OPA1662AIDRQ1 [TI]

汽车类 Sound Plus、低功耗、低噪声和失真、音频运算放大器 | D | 8 | -40 to 85;
OPA1662AIDRQ1
型号: OPA1662AIDRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 Sound Plus、低功耗、低噪声和失真、音频运算放大器 | D | 8 | -40 to 85

放大器 光电二极管 运算放大器
文件: 总34页 (文件大小:1982K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA1662-Q1  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
OPA1662-Q1 双路 3.3 nV/Hz 噪声、0.00006% THD+NRRO、双极输  
入音频运算放大器  
1 特性  
3 说明  
1
符合汽车应用 标准  
具有符合 AEC-Q100 标准的下列结果  
OPA1662-Q1 是一个双路双极输入运算放大器,非常  
适合作为信息娱乐和组合仪表系统中 高级音频设备的  
外部放大器。音频系统所面临的首要任务是要确保清  
晰、高质量的输出信号,这意味着要最大程度地减少进  
入到信号中的任何噪声。OPA1662-Q1 可提供低噪声  
密度和 0.00006% 的超低失真 (1kHz),能够最大限度  
地增大信号输出。此外,该运算放大器在 2kΩ 负载下  
还可提供 600mV 范围内的轨至轨输出摆幅。宽余量可  
确保输出信号不发生削波,并由此保护音频质量。  
器件温度等级 3 级:环境工作温度范围为  
–40°C 85°C  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 H2  
器件组件充电模式 (CDM) ESD 分类等级 C3B  
低噪声: 1kHz 下为 3.3nV/Hz  
低失真:1kHz下为 0.00006%  
低静态电流:每通道 1.5mA  
转换率:17V/μs  
OPA1662-Q1 可在 ±1.5V ±18V,或者 3V 36V  
这一非常宽的电源电压范围内运行,每通道电源电流仅  
1.5mA。宽电源范围使得器件获得了设计灵活性,  
因为它既可以从由电池驱动的功率放大器进行集成,也  
可以从由 ADC DAC 驱动的功率放大器进行集成,  
以实现低功耗 应用。此外,该器件还具有 ±30mA 的  
高输出驱动能力,可作为低功耗应用的唯一 音频放大  
器,例如用于仪表组提示音。  
宽增益带宽:22MHz (G = 1)  
单位增益稳定  
轨至轨输出  
宽电源电压范围:±1.5V ±18V,  
3V 36V  
小型封装尺寸:  
两种封装类型:8 引脚 SOIC VSSOP  
器件信息(1)  
2 应用  
器件型号  
封装  
SOIC (8)  
VSSOP (8)  
封装尺寸(标称值)  
4.90mm x 3.91mm  
3.00mm × 3.00mm  
汽车  
OPA1662-Q1  
车载音频  
高级音频设备  
外部音频放大器  
车身控制模块  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
输入电压噪声密度和输入电流噪声密度与频率间的关系  
THD+N 比与频率间的关系  
100  
10  
1
100  
10  
1
0.01  
Voltage Noise  
Current Noise  
G = 10V/V, RL = 600  
G = 10V/V, RL = 2kΩ  
G = +1V/V,RL = 600Ω  
G = +1V/V,RL = 2kΩ  
G = −1V/V,RL = 600Ω  
G = −1V/V,RL = 2kΩ  
0.001  
0.0001  
VOUT = 3VRMS  
BW = 80kHz  
0.1  
0.1  
100k  
1
10  
100  
1k  
10k  
0.00001  
Frequency (Hz)  
G001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
G007  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLOS805  
 
 
 
 
OPA1662-Q1  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 19  
Application and Implementation ........................ 20  
9.1 Application Information............................................ 20  
9.2 Typical Application .................................................. 20  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
7.1 Absolute Maximum Ratings ...................................... 3  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics: VS = ±15 V....................... 4  
7.6 Electrical Characteristics: VS = 5 V........................... 5  
7.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 14  
8.1 Overview ................................................................. 14  
8.2 Functional Block Diagram ....................................... 14  
8.3 Feature Description................................................. 14  
9
10 Power Supply Recommendations ..................... 22  
11 Layout................................................................... 22  
11.1 Layout Guidelines ................................................. 22  
11.2 Layout Example .................................................... 23  
11.3 Power Dissipation ................................................. 23  
12 器件和文档支持 ..................................................... 24  
12.1 文档支持................................................................ 24  
12.2 接收文档更新通知 ................................................. 24  
12.3 社区资源................................................................ 24  
12.4 ....................................................................... 24  
12.5 静电放电警告......................................................... 24  
12.6 Glossary................................................................ 24  
13 机械、封装和可订购信息....................................... 24  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (October 2012) to Revision C  
Page  
添加了 ESD 额定值 表、特性 说明 部分、器件功能模式应用和实施 部分、电源相关建议 部分、布局 部分、器件和  
文档支持 部分以及机械、封装和可订购信息 部分。............................................................................................................... 1  
删除了订购信息 表,请参见数据表末尾的 POA ..................................................................................................................... 1  
已更改 (说明部分中的第二句) ............................................................................................................................................ 1  
Changes from Revision A (September 2012) to Revision B  
Page  
订购信息 表中,将预览中 OPA1662AIDRQ1 的顶端标记更改为了 O1662Q ..................................................................... 1  
1 级更改为了 3 级(特性部分........................................................................................................................................... 1  
Changes from Original (July 2012) to Revision A  
Page  
将器件从预览(2 页)改为生产状态,本修订版包含了标准长度文档。................................................................................. 1  
2
版权 © 2012–2016, Texas Instruments Incorporated  
 
