OPA1678 [TI]

低失真 (-120dB)、低噪声 (4.5nV/rtHz)、双路音频运算放大器;
OPA1678
型号: OPA1678
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

低失真 (-120dB)、低噪声 (4.5nV/rtHz)、双路音频运算放大器

放大器 运算放大器
文件: 总53页 (文件大小:3373K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
OPA167x 低失真音频运算放大器  
OPA167x 放大器1kHz 时可实4.5nV/Hz 的低噪  
声密度和 0.0001% 的低失真度从而提高了音频信号  
保真度。这些器件在 2kΩ 负载下还可提供 800mV 范  
围内的轨到轨输出摆幅从而增加余量并更大限度地扩  
大动态范围。  
1 特性  
• 低噪声1 kHz 4.5nV/Hz  
• 低失真1kHz 0.0001%  
• 高开环增益114dB  
• 高共模抑制110dB  
• 低静态电流:  
– 每通2mA  
• 低输入偏置电流10pA典型值)  
• 压摆率9 V/μs  
• 宽增益带宽16 MHz (G = 1)  
• 单位增益稳定  
• 轨到轨输出  
为了适应多种类型音频产品的电源限制OPA167x 仅  
2mA 的电源电流、±2.25V ±18V4.5V 至  
36V的非常宽的电源电压范围内工作。这些运算放大  
器是单位增益稳定型放大器且可在各种负载条件下实  
现出色的动态行为因此 OPA167x 可在许多音频电路  
中使用。  
OPA167x 放大器使用完全独立的内部电路可将串扰  
降到最低即便在过驱动或过载时也不受通道间相互作  
用的影响。  
• 宽电源电压范围:  
±2.25V ±18V 4.5V 36V  
• 单通道、双通道和四通道版本  
• 可用封装:  
器件信息  
封装(1)  
器件型号  
OPA1677  
通道  
– 单通道SOIC-8SOT-23  
SOIC (8)  
单通道  
双通道  
– 双通道SOIC-8、小SON-8VSSOP-8  
– 四通道QFN-16SO-14TSSOP-14  
• 温度范围40°C +85°C  
SOT-23 (5)  
SOIC (8)  
OPA1678  
OPA1679  
VSSOP (8)  
SON (8)  
2 应用  
SOIC (14)  
TSSOP (14)  
QFN (16)  
专业麦克风和无线系统  
专业音频混合器/控制平面  
吉他放大器和其他乐器放大器  
A/V 接收器  
四通道  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
汽车外部放大器  
3 说明  
单通道 OPA1677 双通道 OPA1678 四通道  
OPA1679 (OPA167x) 运算放大器较音频电路中常用的  
传统运算放大器而言可提供更高的系统级性能。  
V+  
0.1  
0.01  
-60  
Gain = 10 V/V  
Gain = 1 V/V  
Gain = -1 V/V  
Tail  
Current  
VBIAS1  
-80  
VIN+  
Class AB  
Control  
VO  
Circuitry  
0.001  
-100  
-120  
-140  
VIN  
VBIAS2  
0.0001  
0.00001  
10  
100  
1k  
Frequency (Hz)  
10k  
V  
C002  
简化内部原理图  
THD+N 与频率2kΩ)  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS855  
 
 
 
 
 
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................15  
7.4 Device Functional Modes..........................................19  
8 Application and Implementation..................................20  
8.1 Application Information............................................. 20  
8.2 Typical Applications.................................................. 21  
8.3 Power Supply Recommendations.............................27  
8.4 Layout....................................................................... 27  
9 Device and Documentation Support............................29  
9.1 Device Support......................................................... 29  
9.2 Documentation Support............................................ 30  
9.3 接收文档更新通知..................................................... 30  
9.4 支持资源....................................................................30  
9.5 Trademarks...............................................................30  
9.6 Electrostatic Discharge Caution................................30  
9.7 术语表....................................................................... 30  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information: OPA1677.................................. 7  
6.5 Thermal Information: OPA1678.................................. 7  
6.6 Thermal Information: OPA1679.................................. 7  
6.7 Electrical Characteristics.............................................8  
6.8 Typical Characteristics..............................................10  
7 Detailed Description......................................................15  
7.1 Overview...................................................................15  
7.2 Functional Block Diagram.........................................15  
Information.................................................................... 30  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision D (December 2021) to Revision E (December 2022)  
Page  
OPA1677 DSOIC8封装从“预发布”更改为“量产数据”正在供货............................................1  
Changes from Revision C (April 2019) to Revision D (December 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 添加OPA1677 器件的量产数据正在供货和相关内容...............................................................................1  
Changes from Revision B (June 2018) to Revision C (April 2019)  
Page  
OPA1679 QFN 封装的状态更改为量产数据................................................................................................... 1  
Changed GPN BUF634A in Figure 8-6, Composite Headphone Amplifier (Single-Channel Shown) ..............26  
Changes from Revision A (May 2018) to Revision B (June 2018)  
Page  
• 添加了内容预发QFN (RUM) 封装...............................................................................................................1  
Changes from Revision * (February 2017) to Revision A (May 2018)  
Page  
• 向器件信表添加DRG (SON) 8 引脚封装....................................................................................................1  
• 向列表添加SON-8 封装..........................................................................................................................1  
Added DRG (SON) 8-pin pinout drawing to Pin Configuration and Functions section....................................... 3  
Added thermal pad information to Pin Functions: OPA1678 table......................................................................3  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
NC  
IN  
+IN  
V–  
1
2
3
4
8
7
6
5
NC  
V+  
+
OUT  
NC  
Not to scale  
5-1. OPA1677: D Package, 8-Pin SOIC (Top View)  
OUT  
Vœ  
1
2
3
5
V+  
+IN  
4
œIN  
Not to scale  
5-2. OPA1677: DBV Package, 5-Pin SOT-23 (Top View)  
Pin Functions: OPA1677  
PIN  
NO.  
TYPE  
DESCRIPTION  
NAME  
D
DBV  
(SOIC)  
(SOT-23)  
2
3
6
4
7
4
3
1
2
5
Input  
Input  
Inverting input  
IN  
+IN  
OUT  
V–  
V+  
Noninverting input  
Output  
Power  
Power  
Output  
Negative (lowest) power supply  
Positive (highest) power supply  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
OUT A  
œIN A  
+IN A  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT B  
œIN B  
+IN B  
Not to scale  
5-3. OPA1678: D Package, 8-Pin SOIC and DGK Package, 8-Pin VSSOP (Top View)  
OUT A  
œIN A  
+IN A  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT B  
œIN B  
+IN B  
Thermal  
Pad  
Not to scale  
5-4. OPA1678: DRG Package, 8-Pin SON With Exposed Thermal Pad (Top View)  
Pin Functions: OPA1678  
PIN  
TYPE  
DESCRIPTION  
NAME  
IN A  
+IN A  
IN B  
+IN B  
OUT A  
OUT B  
V–  
NO.  
2
Input  
Input  
Inverting input, channel A  
Noninverting input, channel A  
Inverting input, channel B  
Noninverting input, channel B  
Output, channel A  
3
6
Input  
5
Input  
1
Output  
Output  
Power  
Power  
7
Output, channel B  
4
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
8
For DRG (SON-8) package. Exposed thermal die pad on underside. Connect thermal die  
pad to V. Solder the thermal pad to improve heat dissipation and provide specified  
performance.  
Thermal Pad  
Thermal pad  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA1677 OPA1678 OPA1679  
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
OUT A  
œIN A  
+IN A  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
œIN D  
+IN D  
Vœ  
-IN A  
+IN A  
V+  
1
2
3
4
12  
11  
10  
9
-IN D  
+IN D  
V–  
+IN B  
œIN B  
OUT B  
+IN C  
œIN C  
OUT C  
Thermal  
Pad  
8
+IN B  
+IN C  
Not to scale  
5-5. OPA1679: D Package, 14-Pin SOIC and  
Not to scale  
PW Package, 14-Pin TSSOP (Top View)  
5-6. OPA1679: RUM Package, 16-Pin QFN With  
Exposed Thermal Pad (Top View)  
Pin Functions: OPA1679  
PIN  
NO.  
TYPE  
DESCRIPTION  
NAME  
D (SOIC)  
PW (TSSOP)  
RUM (QFN)  
2
3
1
2
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Inverting input, channel A  
IN A  
+IN A  
IN B  
+IN B  
IN C  
+IN C  
IN D  
+IN D  
NC  
Noninverting input, channel A  
Inverting input, channel B  
Noninverting input, channel B  
Inverting input, channel C  
Noninverting input, channel C  
Inverting input, channel D  
Noninverting input, channel D  
No connect  
6
5
5
4
9
8
10  
13  
12  
9
12  
11  
13  
16  
15  
6
1
NC  
No connect  
OUT A  
OUT B  
OUT C  
OUT D  
V+  
Output  
Output  
Output  
Output  
Power  
Output, channel A  
7
Output, channel B  
8
7
Output, channel C  
14  
4
14  
3
Output, channel D  
Positive (highest) power supply  
Negative (lowest) power supply  
11  
10  
Power  
V–  
Exposed thermal die pad on underside. Connect thermal die pad to V.  
Solder the thermal pad to improve heat dissipation and provide specified  
performance.  
Thermal Pad  
Thermal pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA1677 OPA1678 OPA1679  
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
40  
UNIT  
V
Supply voltage, VS = (V+) (V)  
Voltage  
Input voltage  
(V+) + 0.5  
10  
V
(V) 0.5  
10  
Input current (all pins except power-supply pins)  
mA  
Current  
Output short-circuit current(2)  
Continuous  
TA  
Operating temperature  
Junction temperature  
Storage temperature  
125  
150  
150  
°C  
°C  
°C  
55  
65  
TJ  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Short-circuit to VS / 2 (ground in symmetrical dual-supply setups), one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
±200  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic discharge Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Machine model (MM)(3)  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) Machine Model was not tested on OPA1679IRUM.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
36  
UNIT  
V
Single supply  
Dual supply  
VS  
TA  
Supply voltage  
±2.25  
40  
±18  
125  
Operating temperature  
°C  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
 
