OPA1671IDBVR [TI]

单电源、高带宽 (13MHz)、低噪声 (7nV/RtHz)、RRIO 音频运算放大器 | DBV | 5 | -40 to 125;
OPA1671IDBVR
型号: OPA1671IDBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

单电源、高带宽 (13MHz)、低噪声 (7nV/RtHz)、RRIO 音频运算放大器 | DBV | 5 | -40 to 125

放大器 运算放大器
文件: 总32页 (文件大小:1766K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA1671  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
OPA1671 13MHz、低噪声、轨至轨、音频运算放大器  
1 特性  
3 说明  
1
低噪声:  
频率为 10kHz 时为 4nV/Hz  
频率为 1kHz 时为 4.7fA/Hz  
OPA1671 是一款宽带宽、低噪声、低失真音频运算放  
大器,可提供轨至轨输入和输出操作。该器件可提供低  
电压噪声、电流噪声和输入电容的完美组合,从而能够  
在各种音频和工业 应用中提供高性能。OPA1671 的独  
特内部拓扑可提供极低的失真 (-109dB),同时仅消耗  
940µA 的电源电流。OPA1671 的高带宽 (13MHz) 和  
高压摆率 (5V/µs) 使该器件成为高增益音频和工业信号  
调节的绝佳选择。  
低失真:-109dB (0.00035%)  
宽增益带宽:13MHz  
轨至轨输入和输出  
低电源电压运行范围:1.7V 5.5V  
低输入电容  
差模:6pF  
OPA1671 采用 SC-70 SOT-23 封装,可在 –40°C  
+125°C 的工业温度范围内正常工作。  
共模:2.5pF  
低输入偏置电流:10pA  
器件信息(1)  
低功耗电源电流:940µA  
行业标准封装:SC-70 SOT-23  
器件型号  
OPA1671  
封装  
SC-70 (5)  
SOT-23 (5)  
封装尺寸(标称值)  
2.00mm × 1.25mm  
2.90mm × 1.60mm  
2 应用  
麦克风前置放大器  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
辅助线路输入和输出  
有源滤波器电路  
跨阻放大器  
电压缓冲器  
驻极体麦克风前置放大器  
OPA1671 电压噪声密度  
5 V  
1000  
1.58 kΩ  
10 µF  
10 kΩ  
10 µF  
100 kΩ 5 V  
100  
10  
1
Electret  
Microphone  
OPA1671  
+
Output  
Microphone  
Cable  
œ
100 kΩ  
10 µF  
10 µF  
499 kΩ  
4.9 kΩ  
15 pF  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
OPA1  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS931  
 
 
 
 
OPA1671  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 13  
7.4 Device Functional Modes........................................ 14  
8
9
Application and Implementation ........................ 15  
8.1 Application Information............................................ 15  
8.2 Typical Application .................................................. 17  
Power Supply Recommendations...................... 19  
10 Layout................................................................... 19  
10.1 Layout Guidelines ................................................. 19  
10.2 Layout Example .................................................... 19  
11 器件和文档支持 ..................................................... 20  
11.1 器件支持................................................................ 20  
11.2 文档支持................................................................ 20  
11.3 接收文档更新通知 ................................................. 20  
11.4 社区资源................................................................ 20  
11.5 ....................................................................... 21  
11.6 静电放电警告......................................................... 21  
11.7 Glossary................................................................ 21  
12 机械、封装和可订购信息....................................... 21  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (January 2019) to Revision B  
Page  
已添加 向数据表中添加了 SOT-23 (DBV) 封装和相关内容 .................................................................................................... 1  
Added input offset voltage specification for VCM = (V+), (V–)................................................................................................. 5  
Changes from Original (November 2018) to Revision A  
Page  
已更改 将预告信息(预览)更改为生产数据(正在供货)..................................................................................................... 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
OPA1671  
www.ti.com.cn  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
5 Pin Configuration and Functions  
DBV and DCK Packages  
5-Pin SOT-23 and SC-70  
Top View  
OUT  
Vœ  
1
2
3
5
V+  
+IN  
4
œIN  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
4
–IN  
+IN  
I
Inverting input  
3
I
Noninverting input  
OUT  
V–  
1
O
Output  
2
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
5
Copyright © 2019, Texas Instruments Incorporated  
3
OPA1671  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
6
UNIT  
V
Supply voltage, VS = (V+) – (V–)  
Input voltage  
(V–) –0.3  
(V+) +0.3  
V
Output short-circuit(2)  
Continuous  
Operating temperature, TA  
Storage temperature, Tstg  
–55  
–65  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Theseare stress ratings  
only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under Recommended  
OperatingConditions. Exposure to absolute-maximum-rated conditions for extended periods mayaffect device reliability.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
2000  
500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safemanufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safemanufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.7 (±0.85)  
–40  
NOM  
MAX  
5.5 (±2.75)  
125  
UNIT  
V
Supply voltage, VS = (V+) – (V–)  
Specified temperature, TA  
°C  
6.4 Thermal Information  
OPA1671  
THERMAL METRIC(1)  
DBV (SOT-23)  
DCK (SC-70)  
5 PINS  
214.7  
127.1  
60.0  
UNIT  
5 PINS  
187.1  
107.4  
57.5  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
33.5  
33.4  
ΨJB  
57.1  
59.8  
RθJC(bot)  
n/a  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2019, Texas Instruments Incorporated  
 