OPA1662-Q1  
www.ti.com.cn  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
5 说明 (续)  
此外,该器件还 具备 两个通道均使用完全独立的电路,可实现低串扰,即便在过驱动或过载时也不受每个通道间  
相互作用的影响。借助此功能,客户可轻松驱动两个不同的音频信号,因为信号之间不会相互影响。  
OPA1662-Q1 提供 22MHz 的宽带宽和 17V/µs 的高转换率,可用于 SMPS 器件或电机驱动器中纹波电流的高侧和  
低侧感应。作为一个电流传感器,OPA1662-Q1 可作为峰值电流模式控制使用,借助该运算放大器,可为系统提供  
稳定性并可实现更高带宽。OPA1662-Q1 可应用于车身控制模块和通常使用电机的 HEV EV 转换器。  
6 Pin Configuration and Functions  
D and DGK Packages  
8-Pin SOIC and VSSOP  
Top View  
OUT A  
-IN A  
+IN A  
V-  
1
2
3
4
8
7
6
5
V+  
A
OUT B  
-IN B  
+IN B  
B
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN A  
–IN A  
+IN B  
–IN B  
OUT_A  
OUT_B  
V–  
NO.  
3
I
I
Noninverting input channel A  
Inverting input channel A  
Noninverting input channel B  
Inverting input channel B  
Output, channel A  
2
5
I
6
I
1
O
O
7
Output, channel B  
4
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
8
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
40  
UNIT  
V
Supply voltage, (V+) – (V–)  
Input voltage  
(V–) – 0.5  
(V+) + 0.5  
±10  
V
Input current (all pins except power-supply pins)  
Output short-circuit(2)  
mA  
Continuous  
Operating ambient temperature  
Junction temperature, TJ  
–40  
125  
200  
150  
°C  
°C  
°C  
Storage temperature, Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Short-circuit to VS / 2 (ground in symmetrical dual supply setups), one amplifier per package.  
Copyright © 2012–2016, Texas Instruments Incorporated  
3
OPA1662-Q1  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
www.ti.com.cn  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
±2000  
±750  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
V
VS  
TA  
Supply voltage, (V+) – (V–)  
3 (±1.5) 36 (±18)  
Operating ambient temperature  
–40  
125  
°C  
7.4 Thermal Information  
OPA1662-Q1  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
156.3  
85.5  
DGK (VSSOP)  
8 PINS  
225.4  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
78.8  
64.9  
110.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
33.8  
14.6  
ψJB  
64.3  
108.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics: VS = ±15 V  
TA = 25°C, VCM = VOUT = midsupply, and RL = 2 kΩ (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AUDIO PERFORMANCE  
0.00006%  
–124  
THD+N  
IMD  
Total harmonic distortion + noise  
Intermodulation distortion  
G = 1, f = 1 kHz, VO = 3 VRMS  
SMPTE two-tone, 4:1 (60 Hz  
dB  
dB  
dB  
dB  
0.00004%  
–128  
and 7 kHz)  
0.00004%  
–128  
DIM 30 (3-kHz square wave  
and 15-kHz sine wave)  
G = 1, VO = 3 VRMS  
0.00004%  
–128  
CCIF twin-tone (19 kHz and  
20 kHz)  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
G = 1  
22  
17  
MHz  
V/µs  
MHz  
µs  
Slew rate  
G = –1  
Full power bandwidth(1)  
Overload recovery time  
Channel separation (dual and quad)  
VO = 1 VP  
G = –10  
f = 1 kHz  
2.7  
1
–120  
dB  
NOISE  
en  
Input voltage noise  
f = 20 Hz to 20 kHz  
f = 1 kHz  
2.8  
3.3  
5
µVPP  
nV/Hz  
nV/Hz  
pA/Hz  
pA/Hz  
Input voltage noise density  
f = 100 Hz  
f = 1 kHz  
1
In  
Input current noise density  
f = 100 Hz  
2
(1) Full-power bandwidth = SR / (2π × VP), where SR = slew rate.  
4
Copyright © 2012–2016, Texas Instruments Incorporated  
OPA1662-Q1  
www.ti.com.cn  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
Electrical Characteristics: VS = ±15 V (continued)  
TA = 25°C, VCM = VOUT = midsupply, and RL = 2 kΩ (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VS = ±1.5 V to ±18 V  
VS = ±1.5 V to ±18 V, TA = –40°C to 85°(2)  
±0.5  
2
±1.5  
8
mV  
VOS  
Input offset voltage  
µV/°C  
µV/V  
PSRR  
Power-supply rejection ratio  
VS = ±1.5 V to ±18 V  
1
3
INPUT BIAS CURRENT  
IB  
Input bias current  
Input offset current  
VCM = 0 V  
VCM = 0 V  
600  
±25  
1200  
±100  
nA  
nA  
IOS  
INPUT VOLTAGE  
VCM  
Common-mode voltage  
Common-mode rejection ratio  
(V–) + 0.5  
106  
(V+) – 1  
V
CMRR  
114  
dB  
INPUT IMPEDANCE  
Differential resistance  
170  
2
kΩ  
pF  
kΩ  
pF  
Differential capacitance  
Common-mode resistance  
Common-mode capacitance  
600  
2.5  
OPEN-LOOP GAIN  
AOL  
Open-loop voltage gain  
(V–) + 0.6 V VO (V+) – 0.6 V, RL = 2 kΩ  
RL = 2 kΩ  
106  
114  
dB  
OUTPUT  
VOUT  
IOUT  
Output voltage  
(V–) + 0.6  
(V+) – 0.6  
V
Output current  
See Typical Characteristics  
mA  
Ω
ZO  
Open-loop output impedance  
Short-circuit current(3)  
Capacitive load drive  
See Typical Characteristics  
ISC  
±50  
200  
mA  
pF  
CLOAD  
POWER SUPPLY  
VS  
Specified voltage  
±1.5  
±18  
1.8  
2
V
IOUT = 0 A  
IOUT = 0 A, TA = –40°C to 85°(2)  
1.5  
mA  
mA  
Quiescent current  
(per channel)  
IQ  
TEMPERATURE  
Specified temperature  
–40  
85  
°C  
(2) Specified by design and characterization.  
(3) One channel at a time.  
7.6 Electrical Characteristics: VS = 5 V  
TA = 25°C, VCM = VOUT = midsupply, and RL = 2 kΩ (unless otherwise noted)  
PARAMETERTEST  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AUDIO PERFORMANCE  
0.0001%  
–120  
THD+N  
IMD  
Total harmonic distortion + noise  
Intermodulation distortion  
G = 1, f = 1 kHz, VO = 3 VRMS  
SMPTE two-tone, 4:1 (60 Hz  
dB  
dB  
dB  
dB  
0.00004%  
–128  
and 7 kHz)  
0.00004%  
–128  
DIM 30 (3-kHz square wave  
and 15-kHz sine wave)  
G = 1, VO = 3 VRMS  
0.00004%  
–128  
CCIF twin-tone (19 kHz and  
20 kHz)  
Copyright © 2012–2016, Texas Instruments Incorporated  
5
OPA1662-Q1  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
www.ti.com.cn  
Electrical Characteristics: VS = 5 V (continued)  
TA = 25°C, VCM = VOUT = midsupply, and RL = 2 kΩ (unless otherwise noted)  
PARAMETERTEST  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
Slew rate  
Full power bandwidth(1)  
Overload recovery time  
Channel separation (dual and quad)  
G = 1  
20  
13  
MHz  
V/µs  
MHz  
µs  
G = –1  
VO = 1 VP  
G = –10  
f = 1 kHz  
2
1
–120  
dB  
NOISE  
en  
Input voltage noise  
f = 20 Hz to 20 kHz  
f = 1 kHz  
3.3  
3.3  
5
µVPP  
nV/Hz  
nV/Hz  
pA/Hz  
pA/Hz  
Input voltage noise density  
f = 100 Hz  
f = 1 kHz  
1
In  
Input current noise density  
f = 100 Hz  
2
OFFSET VOLTAGE  
VS = ±1.5 V to ±18 V  
VS = ±1.5 V to ±18 V, TA = –40°C to 85°(2)  
±0.5  
2
±1.5  
8
mV  
VOS  
Input offset voltage  
Power-supply rejection ratio  
µV/°C  
µV/V  
PSRR  
VS = ±1.5 V to ±18 V  
1
3
INPUT BIAS CURRENT  
IB  
Input bias current  
Input offset current  
VCM = 0 V  
VCM = 0 V  
600  
±25  
1200  
±100  
nA  
nA  
IOS  
INPUT VOLTAGE  
VCM  
Common-mode voltage  
Common-mode rejection ratio  
(V–) + 0.5  
86  
(V+) – 1  
V
CMRR  
100  
dB  
INPUT IMPEDANCE  
Differential resistance  
170  
2
kΩ  
pF  
kΩ  
pF  
Differential capacitance  
Common-mode resistance  
Common-mode capacitance  
600  
2.5  
OPEN-LOOP GAIN  
AOL  
Open-loop voltage gain  
(V–) + 0.6 V VO (V+) – 0.6 V, RL = 2 kΩ  
RL = 2 kΩ  
90  
100  
dB  
OUTPUT  
VOUT  
IOUT  
Output voltage  
(V–) + 0.6  
(V+) – 0.6  
V
Output current  
See \  
mA  
Ω
ZO  
Open-loop output impedance  
Short-circuit current(3)  
Capacitive load drive  
See Typical Characteristics  
ISC  
±40  
200  
mA  
pF  
CLOAD  
POWER SUPPLY  
VS  
Specified voltage  
±1.5  
±18  
1.7  
2
V
IOUT = 0 A  
IOUT = 0 A, TA = –40°C to 85°(2)  
1.4  
mA  
mA  
IQ  
Quiescent current (per channel)  
TEMPERATURE  
Specified temperature  
–40  
85  
°C  
(1) Full-power bandwidth = SR / (2π × VP), where SR = slew rate.  
(2) Specified by design and characterization.  
(3) One channel at a time.  
6
Copyright © 2012–2016, Texas Instruments Incorporated  
OPA1662-Q1  
www.ti.com.cn  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
7.7 Typical Characteristics  
At TA = 25°C, VS = ±15 V, and RL = 2 kΩ (unless otherwise noted)  
100  
10  
1
100  
10  
1
Voltage Noise  
Current Noise  
0.1  
0.1  
100k  
1
10  
100  
1k  
10k  
Time (1s/div)  
G002  
Frequency (Hz)  
G001  
Figure 2. 0.1-Hz to 10-Hz Noise  
Figure 1. Input Voltage Noise Density and Input Current  
Noise Density vs Frequency  
15  
12  
10  
8
10k  
Eo2 = en2 + (inRS)2 + 4KTRS  
VS = ± 15 V  
EO  
1k  
RS  
OPA166x  
100  
OPA165x  
VS = ± 5 V  
5
10  
2
VS = ± 1.5 V  
Resistor Noise  
0
10k  
1
100  
100k  
Frequency (Hz)  
1M  
10M  
1k  
10k  
100k  
1M  
G004  
G003  
Source Resistance (W)  
Figure 4. Maximum Output Voltage vs Frequency  
Figure 3. Voltage Noise vs Source Resistance  
140  
120  
100  
80  
180  
40  
CL = 100pF  
Gain = −1V/V  
Gain = +1V/V  
Gain = +10V/V  
135  
20  
0
60  
90  
45  
0
40  
20  
Gain  
Phase  
0
−20  
−20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
G005  
G006  
Figure 5. Gain and Phase vs Frequency  
Figure 6. Closed-Loop Gain vs Frequency  
Copyright © 2012–2016, Texas Instruments Incorporated  
7
 
