OPA1692ID [TI]

SoundPlus™ 低功耗、低噪声、高性能双路双极输入音频运算放大器 | D | 8 | -40 to 125;
OPA1692ID
型号: OPA1692ID
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SoundPlus™ 低功耗、低噪声、高性能双路双极输入音频运算放大器 | D | 8 | -40 to 125

放大器 光电二极管 运算放大器
文件: 总43页 (文件大小:1647K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA1692  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
OPA1692 低功耗、低噪声和低失真  
SoundPlus™音频运算放大器  
1 特性  
3 说明  
1
低噪声:1kHz 时为 4.2nV/Hz  
OPA169x 运算放大器将低功耗放大器的性能提高到一  
个新的层次,实现了 4.2nV/Hz 的低噪声密度和  
–127dB (1kHz) 的低失真。该运算放大器在 2kΩ 负载  
下还提供 200mV 电源轨范围内的轨至轨输出摆幅,从  
而增加余量并实现动态范围最大化。这些器件有  
±50mA 的高输出驱动能力。  
低失真:1kHz 时为 –127dB  
低静态电流:  
每通道 650µA  
压摆率: 23V/μs  
宽增益带宽:5.1MHz  
单位增益稳定  
OPA169x 运算放大器可在 ±1.75V ±18V 3.5V 至  
36V (每通道的电源电流为 650µA)的宽电源电压范  
围内工作,具有稳定的单位增益,在各种负载条件下可  
提供出色的动态行为。  
轨至轨输出  
宽电源电压范围:  
±1.75V ±18V 3.5V 36V  
2 应用  
OPA169x 运算放大器的额定工作温度范围为 –40°C 至  
125°C。  
无线耳机  
无线音频监控系统  
便携式无线电和耳机  
便携式音效处理器  
便携式录音系统  
USB 音频外设  
器件信息(1)  
器件编号  
OPA1692  
封装  
VSSOP (8)  
SOIC (8)  
封装尺寸(标称值)  
3.00mm × 3.00mm  
4.90mm × 3.91mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
3 线制驻极体麦克风的前置放大器  
THD + N 与频率之间的关系(3 VRMS2kΩ 负载)  
5 V  
5 V  
0.1  
-60  
0.1 F  
Primo EM-173  
Microphone  
Competitor A  
Competitor B  
Competitor C  
OPA1692  
C1  
0.1 F  
R3  
100 ꢀ  
OPA1692  
+
Output  
Microphone  
Cable  
0.01  
-80  
œ
R1  
5.9 kꢀ  
R2  
100 kꢀ  
C2  
100 pF  
0.1 F  
-5 V  
0.001  
-100  
-120  
-140  
R4 100 kꢀ  
R5 1.1 kꢀ  
C3  
1 F  
0.0001  
0.00001  
R6 100 ꢀ  
C4 6.8 nF  
Copyright © 2017, Texas Instruments Incorporated  
10  
100  
1k  
Frequency (Hz)  
10k  
C001  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS566  
 
 
 
 
OPA1692  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
www.ti.com.cn  
目录  
8.1 Application Information............................................ 20  
8.2 Typical Application .................................................. 24  
8.3 Other Application Examples.................................... 27  
Power Supply Recommendations...................... 29  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information: OPA1692 ................................ 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 16  
7.1 Overview ................................................................. 16  
7.2 Functional Block Diagram ....................................... 16  
7.3 Feature Description................................................. 16  
7.4 Device Functional Modes........................................ 19  
Application and Implementation ........................ 20  
9
10 Layout................................................................... 29  
10.1 Layout Guidelines ................................................. 29  
10.2 Layout Example .................................................... 30  
10.3 Power Dissipation ................................................. 30  
11 器件和文档支持 ..................................................... 31  
11.1 器件支持................................................................ 31  
11.2 文档支持................................................................ 31  
11.3 相关链接................................................................ 32  
11.4 接收文档更新通知 ................................................. 32  
11.5 社区资源................................................................ 32  
11.6 ....................................................................... 32  
11.7 静电放电警告......................................................... 32  
11.8 术语表 ................................................................... 32  
12 机械、封装和可订购信息....................................... 32  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (September 2018) to Revision C  
Page  
Changed -40to 125Iq to 975 µA................................................................................................................................... 6  
Changes from Revision A (December 2017) to Revision B  
Page  
Changed IOS VCM = 0 MAX from "±10" to "±15" nA ............................................................................................................. 5  
Changed IOS TA = –40°C to 125°C MAX from "±15" to "±20" nA.......................................................................................... 5  
Changes from Original (June 2017) to Revision A  
Page  
已更改 将数据表状态从预告信息更改成了生产数据” .......................................................................................................... 1  
2
Copyright © 2017–2018, Texas Instruments Incorporated  
 
OPA1692  
www.ti.com.cn  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
5 Pin Configuration and Functions  
OPA1692 D and DGK Packages  
8-Pin SOIC and VSSOP  
Top View  
OUT A  
œIN A  
+IN A  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT B  
œIN B  
+IN B  
Not to scale  
Pin Functions: OPA1692  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN A  
+IN A  
–IN B  
+IN B  
OUT A  
OUT B  
V–  
NO.  
2
I
I
Inverting input, channel A  
Noninverting input, channel A  
Inverting input, channel B  
Noninverting input, channel B  
Output, channel A  
3
6
I
5
I
1
O
O
7
Output, channel B  
4
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
3
OPA1692  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
40  
UNIT  
V
Supply voltage, VS = (V+) – (V–)  
Voltage  
Input  
(V–) – 0.5  
–10  
(V+) + 0.5  
10  
Input (all pins except power-supply pins)  
Output short-circuit(2)  
mA  
Current  
Continuous  
–55  
Continuous  
125  
Operating, TA  
Temperature  
Junction, TJ  
Storage, Tstg  
200  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions . Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Short-circuit to VS/2 (ground in symmetrical dual supply setups), one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±3000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.5  
NOM  
MAX  
36  
UNIT  
V
Single supply  
Split supply  
VS  
TA  
Supply voltage  
±1.75  
–40  
±18  
85  
Operating temperature  
°C  
6.4 Thermal Information: OPA1692  
OPA1692  
THERMAL METRIC(1)  
D (SOIC)  
DGK (VSSOP)  
UNIT  
8 PINS  
123.6  
63.4  
8 PINS  
162.2  
56.9  
83.2  
6.3  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
67.0  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
16.0  
ψJB  
66.3  
81.6  
N/A  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
 