OPA1671  
www.ti.com.cn  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
6.5 Electrical Characteristics  
at VS = ±0.85 V to ±2.75 V (VS = 1.7 V to 5.5 V), TA = 25°C, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AUDIO PERFORMANCE  
0.00035%  
–109  
Total harmonic distortion  
+ noise  
THD+N  
IMD  
G = 1, f = 1 kHz, VO = 1 VRMS, VS = 5.5 V  
dB  
dB  
dB  
0.00158%  
–96  
SMPTE/DIN Two-Tone,  
4:1, (60 Hz and 7 kHz)  
Intermodulation distortion G = 1, VO = 1 VRMS, VS = 5.5 V  
0.0005%  
–106  
CCIF Two-Tone (19 kHz  
and 20 kHz)  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
13  
5
MHz  
Slew rate  
4-V step, G = 1  
V/μs  
To 0.1%, 2-V step , G = 1  
To 0.01%, 2-V step , G = 1  
VIN × gain > VS  
0.75  
1
tS  
Settling time  
μs  
μs  
Overload recovery time  
0.35  
NOISE  
Input voltage noise  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
2.4  
45  
7
μVPP  
Input voltage noise  
density  
eN  
f = 1 kHz  
nV/Hz  
fA/Hz  
f = 10 kHz  
f = 1 kHz  
4.0  
4.7  
iN  
Input current noise  
OFFSET VOLTAGE  
VCM = (V+)  
VCM = (V–)  
±1.6  
±1.6  
VOS  
Input offset voltage  
mV  
±0.25  
±0.25  
±0.3  
±1.25  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
dVOS/dT  
PSRR  
Input offset voltage drift  
±2.2  
μV/°C  
μV/V  
Input offset voltage versus  
power supply  
VCM = (V–)  
±30  
±130  
INPUT BIAS CURRENT  
IB  
Input bias current  
Input offset current  
±10  
±10  
pA  
V
IOS  
INPUT VOLTAGE RANGE  
Common-mode voltage  
range  
VCM  
V–  
V+  
VS = 1.7 V, (V–) < VCM < (V+) – 1.25 V  
VS = 5.5 V, (V–) < VCM < (V+) – 1.25 V  
VS = 1.7 V, VCM = 0 V to 1.7 V  
74  
80  
60  
68  
91  
96  
Common-mode rejection  
ratio  
CMRR  
dB  
88  
VS = 5.5 V, VCM = 0 V to 5.5 V  
102  
INPUT CAPACITANCE  
1013 || 6  
ZID  
Differential  
MΩ || pF  
GΩ || pF  
1013 || 2.5  
ZICM  
Common-mode  
OPEN-LOOP GAIN  
97  
97  
113  
106  
112  
105  
(V–) + 50 mV < VO < (V+) –  
50 mV, RL = 10 kΩ  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
AOL  
Open-loop voltage gain  
dB  
(V–) + 200 mV < VO < (V+) –  
200 mV, RL = 2 kΩ  
Copyright © 2019, Texas Instruments Incorporated  
5
OPA1671  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
at VS = ±0.85 V to ±2.75 V (VS = 1.7 V to 5.5 V), TA = 25°C, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
Voltage output swing from  
rail  
VS = 5.5 V, RL = 10 kΩ  
10  
20  
mV  
mA  
Sinking, VS = 5.5 V  
Sourcing, VS = 5.5 V  
–57  
66  
ISC  
Short-circuit current  
POWER SUPPLY  
Quiescent current per  
IO = 0 mA  
0.94  
1.3  
1.4  
IQ  
mA  
amplifier  
IO = 0 mA, TA = –40°C to 125°C  
6
版权 © 2019, Texas Instruments Incorporated  
OPA1671  
www.ti.com.cn  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
6.6 Typical Characteristics  
at TA = 25°C, VS = ±2.5 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
10  
8
10  
8
6
6
4
4
2
2
0
-1000  
0
-1000  
-500  
0
500  
1000  
-500  
0
500  
1000  
Offset Voltage (mV)  
Offset Voltage (mV)  
VOSH  
VOSL  
N = 9904  
VS = ±2.75 V  
N = 9904  
VS = ±0.85 V  
1. Offset Voltage Production Distribution  
2. Offset Voltage Production Distribution  
25  
20  
15  
10  
5
1250  
1000  
750  
500  
250  
0
-250  
-500  
-750  
-1000  
-1250  
0
-2.25  
-1.5  
-0.75  
0
0.75  
1.5  
2.25  
-50  
-25  
0
25  
50  
75  
100  
125  
Offset Drift (mV/èC)  
Temperature (èC)  
vosd  
vosv  
N = 65  
N = 5  
5 typical units  
3. Offset Voltage Drift Distribution  
4. Offset Voltage vs Temperature  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-10  
-20  
240  
225  
210  
195  
180  
165  
150  
135  
120  
105  
90  
75  
60  
45  
30  
15  
0
1250  
1000  
750  
Gain  
Phase  
500  
250  
0
-250  
-500  
-750  
-1000  
-1250  
100m  
1
10  
100  
1k  
Frequency (Hz)  
10k 100k 1M  
10M  
-3 -2.4 -1.8 -1.2 -0.6  
0
Common-mode Voltage (V)  
0.6 1.2 1.8 2.4  
3
Aol_  
vosv  
N = 65  
5. Offset Voltage vs Common Mode Voltage  
6. Open-Loop Gain and Phase vs Frequency  
版权 © 2019, Texas Instruments Incorporated  
7
 