OPA1662-Q1  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, VS = ±15 V, and RL = 2 kΩ (unless otherwise noted)  
0.01  
0.01  
0.001  
G = 10V/V, RL = 600  
G = 10V/V, RL = 2kΩ  
G = +1V/V,RL = 600Ω  
G = +1V/V,RL = 2kΩ  
G = −1V/V,RL = 600Ω  
G = −1V/V,RL = 2kΩ  
G = 10V/V, RL = 600  
G = 10V/V, RL = 2kΩ  
G = +1V/V,RL = 600Ω  
G = +1V/V,RL = 2kΩ  
G = −1V/V,RL = 600Ω  
G = −1V/V,RL = 2kΩ  
0.001  
0.0001  
0.0001  
VOUT = 1VRMS  
VOUT = 3VRMS  
BW = 80kHz  
BW = 80kHz  
VS = ± 2.5V  
0.00001  
0.00001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
G007  
G038  
Figure 7. THD+N Ratio vs Frequency  
Figure 8. THD+N Ratio vs Frequency  
0.01  
0.01  
G = 10V/V, RL = 600  
G = 10V/V, RL = 2kΩ  
G = +1V/V,RL = 600Ω  
G = +1V/V,RL = 2kΩ  
G = −1V/V,RL = 600Ω  
G = −1V/V,RL = 2kΩ  
G = 10V/V, RL = 600  
G = 10V/V, RL = 2kΩ  
G = +1V/V,RL = 600Ω  
G = +1V/V,RL = 2kΩ  
G = −1V/V,RL = 600Ω  
G = −1V/V,RL = 2kΩ  
0.001  
0.001  
0.0001  
0.0001  
VOUT = 1VRMS  
VOUT = 3VRMS  
BW = 500kHz  
BW = 500kHz  
VS = ± 2.5V  
0.00001  
0.00001  
20  
100  
1k  
10k  
100k  
20  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
G009  
G039  
Figure 9. THD+N Ratio vs Frequency  
Figure 10. THD+N Ratio vs Frequency  
0.01  
0.01  
RS = 0 W  
RS = 30 W  
VOUT = 3 VRMS  
BW = 500 kHz  
+15V  
OPA1662-Q1  
-15V  
+15V  
OPA1662-Q1  
-15V  
RSOURCE  
RSOURCE  
RS = 60 W  
RS = 1 kW  
RL  
RL  
0.001  
0.0001  
0.001  
0.0001  
RS = 0 W  
RS = 30 W  
RS = 60 W  
RS = 1 kW  
VOUT = 3 VRMS  
BW = 80 kHz  
0.00001  
0.00001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
G008  
G010  
Figure 11. THD+N Ratio vs Frequency  
Figure 12. THD+N Ratio vs Frequency  
8
Copyright © 2012–2016, Texas Instruments Incorporated  
 