OPA1692  
www.ti.com.cn  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
6.5 Electrical Characteristics  
at TA = 25°C, VS = ±18 V, RL = 2 kΩ, and VCM = VOUT = midsupply (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AUDIO PERFORMANCE  
G = 1, f = 20 kHz, RL = 2kΩ, VO = 3 VRMS  
G = 1, f = 1 kHz, RL = 2kΩ, VO = 3 VRMS  
G = 1,  
-118  
dB  
dB  
THD+N  
Total harmonic distortion + noise  
–127  
Intermodulation distortion  
Intermodulation distortion  
Intermodulation distortion  
Intermodulation distortion  
0.00005%  
-126  
VO = 3 VRMS  
SMPTE/DIN two-tone, 4:1  
(60 Hz and 7 kHz)  
G = 1,  
dB  
dB  
VO = 3 VRMS  
IMD  
G = 1,  
CCIF twin-tone  
0.0002  
-114  
VO = 3 VRMS  
(19 kHz and 20 kHz)  
G = 1,  
CCIF twin-tone  
VO = 3 VRMS  
(19 kHz and 20 kHz)  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
G = 100  
G = –1  
5.1  
23  
MHz  
V/µs  
MHz  
ns  
Slew rate  
Full power bandwidth(1)  
Overload recovery time  
Channel separation (dual and quad)  
VO = 1 VP  
G = –10  
f = 1 kHz  
3.66  
250  
–145  
dB  
NOISE  
en  
Input voltage noise  
Input voltage noise  
f = 0.1 to 10 Hz  
f = 20 Hz to 20 kHz  
f = 1 kHz  
130  
3.9  
nVPP  
µVPP  
en  
4.2  
Input voltage noise density  
Input current noise density  
nV/rtHz  
pA/rtHz  
f = 100 Hz  
4.5  
f = 1 kHz  
0.37  
0.4  
In  
f = 100 Hz  
OFFSET VOLTAGE  
VOS  
Input offset voltage  
VS = ±1.75 V to ±18 V  
±0.25  
±0.8  
±1.0  
5
mV  
mV  
VS = ±1.75 V to ±18 V  
VS = ±1.75 V to ±18 V, TA = –40°C to +125°C(2)  
VOS  
Input offset voltage  
0.5  
0.1  
µV/°C  
µV/V  
µV/V  
PSRR  
PSRR  
Power-supply rejection ratio  
Power-supply rejection ratio  
VS = ±1.75 V to ±18 V  
TA = –40°C to +125°C(2)  
1.5  
2.25  
INPUT BIAS CURRENT  
IB  
Input bias current  
VCM = 0 V  
300  
±2  
550  
600  
±15  
±20  
nA  
nA  
nA  
nA  
TA = –40°C to +125°C  
VCM = 0 V  
IOS  
Input offset current  
TA = –40°C to +125°C  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
(V–) + 1.5  
(V+) – 0.5  
V
CMRR  
CMRR  
Common-mode rejection ratio  
Common-mode rejection ratio  
(V–) + 1.5 V VCM (V+) – 0.5 V  
0.1  
1
4
uV/V  
uV/V  
TA = –40°C to +125°C  
INPUT IMPEDANCE  
Differential Resistance  
350  
1.5  
kΩ  
pF  
Differential Capacitance  
Common-Mode Resistance  
Common-Mode Capacitance  
350  
1.6  
MΩ  
pF  
OPEN-LOOP GAIN  
AOL  
AOL  
Open-loop voltage gain  
Open-loop voltage gain  
TA = –40°C to +125°C  
110  
120  
140  
140  
dB  
dB  
(V–) + 0.2 V VO (V+) – 0.2 V, RL = 2 kΩ  
(1) Full-power bandwidth = SR / (2π × VP), where SR = slew rate.  
(2) Specified by design and characterization.  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
OPA1692  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, RL = 2 kΩ, and VCM = VOUT = midsupply (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
VOUT  
IOUT  
Voltage output  
RL = 2 kΩ  
-17.8  
17.8  
V
Output current  
See Figure 46 , Figure 47  
mA  
Ω
ZO  
Open-loop output impedance  
Short-circuit current(3)  
Capacitive load drive  
See Figure 14  
ISC  
±50  
200  
mA  
pF  
CLOAD  
POWER SUPPLY  
Quiescent current  
(per channel)  
IOUT = 0 A  
IOUT = 0 A, TA = –40°C to +125°C(2)  
650  
650  
750  
975  
µA  
µA  
IQ  
(3) One channel at a time.  
6
版权 © 2017–2018, Texas Instruments Incorporated  
OPA1692  
www.ti.com.cn  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
6.6 Typical Characteristics  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
Input Offset Voltage (mV)  
Input Offset Voltage Delta (mV)  
N = 1160  
Mean = –139.2 µV  
Std. Dev. = 105.4 µV  
N = 580  
Mean = 17 µV  
Std. Dev. = 145.2 µV  
1. Input Offset Voltage Distribution  
2. Input Offset Voltage Matching (Ch. A – Ch. B)  
40  
35  
30  
25  
20  
15  
10  
5
20  
15  
10  
5
0
0
Input Bias Current (nA)  
Input Offset Voltage Drift (mV/èC)  
N = 1160  
Mean = 301.5 nA  
Std. Dev. = 7.03 nA  
4. Input Bias Current Distribution  
3. Offset Voltage Drift Distribution  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
Input Offset Current (nA)  
Power Supply Current (mA)  
N = 1160  
Mean = 0.07 nA  
Std. Dev. = 1.58 nA  
N = 1160  
Mean = 664.6 µA  
Std. Dev. = 6.98 µA  
5. Input Offset Current Distribution  
6. Power Supply Current Distribution  
版权 © 2017–2018, Texas Instruments Incorporated  
7
 