 
OPA1671  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±2.5 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
2
50  
40  
30  
20  
10  
0
G = +1  
0
G = -1  
G = +10  
G = +100  
-2  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
IB-  
IB+  
IOS  
-10  
-20  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D006  
ibvs  
7. Closed-Loop Gain and Phase vs Frequency  
8. Input Bias Current vs Temperature  
0
3
-40èC  
25èC  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
-1.8  
-2.1  
-2.4  
-2.7  
-3  
85èC  
125èC  
-40èC  
25èC  
85èC  
125èC  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75  
Output Current (mA)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75  
Output Current (mA)  
claw  
claw  
VS = ±2.75 V  
VS = ±2.75 V  
9. Output Voltage Swing vs Sourcing Output Current  
10. Output Voltage Swing vs Sinking Output Current  
(Maximum Supply)  
(Maximum Supply)  
100  
CMRR  
80  
60  
40  
20  
Time (1 s/div)  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
D027  
D007  
12. 0.1-Hz to 10-Hz Noise  
11. CMRR vs Frequency  
8
版权 © 2019, Texas Instruments Incorporated  
OPA1671  
www.ti.com.cn  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±2.5 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
1000  
100  
10  
0.01  
0.001  
0.0001  
1E-5  
-80  
G = -1  
G = +1  
-100  
-120  
-140  
1
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
100  
1k  
Frequency (Hz)  
10k  
OPA1  
OPA1  
BW = 80 kHz  
VO = 1 VRMS  
13. Input Voltage Noise Spectral Density  
14. THD+N Ratio vs Frequency  
vs Frequency  
1
0.1  
-40  
1
0.1  
-40  
RL = 600 W  
RL = 2 kW  
RL = 10 kW  
RL = 600 W  
RL = 2 kW  
RL = 10 kW  
-60  
-60  
0.01  
-80  
0.01  
-80  
0.001  
-100  
-120  
0.001  
-100  
-120  
0.0001  
0.0001  
1m  
10m 100m  
Output Amplitude (VRMS  
1
1m  
10m 100m  
Output Amplitude (VRMS  
1
)
)
D010  
D010  
Gain = 1  
BW = 80 kHz  
Gain = –1  
BW = 80 kHz  
fTEST = 1 kHz  
fTEST = 1 kHz  
15. THD+N vs Output Amplitude  
16. THD+N vs Output Amplitude  
1.4  
1.2  
1
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
-50  
-25  
0
25  
50  
75  
100  
125  
0.5 0.75  
1
1.25 1.5 1.75  
Supply Voltage (V)  
2
2.25 2.5 2.75  
Temperature (èC)  
iqvs  
iqvs  
5 typical units  
5 typical units  
18. Quiescent Current vs Supply  
17. Quiescent Current vs Temperature  
版权 © 2019, Texas Instruments Incorporated  
9
OPA1671  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±2.5 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
1000  
100  
10  
130  
120  
110  
100  
90  
1
10  
1
10  
100  
1k 10k 100k  
Frequency (Hz)  
1M  
10M 100M  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
aolv  
Open  
19. Open-Loop Gain vs Temperature  
20. Open-Loop Output Impedance vs Frequency  
60  
50  
40  
30  
20  
10  
0
VIN (V)  
VOUT (V)  
RISO = 0 W  
RISO = 24.9 W  
RISO = 49.9 W  
Time (100 ms/div)  
10  
100  
Capactiance (pF)  
1000 2000  
D033  
D031  
10-mV Step  
22. No Phase Reversal  
21. Small-Signal Overshoot vs Capacitive Load  
VIN  
VOUT  
VIN  
VOUT  
Time (200 ns/div)  
Time (200 ns/div)  
D034  
D034  
23. Positive Overload Recovery  
24. Negative Overload Recovery  
10  
版权 © 2019, Texas Instruments Incorporated  
OPA1671  
www.ti.com.cn  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±2.5 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
VIN  
VOUT  
VIN  
VOUT  
Time (1 ms/div)  
Time (1 ms/div)  
D035  