 
OPA1662-Q1  
www.ti.com.cn  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
Typical Characteristics (continued)  
At TA = 25°C, VS = ±15 V, and RL = 2 kΩ (unless otherwise noted)  
0.01  
0.001  
0.0001  
1E-5  
0.01  
DIM 30: 3 kHz - Square Wave, 15 kHz Sine Wave  
CCIF Twin Tone: 19 kHz and 20 kHz  
SMPTE: Two - Tone 4:1, 60 Hz and 7 kHz  
f = 1 kHz  
0.001  
BW = 80 kHz  
RS = 0  
G = 10V/V, RL = 600Ω  
G = 10V/V, RL = 2kΩ  
G = +1V/V,RL = 600Ω  
G = +1V/V,RL = 2kΩ  
G = −1V/V,RL = 600Ω  
G = −1V/V,RL = 2kΩ  
0.0001  
G = +1 V/V  
0.1  
0.00001  
1
10  
20  
1m  
10m  
100m  
1
10 20  
Output Amplitude (Vrms)  
D001  
Output Amplitude (Vrms)  
G011  
Figure 14. Intermodulation Distortion vs Output Amplitude  
Figure 13. THD+N Ratio vs Output Amplitude  
−80  
−100  
−120  
−140  
−160  
140  
VOUT = 3 VRMS  
Gain = +1 V/V  
120  
100  
80  
60  
40  
+PSRR  
−PSRR  
CMRR  
20  
0
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
G013  
G014  
Figure 15. Channel Separation vs Frequency  
Figure 16. CMRR and PSRR vs Frequency  
(Referred to Input)  
VIN  
VOUT  
VIN  
VOUT  
G = +1 V/V  
CL = 10 pF  
VS = ±1.5 V  
G = +1 V/V  
CL = 10 pF  
Time (1 ms/div)  
G015  
Time (1 ms/div)  
G040  
Figure 17. Small-Signal Step Response  
Figure 18. Small-Signal Step Response  
Copyright © 2012–2016, Texas Instruments Incorporated  
9
OPA1662-Q1  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, VS = ±15 V, and RL = 2 kΩ (unless otherwise noted)  
G = −1 V/V  
CL = 10 pF  
VS = ±1.5 V  
VIN  
VOUT  
VIN  
VOUT  
G = −1 V/V  
CL = 10 pF  
Time (1 ms/div)  
G016  
Time (1 ms/div)  
G041  
Figure 20. Small-Signal Step Response  
Figure 19. Small-Signal Step Response  
VIN  
VOUT  
VIN  
VOUT  
G = +1 V/V  
CL = 10 pF  
RF = 1 kW  
G = +1 V/V  
CL = 10 pF  
VS = ±1.5 V  
Time (1 ms/div)  
Time (1 ms/div)  
G032  
G017  
Figure 22. Large-Signal Step Response  
Figure 21. Large-Signal Step Response  
VIN  
VOUT  
VIN  
VOUT  
G = −1 V/V  
CL = 10 pF  
VS = ±1.5 V  
G = −1 V/V  
CL = 10 pF  
Time (1 ms/div)  
Time (1 ms/div)  
G035  
G018  
Figure 23. Large-Signal Step Response  
Figure 24. Large-Signal Step Response  
10  
Copyright © 2012–2016, Texas Instruments Incorporated  
OPA1662-Q1  
www.ti.com.cn  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
Typical Characteristics (continued)  
At TA = 25°C, VS = ±15 V, and RL = 2 kΩ (unless otherwise noted)  
50  
VOUT = 100 mVPP  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
RF = 2 kW  
RI = 2 kW  
+15 V  
45  
+15 V  
G = +1 V/V  
RS  
RS  
OPA1662-Q1  
40  
OPA1662-Q1  
CL  
RL  
CL  
35  
30  
25  
20  
15  
10  
5
-15 V  
-15 V  
RS = 0 W  
RS = 25 W  
RS = 50 W  
RS = 0 W  
RS = 25 W  
RS = 50 W  
VOUT = 100 mVPP  
G = −1 V/V  
0
0
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Capacitance (pF)  
Capacitance (pF)  
G019  
G020  
Figure 25. Small-Signal Overshoot vs Capacitive Load  
Figure 26. Small-Signal Overshoot vs Capacitive Load  
50  
50  
RS = 0 W  
RS = 25 W  
RS = 50 W  
+15 V  
45  
45  
RS  
OPA1662-Q1  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
VOUT = 100 mVPP  
RL  
CL  
G = −1 V/V  
VS = ±1.5 V  
-15 V  
RS = 0 W  
RS = 25 W  
RS = 50 W  
VOUT = 100 mVPP  
RF = 2 kW  
RI = 2 kW  
G = +1 V/V  
VS = ±1.5 V  
+15 V  
RS  
OPA1662-Q1  
CL  
-15 V  
0
0
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Capacitance (pF)  
Capacitance (pF)  
G034  
G033  
Figure 27. Small-Signal Overshoot vs Capacitive Load  
Figure 28. Small-Signal Overshoot vs Capacitive Load  
50  
50  
CF  
VS = ±18 V  
VS = ±1.5 V  
G = +1 V/V  
VIN = 100 mVPP  
45  
45  
RF = 2 kW  
RI = 2 kW  
40  
35  
30  
25  
20  
15  
40  
35  
30  
25  
20  
15  
10  
5
+15 V  
VOUT = 100 mVPP  
RS  
G = +1 V/V  
CL = 100 pF  
OPA1662-Q1  
CL  
-15 V  
10  
VS = ± 18 V  
VS = ± 1.5 V  
5
0
0
0
50  
100  
150  
200  
250  
300  
350  
400  
0
1
2
3
4
5
Capacitance (pF)  
Capacitance (pF)  
G037  
G021  
Figure 30. Percent Overshoot vs Capacitive Load  
Figure 29. Small-Signal Overshoot vs Feedback Capacitor  
Copyright © 2012–2016, Texas Instruments Incorporated  
11  
 