OPA1692  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
150  
120  
90  
200  
160  
120  
80  
30  
20  
10  
0
Gain  
Phase  
G = 1  
G = -1  
G = 11  
60  
30  
40  
-10  
-20  
0
0
-30  
100m  
-40  
1
10  
100  
1k  
10k 100k 1M 10M  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
7. Open-Loop Gain and Phase vs Frequency  
8. Closed-Loop Gain vs Frequency  
160  
140  
120  
100  
80  
100  
10  
1
10  
Input Voltage Noise  
Input Current Noise  
PSRR-  
PSRR+  
CMRR  
1
60  
40  
20  
0.1  
10M  
0
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
C001  
9. CMRR and PSRR vs Frequency (Referred to Input)  
10. Input Voltage Noise Spectral Density  
1000  
Voltage Noise Contribution  
Source Resistor Noise Contribution  
Current Noise Contribution  
100  
10  
1
Total Noise  
0.1  
10  
100  
1k  
10k  
100k  
1M  
Time (1 s/div)  
Source Resistance (O)  
C001  
12. 0.1-Hz to 10-Hz Voltage Noise  
11. Voltage Noise vs Source Resistance  
8
版权 © 2017–2018, Texas Instruments Incorporated  
OPA1692  
www.ti.com.cn  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
1000  
100  
10  
20  
VS = ±15 V  
18  
VS = ±5 V  
VS = ±1.75 V  
16  
14  
12  
10  
8
6
4
2
0
1
10k  
100k  
Frequency (Hz)  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
C001  
C001  
13. Maximum Output Voltage vs Frequency  
14. Open-Loop Output Impedance vs Frequency  
60  
90  
80  
70  
60  
50  
40  
30  
RISO = 0 W  
RISO = 25 W  
RISO = 50 W  
50  
40  
30  
20  
10  
0
-10  
-20  
20  
20  
10  
100  
1000  
100  
Capactiance (pF)  
1000  
2000  
Capacitive Load (pF)  
G = 1  
G = 1  
10-mV input step  
15. Phase Margin vs Capacitive Load  
16. Overshoot vs Capacitive Load  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
-100  
-110  
-120  
-130  
-140  
RISO = 0 W  
RISO = 25 W  
RISO = 50 W  
G = 1  
G = -1  
20  
100  
Capactiance (pF)  
1000  
2000  
100  
VOUT = 3 VRMS  
18. THD + N Ratio vs Frequency  
1k  
10k  
Frequency (Hz)  
G = –1  
10-mV input step  
80-kHz bandwidth  
17. Overshoot vs Capacitive Load  
版权 © 2017–2018, Texas Instruments Incorporated  
9
OPA1692  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
-100  
-20  
-40  
G=+1  
G=-1  
G = 1  
G = -1  
-110  
-120  
-130  
-140  
-60  
-80  
-100  
-120  
100  
1k  
10k  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
VOUT = 3 VRMS  
RL = 600 Ω  
80-kHz bandwidth  
VOUT = 3 VRMS  
500-kHz bandwidth  
19. THD + N Ratio vs Frequency  
20. THD + N Ratio vs Frequency  
-100  
-100  
-120  
-140  
-160  
-180  
HD2  
HD2  
HD3  
HD4  
HD5  
HD3  
HD4  
HD5  
-120  
-140  
-160  
-180  
100  
1k  
10k  
100  
1k  
10k  
80-kHz bandwidth  
Frequency (Hz)  
Frequency (Hz)  
VOUT = 3 VRMS  
G = 1  
80-kHz bandwidth  
VOUT = 3 VRMS  
G = –1  
21. Distortion Harmonics vs Frequency  
22. Distortion Harmonics vs Frequency  
-20  
-40  
-20  
-40  
G = 1  
G = -1  
G = 1  
G = -1  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
1m  
f = 1 kHz  
23. THD + N Ratio vs Output Amplitude  
10m  
100m  
Amplitude (VRMS  
1
10  
1m  
10m  
100m  
Amplitude (VRMS)  
1
10  
)
80-kHz bandwidth  
f = 1 kHz  
RL = 600 Ω  
80-kHz bandwidth  
24. THD + N Ratio vs Output Amplitude  
10  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA1692  
www.ti.com.cn  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
-70  
-60  
-80  
-75  
-80  
-85  
-90  
-100  
-120  
-140  
-160  
-180  
-95  
-100  
-105  
-110  
-115  
-120  
CCIF  
SMPTE  
-125  
-130  
0.01  
0.1  
1
10  
1k  
10k  
100k  
1M  
10M  
Output Amplitude (VRMS  
)
Frequency (Hz)  
80-kHz bandwidth  
25. Intermodulation Distortion vs Output Amplitude  
26. Channel Separation vs Frequency  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
5000  
10000  
15000  
20000  
0
50000  
100000  
Frequency (Hz)  
Frequency (Hz)  
f = 1 kHz  
VO = 3 VRMS  
RL = 600 Ω  
f = 20 kHz  
VO = 3 VRMS  
RL = 600 Ω  
27. 1-kHz Output Spectrum  
28. 20-kHz Output Spectrum  
VIN  
VOUT  
VIN  
VOUT  
Time (1 ms/div)  
Time (1 ms/div)  
100-pF  
capacitive load  
10-mV input  
100-pF  
capacitive load  
10-mV input  
G = 1  
G = –1  
step  
step  
29. Small-Signal Step Response  
30. Small-Signal Step Response  
版权 © 2017–2018, Texas Instruments Incorporated  
11  
OPA1692  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
VIN  
VIN  
VOUT  
VOUT  
Time (1 ms/div)  
Time (1 ms/div)  
10-V input step  
100-pF  
capacitive load  
100-pF  
capacitive load  
10-V input step  
G = 1  
G = –1  
31. Large-Signal Step Response  
32. Large-Signal Step Response  
1000  
800  
Rising  
Falling  
600  
400  
200  
0
-200  
-400  
-600  
-800  
-1000  
Time (1 ms/div)  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Temperature (èC)  
5 typical units  
33. Settling Time  
34. Input Offset Voltage vs Temperature  
-300  
-200  
-100  
0
150  
140  
130  
120  
110  
100  
90  
VS = ê18 V  
VS = ê1.75 V  
0.1  
1
100  
200  
300  
10  
100  
80  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
Temperature (èC)  
Input Common-mode Voltage (V)  
5 typical units  
36. CMRR vs Temperature  
35. Input Offset Voltage vs Common-Mode Voltage  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA1692  
www.ti.com.cn  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
140  
130  
120  
110  
100  
0.1  
180  
170  
160  
150  
140  
130  
120  
0.001  
VS = ê1.75 V  
VS = ê18 V  
0.01  
0.1  
1
1
10  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Temperature (èC)  
Temperature (èC)  
38. Open-Loop Gain vs Temperature  
37. PSRR vs Temperature  
450  
400  
350  
300  
250  
200  
150  
100  
50  
40  
30  
IB+  
IB-  
IOS  
20  
10  
0
-10  
-20  
-30  
-40  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
Temperature(C)  
Input Common-mode Voltage (V)  
39. Input Bias and Offset Current vs Temperature  
40. IB vs Common-Mode Voltage  
10  
5
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
-5  
VS = ê18 V  
VS = ê1.75 V  
-10  
-2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Input Common-mode Voltage (V)  
Temperature (èC)  
VS = ±1.75 V  
41. IB vs Common-Mode Voltage  
42. Supply Current vs Temperature  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
OPA1692  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
180  
160  
140  
120  
100  
80  
0.001  
0.01  
0.1  
1
1
-40èC  
-5èC  
25èC  
85èC  
125èC  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
100  
1k  
60  
40  
0.01  
10k  
1
0.1  
0
5
10  
15  
20  
25  
30  
35  
40  
Output Voltage Swing from Rail (V)  
Supply Voltage (V)  
44. Open-Loop Gain vs Output Voltage  
43. Supply Current vs Supply Voltage  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
0.001  
0.01  
0.1  
1
20  
15  
10  
5
-40èC  
-5èC  
25èC  
85èC  
125èC  
10  
80  
70  
60  
100  
1k  
-40èC  
0èC  
25èC  
85èC  
125èC  
50  
40  
0.01  
10k  
0
0.1  
1
0
10  
20  
30  
40  
50  
60  
70 75  
Output Voltage Swing from Rail (V)  
Output Current (mA)  
VS = ±1.75 V  
Sourcing  
45. Open-Loop Gain vs Output Voltage  
46. Output Voltage vs Output Current  
0
-5  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40èC  
0èC  
25èC  
85èC  
125èC  
Sinking  
Sourcing  
-10  
-15  
-20  
0
10  
20  
30  
40  
50  
60  
70 75  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Output Current (mA)  
Temperature (èC)  
Sinking  
47. Output Voltage vs Output Current  
48. Short-Circuit Current vs Temperature  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA1692  
www.ti.com.cn  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
VOUT  
VIN  
VOUT  
VIN  
Time (500 ns/div)  
Time (500 ns/div)  
49. Negative Overload Recovery  
50. Positive Overload Recovery  
VOUT  
VIN  
Time (100 ms/div)  
51. No Phase Reversal  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
OPA1692  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPA169x amplifiers are unity-gain stable, dual and quad op amps with low noise. The Functional Block  
Diagram shows a simplified schematic of the OPA169x (one channel shown). The device consists of a very low  
noise input stage with a folded cascode and a rail-to-rail output stage. A proprietary distortion reduction  
technology allows the OPA169x family of amplifiers to achieve significantly lower distortion than other op amps  
that consume the equal or greater power supply current.  
7.2 Functional Block Diagram  
V+  
Pre-Driver and  
Distortion  
Cancellation  
IN-  
IN+  
OUT  
Copyright © 2017, Texas Instruments Incorporated  
V-  
7.3 Feature Description  
7.3.1 Distortion Reduction  
Amplifiers use feedback to reduce the amount of distortion they introduce to the signal path. Increasing the  
amount of feedback available for distortion reduction typically requires an increase in the power supply current of  
the amplifier. This is not acceptable in low-power amplifiers targeting applications that require low distortion.  
0.1  
-60  
Competitor A  
Competitor B  
Competitor C  
OPA1692  
0.01  
-80  
0.001  
-100  
-120  
-140  
0.0001  
0.00001  
10  
100  
1k  
Frequency (Hz)  
10k  
C001  
53. Comparison of THD + N vs Frequency for Multiple Low-Power Amplifiers  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
OPA1692  
www.ti.com.cn  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
Feature Description (接下页)  
The OPA169x family of amplifiers uses a proprietary technology to reduce signal distortion that does not increase  
the power supply current. The distortion cancellation technique reduces odd-order harmonic distortion, which is  
produced by the input transistor pair of the amplifier. As 53 shows, the impact to THD + N is significant,  
especially at high frequencies where the OPA169x devices exhibit over 30-dB lower distortion than competitor  
amplifiers at similar power supply current levels.  
7.3.2 Phase Reversal Protection  
The OPA169x family has internal phase-reversal protection. Many op amps exhibit phase reversal when the  
input is driven beyond the linear common-mode range. This condition is most often encountered in noninverting  
circuits when the input is driven beyond the specified common-mode voltage range, reverses the output into the  
opposite rail. The input of the OPA169x prevents phase reversal with excessive common-mode voltage. Instead,  
the appropriate rail limits the output voltage. This performance is shown in 54.  
VOUT  
VIN  
Time (100 ms/div)  
54. Output Waveform Devoid of Phase Reversal During an Input Overdrive Condition  
7.3.3 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress.  
These questions tend to focus on the device inputs, but can involve the supply voltage pins or even the output  
pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly.  
A good understanding of this basic ESD circuitry and the relevance to an electrical overstress event is helpful. 图  
55 illustrates the ESD circuits contained in the OPA169x (indicated by the dashed line area). The ESD  
protection circuitry involves several current-steering diodes connected from the input and output pins and routed  
back to the internal power-supply lines, where the diodes meet at an absorption device internal to the operational  
amplifier. This protection circuitry is intended to remain inactive during normal circuit operation.  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
 