D035  
10-mV step  
G = +1  
10-mV step  
G = –1  
25. Small-Signal Step Response  
26. Small-Signal Step Response  
75  
70  
65  
60  
55  
50  
45  
40  
35  
Falling  
Rising  
Sinking  
Sourcing  
Time (1 ms/div)  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
D037  
iscv  
2-V Step  
27. Settling Time  
28. Short-Circuit Current vs Temperature  
8
Vs = ê2.75 V  
Vs = ê0.85 V  
6
4
2
0
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D012  
29. Maximum Output Voltage vs Frequency  
版权 © 2019, Texas Instruments Incorporated  
11  
OPA1671  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPA1671 is a rail-to-rail input, very low noise operational amplifier (op amp). The OPA1671 operates from  
1.7 V to 5.5 V, is unity-gain stable, and is designed for a wide range of audio and general-purpose applications.  
The OPA1671 strengths also include 13-MHz bandwidth and 4.0-nV/Hz noise spectral density, with very low  
input bias current (10 pA). These strengths make the OPA1671 a great choice for a preamplifier in microphone  
circuits, sensor modules and buffering high-fidelity, digital-to-analog converters (DACs).  
7.2 Functional Block Diagram  
V+  
Reference  
Current  
VIN+  
VIN-  
VBIAS1  
Class AB  
Control  
Circuitry  
VO  
VBIAS2  
V-  
(Ground)  
12  
版权 © 2019, Texas Instruments Incorporated  
OPA1671  
www.ti.com.cn  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
7.3 Feature Description  
7.3.1 Operating Voltage  
The OPA1671 op amp can be used with single or dual supplies from an operating range of VS = 1.7 V (±0.85 V)  
up to 5.5 V (±2.75 V).  
CAUTION  
Supply voltages greater than 6 V can permanently damage the device (see Absolute  
Maximum Ratings)  
Key parameters that vary over the supply voltage or temperature range are shown in the Typical Characteristics  
section.  
7.3.2 Input Bias Current  
Typically, input bias current is approximately ±10 pA. Input voltages exceeding the power supplies, however, can  
cause excessive current to flow into or out of the input pins. Momentary voltages greater than the power supply  
can be tolerated if the input current is limited to 10 mA. This limitation is easily accomplished with an input  
resistor, as shown in 30.  
Unlike many operational amplifiers, there are no diodes connected between the positive and negative input  
terminals. As a result, differential voltages up to the full supply voltage do not cause any significantly higher  
current flow into the inputs.  
Current-limiting resistor  
required if input voltage  
exceeds supply rails by  
> 0.3 V.  
+5 V  
IOVERLOAD  
10 mA max  
VOUT  
VIN  
5 kΩ  
30. Input Current Protection  
7.3.3 Common-Mode Voltage Range  
The OPA1671 features true rail-to-rail inputs, allowing full common mode operation from the negative supply  
voltage to the positive supply voltage. This full common mode operation is achieved with complimentary N-  
channel and P-channel differential input pairs. The N-channel pair is active for input voltages close to the positive  
rail, typically (V+) – 1.25 V to (V+) The P-channel is active for common-mode inputs from (V–) to (V+) – 1.25 V.  
There is a small transition region, typically from (V+) – 1.25 V to (V+) – 1 V. In this region, the offset voltage  
transitions between the P-channel and N-channel offset values. 5 shows the difference between offset in the P  
and N regions.  
版权 © 2019, Texas Instruments Incorporated  
13  
 