OPA1662-Q1  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, VS = ±15 V, and RL = 2 kΩ (unless otherwise noted)  
90  
4
3.5  
3
RL = 10 k  
RL = 2 kΩ  
RL = 600 Ω  
80  
70  
60  
50  
40  
30  
20  
2.5  
2
1.5  
1
0.5  
0
VS = ± 18 V  
VS = ± 1.5 V  
10  
−0.5  
−1  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
−40  
−15  
10  
35  
60  
85  
110  
135  
Capacitance (pF)  
Temperature (°C)  
G036  
G022  
Figure 31. Phase Margin vs Capacitive Load  
Figure 32. Open-Loop Gain vs Temperature  
400  
200  
200  
0
IOS  
IBP  
IBN  
0
−200  
−400  
−600  
−800  
−200  
−400  
−600  
−800  
−1000  
−Ib  
+Ib  
Ios  
−40  
−15  
10  
35  
60  
85  
110  
135  
−18 −14 −10  
−6  
−2  
2
6
10  
14  
18  
Temperature (°C)  
Common−Mode Voltage (V)  
G023  
G024  
Figure 33. IB and IOS vs Temperature  
Figure 34. IB and IOS vs Common-Mode Voltage  
1.8  
3
2.5  
2
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.5  
1
0.5  
0
−40  
−15  
10  
35  
60  
85  
110  
135  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
Temperature (°C)  
Supply Voltage (V)  
G025  
G026  
Figure 35. Supply Current vs Temperature  
Figure 36. Supply Current vs Supply Voltage  
12  
Copyright © 2012–2016, Texas Instruments Incorporated  
OPA1662-Q1  
www.ti.com.cn  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
Typical Characteristics (continued)  
At TA = 25°C, VS = ±15 V, and RL = 2 kΩ (unless otherwise noted)  
60  
20  
15  
55  
50  
45  
40  
10  
−55°C  
−40°C  
−25°C  
0°C  
5
0
+25°C  
+85°C  
−5  
−10  
−15  
−20  
35  
+Isc  
−Isc  
30  
−40  
−15  
10  
35  
60  
85  
110  
135  
20  
25  
30  
35  
40  
45  
50  
55  
60  
Temperature (°C)  
G027  
Output Current (mA)  
G028  
Figure 37. Short-Circuit Current vs Temperature  
Figure 38. Output Voltage vs Output Current  
VIN  
VOUT  
VIN  
VOUT  
G = −10 V/V  
G = −10 V/V  
Time (0.5 ms/div)  
Time (0.5 ms/div)  
G029  
G031  
Figure 39. Positive Overload Recovery  
Figure 40. Negative Overload Recovery  
1k  
100  
10  
VOUT  
VIN  
1
10  
100  
1k  
10k  
100k  
1M  
Time (250 ms/div)  
Frequency (Hz)  
G042  
G030  
Figure 42. No Phase Reversal  
Figure 41. Open-Loop Output Impedance vs Frequency  
Copyright © 2012–2016, Texas Instruments Incorporated  
13  
OPA1662-Q1  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The OPA1662-Q1 operational amplifier achieves a low 3.3 nV/Hz noise density with an ultra-low distortion of  
0.00006% at 1 kHz that makes the device suitable for audio application. This device has a wide supply range  
with excellent PSRR, making it a suitable option for applications that are battery powered without regulation.  
8.2 Functional Block Diagram  
V+  
IN-  
IN+  
Pre-Output Driver  
OUT  
V-  
Copyright © 2016, Texas Instruments Incorporated  
Figure 43. OPA1662-Q1 Simplified Schematic  
8.3 Feature Description  
8.3.1 Operating Voltage  
The OPA1662-Q1 op amp operates from ±1.5-V to ±18-V supplies while maintaining excellent performance. The  
OPA1662-Q1 can operate with as little as 3 V between the supplies and up to 36 V between the supplies.  
However, some applications do not require equal positive and negative output voltage swing. With the  
OPA1662Q1 device, power-supply voltages do not need to be equal. For example, the positive supply could be  
set to 25 V with the negative supply at –5 V.  
In all cases, the common-mode voltage must be maintained within the specified range. In addition, key  
parameters are assured over the specified temperature of TA = –40°C to 85°C. Parameters that vary significantly  
with operating voltage or temperature are shown in the Typical Characteristics.  
14  
Copyright © 2012–2016, Texas Instruments Incorporated  
 
OPA1662-Q1  
www.ti.com.cn  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
Feature Description (continued)  
8.3.2 Input Protection  
The input terminals of the OPA1662-Q1 are protected from excessive differential voltage with back-to-back  
diodes, as Figure 44 illustrates. In most circuit applications, the input protection circuitry has no consequence.  
However, in low-gain or G = 1 circuits, fast ramping input signals can forward bias these diodes because the  
output of the amplifier cannot respond rapidly enough to the input ramp. If the input signal is fast enough to  
create this forward bias condition, the input signal current must be limited to 10 mA or less. If the input signal  
current is not inherently limited, an input series resistor (RI) or a feedback resistor (RF) can be used to limit the  
signal input current. This resistor degrades the low-noise performance of the OPA1662-Q1 and is examined in  
Noise Performance. Figure 44 shows an example configuration when both current-limiting input and feedback  
resistors are used.  
RF  
-
OPA1662-Q1  
Output  
RI  
+
Input  
Figure 44. Pulsed Operation  
8.3.3 Noise Performance  
Figure 45 shows the total circuit noise for varying source impedances with the op amp in a unity-gain  
configuration (no feedback resistor network, and therefore no additional noise contributions).  
The OPA1662-Q1 (GBW = 22 MHz, G = 1) is shown with total circuit noise calculated. The op amp itself  
contributes both a voltage noise component and a current noise component. The voltage noise is commonly  
modeled as a time-varying component of the offset voltage. The current noise is similarly modeled as the time-  
varying component of the input bias current and reacts with the source resistance to create a voltage component  
of noise. Therefore, the lowest noise op amp for a given application depends on the source impedance. For low  
source impedance, current noise is negligible, and voltage noise generally dominates. The low voltage noise of  
the OPA1662-Q1 op amp makes them a better choice for low source impedances of less than 1 kΩ.  
10k  
Eo2 = en2 + (inRS)2 + 4KTRS  
EO  
1k  
RS  
OPA166x  
100  
OPA165x  
10  
Resistor Noise  
1
100  
1k  
10k  
100k  
1M  
G003  
Source Resistance (W)  
The equation calculates total circuit noise, where:  
en is the voltage noise  
in is the current noise  
RS is the source impedance  
k is Boltzmann’s constant = 1.38 × 10–23 J/K  
T is the temperature in Kelvins (K)  
Figure 45. Noise Performance of the OPA1662-Q1 in Unity-Gain Buffer Configuration  
Copyright © 2012–2016, Texas Instruments Incorporated  
15  
 