OPA1692  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
TVS  
RF  
+VS  
R1  
250 Ω  
250 Ω  
INœ  
RS  
IN+  
+
Power-Supply  
ESD Cell  
ID  
RL  
+
VIN  
œ
œVS  
TVS  
Copyright © 2016, Texas Instruments Incorporated  
55. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
An ESD event produces a short-duration, high-voltage pulse that is transformed into a short-duration, high-  
current pulse when discharging through a semiconductor device. The ESD protection circuits are designed to  
provide a current path around the operational amplifier core to prevent damage. The energy absorbed by the  
protection circuitry is then dissipated as heat.  
When an ESD voltage develops across two or more amplifier device pins, current flows through one or more  
steering diodes. Depending on the path that the current takes, the absorption device can activate. The absorption  
device has a trigger, or threshold voltage, that is above the normal operating voltage of the OPA169x but below  
the device breakdown voltage level. When this threshold is exceeded, the absorption device quickly activates  
and clamps the voltage across the supply rails to a safe level.  
When the operational amplifier connects into a circuit (see 55), the ESD protection components are intended  
to remain inactive and are not involved in the application-circuit operation. However, circumstances may arise  
where an applied voltage exceeds the operating voltage range of a given pin. If this condition occurs, there is a  
risk that some internal ESD protection circuits can turn on and conduct current. Any such current flow occurs  
through steering-diode paths and rarely involves the absorption device.  
55 shows a specific example where the input voltage (VIN) exceeds the positive supply voltage (V+) by 500  
mV or more. Much of what happens in the circuit depends on the supply characteristics. If V+ can sink the  
current, one of the upper input steering diodes conducts and directs current to V+. Excessively high current  
levels can flow with increasingly higher VIN. As a result, the data sheet specifications recommend that  
applications limit the input current to 10 mA.  
If the supply is not capable of sinking the current, VIN can begin sourcing current to the operational amplifier and  
then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to  
levels that exceed the operational amplifier absolute maximum ratings.  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
 