 
 
 
 
 
 
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
6.4 Thermal Information: OPA1677  
OPA1677  
D
DBV  
(SOT-23)  
THERMAL METRIC(1)  
UNIT  
(SOIC)  
8 PINS  
132.9  
74.0  
5 PINS  
180.5  
78.5  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
76.3  
47.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
24.9  
20.4  
ψJT  
75.6  
47.0  
ψJB  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Thermal Information: OPA1678  
OPA1678  
D
DGK  
(VSSOP)  
DRG  
(SON)  
THERMAL METRIC(1)  
UNIT  
(SOIC)  
8 PINS  
144  
77  
8 PINS  
219  
79  
8 PINS  
66.9  
54.5  
40.4  
1.9  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
62  
104  
15  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
28  
ψJT  
61  
102  
N/A  
40.4  
10.8  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Thermal Information: OPA1679  
OPA1679  
D
PW  
(TSSOP)  
RUM  
(QFN)  
THERMAL METRIC(1)  
UNIT  
(SOIC)  
14 PINS  
90  
14 PINS  
127  
47  
16 PINS  
38.5  
34.4  
17.4  
0.6  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
55  
44  
59  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
20  
55  
ψJT  
44  
58  
17.4  
7.1  
ψJB  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
 
 
 
 
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Electrical Characteristics  
at VS = ±15 V, TA = 25°C, RL = 2 kΩ, and VCM = VOUT = midsupply (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AUDIO PERFORMANCE  
0.0001%  
120  
THD+N  
Total harmonic distortion + noise  
Intermodulation distortion  
G = 1, RL = 600 Ω, f = 1 kHz, VO = 3 VRMS  
dB  
dB  
0.0001%  
120  
SMPTE/DIN two-tone, 4:1  
(60 Hz and 7 kHz)  
DIM 30  
G = 1  
0.0001%  
IMD  
(3-kHz square wave and  
VO = 3 VRMS  
dB  
dB  
120  
0.0001%  
120  
15-kHz sine wave)  
CCIF twin-tone  
(19 kHz and 20 kHz)  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
G = 1  
16  
9
MHz  
V/µs  
MHz  
µs  
Slew rate  
G = 1  
VO = 1 VP  
G = 10  
f = 1 kHz  
Full power bandwidth(1)  
Overload recovery time  
Channel separation (dual and quad)  
1.4  
1
dB  
130  
NOISE  
f = 20 Hz to 20 kHz  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
5.4  
1.74  
4.5  
3
en  
Input voltage noise  
µVPP  
Input voltage noise density  
Input current noise density  
nV/Hz  
fA/Hz  
in  
f = 1 kHz  
OFFSET VOLTAGE  
VS = ±2.25 V to ±18 V  
±0.5  
2
±2  
8
mV  
VOS  
Input offset voltage  
VS = ±2.25 V to ±18 V, TA = 40°C to 125°C(2)  
VS = ±2.25 V to ±18 V  
µV/°C  
µV/V  
PSRR  
Power-supply rejection ratio  
3
INPUT BIAS CURRENT  
IB  
Input bias current  
Input offset current  
VCM = 0 V  
VCM = 0 V  
±10  
±10  
pA  
pA  
IOS  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
Common-mode rejection ratio  
V
(V)+0.5  
(V+) 2  
CMRR  
100  
110  
dB  
INPUT IMPEDANCE  
Differential  
Common-mode  
OPEN-LOOP GAIN  
100 || 6  
MΩ|| pF  
GΩ|| pF  
6000 || 2  
AOL  
OUTPUT  
VO  
Open-loop voltage gain  
106  
114  
dB  
(V) + 0.8 V VO (V+) 0.8 V  
Output voltage  
V
(V) + 0.8  
(V+) 0.8  
IOUT  
ZO  
Output Current  
mA  
See 6.8  
See 6.8  
±50  
Open-loop output impedance  
Short-circuit current(3)  
Capacitive load drive  
f = 1 MHz  
Ω
mA  
pF  
ISC  
CL  
100  
POWER SUPPLY  
IO = 0 A  
2
2.5  
2.8  
IQ Quiescent current (per channel)  
mA  
IO = 0 A, TA = 40°C to 125°C(2)  
(1) Full-power bandwidth = SR / (2π×VP), where SR = slew rate.  
(2) Specified by design and characterization.  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
 