 
 
OPA1662-Q1  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
www.ti.com.cn  
Feature Description (continued)  
8.3.4 Basic Noise Calculations  
Design of low-noise op amp circuits requires careful consideration of a variety of possible noise contributors:  
noise from the signal source, noise generated in the op amp, and noise from the feedback network resistors. The  
total noise of the circuit is the root-sum-square combination of all noise components.  
The resistive portion of the source impedance produces thermal noise proportional to the square root of the  
resistance. Figure 45 plots this equation. The source impedance is usually fixed; consequently, select the op  
amp and the feedback resistors to minimize the respective contributions to the total noise.  
Figure 46 illustrates both inverting and noninverting op amp circuit configurations with gain. In circuit  
configurations with gain, the feedback network resistors also contribute noise. The current noise of the op amp  
reacts with the feedback resistors to create additional noise components. The feedback resistor values can  
generally be chosen to make these noise sources negligible. The equations for total noise are shown for both  
configurations.  
A) Noise in Noninverting Gain Configuration  
Noise at the output:  
R2  
2
2
2
R2  
R1  
R2  
R1  
R2  
R1  
2
EO  
2
en  
2
2
es  
e12 + e2  
+
R1  
1 +  
1 +  
=
+
EO  
4kTRS  
4kTR1  
4kTR2  
Where eS  
=
= thermal noise of RS  
= thermal noise of R1  
= thermal noise of R2  
RS  
e1 =  
e2 =  
VS  
B) Noise in Inverting Gain Configuration  
Noise at the output:  
R2  
2
2
2
R2  
R2  
R2  
R1 + RS  
2
EO  
2
2
2
e12 + e2  
+
es  
= 1 +  
en  
+
R1  
R1 + RS  
R1 + RS  
EO  
RS  
4kTRS  
4kTR1  
4kTR2  
Where eS  
=
= thermal noise of RS  
= thermal noise of R1  
= thermal noise of R2  
VS  
e1 =  
e2 =  
For the OPA1662-Q1 op amp at 1 kHz, en = 3.3 nV/Hz.  
Figure 46. Noise Calculation in Gain Configurations  
8.3.5 Total Harmonic Distortion Measurements  
The OPA1662-Q1 op amp has excellent distortion characteristics. THD + noise is below 0.0006% (G = 1,  
VO = 3 VRMS, BW = 80 kHz) throughout the audio frequency range, 20 Hz to 20 kHz, with a 2-kΩ load (see  
Figure 7 for characteristic performance).  
The distortion produced by the OPA1662-Q1 op amp is below the measurement limit of many commercially  
available distortion analyzers. However, a special test circuit (such as Figure 47 shows) can be used to extend  
the measurement capabilities.  
16  
Copyright © 2012–2016, Texas Instruments Incorporated  
 
OPA1662-Q1  
www.ti.com.cn  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
Op amp distortion can be considered an internal error source that can be referred to the input. Figure 47 shows a  
circuit that causes the op amp distortion to be gained up (see the table in Figure 47 for the distortion gain factor  
for various signal gains). The addition of R3 to the otherwise standard noninverting amplifier configuration alters  
the feedback factor or noise gain of the circuit. The closed-loop gain is unchanged, but the feedback available for  
error correction is reduced by the distortion gain factor, thus extending the resolution by the same amount. The  
input signal and load applied to the op amp are the same as with conventional feedback without R3. The value of  
R3 must be kept small to minimize its effect on the distortion measurements.  
The validity of this technique can be verified by duplicating measurements at high gain or high frequency where  
the distortion is within the measurement capability of the test equipment. Measurements for this data sheet were  
made with an Audio Precision System Two distortion and noise analyzer, which greatly simplifies such repetitive  
measurements. The measurement technique can, however, be performed with manual distortion measurement  
instruments.  
8.3.6 Capacitive Loads  
The dynamic characteristics of the OPA1662-Q1 have been optimized for commonly encountered gains, loads,  
and operating conditions. The combination of low closed-loop gain and high capacitive loads decreases the  
phase margin of the amplifier and can lead to gain peaking or oscillations. As a result, heavier capacitive loads  
must be isolated from the output. The simplest way to achieve this isolation is to add a small resistor (RS equal to  
50 Ω, for example) in series with the output.  
This small series resistor also prevents excess power dissipation if the output of the device becomes shorted.  
Figure 25 illustrates a graph of Small-Signal Overshoot vs Capacitive Load for several values of RS. Also see  
Applications Bulletin: Feedback Plots Define Op Amp AC Performance for details of analysis techniques and  
application circuits.  
R1  
R2  
SIGNAL DISTORTION  
R1  
R2  
R3  
GAIN  
+1  
GAIN  
101  
¥
1 kW  
10 W  
R3  
OPA1662-Q1  
VO = 3 VRMS  
-1  
101  
4.99 kW 4.99 kW 49.9 W  
549 W 4.99 kW 49.9 W  
R2  
R1  
Signal Gain = 1+  
+10  
110  
R2  
Distortion Gain = 1+  
R1 II R3  
Generator  
Output  
Analyzer  
Input  
Audio Precision  
System Two(1)  
Load  
with PC Controller  
(1) For measurement bandwidth, see Figure 7 through Figure 12.  
Figure 47. Distortion Test Circuit  
8.3.7 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress.  
These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output  
pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly.  
It is helpful to have a good understanding of this basic ESD circuitry and its relevance to an electrical overstress  
event. Figure 48 illustrates the ESD circuits contained in the OPA1662-Q1 (indicated by the dashed line area).  
The ESD protection circuitry involves several current-steering diodes connected from the input and output pins  
and routed back to the internal power-supply lines, where they meet at an absorption device internal to the  
operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation.  
Copyright © 2012–2016, Texas Instruments Incorporated  
17  
 