OPA1671  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.4 EMI Susceptibility and Input Filtering  
Operational amplifiers vary in susceptibility to EMI. If conducted EMI enters the operational amplifier, the dc  
offset at the amplifier output can shift from its nominal value when EMI is present. This shift is a result of signal  
rectification associated with the internal semiconductor junctions. Although all operational amplifier pin functions  
can be affected by EMI, the input pins are likely to be the most susceptible. The OPA1671 operational amplifier  
incorporates an internal input low-pass filter that reduces the amplifier response to EMI. Both common-mode and  
differential-mode filtering are provided by the input filter. The filter is designed for a cutoff frequency of  
approximately 20 MHz (–3 dB), with a rolloff of 20 dB per decade.  
120  
100  
80  
60  
40  
20  
10M  
100M  
Frequency (Hz)  
1G  
10G  
EMIR  
31. OPA1671 EMIRR vs Frequency  
1. OPA1671 EMIRR IN+ for Frequencies of Interest  
FREQUENCY  
APPLICATION OR ALLOCATION  
EMIRR IN+  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF)  
applications  
400 MHz  
30 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation,  
GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
5 GHz  
38 dB  
60 dB  
59 dB  
90 dB  
100 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite  
operation, C-band (4 GHz to 8 GHz)  
7.4 Device Functional Modes  
The OPA1671 has a single functional mode and is operational when the power-supply voltage is greater than 1.7  
V (±0.85 V). The maximum specified power-supply voltage for the OPA1671 is 5.5 V (±2.75 V).  
14  
版权 © 2019, Texas Instruments Incorporated  
 
