8
8
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2R8Q  
2R8Q  
Samples  
Samples  
Samples  
Samples  
Samples  
SN  
NIPDAU  
NIPDAU  
NIPDAU  
OP1655  
OP1656  
OP1656  
SOIC  
D
OPA1656IDR  
SOIC  
D
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2022  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Oct-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA1655DBVR  
OPA1655DBVT  
OPA1655DR  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
5
5
8
8
3000  
250  
178.0  
178.0  
330.0  
330.0  
9.0  
9.0  
3.3  
3.3  
6.4  
6.4  
3.2  
3.2  
5.2  
5.2  
1.4  
1.4  
2.1  
2.1  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
Q1  
3000  
2500  
12.4  
12.4  
12.0  
12.0  
OPA1656IDR  
SOIC  
D
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Oct-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA1655DBVR  
OPA1655DBVT  
OPA1655DR  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
5
5
8
8
3000  
250  
190.0  
190.0  
356.0  
356.0  
190.0  
190.0  
356.0  
356.0  
30.0  
30.0  
35.0  
35.0  
3000  
2500  
OPA1656IDR  
SOIC  
D
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Oct-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
SOIC  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
OPA1656ID  
D
8
75  
506.6  
8
3940  
4.32  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA1656IDR

SoundPlus™ 超低噪声和失真、Burr-Brown™ 音频运算放大器 | D | 8 | -40 to 125
TI

OPA1662

Low-Power, Low Noise and Distortion, Bipolar-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1662-Q1

汽车类 Sound Plus、低功耗、低噪声和失真、音频运算放大器
TI

OPA1662AID

Low-Power, Low Noise and Distortion, Bipolar-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1662AIDGK

Low-Power, Low Noise and Distortion, Bipolar-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1662AIDGKR

Low-Power, Low Noise and Distortion, Bipolar-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1662AIDGKRQ1

汽车类 Sound Plus、低功耗、低噪声和失真、音频运算放大器 | DGK | 8 | -40 to 85
TI

OPA1662AIDR

Low-Power, Low Noise and Distortion, Bipolar-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1662AIDRQ1

汽车类 Sound Plus、低功耗、低噪声和失真、音频运算放大器 | D | 8 | -40 to 85
TI

OPA1664

Low-Power, Low Noise and Distortion, Bipolar-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1664AID

Low-Power, Low Noise and Distortion, Bipolar-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1664AIDR

Low-Power, Low Noise and Distortion, Bipolar-Input AUDIO OPERATIONAL AMPLIFIERS
TI