OPA1662-Q1  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
www.ti.com.cn  
An ESD event produces a short duration, high-voltage pulse that is transformed into a short duration, high-  
current pulse as it discharges through a semiconductor device. The ESD protection circuits are designed to  
provide a current path around the operational amplifier core to prevent it from being damaged. The energy  
absorbed by the protection circuitry is then dissipated as heat.  
When an ESD voltage develops across two or more of the amplifier device pins, current flows through one or  
more of the steering diodes. Depending on the path that the current takes, the absorption device may activate.  
The absorption device internal to the OPA1662-Q1 triggers when a fast ESD voltage pulse is impressed across  
the supply pins. Once triggered, it quickly activates, clamping the ESD pulse to a safe voltage level.  
When the operational amplifier connects into a circuit such as that illustrated in Figure 48, the ESD protection  
components are intended to remain inactive and not become involved in the application circuit operation.  
However, circumstances may arise where an applied voltage exceeds the operating voltage range of a given pin.  
If this condition occurs, there is a risk that some of the internal ESD protection circuits may be biased on, and  
conduct current. Any such current flow occurs through steering diode paths and rarely involves the absorption  
device.  
Figure 48 depicts a specific example where the input voltage, VIN, exceeds the positive supply voltage (+VS) by  
500 mV or more. Much of what happens in the circuit depends on the supply characteristics. If +VS can sink the  
current, one of the upper input steering diodes conducts and directs current to +VS. Excessively high current  
levels can flow with increasingly higher VIN. As a result, TI recommends that applications limit the input current to  
10 mA.  
If the supply is not capable of sinking the current, VIN may begin sourcing current to the operational amplifier, and  
then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to  
levels that exceed the operational amplifier absolute maximum ratings. In extreme but rare cases, the absorption  
device triggers on while +VS and –VS are applied. If this event happens, a direct current path is established  
between the +VS and –VS supplies. The power dissipation of the absorption device is quickly exceeded, and the  
extreme internal heating destroys the operational amplifier.  
Another common question involves what happens to the amplifier if an input signal is applied to the input while  
the power supplies +VS or –VS are at 0 V. Again, it depends on the supply characteristic while at 0 V, or at a  
level below the input signal amplitude. If the supplies appear as high impedance, then the operational amplifier  
supply current may be supplied by the input source through the current steering diodes. This state is not a  
normal bias condition; the amplifier most likely will not operate normally. If the supplies are low impedance, then  
the current through the steering diodes can become quite high. The current level depends on the ability of the  
input source to deliver current, and any resistance in the input path.  
If there is an uncertainty about the ability of the supply to absorb this current, external Zener diodes may be  
added to the supply pins as shown in Figure 48.  
The Zener voltage must be selected such that the diode does not turn on during normal operation. However, its  
Zener voltage must be low enough so that the Zener diode conducts if the supply pin begins to rise above the  
safe operating supply voltage level.  
18  
Copyright © 2012–2016, Texas Instruments Incorporated  
OPA1662-Q1  
www.ti.com.cn  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
TVS  
RF  
+VS  
+V  
OPA1662-Q1  
RI  
ESD Current-  
Steering Diodes  
-In  
Out  
Op-Amp  
Core  
RS  
+In  
Edge-Triggered ESD  
Absorption Circuit  
RL  
ID  
(1)  
VIN  
-V  
-VS  
TVS  
(1) VIN = +VS + 500 mV.  
Figure 48. Equivalent Internal ESD Circuitry and Its Relation to a Typical Circuit Application (Single  
Channel Shown)  
8.4 Device Functional Modes  
The OPA1662-Q1 has a single functional mode and is operational when the power-supply voltage is greater than  
3 V (±1.5 V). The maximum power supply voltage for the OPA1662-Q1 is 36 V (±18 V).  
Copyright © 2012–2016, Texas Instruments Incorporated  
19  
OPA1662-Q1  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The OPA1662-Q1 is a unity-gain stable, precision dual op amp with very low noise. Applications with noisy or  
high-impedance power supplies require decoupling capacitors close to the device pins. In most cases, 0.1-µF  
capacitors are adequate. Figure 43 shows a simplified schematic of the OPA1662-Q1 (one channel shown) while  
Figure 49 shows an additional application idea.  
9.2 Typical Application  
820 W  
R
2200 pF  
C
+VA  
(+15 V)  
0.1 mF  
330 W  
IOUTL+  
OPA1662-Q1  
R3  
2700 pF  
C2  
-VA  
(-15 V)  
680 W  
620 W  
0.1 mF  
+VA  
(+15 V)  
0.1 mF  
R1  
R2  
Audio DAC  
with Differential  
Current  
Outputs  
100 W  
L Ch  
Output  
820 W  
OPA1662-Q1  
PCM1794A-Q1  
8200 pF  
VO  
C1  
2200 pF  
-VA  
(-15 V)  
0.1 mF  
0.1 mF  
+VA  
(+15 V)  
680 W  
620 W  
R1  
R2  
IOUTL-  
OPA1662-Q1  
2700 pF  
R3  
330 W  
C2  
-VA  
(-15 V)  
0.1 mF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 49. Audio DAC Current to Voltage Converter and Output Filter  
20  
Copyright © 2012–2016, Texas Instruments Incorporated  
 