OPA1671  
www.ti.com.cn  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The OPA1671 is a low-noise, rail-to-rail input and output operational amplifier specifically designed for portable  
applications. The device operates from 1.7 V to 5.5 V, is unity-gain stable, and suitable for a wide range of audio  
and general-purpose applications. The class AB output stage is capable of driving 10-kΩ loads connected to  
any point between V+ and ground. The input common-mode voltage range includes both rails, and allows the  
OPA1671 device to be used in virtually any single-supply application. Rail-to-rail input and output swing  
significantly increases dynamic range, especially in low-supply applications, and makes the device a great choice  
for driving sampling analog-to-digital converters (ADCs).  
8.1.1 Capacitive Loads  
The dynamic characteristics of the OPA1671 amplifiers are optimized for commonly encountered gains, loads,  
and operating conditions. The combination of low closed-loop gain and high capacitive loads decreases the  
phase margin of the amplifier and can lead to gain peaking or oscillations. As a result, heavier capacitive loads  
must be isolated from the output. Add a small resistor (for example, RS = 50 Ω) in series with the output to isolate  
heavier capacitive loads.  
8.1.2 Noise Performance  
31 shows the total circuit noise for varying source impedances with the operational amplifier in a unity-gain  
configuration (with no feedback resistor network and therefore no additional noise contributions). The op amp  
itself contributes a voltage noise component and a current noise component. The voltage noise is commonly  
modeled as a time-varying component of the offset voltage. The current noise is modeled as the time-varying  
component of the input bias current and reacts with the source resistance to create a voltage component of  
noise. For a CMOS-input device, the noise resulting from the input current is negligible; therefore, the total noise  
is dominated by the voltage noise of the OPA1671 at low source resistance, and the resistor noise > 1 kΩ.  
31 shows the calculation of the total circuit noise, with these parameters:  
en = voltage noise  
RS = source impedance  
k = Boltzmann's constant = 1.38 × 10–23 J/K  
T = temperature in kelvins (K)  
For more details on calculating noise, see Basic Noise Calculations.  
200  
Source Resistor Noise  
OPA1671 Voltage Noise  
Total Noise  
100  
70  
50  
30  
20  
10  
7
5
3
2
1
1
2 3 5 10 20  
100  
1000  
10000 100000 1000000  
Source Resistance (W)  
OPA1  
32. Noise Performance of the OPA1671 in a Unity-Gain Buffer Configuration  
版权 © 2019, Texas Instruments Incorporated  
15  
OPA1671  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
www.ti.com.cn  
Application Information (接下页)  
8.1.3 Basic Noise Calculations  
Low-noise circuit design requires careful analysis of all noise sources. External noise sources can dominate in  
many cases; consider the effect of source resistance on overall op amp noise performance. Total noise of the  
circuit is the root-sum-square combination of all noise components.  
The resistive portion of the source impedance produces thermal noise proportional to the square root of the  
resistance. This function is plotted in 31. The source impedance is typically fixed; consequently, select the op  
amp and the feedback resistors to minimize the respective contributions to the total noise.  
33 shows noninverting (A) and inverting (B) op amp circuit configurations with gain. In circuit configurations  
with gain, the feedback network resistors contribute noise. In general, the current noise of the op amp reacts with  
the feedback resistors to create additional noise components.  
The selected feedback resistor values make these noise sources negligible. Low impedance feedback resistors  
load the output of the amplifier. The equations for total noise are shown for both configurations.  
(A) Noise in Noninverting Gain Configuration  
Noise at the output is given as EO, where  
R1  
R2  
2
42  
41 42  
2
2
2
2
¨
: ;  
1
:
;
:
;
:
;
>
?
84/5  
'
1
= l1 + p A5 + A0 + kA4 2 o + E0 45 + lE0 d  
hp  
æ4  
1
41  
41 + 42  
GND  
œ
EO  
8
: ;  
2
A = 4 G$ 6(-) 45  
d
h
¥
Thermal noise of RS  
+
5
*V  
¾
RS  
41 42  
8
: ;  
3
A4  
= ¨4 G$ 6(-) d  
2
h
d
h
Thermal noise of R1 || R2  
æ4  
1
41 + 42  
*V  
¾
+
,
h
VS  
Source  
GND  
G$ = 1.38065 10F23  
: ;  
4
d
œ
Boltzmann Constant  
-
Temperature in kelvins  
: ;  
>
?
-
5
6(-) = 237.15 + 6%)  
(B) Noise in Inverting Gain Configuration  
Noise at the output is given as EO, where  
R1  
R2  
2
:
;
42  
45 + 41 42  
'
1
= l1 +  
p A0 2 + kA4  
o2 + FE0 H  
+4 æ4  
5 2  
IG  
¨
: ;  
6
:
;
>
84/5  
?
1
45 + 41  
45 + 41 + 42  
RS  
œ
EO  
:
;
45 + 41 42  
8
+
: ;  
7
¨
4 G$ 6(-) H  
A4  
=
I
d
h
Thermal noise of (R1 + RS) || R2  
+4 æ4  
5
1
2
45 + 41 + 42  
*V  
¾
+
VS  
œ
,
GND  
G$ = 1.38065 10F23  
d
h
: ;  
8
Boltzmann Constant  
Source  
GND  
-
: ;  
9
>
?
6(-) = 237.15 + 6%)  
-
Temperature in kelvins  
Copyright © 2017, Texas Instruments Incorporated  
(1) eN is the voltage noise of the amplifier. For the OPA1671 series of operational amplifiers, eN = 4.0 nV/Hz at 10 kHz.  
(2) iN is the current noise of the amplifier. For the OPA1671 series of operational amplifiers, iN = 4.5 fA/Hz at 1 kHz.  
(3) For additional resources on noise calculations, see TI's Precision Labs Series.  
33. Noise Calculation in Gain Configurations  
16  
版权 © 2019, Texas Instruments Incorporated  
 