OPA1692  
www.ti.com.cn  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
Feature Description (接下页)  
Another common question involves what happens to the amplifier if an input signal is applied to the input when  
the power supplies (V+ or V–) are at 0 V. This question depends on the supply characteristic when at 0 V, or at a  
level below the input signal amplitude. If the supplies appear as high impedance, then the input source supplies  
the operational amplifier current through the current-steering diodes. This state is not a normal bias condition;  
most likely, the amplifier does not operate normally. If the supplies are low impedance, then the current through  
the steering diodes can become quite high. The current level depends on the ability of the input source to deliver  
current and any resistance in the input path.  
If there is any uncertainty about the ability of the supply to absorb this current, add external Zener diodes to the  
supply pins; see 55. Select the Zener voltage so that the diode does not turn on during normal operation.  
However, the Zener voltage must be low enough so that the Zener diode conducts if the supply pin begins to rise  
above the safe operating, supply voltage level.  
7.4 Device Functional Modes  
7.4.1 Operating Voltage  
The OPA169x series op amps operate from ±1.75 V to ±18 V supplies while maintaining excellent performance.  
The OPA169x series operates with as little as 3.5 V between the supplies and with up to 36 V between the  
supplies. However, some applications do not require equal positive and negative output voltage swing. With the  
OPA169x series, power-supply voltages are not required to be equal. For example, the positive supply can be  
set to 25 V with the negative supply at –5 V.  
In all cases, the common-mode voltage must be maintained within the specified range. Key parameters are  
assured over the specified temperature range of TA = –40°C to 125°C. Parameters that vary significantly with  
operating voltage or temperature are shown in the Typical Characteristics.  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
OPA1692  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Capacitive Loads  
The dynamic characteristics of the OPA169x amplifiers are optimized for commonly encountered gains, loads,  
and operating conditions. The combination of low closed-loop gain and high capacitive loads decreases the  
phase margin of the amplifier and can lead to gain peaking or oscillations. As a result, heavier capacitive loads  
must be isolated from the output. Add a small resistor (RS equal to 50 Ω, for example) in series with the output to  
isolate heavier capacitive loads.  
8.1.2 Noise Performance  
56 shows the total circuit noise for varying source impedances with the operational amplifier in a unity-gain  
configuration (with no feedback resistor network and therefore no additional noise contributions). The op amp  
itself contributes a voltage noise component and a current noise component. The voltage noise is commonly  
modeled as a time-varying component of the offset voltage. The current noise is modeled as the time-varying  
component of the input bias current and reacts with the source resistance to create a voltage component of  
noise. Therefore, the lowest noise op amp for a given application depends on the source impedance. For low  
source impedance, current noise is negligible, and voltage noise generally dominates. The OPA169x has low  
voltage noise and low current noise. As a result, the current noise contribution of the OPA169x series is  
negligible for source impedances less than 100 kΩ.  
56 shows the calculation of the total circuit noise, with these parameters:  
en = voltage noise  
In = current noise  
RS = source impedance  
k = Boltzmann's constant = 1.38 × 10–23 J/K  
T = temperature in degrees Kelvin (K)  
For more details on calculating noise, see Basic Noise Calculations.  
1000  
Voltage Noise Contribution  
Source Resistor Noise Contribution  
Current Noise Contribution  
100  
10  
1
Total Noise  
0.1  
10  
100  
1k  
10k  
100k  
1M  
Source Resistance (O)  
C001  
56. Noise Performance of the OPA169x in a Unity-Gain Buffer Configuration  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
 
OPA1692  
www.ti.com.cn  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
Application Information (接下页)  
8.1.3 Basic Noise Calculations  
Low-noise circuit design requires careful analysis of all noise sources. External noise sources can dominate in  
many cases; consider the effect of source resistance on overall op amp noise performance. Total noise of the  
circuit is the root-sum-square combination of all noise components.  
The resistive portion of the source impedance produces thermal noise proportional to the square root of the  
resistance. This function is plotted in 56. The source impedance is typically fixed; consequently, select the op  
amp and the feedback resistors to minimize the respective contributions to the total noise.  
57 shows noninverting (A) and inverting (B) op amp circuit configurations with gain. In circuit configurations  
with gain, the feedback network resistors contribute noise. In general, the current noise of the op amp reacts with  
the feedback resistors to create additional noise components.  
The selected feedback resistor values make these noise sources negligible. Low impedance feedback resistors  
load the output of the amplifier. The equations for total noise are shown for both configurations.  
(A) Noise in Noninverting Gain Configuration  
Noise at the output is given as EO, where  
R1  
R2  
2
42  
41 42  
2
2
2
2
¨
: ;  
1
:
;
:
;
:
;
>
?
84/5  
'
1
= l1 + p A5 + A0 + kA4 2 o + E0 45 + lE0 d  
hp  
æ4  
1
41  
41 + 42  
GND  
œ
EO  
8
: ;  
2
A = 4 G$ 6(-) 45  
d
h
¥
Thermal noise of RS  
+
5
*V  
¾
RS  
41 42  
8
: ;  
3
A4  
= ¨4 G$ 6(-) d  
2
h
d
h
Thermal noise of R1 || R2  
æ4  
1
41 + 42  
*V  
¾
+
,
h
VS  
Source  
GND  
G$ = 1.38065 10F23  
: ;  
4
d
œ
Boltzmann Constant  
-
Temperature in kelvins  
: ;  
>
?
-
5
6(-) = 237.15 + 6%)  
(B) Noise in Inverting Gain Configuration  
Noise at the output is given as EO, where  
R1  
R2  
2
:
;
42  
45 + 41 42  
'
1
= l1 +  
p A0 2 + kA4  
o2 + FE0 H  
+4 æ4  
5 2  
IG  
¨
: ;  
6
:
;
>
84/5  
?
1
45 + 41  
45 + 41 + 42  
RS  
œ
EO  
:
;
45 + 41 42  
8
+
: ;  
7
¨
4 G$ 6(-) H  
A4  
=
I
d
h
Thermal noise of (R1 + RS) || R2  
+4 æ4  
5
1
2
45 + 41 + 42  
*V  
¾
+
VS  
œ
,
GND  
G$ = 1.38065 10F23  
d
h
: ;  
8
Boltzmann Constant  
Source  
GND  
-
: ;  
9
>
?
6(-) = 237.15 + 6%)  
-
Temperature in kelvins  
Copyright © 2017, Texas Instruments Incorporated  
(1) eN is the voltage noise of the amplifier. For the OPAx169x series of operational amplifiers, eN = 4.2 nV/Hz at 1 kHz.  
(2) iN is the current noise of the amplifier. For the OPA169x series of operational amplifiers, iN = 370 fA/Hz at 1 kHz.  
(3) For additional resources on noise calculations, see TI's Precision Labs Series.  
57. Noise Calculation in Gain Configurations  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
 
OPA1692  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Application Information (接下页)  
8.1.4 EMI Rejection  
The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational  
amplifiers. An adverse effect that is common to many op amps is a change in the offset voltage as a result of RF  
signal rectification. An op amp that is more efficient at rejecting this change in offset as a result of EMI has a  
higher EMIRR and is quantified by a decibel value. Measuring EMIRR can be performed in many ways, but this  
section provides the EMIRR IN+, which specifically describes the EMIRR performance when the RF signal is  
applied to the noninverting input pin of the op amp. In general, only the noninverting input is tested for EMIRR for  
the following three reasons:  
Op amp input pins are known to be the most sensitive to EMI, and typically rectify RF signals better than the  
supply or output pins.  
The noninverting and inverting op amp inputs have symmetrical physical layouts and exhibit approximately  
matching EMIRR performance  
EMIRR is easier to measure on noninverting pins than on other pins because the noninverting input pin can  
be isolated on a PCB. This isolation allows the RF signal to be applied directly to the noninverting input  
terminal with no complex interactions from other components or connecting PCB traces.  
High-frequency signals conducted or radiated to any pin of the operational amplifier result in adverse effects,  
as the amplifier does not have sufficient loop gain to correct for signals with spectral content outside its  
bandwidth. Conducted or radiated EMI on inputs, power supply, or output may result in unexpected DC  
offsets, transient voltages, or other unknown behavior. Take care to properly shield and isolate sensitive  
analog nodes from noisy radio signals and digital clocks and interfaces.  
The EMIRR IN+ of the OPA169x amplifiers is plotted versus frequency as shown in 58. If available, any  
dual and quad op amp device versions have nearly similar EMIRR IN+ performance. The OPA169x unity-  
gain bandwidth is 5.1 MHz. EMIRR performance below this frequency denotes interfering signals that fall  
within the op amp bandwidth.  
See EMI Rejection Ratio of Operational Amplifiers, available for download from www.ti.com.  
120  
100  
80  
60  
40  
20  
10M  
100M  
Frequency (Hz)  
1G  
10G  
58. OPA169x EMIRR IN+  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
 