OPA1662-Q1  
www.ti.com.cn  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
Typical Application (continued)  
9.2.1 Design Requirements  
Table 1 lists the design parameters for this example.  
Table 1. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
Supply voltage  
±15 V to ±36 V  
0 mA to 30 mA  
1%  
Differential input currents  
Resistors value tolerance  
Ceramic capacitor  
XR5 or XR7 50 V  
9.2.2 Detailed Design Procedure  
This circuit is designed for converting differential input current into a single ended output voltage. The resistor  
values are chosen to be relatively low for minimizing the total circuit noise. The filtering capacitors are chosen to  
maintain adequate bandwidth from 10 Hz to 20 kHz for audio signals.  
The first stage converts the audio DAC output current into a voltage with a gain calculated by Equation 1:  
R
1+ RCS  
where  
R = 820 Ω  
C = 2200 pF  
S is Laplace variable  
(1)  
1
2pRC  
RC filters the audio DAC output ripple and cutoff frequency =  
= 80 KHz  
The second differential stage transfer function is calculated by Equation 2:  
æ
ç
ç
ö
÷
÷
R3  
R1  
1
R2R3  
ç
÷
1+  
C2S + 2R2R3C1C2S2  
ç
÷
R1/ /R2 / /R3  
è
ø
(2)  
R2R3  
1+  
C2S + 2R2R3C1C2S2  
The denominator of this transfer function  
general form is calculated by Equation 3:  
R1/ /R2 / /R3  
is a quadratic equation and the  
S
S2  
1+  
+
2
Qwo  
Qwo  
where  
ωo = 2πFo is the resonance frequency  
and Q is the quality factor  
(3)  
(4)  
(5)  
The gain peak depends on the quality factor in Equation 4:  
C1  
1
Q = R1/ /R2 / /R3 2  
´
R2R3 C2  
The resonance frequency is calculated by Equation 5:  
1
wo = 2pFo =  
2R2R3C1C2  
These equations help to maintain adequate bandwidth and keep the differential gain flat so the quality factor is  
from 0.7 to 1. The resonance frequency must be at least twice the desired bandwidth.  
The chosen components give a quality factor of 0.89 and a resonance frequency of 53 KHz.  
Copyright © 2012–2016, Texas Instruments Incorporated  
21  
 
 
 
 
 
 
OPA1662-Q1  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
www.ti.com.cn  
The overall transfer function is shown in Equation 6:  
vo  
R
R3  
1
= ´  
IoutL + - IoutL - 1+ RCS R1  
´
R2R3  
1+  
C2S + 2R2R3C1C2S2  
R1/ /R2 / /R3  
(6)  
RR3  
DC gain =  
The  
R
1 and is 398 mV/mA.  
The poles are at 53 KHz and 80 KHz.  
9.2.3 Application Curves  
CH1 = positive input current IOUTL+ = 1.5 V / 150 Ω  
CH2 = negative input current IOUTL– = 1.5 V / 150 Ω  
CH3 = output single-ended voltage  
CH1 = positive input current IOUTL+ = 1.5 V / 150 Ω  
CH2 = negative input current IOUTL– = 1.5 V / 150 Ω  
CH3 = output single-ended voltage  
Figure 50. Output Voltage at 10 mApp and 10 Hz  
Figure 51. Output Voltage at 10 mApp and 20 KHz  
10 Power Supply Recommendations  
The OPA1662-Q1 is specified for operation from 3 V to 36 V (±1.5 V to 18 V) and at an ambient operating  
temperature from –40°C to 85°C. Parameters that can exhibit significant variance with regard to operating  
voltage or temperature are presented in Typical Characteristics.  
11 Layout  
11.1 Layout Guidelines  
The OPA1662-Q1 is a unity-gain stable, precision dual op amp with very low noise. To realize the full operational  
performance of the device, good high-frequency printed-circuit board (PCB) layout practices are required. Low-  
loss, 0.1-µF bypass capacitors must be connected between each supply pin and ground as close to the device  
as possible. The bypass capacitor traces must be designed for minimum inductance.  
22  
Copyright © 2012–2016, Texas Instruments Incorporated  
 
OPA1662-Q1  
www.ti.com.cn  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
11.2 Layout Example  
1
2
3
4
8
7
6
5
0.1 mF  
0.1 mF  
Dbꢀ plan  
Figure 52. Layout Recommendation  
11.3 Power Dissipation  
The OPA1662-Q1 op amp is capable of driving 2-kΩ loads with a power-supply voltage up to ±18 V and full  
operating temperature range. Internal power dissipation increases when operating at high supply voltages.  
Copper leadframe construction used in the OPA1662-Q1 op amp improves heat dissipation compared to  
conventional materials. Circuit board layout can also help minimize junction temperature rise. Wide copper traces  
help dissipate the heat by acting as an additional heat sink. Temperature rise can be further minimized by  
soldering the devices to the circuit board rather than using a socket.  
版权 © 2012–2016, Texas Instruments Incorporated  
23  
OPA1662-Q1  
ZHCSA99C JULY 2012REVISED AUGUST 2016  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
《应用 公告:反馈曲线图定义运算放大器交流性能》(SBOA015)  
《用于电流输出音频 DAC 的高功率高保真耳机放大器参考设计》(TIDU672)  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可收到任意产  
品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参见左侧的导航栏。  
24  
版权 © 2012–2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA1662AIDGKRQ1  
OPA1662AIDRQ1  
ACTIVE  
ACTIVE  
VSSOP  
SOIC  
DGK  
D
8
8
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
OUUI  
O1662Q  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA1662AIDGKRQ1  
OPA1662AIDRQ1  
VSSOP  
SOIC  
DGK  
D
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
5.3  
6.4  
3.4  
5.2  
1.4  
2.1  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA1662AIDGKRQ1  
OPA1662AIDRQ1  
VSSOP  
SOIC  
DGK  
D
8
8
2500  
2500  
366.0  
356.0  
364.0  
356.0  
50.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

OPA1664

Low-Power, Low Noise and Distortion, Bipolar-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1664AID

Low-Power, Low Noise and Distortion, Bipolar-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1664AIDR

Low-Power, Low Noise and Distortion, Bipolar-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1664AIPW

Low-Power, Low Noise and Distortion, Bipolar-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1664AIPWR

Low-Power, Low Noise and Distortion, Bipolar-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1671

单电源、高带宽 (13MHz)、低噪声 (7nV/RtHz)、RRIO 音频运算放大器
TI

OPA1671IDBVR

单电源、高带宽 (13MHz)、低噪声 (7nV/RtHz)、RRIO 音频运算放大器 | DBV | 5 | -40 to 125
TI

OPA1671IDBVT

单电源、高带宽 (13MHz)、低噪声 (7nV/RtHz)、RRIO 音频运算放大器 | DBV | 5 | -40 to 125
TI

OPA1671IDCKR

单电源、高带宽 (13MHz)、低噪声 (7nV/RtHz)、RRIO 音频运算放大器 | DCK | 5 | -40 to 125
TI

OPA1671IDCKT

单电源、高带宽 (13MHz)、低噪声 (7nV/RtHz)、RRIO 音频运算放大器 | DCK | 5 | -40 to 125
TI

OPA1677

OPA167x Low-Distortion Audio Operational Amplifiers
TI

OPA1677DBVR

OPA167x Low-Distortion Audio Operational Amplifiers
TI