OPA1671  
www.ti.com.cn  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
8.2 Typical Application  
This design uses an OPA1671 as a preamplifier for an electret microphone. Electret microphone types are  
common in many audio applications of varying performance levels. The OPA1671 offers very low noise in a tiny  
package, and is designed for use in electret preamplifier circuits.  
34 shows the solution.  
5 V  
R1  
1.58 kΩ  
C1  
10 µF  
5 V  
R2  
10 k  
R3  
100 kꢀ  
Electret  
Microphone  
OPA1671  
+
Output  
Microphone  
Cable  
C2  
1 µF  
œ
R4  
100 kꢀ  
C5  
10 µF  
R6  
499 kΩ  
C3  
10 µF  
R5  
4.9 kΩ  
C4  
15 pF  
34. Electret Preamplifier Schematic  
8.2.1 Design Requirements  
This solution has the following requirements:  
Supply voltage: 5 V  
Gain: 100 V/V  
Frequency response: 3 dB from 20 Hz to 20 kHz  
Output: 2.5 V ±1 V  
Output noise density: < 1 µV/Hz at 10 kHz  
版权 © 2019, Texas Instruments Incorporated  
17  
 
OPA1671  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
www.ti.com.cn  
Typical Application (接下页)  
8.2.2 Detailed Design Procedure  
The preamplifier circuit uses a noninverting gain configuration to allow for high input impedance, with  
independent gain-setting resistor values. DC bypass is accomplished with C2 and C3, with the low frequency  
poles set by C2, R4, C3 and R5; see 公式 1 and 公式 2.  
1
pL1  
=
= 3.18 Hz  
2p ∂ R || R C  
2
(
)
3
4
(1)  
(2)  
1
pL2  
=
= 3.23 Hz  
2p R5 C2  
The filter cutoff frequency is determined by a higher frequency pole, set by R5 and C4.  
1
pH  
=
= 21.3 kHz  
2p R6 C4  
(3)  
The gain of the circuit in the passband is set by R5 and R6.  
R6  
A V/V =  
= 100 40 dB  
(
)
(
)
R5  
(4)  
The ouput noise of the circuit (ignoring the electret microphone intrinsic noise and impedance) is the RSS  
average noise contribution from R5 and the input voltage noise of OPA1671. R5 was selected for minimal noise  
contribution without requiring a dc blocking cap. (C3) larger than 10 µF. See 公式 5 for the output noise density  
calculation at 10 kHz.  
eN_OUT = Input Referred NoiseGain = 4kTR 2 + VN_10k 100 = 0.96 V/ Hz  
2
(
)
5
(5)  
8.2.3 Application Curves  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
10  
8
6
4
0
-5  
2
-10  
-15  
-20  
0
1
2 3 5 710 20 50 100 1000  
Frequency (Hz)  
10000  
100000  
10 2030 50 100 200 5001000  
Frequency (Hz)  
10000  
100000  
OPTA1  
OPA1  
35. Electret Microphone Preamplifier Transfer Function  
36. Electret Microphone Preamplifier Output Noise  
Density  
18  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
OPA1671  
www.ti.com.cn  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
9 Power Supply Recommendations  
The OPA1671 device is specified for operation from 1.7 V to 5.5 V (±0.85 V to ±2.75 V).  
10 Layout  
10.1 Layout Guidelines  
Paying attention to good layout practice is always recommended. Keep traces short and, when possible, use a  
printed-circuit board (PCB) ground plane with surface-mount components placed as close to the device pins as  
possible. Place a 0.1-µF capacitor closely across the supply pins. These guidelines must be applied throughout  
the analog circuit to improve performance and provide benefits such as reducing the electromagnetic interference  
(EMI) susceptibility.  
10.2 Layout Example  
Minimize  
parasitic  
inductance by  
placing bypass  
capacitor close  
CBYPASS  
VOUT  
to V+.  
OUT  
V+  
V-  
+IN -IN  
Keep high  
impedance  
input signal  
away from  
noisy traces.  
VIN  
RF  
Route trace  
under package  
for output to  
feedback  
resistor  
connection.  
37. OPA1671 Layout Example  
版权 © 2019, Texas Instruments Incorporated  
19  
OPA1671  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 TINA-TI™(免费软件下载)  
TINA-TI™ 是一款基于 SPICE 引擎的电路仿真程序,简单易用并且功能强大。TINA-TI™ TINA™软件的一款免  
费全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。TINA-TI™ 提供所有传统  
SPICE 直流、瞬态和频域分析,以及其他设计功能。  
TINA-TI™ 提供全面的后处理能力,便于用户以多种方式获得结果,用户可从 Analog eLab Design Center(模拟  
电子实验室设计中心)免费下载。虚拟仪器提供选择输入波形和探测电路节点、电压以及波形的功能,从而构建一  
个动态的快速入门工具。  
这些文件需要安装 TINA 软件(由 DesignSoft™提供)或者 TINA-TI™ 软件。请下载 TINA-  
TI™ 文件夹中的免费 TINA-TI™ 软件。  
11.2 文档支持  
11.2.1 相关文档  
如需相关文档,请参阅:  
德州仪器 (TI)《电路板布局技巧》  
德州仪器 (TI)《模拟工程师电路设计指导手册》  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
20  
版权 © 2019, Texas Instruments Incorporated  
OPA1671  
www.ti.com.cn  
ZHCSJ01B JANUARY 2019REVISED AUGUST 2019  
11.5 商标  
TINA-TI, E2E are trademarks of Texas Instruments.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
TINA, DesignSoft are trademarks of DesignSoft, Inc.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA1671IDBVR  
OPA1671IDBVT  
OPA1671IDCKR  
OPA1671IDCKT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
5
5
5
5
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1X6T  
1X6T  
1D3  
Samples  
Samples  
Samples  
Samples  
NIPDAU | SN  
NIPDAU  
SC70  
NIPDAU  
1D3  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Apr-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA1671IDBVR  
OPA1671IDBVT  
OPA1671IDCKR  
OPA1671IDCKT  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
5
5
5
5
3000  
250  
180.0  
180.0  
178.0  
178.0  
8.4  
8.4  
9.0  
9.0  
3.2  
3.2  
2.4  
2.4  
3.2  
3.2  
2.5  
2.5  
1.4  
1.4  
1.2  
1.2  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
3000  
250  
SC70  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA1671IDBVR  
OPA1671IDBVT  
OPA1671IDCKR  
OPA1671IDCKT  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
5
5
5
5
3000  
250  
210.0  
210.0  
190.0  
190.0  
185.0  
185.0  
190.0  
190.0  
35.0  
35.0  
30.0  
30.0  
3000  
250  
SC70  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA1671IDBVT