OPA1692  
www.ti.com.cn  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
1 lists the EMIRR IN+ values for the OPA169x at particular frequencies commonly encountered in real-world  
applications. Applications listed in 1 may be centered on or operated near the particular frequency shown.  
This information may be of special interest to designers working with these types of applications, or working in  
other fields likely to encounter RF interference from broad sources, such as the industrial, scientific, and medical  
(ISM) radio band.  
1. OPA169x EMIRR IN+ for Frequencies of Interest  
FREQUENCY  
APPLICATION OR ALLOCATION  
EMIRR IN+  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF)  
applications  
400 MHz  
45.9 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation,  
GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
5 GHz  
50.2 dB  
70.7 dB  
76.1 dB  
94.1 dB  
104.5 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite  
operation, C-band (4 GHz to 8 GHz)  
8.1.5 EMIRR +IN Test Configuration  
59 shows the circuit configuration for testing the EMIRR IN+. An RF source connects to the op amp  
noninverting input pin using a transmission line. The op amp is configured in a unity-gain buffer topology with the  
output connected to a low-pass filter (LPF) and a digital multimeter (DMM). A large impedance mismatch at the  
op amp input causes a voltage reflection; however, this effect is characterized and accounted for when  
determining the EMIRR IN+. A multimeter samples and measures the resulting DC offset voltage. The LPF  
isolates the multimeter from residual RF signals that may interfere with multimeter accuracy.  
Ambient temperature: 25˘C  
+VS  
œ
50  
Low-Pass Filter  
+
RF source  
DC Bias: 0 V  
Modulation: None (CW)  
-VS  
Sample /  
Averaging  
Digital Multimeter  
Not shown: 0.1 µF and 10 µF  
supply decoupling  
Frequency Sweep: 201 pt. Log  
59. EMIRR +IN Test Configuration  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
 
 
OPA1692  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
www.ti.com.cn  
8.2 Typical Application  
The low power consumption, noise, and distortion of the OPA169x family of audio operational amplifiers make  
the family a viable option for a number of analog audio circuits. 60 shows one circuit example, which shows a  
preamplifier circuit that is designed for high-performance electret microphones that use a 3-wire interface.  
5 V  
5 V  
0.1 F  
Primo EM-173  
Microphone  
C1  
0.1 F  
R3  
100 ꢀ  
OPA1692  
+
Output  
Microphone  
Cable  
œ
R1  
R2  
C2  
5.9 kꢀ  
100 kꢀ  
100 pF  
0.1 F  
-5 V  
R4 100 kꢀ  
R5 1.1 kꢀ  
C3  
1 F  
R6 100 ꢀ  
C4 6.8 nF  
Copyright © 2017, Texas Instruments Incorporated  
60. Low-Noise Preamplifier for 3-Wire Electret Microphones  
8.2.1 Design Requirements  
Maximum Input Sound Pressure Level (SPL): 120 dB  
–3-dB Bandwidth: 20 Hz to 20 kHz  
Signal-to-Noise Ratio: > 75 dB  
Power Supply Voltage: ± 5 V  
Power Supply Current: < 1.5 mA  
8.2.2 Detailed Design Procedure  
The selected design requirements represent a high-performance wireless microphone application. Wireless  
microphones typically use an electret microphone element, an analog pre-amplifier circuit, and transmit circuitry  
which may use analog or digital methods of transmission. Because these devices are battery-powered, all  
circuitry must be designed to consume as little power as possible, while still achieving very high audio  
performance. The performance specifications for the microphone used in this design are shown in 2. This  
microphone element uses a 3-wire connection scheme with separate connections for power, ground, and signal.  
The microphone data sheet specifies that the signal line is terminated with a recommended 5.6-kΩ resistance  
and a 5-V supply.  
2. Primo EM-173 Microphone Specifications  
PARAMETER  
Sensitivity  
VALUE  
–37 dBV  
600 Ω  
Output impedance  
Signal-to-noise ratio (SNR)  
Maximum input sound pressure level  
Operating voltage  
80 dB  
135 dB  
5 V (3 V – 10 V)  
600 µA  
Operating current  
R1, C1, and R2 provide the correct termination impedance for the microphone and AC-couple the microphone  
signal to the amplifier input. R2 is selected with a large value (100 kΩ) so that a smaller AC-coupling capacitor  
can be used (C1). The high-pass corner frequency produced by C1 and R2 must be set to 20 Hz using 公式 1:  
1
1
20 Hz =  
=
ç C1 = 79.6 nF ç 100 nF  
2pR2 C1 2p100 kW C1  
(1)  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
OPA1692  
www.ti.com.cn  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
R1 and R2 are in parallel for frequencies above 20 Hz. Therefore, select the value of R1 so that when in parallel  
with R2, the combination results in a 5.6-kΩ resistance as specified in the microphone data sheet. 公式 2  
calculates R1.  
R1 R2  
R1 + R2 R1 +100 kW  
R1 100 kW  
5.6 kW =  
=
ç R1 = 5.9 kW  
(2)  
R3 and C2 form a low-pass filter to prevent the amplification of electromagnetic interference (EMI) signals. 公式 3  
shows the corner frequency of this EMI filter.  
1
1
f-3dB  
=
=
= 15.9 MHz  
2pR3 C2 2p100 W ∂100 pF  
(3)  
The input bias current of the OPA1692 through the 100-kΩ input resistor (R2) and can potentially cause a large  
offset voltage to appear at the output of the amplifier. One solution to this problem is to match the DC resistance  
of the circuit at each input of the amplifier. R4 and C3 accomplish this goal by providing a DC-feedback path for  
the amplifier (R4) which has the same resistance as the input resistor (R2). Capacitor C3 serves two functions.  
First, at low-frequencies this capacitor is effectively an open circuit and therefore the gain of the amplifier is 1,  
which reduces DC offsets at the output. At high frequencies where the impedance of the capacitor is low, the  
feedback network of R5, R6, and C4 determine the gain of the amplifier.  
The nominal gain of the preamplifier circuit is calculated by considering the output of the microphone at the  
maximum input SPL. For this design, a maximum input SPL of 120 dB or [20 pascals (Pa)] is specified. The  
microphone sensitivity is shown as –37 dBV, measured at 1-Pa air pressure. The output signal of the microphone  
at 20-Pa air pressure can be calculated by converting the –37 dBV sensitivity specification to mV per pascal of  
air pressure as shown in 公式 4:  
-37 dBV  
÷
VOUT(MIC) = 20 Paì10«∆  
= 282.5 mVRMS = 399.5 mVp  
20  
(4)  
The linear output voltage range of the OPA1692 extends to within 200 mV of each power supply. Therefore, on a  
±5-V power supply, the linear output voltage range is ±4.8 V. The linear output voltage range of the amplifier and  
the maximum output signal level of the microphone determine the gain of the amplifier, as shown in 公式 5:  
VOUT(OPA1692)  
4.8 VP  
R5  
R6  
G =  
=
= 12.015 (21.6 dB) = 1+  
VOUT(MIC)  
399.5 mVP  
(5)  
Selecting values of 1.1 kΩ and 100 Ω for R5 and R6, respectively, produce a nominal gain of 12 for the circuit,  
allowing the full linear output swing of the amplifier to be used for the maximum input SPL. The feedback  
capacitor (C4) limits the gain of the circuit at high frequencies beyond the range of human hearing. 公式 6 shows  
the high-pass corner frequency that capacitor C4 produces:  
1
1
20 kHz =  
=
ç C4 = 7.23 nF ç 6.8 nF  
2∂ p R5 C4 2∂ p ∂1.1 kW C4  
(6)  
Lastly, by the low-frequency bandwidth requirement for the design and the gain determines the value of C3. The  
high-pass corner frequency produced by this capacitor is affected by resistors R5 and R6 as shown in 公式 7:  
÷
R5  
1
1
C = 1+  
= 12  
(
ç C3 = 955 nF ç1mF  
)
3
R6 2p∂R4 f-3dB  
2p100 kW20 Hz  
«
(7)  
8.2.3 Application Curves  
3 lists the performance of the preamplifier circuit in 60. The total power supply current of the circuit is a  
combination of the 600 µA consumed by the microphone element itself and the 650 µA power-supply current of  
the OPA1692. 61 shows the frequency response of the circuit. Comparing the output signal level of the  
microphone for a 1-Pa input signal level to the A-weighted noise of the preamplifier circuit and microphone  
determines the SNR of the circuit. For a 1-Pa input sound level, the microphone produces a 14.13 mVRMS signal.  
The microphone has an SNR of 80 dB, which results in a RMS noise voltage of 1.41 µVRMS. The input-referred  
A-weighted noise voltage of the preamplifier circuit is 600.6 nVRMS. The microphone and preamplifier noise must  
be combined as a root sum of squares, which results in a total RMS noise voltage of 1.53 µVRMS and a total  
circuit SNR of 79.3 dB. By selecting the OPA1692 for this design, this circuit achieves a high level of  
performance with low power consumption.  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
 