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
(3) One channel at a time.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics  
at TA = 25°C, VS = ±15 V, and RL = 2 kΩ, (unless otherwise noted)  
1000  
100  
10  
1
Time (1s/div)  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
C001  
C003  
6-1. Input Voltage Noise Density vs Frequency  
6-2. 0.1-Hz to 10-Hz Noise  
20  
18  
16  
14  
12  
10  
8
10000  
VS = +/- 18 V  
Resistor Noise Contribution  
Voltage Noise Contribution  
Current Noise Contribution  
Total Noise  
VS = +/- 5 V  
VS = +/- 2.25 V  
1000  
100  
10  
6
4
1
2
0.1  
0
10  
100  
1k  
10k 100k 1M  
10M 100M 1000M  
10k  
100k  
1M  
10M  
Source Resistance (O)  
Frequency (Hz)  
C001  
C015  
6-3. Voltage Noise vs Source Resistance  
6-4. Maximum Output Voltage vs Frequency  
30  
140  
120  
100  
80  
180  
135  
90  
Gain  
Phase  
20  
10  
0
60  
œ10  
œ20  
œ30  
œ40  
40  
20  
45  
Gain = -1 V/V  
Gain = 1 V/V  
Gain = 10 V/V  
0
œ20  
0
10  
100  
1k  
10k  
100k  
1M  
10M 100M  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
CL = 10 pF  
6-6. Closed-Loop Gain vs Frequency  
C006  
C002  
CL = 10 pF  
6-5. Open-Loop Gain and Phase vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, and RL = 2 kΩ, (unless otherwise noted)  
0.1  
0.01  
-60  
0.1  
0.01  
-60  
Gain = 10 V/V  
Gain = 1 V/V  
Gain = -1 V/V  
Gain = 10 V/V  
Gain = 1 V/V  
Gain = -1 V/V  
-80  
-80  
0.001  
-100  
-120  
-140  
0.001  
-100  
-120  
-140  
0.0001  
0.00001  
0.0001  
0.00001  
10  
100  
1k  
10k  
10  
100  
1k  
10k  
Frequency (Hz)  
Frequency (Hz)  
C002  
C002  
VOUT = 3 VRMS  
Bandwidth = 80 kHz  
VOUT = 3 VRMS  
Bandwidth = 80 kHz  
RL = 2 kΩ  
RL = 600 Ω  
6-7. THD+N Ratio vs Frequency  
6-8. THD+N Ratio vs Frequency  
0.1  
0.01  
-60  
0.1  
0.01  
-60  
-80  
-80  
0.001  
-100  
-120  
-140  
0.001  
-100  
-120  
-140  
0.0001  
0.00001  
0.0001  
0.00001  
Gain = 1 V/V  
Gain = -1 V/V  
Gain = 10 V/V  
Gain = 1 V/V  
Gain = -1 V/V  
Gain = 10 V/V  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Amplitude (VRMS  
)
Output Amplitude (VRMS)  
C002  
C002  
f = 1 kHz  
f = 1 kHz  
Bandwidth = 80 kHz  
Bandwidth = 80 kHz  
RL = 2 kΩ  
RL = 600 Ω  
6-9. THD+N Ratio vs Output Amplitude  
6-10. THD+N Ratio vs Output Amplitude  
œ60  
140  
120  
100  
80  
œ70  
œ80  
œ90  
œ100  
œ110  
œ120  
œ130  
œ140  
œ150  
œ160  
60  
40  
CMRR  
20  
PSRR(+)  
PSRR(-)  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
C006  
C006  
VOUT = 3 VRMS  
Gain = 1 V/V  
6-11. Channel Separation vs Frequency  
6-12. CMRR and PSRR vs Frequency (Referred to Input)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA1677 OPA1678 OPA1679  
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, and RL = 2 kΩ, (unless otherwise noted)  
VIN  
VIN  
VOUT  
VOUT  
Time (0.2 s/div)  
Time (0.2 s/div)  
C009  
C009  
Gain = 1 V/V  
CL = 100 pF  
CL = 100 pF  
Gain = 1 V/V  
6-13. Small-Signal Step Response (100 mV)  
6-14. Small-Signal Step Response (100 mV)  
VIN  
VOUT  
VIN  
VOUT  
Time (1 s/div)  
RF = 2 kΩ  
Time (1 s/div)  
C009  
C009  
Gain = +1 V/V  
CL = 100 pF  
CL = 100 pF  
Gain = 1 V/V  
6-15. Large-Signal Step Response  
6-16. Large-Signal Step Response  
145  
140  
135  
130  
125  
120  
115  
110  
105  
100  
1000  
500  
0
-500  
-1000  
-1500  
-2000  
IB(N)  
IB(P)  
I(OS)  
10  
35  
60  
85  
110  
10  
35  
60  
85  
110  
œ40  
œ15  
œ40  
œ15  
Temperature (°C)  
Temperature (°C)  
C008  
C008  
6-17. Open-Loop Gain vs Temperature  
6-18. IB and IOS vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA1677 OPA1678 OPA1679  
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, and RL = 2 kΩ, (unless otherwise noted)  
8
6
3
2.8  
2.6  
2.4  
2.2  
2
4
2
0
1.8  
1.6  
1.4  
1.2  
1
-2  
-4  
IB(N)  
-6  
IB(P)  
I(OS)  
-8  
10  
35  
60  
85  
110  
0
3
6
9
12 15 18  
œ40  
œ15  
œ18 œ15 œ12 œ9 œ6 œ3  
Temperature (°C)  
Common-Mode Voltage (V)  
C008  
C008  
6-20. Supply Current vs Temperature  
6-19. IB and IOS vs Common-Mode Voltage  
20  
3
18  
16  
14  
12  
10  
8
2.5  
2
1.5  
1
6
-40°C  
0°C  
4
0.5  
0
25°C  
85°C  
2
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Supply Voltage (V)  
Output Current (mA)  
C008  
C004  
6-21. Supply Current vs Supply Voltage  
6-22. Output Voltage vs Output Current (Sourcing)  
0
80  
-40°C  
0°C  
ISC (+)  
-2  
60  
ISC (-)  
-4  
-6  
25°C  
85°C  
40  
20  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
0
œ20  
œ40  
œ60  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
10  
35  
60  
85  
110  
135  
œ40  
œ15  
Output Current (mA)  
Temperature (ëC)  
C004  
C003  
6-23. Output Voltage vs Output Current (Sinking)  
6-24. Short-Circuit Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA1677 OPA1678 OPA1679  
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, and RL = 2 kΩ, (unless otherwise noted)  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
VS = +/- 18 V  
VS = +/- 2.25 V  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
Capacitive Load (pF)  
Capacitive Load (pF)  
C002  
C001  
G = 1  
G = 1  
6-25. Phase Margin vs Capacitive Load  
6-26. Percent Overshoot vs Capacitive Load  
10  
5
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
0
-5  
VIN  
VOUT  
VIN  
VOUT  
-10  
Time (500 ns/div)  
Time (500 ns/div)  
C004  
C004  
Gain = 10 V/V  
Gain = 10 V/V  
6-27. Negative Overload Recovery  
6-28. Positive Overload Recovery  
10000  
1000  
100  
10  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
VIN  
VOUT  
1
Time (125 s/div)  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
C015  
C004  
Gain = 1 V/V  
6-29. Open-Loop Output Impedance vs Frequency  
6-30. No Phase Reversal  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA1677 OPA1678 OPA1679  
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPA167x devices are unity-gain stable, dual-channel and quad-channel op amps with low noise and  
distortion. 7.2 shows a simplified schematic of the OPA167x (one channel shown). These devices consist of a  
low-noise input stage with a folded cascode and a rail-to-rail output stage. This topology exhibits excellent noise  
and distortion performance across a wide range of supply voltages that are not delivered by legacy, commodity,  
audio operational amplifiers.  
7.2 Functional Block Diagram  
V+  
Tail  
Current  
VBIAS1  
VIN+  
Class AB  
Control  
VO  
Circuitry  
VIN  
VBIAS2  
V  
7.3 Feature Description  
7.3.1 Phase Reversal Protection  
The OPA167x family has internal phase-reversal protection. Many op amps exhibit phase reversal when the  
input is driven beyond the linear common-mode range. This condition is most often encountered in noninverting  
circuits when the input is driven beyond the specified common-mode voltage range, causing the output to  
reverse into the opposite rail. The input of the OPA167x prevents phase reversal with excessive common-mode  
voltage. Instead, the appropriate rail limits the output voltage. This performance is shown in 7-1.  
20  
15  
10  
5
0
-5  
-10  
-15  
VIN  
VOUT  
-20  
Time (125 s/div)  
C004  
7-1. Output Waveform Devoid of Phase Reversal During an Input Overdrive Condition  
7.3.2 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress.  
These questions tend to focus on the device inputs, but can involve the supply voltage pins or even the output  
pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
 
 
 
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly.  
A good understanding of this basic ESD circuitry and the relevance to an electrical overstress event is helpful. 图  
7-2 illustrates the ESD circuits contained in the OPA167x (indicated by the dashed line area). The ESD  
protection circuitry involves several current-steering diodes connected from the input and output pins and routed  
back to the internal power-supply lines, where the diodes meet at an absorption device internal to the  
operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation.  
TVS  
RF  
+VS  
R1  
RS  
250 Ω  
250 Ω  
INœ  
IN+  
+
Power-Supply  
ESD Cell  
ID  
RL  
+
VIN  
œ
œVS  
TVS  
7-2. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
An ESD event produces a short-duration, high-voltage pulse that is transformed into a short-duration, high-  
current pulse when discharging through a semiconductor device. The ESD protection circuits are designed to  
provide a current path around the operational amplifier core to prevent damage. The energy absorbed by the  
protection circuitry is then dissipated as heat.  
When an ESD voltage develops across two or more amplifier device pins, current flows through one or more  
steering diodes. Depending on the path that the current takes, the absorption device can activate. The  
absorption device has a trigger, or threshold voltage, that is greater than the normal operating voltage of the  
OPA167x but less than the device breakdown voltage level. When this threshold is exceeded, the absorption  
device quickly activates and clamps the voltage across the supply rails to a safe level.  
When the operational amplifier connects into a circuit (see 7-2), the ESD protection components are intended  
to remain inactive and do not become involved in the application circuit operation. However, circumstances can  
arise where an applied voltage exceeds the operating voltage range of a given pin. If this condition occurs, there  
is a risk that some internal ESD protection circuits can turn on and conduct current. Any such current flow occurs  
through steering-diode paths and rarely involves the absorption device.  
7-2 shows a specific example where the input voltage (VIN) exceeds the positive supply voltage (V+) by 500  
mV or more. Much of what happens in the circuit depends on the supply characteristics. If V+ can sink the  
current, one of the upper input steering diodes conducts and directs current to V+. Excessively high current  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
levels can flow with increasingly higher VIN. As a result, the data sheet specifications recommend that  
applications limit the input current to 10 mA.  
If the supply is not capable of sinking the current, VIN can begin sourcing current to the operational amplifier and  
then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to  
levels that exceed the operational amplifier absolute maximum ratings.  
Another common question involves what happens to the amplifier if an input signal is applied to the input when  
the power supplies (V+ or V) are at 0 V. Again, this question depends on the supply characteristic when at 0 V,  
or at a level less than the input signal amplitude. If the supplies appear as high impedance, then the input source  
supplies the operational amplifier current through the current-steering diodes. This state is not a normal bias  
condition; most likely, the amplifier does not operate normally. If the supplies are low impedance, then the  
current through the steering diodes can become quite high. The current level depends on the ability of the input  
source to deliver current, and any resistance in the input path.  
If there is any uncertainty about the ability of the supply to absorb this current, add external Zener diodes to the  
supply pins; see 7-2. Select the Zener voltage so that the diode does not turn on during normal operation.  
However, the Zener voltage must be low enough so that the Zener diode conducts if the supply pin begins to rise  
above the safe-operating, supply-voltage level.  
7.3.3 EMI Rejection Ratio (EMIRR)  
The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational  
amplifiers. An adverse effect that is common to many operational amplifiers is a change in the offset voltage as a  
result of RF signal rectification. An operational amplifier that is more efficient at rejecting this change in offset as  
a result of EMI has a higher EMIRR and is quantified by a decibel value. Measuring EMIRR can be performed in  
many ways, but this document provides the EMIRR IN+, which specifically describes the EMIRR performance  
when the RF signal is applied to the noninverting input pin of the operational amplifier. In general, only the  
noninverting input is tested for EMIRR for the following three reasons:  
Operational amplifier input pins are known to be the most sensitive to EMI, and typically rectify RF signals  
better than the supply or output pins.  
The noninverting and inverting operational amplifier inputs have symmetrical physical layouts and exhibit  
nearly matching EMIRR performance.  
EMIRR is easier to measure on noninverting pins than on other pins because the noninverting input pin can  
be isolated on a printed-circuit-board (PCB). This isolation allows the RF signal to be applied directly to the  
noninverting input pin with no complex interactions from other components or connecting PCB traces.  
A more formal discussion of the EMIRR IN+ definition and test method is shown in the EMI Rejection Ratio of  
Operational Amplifiers application report, available for download at www.ti.com.  
The EMIRR IN+ of the OPA167x is plotted versus frequency in 7-3. The dual and quad operational amplifier  
device versions have approximately identical EMIRR IN+ performance. The OPA167x unity-gain bandwidth is 16  
MHz. EMIRR performance below this frequency denotes interfering signals that fall within the operational  
amplifier bandwidth.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA1677 OPA1678 OPA1679  
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
100  
1000  
10000  
Frequency (MHz)  
C001  
7-3. OPA167x EMIRR vs Frequency  
7-1 lists the EMIRR IN+ values for the OPA167x at particular frequencies commonly encountered in real-  
world applications. Applications listed in 7-1 can be centered on or operated near the particular frequency  
shown. This information can be of special interest to designers working with these types of applications, or  
working in other fields likely to encounter RF interference from broad sources, such as the industrial, scientific,  
and medical (ISM) radio band.  
7-1. OPA167x EMIRR IN+ for Frequencies of Interest  
FREQUENCY  
400 MHz  
900 MHz  
1.8 GHz  
APPLICATION OR ALLOCATION  
Mobile radio, mobile satellite, space operation, weather, radar, UHF  
GSM, radio communication and navigation, GPS (to 1.6 GHz), ISM, aeronautical mobile, UHF  
GSM, mobile personal comm. broadband, satellite, L-band  
EMIRR IN+  
36 dB  
42 dB  
52 dB  
2.4 GHz  
802.11b/g/n, Bluetooth™, mobile personal comm., ISM, amateur radio and satellite, S-band  
Radiolocation, aero comm./nav., satellite, mobile, S-band  
64 dB  
3.6 GHz  
67 dB  
802.11a/n, aero communication and navigation, mobile communication, space and satellite operation, C-  
band  
5 GHz  
77 dB  
7.3.3.1 EMIRR IN+ Test Configuration  
7-4 shows the circuit configuration for testing the EMIRR IN+. An RF source is connected to the operational  
amplifier noninverting input pin using a transmission line. The operational amplifier is configured in a unity-gain  
buffer topology with the output connected to a low-pass filter (LPF) and a digital multimeter (DMM). A large  
impedance mismatch at the operational amplifier input causes a voltage reflection; however, this effect is  
characterized and accounted for when determining the EMIRR IN+. The resulting dc offset voltage is sampled  
and measured by the multimeter. The LPF isolates the multimeter from residual RF signals that can interfere with  
multimeter accuracy. See the EMI Rejection Ratio of Operational Amplifiers application report for more details.  
Ambient temperature: 25˘C  
+VS  
œ
50  
Low-Pass Filter  
+
RF source  
DC Bias: 0 V  
Modulation: None (CW)  
-VS  
Sample /  
Averaging  
Digital Multimeter  
Not shown: 0.1 µF and 10 µF  
supply decoupling  
Frequency Sweep: 201 pt. Log  
7-4. EMIRR IN+ Test Configuration Schematic  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
 
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Operating Voltage  
The OPA167x series op amps operate from ±2.25 V to ±18 V supplies while maintaining excellent performance.  
The OPA167x series can operate with as little as 4.5 V between the supplies and with up to 36 V between the  
supplies. However, some applications do not require equal positive and negative output voltage swing. With the  
OPA167x series, power-supply voltages are not required to be equal. For example, the positive supply can be  
set to 25 V with the negative supply at 5 V.  
In all cases, the common-mode voltage must be maintained within the specified range. In addition, key  
parameters are specified over the temperature range of TA = 40°C to +85°C. Parameters that vary significantly  
with operating voltage or temperature are shown in 6.8.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
8.1.1 Capacitive Loads  
The dynamic characteristics of the OPA167x series are optimized for commonly encountered gains, loads, and  
operating conditions. The combination of low closed-loop gain and high capacitive loads decreases the phase  
margin of the amplifier, and can lead to gain peaking or oscillations. As a result, heavier capacitive loads must be  
isolated from the output. The simplest way to achieve this isolation is to add a small resistor (RS equal to 50 Ω,  
for example) in series with the output.  
This small series resistor also prevents excess power dissipation if the output of the device short-circuits. For  
more details about analysis techniques and application circuits, see the Feedback Plots Define Op Amp AC  
Performance application report, available for download from the TI website (www.ti.com).  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.2 Typical Applications  
8.2.1 Phantom-Powered Preamplifier for Piezo Contact Microphones  
Contact microphones are useful for amplifying the sound of musical instruments that do not contain electric  
pickups, such as acoustic guitars and violins. Most contact microphones use a piezo element to convert  
vibrations in the body of the musical instrument to a voltage which can be amplified or recorded. The low noise  
and low input bias current of the OPA1678 make the device an excellent choice for high impedance preamplifiers  
for piezo elements. This preamplifier circuit provides high input impedance for the piezo element but has low  
output impedance for driving long cable runs. The circuit is also designed to be powered from 48-V phantom  
power which is commonly available in professional microphone preamplifiers and recording consoles.  
A TINA-TI™ simulation schematic of the circuit below is available in the Tools and Software section of the  
OPA1678 or OPA1679 product folder.  
R1  
1.2 k  
C2  
C1  
R2  
1.2 kꢀ  
0.1 F 22 F  
+
ZD1  
24 V  
R14  
100 ꢀ  
½ OPA1678  
+
VS+  
VOUT  
œ
VSœ  
C5  
22 F  
R10  
100 ꢀ  
R3  
1 Mꢀ  
R7 2 kꢀ  
R12  
100 kꢀ  
R5  
100 kꢀ  
TPD1E1B04  
To  
Microphone  
Preamplifier  
Piezo  
Contact  
Microphone  
C3 390 pF  
C4 390 pF  
R8  
442 ꢀ  
R6  
100 kꢀ  
R13  
100 kꢀ  
R9 2 kꢀ  
R4  
1 Mꢀ  
R11  
100 ꢀ  
C6  
22 F  
R15  
100 ꢀ  
œ
+
½ OPA1678  
8-1. Phantom-Powered Preamplifier for Piezo Contact Microphones  
8.2.1.1 Design Requirements  
• –3-dB bandwidth: 20 Hz to 20 kHz  
Gain: 20 dB (10 V/V)  
Piezo element capacitance: 8 nF (9-kHz resonance)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Power Supply  
In professional audio systems, phantom power is applied to the two signal lines that carry a differential audio  
signal from the microphone. 8-2 is a diagram of the system showing 48-V phantom power applied to the  
differential signal lines between the piezo preamplifier output and the input of a professional microphone  
preamplifier.  
48 V  
Phantom  
Power  
6.8 k  
6.8 kꢀ  
R1  
R2  
+
+
Piezo  
Contact  
Microphone  
Differential  
Signal Cable  
œ
œ
Microphone  
Preamplifier  
Piezo  
Preamplifier  
8-2. System Diagram Showing the Application of Phantom Power to the Audio Signal Lines  
A voltage divider is used to extract the common-mode phantom power from the differential audio signal in this  
type of system. The voltage at center point of the voltage divider formed by R1 and R2 does not change when  
audio signals are present on the signal lines (assuming R1 and R2 are matched). A Zener diode forces the  
voltage at the center point of R1 and R2 to a regulated voltage. The values of R1 and R2 are determined by the  
allowable voltage drop across these resistors from the current delivered to both op amp channels and the Zener  
diode. There are two power supply current pathways in parallel, each sharing half the total current of the op amp  
and Zener diode. Resistors R1 and R2 can be calculated using 方程1:  
R1 = R2 = RPS  
VZD  
- 6.8 kW = RPS  
I
IZD  
2
OPA  
+
«
÷
2
(1)  
A 24-V Zener diode is selected for this design, and 1 mA of current flows through the diode at idle conditions to  
maintain the reverse-biased condition of the Zener diode. The maximum idle power supply current of both op  
amp channels is 5 mA. Inserting these values into 方程1 gives the values for R1 and R2 shown in 方程2.  
24V  
IZD  
24V  
- 6.8 kW =  
- 6.8 kW = 1.2 kW = RPS  
I
5.0 mA 1.0 mA  
+
OPA  
+
«
÷
«
÷
2
2
2
2
(2)  
Using a value of 1.2 kΩ for resistors R1 and R2 establishes a 1-mA current through the Zener diode and  
properly regulate the node to 24 V. Capacitor C1 forms a low-pass filter with resistors R1 and R2 to filter the  
Zener diode noise and any residual differential audio signals. Mismatch in the values of R1 and R2 causes a  
portion of the audio signal to appear at the voltage divider center point. The corner frequency of the low-pass  
filter must be set below the audio band, as shown in 方程3.  
1
1
C1 í  
í
í 13 mF ç 22 mF  
2pR1 ||R2 f-3dB 2p600 W 20 Hz  
(3)  
A 22-μF capacitor is selected because the capacitor meets the requirements for power supply filtering and is a  
widely available denomination. A 0.1-µF capacitor (C2) is added in parallel with C1 as a high-frequency bypass  
capacitor.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
 
 
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.2.1.2.2 Input Network  
Resistors R3 and R4 provide a pathway for the input bias current of the OPA1678 while maintaining the high  
input impedance of the circuit. The contact microphone capacitance and the required  
low-frequency response determine the values of R3 and R4. The 3-dB frequency formed by the microphone  
capacitance and amplifier input impedance is shown in Equation 4:  
1
F-3dB  
=
Ç 20 Hz  
2p(R3 + R4 )CMIC  
(4)  
A piezo element with 8 nF of capacitance was selected for this design because the 9-kHz resonance is towards  
the upper end of the audible bandwidth, and is less likely to affect the frequency response of many musical  
instruments. The minimum value for resistors R3 and R4 is then calculated with Equation 5:  
R3 = R4 = RIN  
1
1
RIN  
í
í
í 497.4 kW  
4pF-3dB CMIC 4p20 Hz8 nF  
(5)  
1-MΩ resistors are selected for R3 and R4 to make sure the circuit meets the design requirements for 3-dB  
bandwidth. The center point of resistors R3 and R4 is biased to half the supply voltage through the voltage  
divider formed by R5 and R6. This sets the input common-mode voltage of the circuit to a value within the input  
voltage range of the OPA1678. Piezo elements can produce very large voltages if the elements are struck with  
sufficient force. To prevent damage, the input of the OPA1678 is protected by a transient voltage suppressor  
(TVS) diode placed across the preamplifier inputs. The TPD1E1B04 TVS was selected due to low capacitance  
and the 6.4-V clamping voltage does not clamp the desired low amplitude vibration signals. Resistors R14 and  
R15 limit current flow into the amplifier inputs in the event that the internal protection diodes of the amplifier are  
forward-biased.  
8.2.1.2.3 Gain  
R7, R8, and R9 determines the gain of the preamplifier circuit. The gain of the circuit is shown in Equation 6:  
R7 + R9  
R8  
AV = 1+  
= 10 V/V  
(6)  
Resistors R7 and R9 are selected with a value of 2 kΩ to avoid loading the output of the OPA1678 and  
producing distortion. The value of R8 is then calculated in Equation 7:  
R7 +R9  
AV -1  
2 kW + 2 kW  
10 -1  
R8 =  
=
= 444.4 W ç 442 W  
(7)  
Capacitors C3 and C4 limit the bandwidth of the circuit so that signals outside the audio bandwidth are not  
amplified. The corner frequency produced by capacitors C3 and C4 is shown in Equation 8. This corner  
frequency must be above the desired 3-dB bandwidth point to avoid attenuating high-frequency audio signals.  
C3 = C4 = CFB  
1
1
CFB  
Ç
Ç
Ç 3.98 nF  
2pF-3dB R7/9 2p20 kHz2 kW  
(8)  
C3 and C4 are 390-pF capacitors, which places the corner frequency approximately 1 decade above the desired  
3-dB bandwidth point. Capacitors C3 and C4 must be NP0 or C0G type ceramic capacitors or film capacitors.  
Other ceramic dielectrics, such as X7R, are not suitable for these capacitors and produce distortion.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
 
 
 
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.2.1.2.4 Output Network  
The audio signal is ac-coupled onto the microphone signal lines through capacitors C5 and C6. The value of  
capacitors C5 and C6 are determined by the low-frequency design requirements and the input impedance of the  
microphone preamplifier that connect to the output of the circuit. 方程式 9 shows an approximation of the  
capacitor value requirements, and neglects the effects of R10, R11, R12, and R13 on the frequency response.  
The microphone preamplifier input impedance (RIN_MIC) uses a typical value of 4.4 kΩfor the calculation.  
C5 = C6 = COUT  
2
2
COUT  
í
í
í 3.6 mF  
2pRIN_MIC 20 Hz 2p4.4 kW 20 Hz  
(9)  
For simplicity, the same 22-μF capacitors selected for the power supply filtering are selected for C5 and C6 to  
satisfy 方程9. At least 50-V rated capacitors must be used for C5 and C6. If polarized capacitors are used, the  
positive terminal must be oriented towards the microphone preamplifier. Resistors R10 and R11 isolate the op  
amp outputs from the capacitance of long cables that can cause instability. R12 and R13 discharge ac-coupling  
capacitors C4 and C5 when phantom power is removed.  
8.2.1.3 Application Curves  
The frequency response of the preamplifier circuit is shown in 8-3. The 3-dB frequencies are 15.87 Hz and  
181.1 kHz, which meet the design requirements. The gain within the passband of the circuit is 18.9 dB, slightly  
less than the design goal of 20 dB. The reduction in gain is a result of the voltage division between the output  
resistors of the piezo preamplifier circuit and the input impedance of the microphone preamplifier. The A-  
weighted noise of the circuit (referred to the input) is 842.2 nVRMS or 119.27 dBu.  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
C001  
8-3. Frequency Response of the Preamplifier Circuit for a 8-nF Piezo Element  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.2.2 Phono Preamplifier for Moving Magnet Cartridges  
The noise and distortion performance of the OPA167x family of amplifiers is exceptional in applications with high  
source impedances, which makes these devices a viable choice in preamplifier circuits for moving magnet (MM)  
phono cartridges. 8-4 shows a preamplifier circuit for MM cartridges with 40 dB of gain at 1 kHz.  
15 V  
C5  
100 F  
MM Phono Input  
R5  
100 ꢀ  
½ OPA1678  
VOUT  
+
V+  
Vœ  
Output  
R1  
47 kꢀ  
C1  
150 pF  
œ
R6  
100 kꢀ  
-15 V  
R2  
118 kꢀ  
R3  
10 kꢀ  
C2  
27 nF  
C3  
7.5 nF  
R4  
127 ꢀ  
C4  
100 F  
8-4. Phono Preamplifier for Moving Magnet Cartridges (Single-Channel Shown)  
8.2.3 Single-Supply Electret Microphone Preamplifier  
The preamplifier circuit shown in 8-5 operates the OPA1678 as a transimpedance amplifier that converts the  
output current from the electret microphone internal JFET into a voltage. Resistor R4 determines the gain of the  
circuit. Resistors R2 and R3 bias the input voltage to half the power supply voltage for proper functionality on a  
single-supply.  
C3  
9 V  
16 pF  
R4  
R1  
13.7 k  
61.9 kꢀ  
9 V  
C1  
0.1 F  
2.2 F  
9 V  
Electret  
Microphone  
œ
R2  
100 kꢀ  
Output  
+
½ OPA1678  
R3  
100 kꢀ  
C2  
2.2 F  
8-5. Single-Supply Electret Microphone Preamplifier  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.2.4 Composite Headphone Amplifier  
8-6 shows the BUF634A buffer inside the feedback loop of the OPA1678 to increase the available output  
current for low-impedance headphones. If the BUF634A is used in wide-bandwidth mode, no additional  
components besides the feedback resistors are required to maintain loop stability.  
12 V  
100 F  
0.1 F  
0.1 F  
½
OPA1678  
+
Input  
Output  
BUF634A  
0.1 F  
œ
100 kꢀ  
R1  
RBW  
0.1 F  
100 F  
-12 V  
R3  
R2  
200 ꢀ  
200 ꢀ  
8-6. Composite Headphone Amplifier (Single-Channel Shown)  
8.2.5 Differential Line Receiver With AC-Coupled Outputs  
8-7 shows the OPA1678 used as an integrator that drives the reference pin of the INA1650, which forces the  
output dc voltage to 0 V. This configuration is an alternative to large ac-coupling capacitors that can distort at  
high output levels. The low input bias current and low input offset voltage of the OPA1678 make the device an  
excellent choice for integrator applications.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
18 V  
-18 V  
C5 1 F  
C7 1 F  
R7  
1 Mꢁ  
Input Differential  
Audio Signals  
C6 0.1 F  
C8 0.1 F  
C1 10 F  
R3 1 Mꢁ  
18 V  
R1  
100 kꢁ  
VCC  
1
2
3
4
5
6
7
VEE 14  
C9  
100 nF  
½
2
IN+ A  
COM A  
IN- A  
13  
OUT A  
OPA1678  
-18 V  
1
R2  
100 kꢁ  
3
XLR Connector  
REF A 12  
VMID(IN)  
Output Single-Ended  
Audio Signals  
11  
10  
9
C2 10 F  
C3 10 F  
IN- B  
VMID(OUT)  
REF B  
R4  
100 kꢁ  
COM B  
IN+ B  
3
R6 1 Mꢁ  
½
8
OUT B  
OPA1678  
C10  
100 nF  
1
R5  
100 kꢁ  
2
INA1650  
XLR Connector  
C4 10 F  
R8  
1 Mꢁ  
8-7. Differential Line Receiver With AC-Coupled Outputs  
8.3 Power Supply Recommendations  
The OPA167x devices are specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications  
apply from 40°C to +85°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are shown in 6.8. Applications with noisy or high-impedance power supplies require decoupling  
capacitors close to the device pins. In most cases, 0.1-µF capacitors are adequate.  
8.4 Layout  
8.4.1 Layout Guidelines  
For best operational performance of the device, use good printed-circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and of op amp  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources  
local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup. Physically  
separate digital and analog grounds, observing the flow of the ground current.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed  
to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As shown in 8-8, keeping RF and RG  
close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
Cleaning the PCB following board assembly is recommended for best performance.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
 
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
Any precision integrated circuit can experience performance shifts resulting from moisture ingress into the  
plastic package. Following any aqueous PCB cleaning process, bake the PCB assembly to remove moisture  
introduced into the device packaging during the cleaning process. A low temperature, post-cleaning bake at  
85°C for 30 minutes is sufficient for most circumstances.  
8.4.1.1 Power Dissipation  
The OPA167x series op amps are capable of driving 2-kΩ loads with a power-supply voltage up to ±18 V and  
full operating temperature range. Internal power dissipation increases when operating at high supply voltages.  
Copper leadframe construction used in the OPA167x series op amps improves heat dissipation compared to  
conventional materials. Circuit board layout can also help minimize junction temperature rise. Wide copper  
traces help dissipate the heat by acting as an additional heat sink. Temperature rise can be further minimized by  
soldering the devices to the circuit board rather than using a socket.  
8.4.2 Layout Example  
VIN A  
VIN B  
+
+
VOUT A  
VOUT B  
RG  
RG  
RF  
RF  
(Schematic Representation)  
Place components  
close to device and to  
each other to reduce  
parasitic errors.  
Output A  
Use low-ESR,  
ceramic bypass  
capacitor. Place as  
close to the device  
as possible.  
VS+  
GND  
OUTPUT A  
V+  
RF  
Output B  
GND  
-IN A  
+IN A  
Vœ  
OUTPUT B  
-IN B  
RF  
RG  
GND  
VIN A  
RG  
+IN B  
VIN B  
Keep input traces short  
and run the input traces  
as far away from  
the supply lines  
Use low-ESR,  
GND  
ceramic bypass  
capacitor. Place as  
close to the device  
as possible.  
VSœ  
Ground (GND) plane on another layer  
as possible.  
8-8. Operational Amplifier Board Layout for Noninverting Configuration  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Development Support  
9.1.1.1 PSpice® for TI  
PSpice® for TI 是可帮助评估模拟电路性能的设计和仿真环境。在进行布局和制造之前创建子系统设计和原型解决  
方案可降低开发成本并缩短上市时间。  
9.1.1.2 TINA-TI™ 仿真软件免费下载)  
TINA-TI仿真软件是一款简单易用、功能强大且基于 SPICE 引擎的电路仿真程序。TINA-TI 仿真软件是 TINA™  
软件的一款免费全功能版本除了一系列无源和有源模型外此版本软件还预先载入了一个宏模型库。TINA-TI 仿  
真软件提供所有传统SPICE 直流、瞬态和频域分析以及其他设计功能。  
TINA-TI 仿真软件提供全面的后处理能力便于用户以多种方式获得结果用户可从设计工具和仿真网页免费下  
。虚拟仪器提供选择输入波形和探测电路节点、电压以及波形的能力从而构建一个动态的快速启动工具。  
备注  
必须安装 TINA 软件或者 TINA-TI 软件后才能使用这些文件。请从 TINA-TI™ 软件文件夹中下载免费的  
TINA-TI 仿真软件。  
9.1.1.3 DIP-Adapter-EVM  
借助 DIP-Adapter-EVM 加快运算放大器的原型设计和测试EVM 有助于快速轻松地连接小型表面贴装器件并  
且价格低廉。使用随附的 Samtec 端子板连接任何受支持的运算放大器或者将这些端子板直接连接至现有电  
路。DIP-Adapter-EVM 套件支持以下业界通用封装D U (SOIC-8)PW (TSSOP-8)DGK (VSSOP-8)、  
DBVSOT-23-6SOT-23-5 SOT-23-3DCKSC70-6 SC70-5DRL (SOT563-6)。  
9.1.1.4 DIYAMP-EVM  
DIYAMP-EVM 是一款独特的评估模(EVM)可提供真实的放大器电路使用户能够快速评估设计概念并验证仿  
真。此 EVM 采用 3 种业界通用封装选项SC70SOT23 SOIC并提供 12 种流行的放大器配置包括放大  
器、滤波器、稳定性补偿以及同时适用于单电源和双电源的比较器配置。  
9.1.1.5 TI 参考设计  
TI 参考设计是TI 的精密模拟应用专家创建的模拟解决方案。TI 参考设计提供了许多实用电路的工作原理、组件  
选择、仿真、完整印刷电路板 (PCB) 电路原理图和布局布线、物料清单以及性能测量结果。TI 参考设计可在线获  
网址https://www.ti.com/reference-designs。  
9.1.1.6 滤波器设计工具  
滤波器设计工具是一款简单、功能强大且便于使用的有源滤波器设计程序。利用滤波设计器用户可使用精选 TI  
运算放大器TI 供应商合作伙伴提供的无源器件来打造理想滤波器设计方案。  
设计工具和仿真网页以基于网络的工具形式提供滤波设计工具。用户通过该工具可在短时间内完成多级有源滤波  
器解决方案的设计、优化和仿真。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
 
OPA1677, OPA1678, OPA1679  
ZHCSG25E JANUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
9.2 Documentation Support  
9.2.1 Related Documentation  
The following documents are relevant to using the OPA167x, and are recommended for reference. All are  
available for download at www.ti.com unless otherwise noted.  
Texas Instruments, Source resistance and noise considerations in amplifiers technical brief  
Burr Brown, Single-Supply Operation of Operational Amplifiers application bulletin  
Burr Brown, Op Amp Performance Analysis application bulletin  
Texas Instruments, Compensate Transimpedance Amplifiers Intuitively application report  
Burr Brown, Tuning in Amplifiers application bulletin  
Burr Brown, Feedback Plots Define Op Amp AC Performance application bulletin  
Texas Instruments, Active Volume Control for Professional Audio precision design  
9.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.5 Trademarks  
TINA-TIand TI E2Eare trademarks of Texas Instruments.  
TINAis a trademark of DesignSoft, Inc.  
PSpice® is a registered trademark of Cadence Design Systems, Inc.  
所有商标均为其各自所有者的财产。  
9.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: OPA1677 OPA1678 OPA1679  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA1677DBVR  
OPA1677DBVT  
OPA1677DR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
5
5
8
8
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 85  
O1677  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
O1677  
OP1677  
1AW7  
3000 RoHS & Green  
2500 RoHS & Green  
OPA1678IDGKR  
VSSOP  
DGK  
NIPDAU | SN  
| NIPDAUAG  
OPA1678IDGKT  
ACTIVE  
VSSOP  
DGK  
8
250  
RoHS & Green  
NIPDAU | SN  
| NIPDAUAG  
Level-2-260C-1 YEAR  
-40 to 85  
1AW7  
Samples  
OPA1678IDR  
OPA1678IDRGR  
OPA1678IDRGT  
OPA1679IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SON  
D
8
8
2500 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
OP1678  
OP1678  
OP1678  
OPA1679  
OPA1679  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
DRG  
DRG  
D
SON  
8
250  
RoHS & Green  
SOIC  
14  
14  
16  
2500 RoHS & Green  
2000 RoHS & Green  
3000 RoHS & Green  
OPA1679IPWR  
OPA1679IRUMR  
TSSOP  
WQFN  
PW  
RUM  
OPA  
1679  
OPA1679IRUMT  
ACTIVE  
WQFN  
RUM  
16  
250  
RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 85  
OPA  
1679  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Apr-2023  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF OPA1679 :  
Automotive : OPA1679-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA1677DBVR  
OPA1677DBVT  
OPA1678IDGKR  
OPA1678IDGKR  
OPA1678IDGKT  
OPA1678IDGKT  
OPA1678IDR  
SOT-23  
SOT-23  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DBV  
DBV  
DGK  
DGK  
DGK  
DGK  
D
5
5
3000  
250  
180.0  
180.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
180.0  
330.0  
330.0  
330.0  
180.0  
8.4  
3.2  
3.2  
5.3  
5.3  
5.3  
5.3  
6.4  
3.3  
3.3  
6.5  
6.9  
4.25  
4.25  
3.2  
3.2  
3.4  
3.4  
3.4  
3.4  
5.2  
3.3  
3.3  
9.0  
5.6  
4.25  
4.25  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
2.1  
1.1  
1.1  
2.1  
1.6  
1.15  
1.15  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
Q1  
Q1  
Q1  
Q1  
Q2  
Q2  
Q1  
Q1  
Q2  
Q2  
8.4  
8.0  
8
2500  
2500  
250  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
16.4  
12.4  
12.4  
12.4  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
12.0  
12.0  
12.0  
8
8
8
250  
8
2500  
3000  
250  
OPA1678IDRGR  
OPA1678IDRGT  
OPA1679IDR  
SON  
DRG  
DRG  
D
8
SON  
8
SOIC  
14  
14  
16  
16  
2500  
2000  
3000  
250  
OPA1679IPWR  
OPA1679IRUMR  
OPA1679IRUMT  
TSSOP  
WQFN  
WQFN  
PW  
RUM  
RUM  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA1677DBVR  
OPA1677DBVT  
OPA1678IDGKR  
OPA1678IDGKR  
OPA1678IDGKT  
OPA1678IDGKT  
OPA1678IDR  
SOT-23  
SOT-23  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DBV  
DBV  
DGK  
DGK  
DGK  
DGK  
D
5
5
3000  
250  
210.0  
210.0  
366.0  
366.0  
366.0  
366.0  
356.0  
346.0  
210.0  
356.0  
356.0  
367.0  
210.0  
185.0  
185.0  
364.0  
364.0  
364.0  
364.0  
356.0  
346.0  
185.0  
356.0  
356.0  
367.0  
185.0  
35.0  
35.0  
50.0  
50.0  
50.0  
50.0  
35.0  
33.0  
35.0  
35.0  
35.0  
35.0  
35.0  
8
2500  
2500  
250  
8
8
8
250  
8
2500  
3000  
250  
OPA1678IDRGR  
OPA1678IDRGT  
OPA1679IDR  
SON  
DRG  
DRG  
D
8
SON  
8
SOIC  
14  
14  
16  
16  
2500  
2000  
3000  
250  
OPA1679IPWR  
OPA1679IRUMR  
OPA1679IRUMT  
TSSOP  
WQFN  
WQFN  
PW  
RUM  
RUM  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DRG0008A  
WSON - 0.8 mm max height  
SCALE 5.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
3.1  
2.9  
PIN 1 INDEX AREA  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
1.2 0.1  
4
1
5
8
2X  
1.5  
2 0.1  
6X 0.5  
0.3  
8X  
0.2  
0.1  
0.08  
0.6  
0.4  
PIN 1 ID  
8X  
C A B  
C
4218885/A 03/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.2)  
SYMM  
8X (0.7)  
1
8
8X (0.25)  
SYMM  
(2)  
(0.75)  
5
6X (0.5)  
4
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.35)  
(2.7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED  
EXPOSED  
METAL  
METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218885/A 03/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
METAL  
TYP  
8X (0.7)  
8
8X (0.25)  
1
SYMM  
(1.79)  
6X (0.5)  
4
5
(R0.05) TYP  
(1.13)  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
84% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218885/A 03/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
GENERIC PACKAGE VIEW  
RUM 16  
4 x 4, 0.65 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224843/A  
www.ti.com  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA1678IDGKR

低失真 (-120dB)、低噪声 (4.5nV/rtHz)、双路音频运算放大器 | DGK | 8 | -40 to 85
TI

OPA1678IDGKT

低失真 (-120dB)、低噪声 (4.5nV/rtHz)、双路音频运算放大器 | DGK | 8 | -40 to 85
TI

OPA1678IDR

低失真 (-120dB)、低噪声 (4.5nV/rtHz)、双路音频运算放大器 | D | 8 | -40 to 85
TI

OPA1678IDRGR

低失真 (-120dB)、低噪声 (4.5nV/rtHz)、双路音频运算放大器 | DRG | 8 | -40 to 85
TI

OPA1678IDRGT

低失真 (-120dB)、低噪声 (4.5nV/rtHz)、双路音频运算放大器 | DRG | 8 | -40 to 85
TI

OPA1679

低失真 (-120dB)、低噪声 (4.5nV/rtHz)、四路音频运算放大器
TI

OPA1679-Q1

OPA167x Low-Distortion Audio Operational Amplifiers
TI

OPA1679IDR

低失真 (-120dB)、低噪声 (4.5nV/rtHz)、四路音频运算放大器 | D | 14 | -40 to 85
TI

OPA1679IPWR

低失真 (-120dB)、低噪声 (4.5nV/rtHz)、四路音频运算放大器 | PW | 14 | -40 to 85
TI

OPA1679IRUMR

OPA167x Low-Distortion Audio Operational Amplifiers
TI

OPA1679IRUMT

OPA167x Low-Distortion Audio Operational Amplifiers
TI

OPA1679QRUMRQ1

汽车类四通道、低噪声 4.5nV/rtHz、低失真 120dB 音频运算放大器 | RUM | 16 | -40 to 125
TI