单电源、高带宽 (13MHz)、低噪声 (7nV/RtHz)、RRIO 音频运算放大器 | DBV | 5 | -40 to 125
TI

OPA1671IDCKR

单电源、高带宽 (13MHz)、低噪声 (7nV/RtHz)、RRIO 音频运算放大器 | DCK | 5 | -40 to 125
TI

OPA1671IDCKT

单电源、高带宽 (13MHz)、低噪声 (7nV/RtHz)、RRIO 音频运算放大器 | DCK | 5 | -40 to 125
TI

OPA1677

OPA167x Low-Distortion Audio Operational Amplifiers
TI

OPA1677DBVR

OPA167x Low-Distortion Audio Operational Amplifiers
TI

OPA1677DBVT

OPA167x Low-Distortion Audio Operational Amplifiers
TI

OPA1677DR

低失真 (-120dB)、低噪声 (4.5nV/rtHz)、单路音频运算放大器 | D | 8 | -40 to 125
TI

OPA1678

低失真 (-120dB)、低噪声 (4.5nV/rtHz)、双路音频运算放大器
TI

OPA1678IDGKR

低失真 (-120dB)、低噪声 (4.5nV/rtHz)、双路音频运算放大器 | DGK | 8 | -40 to 85
TI

OPA1678IDGKT

低失真 (-120dB)、低噪声 (4.5nV/rtHz)、双路音频运算放大器 | DGK | 8 | -40 to 85
TI

OPA1678IDR

低失真 (-120dB)、低噪声 (4.5nV/rtHz)、双路音频运算放大器 | D | 8 | -40 to 85
TI

OPA1678IDRGR

低失真 (-120dB)、低噪声 (4.5nV/rtHz)、双路音频运算放大器 | DRG | 8 | -40 to 85
TI