 
 
 
 
 
OPA1692  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
www.ti.com.cn  
3. Comparison of Design Requirements and Results  
SPECIFICATION  
Gain  
DESIGN REQUIREMENT  
12 V/V or 21.6 dB (120 dB Maximum Input SPL)  
20 Hz to 20 kHz  
DESIGN RESULT  
11.79 V/V or 21.43 dB  
24 Hz to 21 kHz  
79.3 dB  
–3-dB bandwidth  
Signal-to-noise ratio  
> 75 dB  
Power supply current  
(microphone and amplifier circuit)  
< 1.5 mA  
1.25 mA  
100  
10  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
C001  
61. Frequency Response of the Low-Noise Preamplifier for 3-Wire Electret Microphones  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA1692  
www.ti.com.cn  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
8.3 Other Application Examples  
8.3.1 Two-Wire Electret Microphone Preamplifier  
The circuit in 60 can be modified to accommodate two-wire electret microphones, as shown in 62. In two-  
wire configurations, there is no resistor in series with the source of the internal JFET of the microphone. The  
audio signal is output as a varying voltage across the biasing resistor (2.2 kΩ in 62) of the capsule. The  
preamplifier input is AC-coupled to the biasing resistor through a 0.1-µF capacitor and 47-kΩ input resistor.  
5 V  
2.2  
k  
5 V  
0.1 F  
Electret  
Microphone  
½ OPA1692  
+
0.1 F  
100 ꢀ  
Output  
Microphone  
Cable  
œ
47  
kꢀ  
100  
pF  
0.1 F  
47 kꢀ  
-5 V  
2.2 F  
150 ꢀ  
3.57 kꢀ  
2.2 nF  
62. Two-Wire Electret Microphone Preamplifier  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
 
OPA1692  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Other Application Examples (接下页)  
8.3.2 Battery-Powered Preamplifier for Professional Microphones  
63 shows a preamplifier designed for portable applications that require low-noise, high common-mode  
rejection, and long battery life. Both channels of the OPA1692 are configured as a two-op amp instrumentation  
amplifier with a variable gain from 6 to 40 dB. An array of 1-kΩ resistors is recommended for the feedback  
network because the excellent matching of these resistors ensure high common-mode rejection in the circuit. An  
OPA171 is configured as a buffered power supply divider to provide a biasing voltage to the circuit, allowing the  
system to operate properly on a single 9-V battery. The additional components at the OPA1692 inputs are for  
phantom power, EMI, and ESD protection. The circuit consumes approximately 2 mA of quiescent power supply  
current.  
9 V  
9 V  
0.1 F  
100 kꢁ  
OPA171  
+
VBIAS  
œ
1 F  
100 kꢁ  
10-kPotentiometer  
(Logarithmic)  
20 ꢁ  
1 kꢁ  
VBIAS  
Array of matched 1-kresistors  
1 kꢁ  
48 V Phantom Power  
1 kꢁ  
1 kꢁ  
9 V  
9 V  
D1  
0.1 F  
47 kꢁ  
10 V  
6.8 kꢁ  
6.8 kꢁ  
D2  
47 F  
œ
œ
47 F  
Microphone  
Input  
Output  
+
+
68 ꢁ  
68 ꢁ  
30 ꢁ  
100  
pF  
47 kꢁ  
VBIAS  
2.2 kꢁ  
OPA1692  
2
3
100  
pF  
1
22 kꢁ  
68 ꢁ  
100  
pF  
2.2 kꢁ  
47 F  
30 ꢁ  
XLR Connector  
Copyright © 2017, Texas Instruments Incorporated  
D3  
D4  
63. Preamplifier for Professional Microphones Powered from a 9-V Battery  
28  
版权 © 2017–2018, Texas Instruments Incorporated  
 
OPA1692  
www.ti.com.cn  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
9 Power Supply Recommendations  
The OPA169x are specified for operation from 3.5 V to 36 V (±1.75 V to ±18 V); many specifications apply from  
–40°C to 125°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature  
are shown in the Typical Characteristics section. Applications with noisy or high-impedance power supplies  
require decoupling capacitors close to the device pins. In most cases, 0.1-µF capacitors are adequate.  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good printed-circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and of op amp  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources  
local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close as possible to the device. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup. Physically  
separate digital and analog grounds, observing the flow of the ground current.  
To reduce parasitic coupling, run the input traces as far away as possible from the supply or output traces. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed to  
in parallel with the noisy trace.  
Place the external components as close as possible to the device. As shown in 64, keeping RF and RG  
close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
For best performance, TI recommends cleaning the PCB following assembly.  
Any precision integrated circuit can experience performance shifts resulting from moisture ingress into the  
plastic package. Following any aqueous PCB cleaning process, TI recommends baking the PCB assembly to  
remove moisture introduced into the device packaging during the cleaning process. A low-temperature, post-  
cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
OPA1692  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
www.ti.com.cn  
10.2 Layout Example  
VIN A  
VIN B  
+
+
VOUT A  
VOUT B  
RG  
RG  
RF  
RF  
(Schematic Representation)  
Place components  
close to device and to  
each other to reduce  
parasitic errors.  
Output A  
Use low-ESR,  
ceramic bypass  
capacitor. Place as  
close to the device  
as possible.  
VS+  
GND  
OUTPUT A  
V+  
RF  
Output B  
GND  
-IN A  
+IN A  
Vœ  
OUTPUT B  
-IN B  
RF  
RG  
GND  
VIN B  
VIN A  
RG  
+IN B  
Keep input traces short  
and run the input traces  
as far away from  
the supply lines  
Use low-ESR,  
GND  
ceramic bypass  
capacitor. Place as  
close to the device  
as possible.  
VSœ  
Ground (GND) plane on another layer  
as possible.  
64. Operational Amplifier Board Layout for Noninverting Configuration  
10.3 Power Dissipation  
The OPA169x series op amps are capable of driving 2-kΩ loads with a power-supply voltage up to ±18 V and full  
operating temperature range. Internal power dissipation increases when operating at high supply voltages.  
Copper leadframe construction used in the OPA169x series op amps improves heat dissipation compared to  
conventional materials. Circuit board layouts minimize junction temperature rise. Wide copper traces help  
dissipate the heat by acting as an additional heat sink. Temperature rise is further minimized by soldering the  
devices to the circuit board rather than using a socket.  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA1692  
www.ti.com.cn  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 TINA-TI™(免费软件下载)  
TINA™是一款简单、功能强大且易于使用的电路仿真程序,此程序基于 SPICE 引擎。 TINA-TI™TINA 软件的  
一款免费全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。TINA-TI 提供所有  
传统的 SPICE 直流 (DC)、瞬态和频域分析以及其他设计功能。  
TINA-TI 可从 Analog eLab Design Center(模拟电子实验室设计中心)免费下载,它提供全面的后续处理能力,  
使得用户能够以多种方式形成结果。虚拟仪器提供选择输入波形和探测电路节点、电压和波形的功能,从而创建一  
个动态的快速入门工具。  
这些文件需要安装 TINA 软件(由 DesignSoft™提供)或者 TINA-TI 软件。请从 TINA-TI 文  
件夹 中下载免费的 TINA-TI 软件。  
11.1.1.2 DIP 适配器 EVM  
DIP 适配器 EVM 工具提供了一种简单而低成本的方式来针对小型表面贴装 IC 进行原型设计。评估工具适用于以下  
TI 封装:D U (SOIC-8)PW (TSSOP-8)DGK (VSSOP-8)DBVSOT23-6SOT23-5 SOT23-3)、  
DCKSC70-6 SC70-5)以及 DRL (SOT563-6)DIP 适配器 EVM 也可搭配引脚排使用或直接与现有电路相  
连。  
11.1.1.3 通用运算放大器评估模块 (EVM)  
通用运放 EVM 是一系列通用空白电路板,可简化采用各种 IC 封装类型的电路板原型设计。借助评估模块电路板设  
计,可以轻松快速地构造多种不同电路。共有  
5
个模型可供选用,每个模型都对应一种特定封装类型。支持  
PDIPSOICVSSOPTSSOP SOT-23 封装。  
这些电路板均为空白电路板,用户必须自行提供 ICTI 建议您在订购通用运算放大器 EVM  
时申请几个运算放大器器件样品。  
11.1.1.4 智能放大器扬声器特性鉴定板评估模块  
智能放大器扬声器特性鉴定板,与支持的 TI 智能放大器和 PurePath 控制台软件配合使用时,用户可测量扬声器偏  
移、温度和其它参数以便与 TI 智能放大器产品配合使用。  
11.1.1.5 TI 高精度设计  
TI 高精度设计的模拟设计方案是由 TI 公司高精度模拟实验室设计 应用 专家创建的模拟解决方案,提供了许多实用  
电路的工作原理、组件选择、仿真、完整印刷电路板 (PCB) 电路原理图和布局布线、物料清单以及性能测量结果。  
欲获取 TI 高精度设计,请访问 http://www.ti.com.cn/ww/analog/precision-designs/。  
11.1.1.6 WEBENCH®滤波器设计器  
WEBENCH® 滤波器设计器是一款简单、功能强大且便于使用的有源滤波器设计程序。借助 WEBENCH 滤波器设  
计器,用户可使用精选 TI 运算放大器和 TI 供应商合作伙伴提供的无源组件来构建最佳滤波器设计方案。  
WEBENCH® 设计中心以基于网络的工具形式提供 WEBENCH® 滤波器设计器。用户通过该工具可在数分钟内完  
成多级有源滤波器解决方案的设计、优化和仿真。  
11.2 文档支持  
11.2.1 相关文档  
使用 OPA169x 时,建议参考下列相关文档。所有这些文档都可从 www.ti.com.cn 上下载(除非另有说明)。  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
OPA1692  
ZHCSH60C JUNE 2017REVISED OCTOBER 2018  
www.ti.com.cn  
文档支持 (接下页)  
《放大器源电阻和噪声注意事项》  
《运算放大器的单电源操作》  
《运算放大器性能分析》  
《在放大器中进行调优》  
《反馈曲线图定义运算放大器交流性能》  
《适用于专业音频的有源音量控制》  
11.3 相关链接  
4 列出了快速访问链接。类别包括技术文档、支持与社区资源、工具与软件,以及申请样片或购买产品的快速链  
接。  
4. 相关链接  
器件  
产品文件夹  
请单击此处  
立即订购  
技术文档  
工具与软件  
请单击此处  
支持和社区  
请单击此处  
OPA1692  
请单击此处  
请单击此处  
11.4 接收文档更新通知  
如需接收文档更新通知,请访问 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.5 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.6 商标  
SoundPlus, TINA-TI, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
TINA, DesignSoft are trademarks of DesignSoft, Inc.  
All other trademarks are the property of their respective owners.  
11.7 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.8 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
32  
版权 © 2017–2018, Texas Instruments Incorporated  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA1692ID  
OPA1692IDGKR  
OPA1692IDGKT  
OPA1692IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
VSSOP  
VSSOP  
SOIC  
D
8
8
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
OP1692  
Samples  
Samples  
Samples  
Samples  
DGK  
DGK  
D
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
NIPDAUAG | SN  
NIPDAUAG | SN  
NIPDAU  
1692  
1692  
OP1692  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Dec-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA1692IDGKR  
OPA1692IDGKT  
OPA1692IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
2500  
250  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
5.3  
5.3  
6.4  
3.4  
3.4  
5.2  
1.4  
1.4  
2.1  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
2500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA1692IDGKR  
OPA1692IDGKT  
OPA1692IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
2500  
250  
366.0  
213.0  
356.0  
364.0  
191.0  
356.0  
50.0  
50.0  
35.0  
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
SOIC  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
OPA1692ID  
D
8
75  
506.6  
8
3940  
4.32  
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY