OPA170AQDBVRQ1 [TI]

汽车级、单路、36V、1.2MHz、低功耗运算放大器 | DBV | 5 | -40 to 125;
OPA170AQDBVRQ1
型号: OPA170AQDBVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车级、单路、36V、1.2MHz、低功耗运算放大器 | DBV | 5 | -40 to 125

放大器 光电二极管 运算放大器
文件: 总42页 (文件大小:1781K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
OPAx170-Q1 36V 单电源、低功耗、汽车级运算放大器  
1 特性  
3 说明  
1
符合汽车应用 要求  
具有符合 AEC-Q100 标准的下列结果:  
OPA170-Q1OPA2170-Q1 OPA4170-Q1 器件  
(OPAx170-Q1) 属于 36V、单电源、低噪声运算放大器  
系列。该器件系列采用微型封装,可由电压介于 2.7V  
(±1.35V) 36V (±18V) 之间的电源供电运行。此类器  
件在确保静态电流较低的情况下提供良好的偏移、漂移  
和带宽。  
器件温度等级 1:环境工作温度范围为 –40°C  
+125°C  
器件 HBM ESD 分类等级 3A  
带电器件模型 (CDM) ESD 分类等级 C5  
电源电压范围:2.7V 36V±1.35V ±18V  
低噪声:19 nV/Hz  
多数运算放大器仅有一个指定的电源电压,OPAx170-  
Q1 系列运算放大器则有所不同,其可在 2.7V 36V  
电压范围内额定运行。超过电源轨的输入信号不会导致  
反相。OPAx170-Q1 系列在容性负载高达 300pF 时可  
保持稳定。输入可在负电源轨以下 100mV 以及正电源  
2V 之内正常运行。请注意,这些器件可在正电源轨  
之上 100mV 的满轨到轨输入上运行,但是在正电源轨  
2V 内运行时,性能会受到影响。OPAx170-Q1 运算放  
大器的额定工作温度范围为 -40°C +125°C。  
已过滤的射频干扰 (RFI) 输入  
输入范围包括负电源  
输入范围运行至正电源  
轨到轨输出  
增益带宽:1.2MHz  
低静态电流:每个放大器 110µA  
高共模抑制:120dB  
低偏置电流:15pA(最大值)  
通道数量:  
器件信息(1)  
封装  
器件型号  
OPA170-Q1  
封装尺寸(标称值)  
2.90mm × 1.60mm  
3.00mm × 3.00mm  
5.00mm x 4.40mm  
OPA170-Q1 - 1 条  
OPA2170-Q1 - 2 条  
OPA4170-Q1 - 4 条  
SOT-23 (5)  
VSSOP (8)  
OPA2170-Q1  
OPA4170-Q1  
TSSOP封装(14)  
行业标准封装  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
2 应用  
汽车  
混合动力汽车 (HEV) 和电动车 (EV) 动力传动  
高级驾驶员辅助系统 (ADAS)  
自动恒温控制  
温度测量  
应力计放大器  
精密积分器  
EMIRR IN+ 与频率间的关系  
140  
120  
100  
80  
60  
40  
PRP = -10 dBm  
VS  
= 18 V  
20  
VCM = 0 V  
0
10 M  
100 M  
Frequency (Hz)  
1 G  
10 G  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS834  
 
 
 
 
 
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 19  
7.4 Device Functional Modes........................................ 23  
Application and Implementation ........................ 24  
8.1 Application Information............................................ 24  
8.2 Typical Application .................................................. 24  
Power Supply Recommendations...................... 26  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings ............................................................ 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information: OPA170-Q1 ............................ 7  
6.5 Thermal Information: OPA2170-Q1 .......................... 7  
6.6 Thermal Information: OPA4170-Q1 .......................... 7  
6.7 Electrical Characteristics........................................... 8  
6.8 Typical Characteristics: Table of Graphs................ 10  
6.9 Typical Characteristics............................................ 11  
Detailed Description ............................................ 19  
7.1 Overview ................................................................. 19  
7.2 Functional Block Diagram ...................................... 19  
8
9
10 Layout................................................................... 26  
10.1 Layout Guidelines ................................................. 26  
10.2 Layout Example .................................................... 27  
11 器件和文档支持 ..................................................... 28  
11.1 器件支持................................................................ 28  
11.2 文档支持................................................................ 29  
11.3 相关链接................................................................ 29  
11.4 社区资源................................................................ 29  
11.5 ....................................................................... 29  
11.6 静电放电警告......................................................... 29  
11.7 Glossary................................................................ 29  
12 机械、封装和可订购信息....................................... 30  
7
4 修订历史记录  
Changes from Revision A (March 2017) to Revision B  
Page  
已删除 从器件信息 表中删除了 8 引脚 SOIC5 引脚 SOT8 引脚 VSSOP 14 引脚 SOIC 封装.................................... 1  
已更改 首页图 ........................................................................................................................................................................ 1  
Deleted OPA170-Q1 D (SOIC) and DRL (SOT) pinout drawings and pinout table information............................................. 3  
Deleted OPA2170-Q1 D (SOIC) and DCU (VSSOP Micro size packages ............................................................................ 4  
Deleted OPA170-Q1 D (SOIC) pinout drawing ...................................................................................................................... 5  
Deleted D (SOIC) and DRL (SOT) thermal information from OPA170-Q1 Thermal Information table ................................. 7  
Deleted D (SOIC) and DCU (VSSOP) thermal information from OPA2170-Q1 Thermal Information table ......................... 7  
Deleted D (SOIC) thermal information from OPA4170-Q1 Thermal Information table ......................................................... 7  
已更改 values in 38 from 250 Ω to 2.5 kΩ ...................................................................................................................... 21  
Changes from Original (December 2016) to Revision A  
Page  
已删除 说明中第一段的最后一句 ........................................................................................................................................... 1  
Deleted static literature number in Thermal Information: OPA170-Q1 table note ................................................................. 7  
Separated the IB and IOS test conditions for the OPA4170 in Electrical Characteristics table............................................. 8  
已添加 additional text to Figure 8 title ................................................................................................................................. 12  
已更改 "many specifications apply from –40°C to +125°C" to "many specifications apply from –40°C to +85°C" to  
correct typo........................................................................................................................................................................... 26  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
www.ti.com.cn  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
5 Pin Configuration and Functions  
OPA170-Q1 DBV Package  
5-Pin SOT-23  
Top View  
V+  
OUT  
1
2
3
5
4
V-  
-IN  
+IN  
Table 1. Pin Functions: OPA170-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
IN– (–IN)  
IN+ (+IN)  
OUT  
NO.  
4
I
Negative (inverting) input  
Positive (noninverting) input  
Output  
3
I
1
O
V–  
2
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
5
Copyright © 2016–2017, Texas Instruments Incorporated  
3
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
OPA2170-Q1 DGK Package  
8-Pin VSSOP  
Top View  
OUT A  
1
2
3
4
8
7
6
5
V+  
-IN A  
+IN A  
V-  
OUT B  
-IN B  
+IN B  
Table 2. Pin Functions: OPA2170-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN A  
–IN B  
+IN A  
+IN B  
OUT A  
OUT B  
V–  
NO.  
2
I
I
Inverting input, channel A  
Inverting input, channel B  
Noninverting input, channel A  
Noninverting input, channel B  
Output, channel A  
6
3
I
5
I
1
O
O
7
Output, channel B  
4
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
8
4
Copyright © 2016–2017, Texas Instruments Incorporated  
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
www.ti.com.cn  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
OPA4170-Q1 PW Package  
14-Pin TSSOP  
Top View  
OUT A  
-IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 -IN D  
12 +IN D  
11 V-  
+IN B  
-IN B  
OUT B  
10 +IN C  
9
8
-IN C  
OUT C  
Table 3. Pin Functions: OPA4170-Q1  
PIN  
NAME  
–IN A  
I/O  
DESCRIPTION  
NO.  
2
I
I
Inverting input, channel A  
–IN B  
6
Inverting input, channel B  
Inverting input, channel C  
Inverting input, channel D  
Noninverting input, channel A  
Noninverting input, channel B  
Noninverting input, channel C  
Noninverting input, channel D  
Output, channel A  
–IN C  
–IN D  
+IN A  
+IN B  
+IN C  
+IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V–  
9
I
13  
3
I
I
5
I
10  
12  
1
I
I
O
O
O
O
7
Output, channel B  
8
Output, channel C  
14  
11  
4
Output, channel D  
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
20  
UNIT  
V
Supply voltage  
–20  
Single supply voltage  
40  
V
Signal input pin voltage  
Signal input pin current  
Output short-circuit current(2)  
Operating ambient temperature, TA  
Junction temperature, TJ  
Storage temperature, Tstg  
(V–) – 0.5  
–10  
(V+) + 0.5  
10  
V
mA  
Continuous  
–55  
150  
150  
150  
°C  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±4000  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
36  
UNIT  
VS  
TA  
Supply voltage (V+ – V–)  
Operating temperature  
2.7  
V
–40  
125  
°C  
6
Copyright © 2016–2017, Texas Instruments Incorporated  
 
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
www.ti.com.cn  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
6.4 Thermal Information: OPA170-Q1  
OPA170-Q1  
THERMAL METRIC(1)  
DBV (SOT-23)  
5 PINS  
245.8  
133.9  
83.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
18.2  
ψJB  
83.1  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Thermal Information: OPA2170-Q1  
OPA2170-Q1  
THERMAL METRIC(1)  
DGK (VSSOP)  
UNIT  
8 PINS  
180  
55  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
130  
5.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
120  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Thermal Information: OPA4170-Q1  
OPA4170-Q1  
THERMAL METRIC(1)  
PW (TSSOP)  
14 PINS  
106.9  
24.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
59.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
ψJB  
54.3  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2016–2017, Texas Instruments Incorporated  
7
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
6.7 Electrical Characteristics  
at TA = 25°C, VCM = VOUT = VS / 2, and RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
OFFSET VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TA = 25°C  
0.25  
±1.8  
±2  
mV  
mV  
VOS  
Input offset voltage  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
dVOS/dT Input offset voltage drift  
±0.3  
1
±2  
µV/°C  
Input offset voltage vs power  
VS = 4 V to 36 V  
TA = –40°C to 125°C  
PSRR  
supply  
±5  
µV/V  
µV/V  
Channel separation, dc  
5
INPUT BIAS CURRENT  
TA = 25°C  
±8  
±4  
±15  
pA  
nA  
pA  
nA  
TA = –40°C to 125°C (OPA170-Q1 and  
OPA2170-Q1)  
IB  
Input bias current  
Input offset current  
±3.5  
TA = –40°C to 125°C (OPA4170-Q1)  
TA = 25°C  
±16  
±15  
TA = –40°C to 125°C (OPA170-Q1 and  
OPA2170-Q1)  
IOS  
±3.5  
±16  
TA = –40°C to 125°C (OPA4170-Q1)  
NOISE  
Input voltage noise  
ƒ = 0.1 Hz to 10 Hz  
ƒ = 100 Hz  
2
22  
19  
µVPP  
nV/Hz  
nV/Hz  
en  
Input voltage noise density  
ƒ = 1 kHz  
INPUT VOLTAGE  
VCM  
Common-mode voltage range(1)  
(V–) – 0.1  
90  
(V+) – 2  
V
VS = ±2 V, (V–) – 0.1 V < VCM < (V+) – 2 V  
TA = –40°C to 125°C  
104  
120  
dB  
CMRR  
Common-mode rejection ratio  
VS = ±18 V, (V–) – 0.1 V < VCM < (V+) – 2  
V
104  
dB  
TA = –40°C to 125°C  
INPUT IMPEDANCE  
Differential  
100 || 3  
6 || 3  
MΩ || pF  
1012 Ω ||  
Common-mode  
OPEN-LOOP GAIN  
AOL Open-loop voltage gain  
FREQUENCY RESPONSE  
pF  
VS = 4 V to 36 V  
(V–) + 0.35 V < VO < (V+) – 0.35 V  
TA = –40°C to 125°C  
110  
130  
dB  
GBP  
SR  
Gain bandwidth product  
1.2  
0.4  
20  
MHz  
V/µs  
µs  
Slew rate  
G = 1  
To 0.1%, VS = ±18 V, G = 1 10-V step  
tS  
Settling time  
To 0.01% (12-bit), VS = ±18 V, G = 1  
10-V step  
28  
µs  
µs  
Overload recovery time  
VIN × Gain > VS  
2
THD+N  
Total harmonic distortion + noise G = 1, ƒ = 1 kHz, VO = 3 VRMS  
0.0002%  
(1) The input range can be extended beyond (V+) – 2 V up to V+. For additional information, see Typical Characteristics and Application  
and Implementation.  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
www.ti.com.cn  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
Electrical Characteristics (continued)  
at TA = 25°C, VCM = VOUT = VS / 2, and RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
IL = 0 mA  
VS = 4 V to 36 V  
10  
mV  
mV  
mV  
mV  
Voltage output swing from  
positive rail  
VO  
IL sourcing 1 mA  
VS = 4 V to 36 V  
115  
IL = 0 mA  
VS = 4 V to 36 V  
8
Voltage output swing from  
negative rail  
VO  
IL sinking 1 mA  
VS = 4 V to 36 V  
70  
VS = 5 V  
RL = 10 kΩ  
TA = –40°C to 125°C  
(V+) –  
0.05  
(V–) + 0.03  
V
V
VO  
Voltage output swing from rail  
RL = 10 kΩ  
AOL 110 dB  
TA = –40°C to 125°C  
(V+) –  
0.35  
(V–) + 0.35  
–20  
ISC  
Short-circuit current  
Capacitive load drive  
17  
mA  
pF  
CLOAD  
See Typical Characteristics  
ƒ = 1 MHz  
IO = 0 A  
RO  
Open-loop output resistance  
900  
Ω
POWER SUPPLY  
VS Specified voltage range  
2.7  
36  
V
IO = 0 A  
TA = 25°C  
110  
145  
µA  
IQ  
Quiescent current per amplifier  
IO = 0 A  
155  
µA  
TA = –40°C to 125°C  
TEMPERATURE  
Specified range  
–40  
–55  
125  
150  
°C  
°C  
Operating range  
版权 © 2016–2017, Texas Instruments Incorporated  
9
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
6.8 Typical Characteristics: Table of Graphs  
4. Characteristic Performance Measurements  
DESCRIPTION  
FIGURE  
1  
Offset Voltage Production Distribution  
Offset Voltage Drift Distribution  
Offset Voltage vs Temperature  
2  
3  
Offset Voltage vs Common-Mode Voltage  
Offset Voltage vs Common-Mode Voltage (Upper Stage)  
Offset Voltage vs Power Supply  
4  
5  
6  
IB and IOS vs Common-Mode Voltage  
Input Bias Current vs Temperature  
Output Voltage Swing vs Output Current (Maximum Supply)  
CMRR and PSRR vs Frequency (Referred-to-Input)  
CMRR vs Temperature  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23, 24  
25  
26  
27  
28, 29  
30, 31  
32  
33  
34  
35  
36  
PSRR vs Temperature  
0.1-Hz to 10-Hz Noise  
Input Voltage Noise Spectral Density vs Frequency  
THD+N Ratio vs Frequency  
THD+N vs Output Amplitude  
Quiescent Current vs Temperature  
Quiescent Current vs Supply Voltage  
Open-Loop Gain and Phase vs Frequency  
Closed-Loop Gain vs Frequency  
Open-Loop Gain vs Temperature  
Open-Loop Output Impedance vs Frequency  
Small-Signal Overshoot vs Capacitive Load (100-mV Output Step)  
No Phase Reversal  
Positive Overload Recovery  
Negative Overload Recovery  
Small-Signal Step Response (100 mV)  
Large-Signal Step Response  
Large-Signal Settling Time (10-V Positive Step)  
Large-Signal Settling Time (10-V Negative Step)  
Short-Circuit Current vs Temperature  
Maximum Output Voltage vs Frequency  
EMIRR IN+ vs Frequency  
10  
版权 © 2016–2017, Texas Instruments Incorporated  
 
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
www.ti.com.cn  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
6.9 Typical Characteristics  
VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
20  
18  
16  
14  
12  
10  
8
25  
20  
15  
10  
5
Distribution Taken From 400 Amplifiers  
Distribution Taken From 104 Amplifiers  
6
4
2
0
0
Offset Voltage (mV)  
Offset Voltage Drift (mV/°C)  
G001  
G002  
1. Offset Voltage Production Distribution  
2. Offset Voltage Drift Distribution  
1000  
800  
5 Typical Units Shown  
600  
400  
200  
0
−200  
−400  
−600  
−800  
−1000  
VCM = -18.1 V  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Common-Mode Voltage (V)  
G003  
3. Offset Voltage vs Temperature  
4. Offset Voltage vs Common-Mode Voltage  
500  
5 Typical Units Shown  
300  
100  
-100  
-300  
-500  
Normal  
Operation  
Common-Mode Voltage (V)  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
VSUPPLY (V)  
D006  
5. Offset Voltage vs Common-Mode Voltage  
6. Offset Voltage vs Power Supply  
(Upper Stage)  
版权 © 2016–2017, Texas Instruments Incorporated  
11  
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
12  
2000  
IB+  
IB-  
10  
8
1500  
1000  
500  
+IB  
IOS  
6
IOS  
0
4
-IB  
-500  
-1000  
2
VCM = 16.1 V  
VCM = -18.1 V  
0
-75 -50 -25  
0
25  
50  
75  
100 125 150  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
Temperature (°C)  
VCM (V)  
8. Input Bias Current vs Temperature for Single and Dual  
7. IB and IOS vs Common-Mode Voltage  
Versions  
18  
140  
120  
100  
80  
17  
16  
15  
14.5  
-14.5  
-15  
60  
-40°C  
+25°C  
+125°C  
40  
-16  
-17  
-18  
+PSRR  
20  
0
-PSRR  
CMRR  
0
1
2
3
4
5
6
7
8
9
10  
1
10  
100  
1k  
10k  
100k  
1M  
Output Current (mA)  
Frequency (Hz)  
9. Output Voltage Swing vs Output Current (Maximum  
10. CMRR and PSRR vs Frequency  
Supply)  
(Referred to Input)  
30  
3
2
VS  
VS  
VS  
=
=
=
1ꢀ35 V  
2 V  
VS = 2.7 V to 36 V  
VS = 4 V to 36 V  
25  
20  
15  
10  
5
18 V  
1
0
-1  
-2  
-3  
0
-75 -50 -25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Temperature (èC)  
D012  
11. CMRR vs Temperature  
12. PSRR vs Temperature  
12  
版权 © 2016–2017, Texas Instruments Incorporated  
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
www.ti.com.cn  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
Typical Characteristics (接下页)  
VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
1000  
100  
10  
1
1
10  
100  
1k  
10k  
100k  
1M  
Time (1 s/div)  
Frequency (Hz)  
G014  
13. 0.1-Hz to 10-Hz Noise  
14. Input Voltage Noise Spectral Density vs Frequency  
0.01  
0.001  
-80  
0.1  
-60  
VOUT = 3 VRMS  
BW = 80 kHz  
G = +1  
RL = 10 kW  
BW = 80 kHz  
G = +1  
RL = 10 kW  
0.01  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0.001  
0.0001  
0.0001  
0.00001  
0.00001  
10  
100  
1 k  
10 k  
100 k  
0.01  
0.1  
1
10 20  
Frequency (Hz)  
Output Amplitude (VRMS  
)
15. THD + N Ratio vs Frequency  
16. THD + N vs Output Amplitude  
140  
130  
120  
110  
100  
90  
VS  
=
18 V  
80  
VS  
=
1.35 V  
125  
70  
Specified Supply-Voltage Range  
60  
-50  
-25  
0
25  
50  
75  
Temperature (°C)  
100  
150  
D017  
18. Quiescent Current vs Supply Voltage  
17. Quiescent Current vs Temperature  
版权 © 2016–2017, Texas Instruments Incorporated  
13  
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
50  
140  
120  
100  
80  
135  
90  
40  
Gain  
45  
30  
0
Phase  
60  
-45  
-90  
-135  
-180  
-225  
-270  
20  
40  
10  
20  
0
0
G = −1  
G = 1  
G = 100  
-20  
−10  
−20  
-40  
0.1  
1
10  
100  
1k  
10k 100k  
1M  
10M  
1k  
10k  
100k 1M  
Frequency (Hz)  
10M  
100M  
Frequency (Hz)  
G020  
19. Open-Loop Gain and Phase vs Frequency  
20. Closed-Loop Gain vs Frequency  
3
10 k  
1 k  
100  
10  
VS = 2.7 V  
VS = 4 V  
2.5  
2
VS = 36 V  
1.5  
1
1
0.5  
0
1 m  
-75 -50 -25  
0
25  
50  
75  
100 125 150  
1
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
Temperature (°C)  
Frequency (Hz)  
21. Open-Loop Gain vs Temperature  
22. Open-Loop Output Impedance vs Frequency  
RL = 10 kW  
Ω
G = +1  
+18  
V
RF = 10 kW  
RI = 10 kW  
G = -1  
ROUT  
+18 V  
OPAx170-Q1  
ROUT  
Ω
RL  
CL  
Ω
-18  
V
OPAx170-Q1  
-18 V  
CL  
Ω
Ω
Ω
Ω
100-mV output step  
100-mV output step  
24. Small-Signal Overshoot vs Capacitive Load  
23. Small-Signal Overshoot vs Capacitive Load  
14  
版权 © 2016–2017, Texas Instruments Incorporated  
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
www.ti.com.cn  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
Typical Characteristics (接下页)  
VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
+18 V  
OPAx170-Q1  
-18 V  
37 VPP  
Sine Wave  
18ꢀ5 V)  
(
20 kΩ  
+18 V  
2 kΩ  
VOUT  
OPAx170-Q1  
VIN  
-18 V  
G = -10  
Time (100 μs/div)  
Time (10 μs/div)  
25. No Phase Reversal  
26. Positive Overload Recovery  
20 kΩ  
RL = 10 kΩ  
CL = 10 pF  
+18 V  
2 kΩ  
VOUT  
OPAx170-Q1  
VIN  
-18 V  
G = -10  
G = +1  
+18 V  
OPAx170-Q1  
-18 V  
RL  
CL  
Time (10 μs/div)  
Time (5 μs/div)  
27. Negative Overload Recovery  
28. Small-Signal Step Response (100-mV)  
G = +1  
RL = 10 kΩ  
RL = 10 kΩ  
CL = 10 pF  
CL = 10 pF  
RI = 2 kΩ RF = 2 kΩ  
+18 V  
OPAx170-Q1  
CL  
-18 V  
G = -1  
Time (50 μs/div)  
Time (5 μs/div)  
29. Small-Signal Step Response (100-mV)  
30. Large-Signal Step Response  
版权 © 2016–2017, Texas Instruments Incorporated  
15  
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
10  
G = -1  
RL = 10 kΩ  
8
6
CL = 10 pF  
4
12-Bit Settling  
2
0
-2  
-4  
-6  
-8  
-10  
(±1/2LSB = ±0.012%)  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Time (50 μs/div)  
Time (ms)  
10-V positive step  
31. Large-Signal Step Response  
32. Large-Signal Settling Time  
30  
10  
8
G = -1  
ISC, Source  
ISC, Sink  
25  
20  
6
15  
4
10  
12-Bit Settling  
2
5
0
0
−5  
-2  
-4  
-6  
-8  
-10  
(±1/2LSB = ±0.012%)  
−10  
−15  
−20  
−25  
−30  
0
10  
20  
30  
40  
50  
60  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Time (ms)  
G034  
10-V negative step  
10-V negative step  
34. Short-Circuit Current vs Temperature  
33. Large-Signal Settling Time  
16  
版权 © 2016–2017, Texas Instruments Incorporated  
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
www.ti.com.cn  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
Typical Characteristics (接下页)  
VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
15  
12.5  
10  
140  
120  
100  
80  
VS = ±15 V  
Maximum output range without  
slew−rate induced distortion  
7.5  
5
60  
VS = ±5 V  
40  
PRP = -10 dBm  
VS 18 V  
VCM = 0 V  
=
20  
2.5  
0
VS = ±1.35 V  
0
10 M  
100 M  
Frequency (Hz)  
1 G  
10 G  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
G035  
36. EMIRR IN+ vs Frequency  
35. Maximum Output Voltage vs Frequency  
版权 © 2016–2017, Texas Instruments Incorporated  
17  
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
18  
版权 © 2016–2017, Texas Instruments Incorporated  
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
www.ti.com.cn  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
7 Detailed Description  
7.1 Overview  
The OPAx170-Q1 family of operational amplifiers provides high overall performance, making them ideal for many  
general-purpose applications. The excellent offset drift of only 2 μV/°C provides excellent stability over the entire  
temperature range. In addition, the device offers very good overall performance with high CMRR, PSRR, and  
AOL  
.
7.2 Functional Block Diagram  
PCH  
FF Stage  
Ca  
Cb  
+IN  
PCH  
Input Stage  
2nd Stage  
OUT  
Output  
Stage  
-IN  
NCH  
Input Stage  
Copyright © 2017, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Operating Characteristics  
The OPAx170-Q1 family of amplifiers is specified for operation from 2.7 V to 36 V (±1.35 V to ±18 V). Many of  
the specifications apply from –40°C to +125°C. Parameters that can exhibit significant variance with regard to  
operating voltage or temperature are listed in 4.  
版权 © 2016–2017, Texas Instruments Incorporated  
19  
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2 Phase-Reversal Protection  
The OPAx170-Q1 family has an internal phase-reversal protection. Many operational amplifiers exhibit a phase  
reversal when the input is driven beyond the linear common-mode range. This condition is most often  
encountered in noninverting circuits when the input is driven beyond the specified common-mode voltage range,  
causing the output to reverse into the opposite rail. The input of the OPAx170-Q1 prevents phase reversal with  
excessive common-mode voltage. Instead, the output limits into the appropriate rail. 37 shows this  
performance.  
+18 V  
OPAx170-Q1  
-18 V  
37 VPP  
Sine Wave  
18ꢀ5 V)  
(
Time (100 μs/div)  
37. No Phase Reversal  
7.3.3 Electrical Overstress  
Designers typically ask questions about the capability of an operational amplifier to withstand electrical  
overstress. These questions typically focus on the device inputs, but may involve the supply voltage pins or the  
output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Internal electrostatic discharge (ESD) protection is built into these circuits to protect them from accidental ESD  
events both before and during product assembly.  
A good understanding of basic ESD circuitry and the relevance of the circuitry to an electrical overstress event is  
helpful. 38 shows the ESD circuits (indicated by the dashed line area) in the OPAx170-Q1. The ESD  
protection circuitry involves several current-steering diodes connected from the input and output pins and routed  
back to the internal power-supply lines, where the diodes meet at an absorption device internal to the operational  
amplifier. This protection circuitry is intended to remain inactive during normal circuit operation.  
20  
版权 © 2016–2017, Texas Instruments Incorporated  
 
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
www.ti.com.cn  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
Feature Description (接下页)  
TVS  
RF  
+VS  
R1  
2.5 kΩ  
INœ  
RS  
2.5 kΩ  
IN+  
+
Power-Supply  
ID  
RL  
ESD Cell  
+
VIN  
œ
œVS  
TVS  
38. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
An ESD event produces a short-duration, high-voltage pulse that is transformed into a short-duration, high-  
current pulse when discharging through a semiconductor device. The ESD protection circuits are designed to  
provide a current path around the operational amplifier core to prevent damage. The energy absorbed by the  
protection circuitry is then dissipated as heat.  
When an ESD voltage develops across two or more amplifier device pins, current flows through one or more  
steering diodes. The absorption device can activate depending on the path of the current. The absorption device  
has a trigger (or threshold voltage) that is above the normal operating voltage of the OPAx170-Q1, but below the  
device breakdown voltage level. When this threshold is exceeded, the absorption device quickly activates and  
clamps the voltage across the supply rails to a safe level.  
When the operational amplifier connects into a circuit (see 38), the ESD protection components are intended  
to remain inactive and do not become involved in the application circuit operation. However, circumstances may  
arise where an applied voltage exceeds the operating voltage range of a given pin. If this condition occurs, there  
is a risk that some internal ESD protection circuits can turn on and conduct current. Any such current flow occurs  
through steering-diode paths and rarely involves the absorption device.  
38 shows a specific example where the input voltage (VIN) exceeds the positive supply voltage (V+) by 500  
mV or more. Much of what happens in the circuit depends on the supply characteristics. If V+ can sink the  
current, one of the upper input steering diodes conducts and directs current to V+. Excessively high current  
levels can flow with increasingly higher VIN. As a result, the data sheet specifications recommend that  
applications limit the input current to 10 mA.  
If the supply is not capable of sinking the current, VIN can begin sourcing current to the operational amplifier and  
then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to  
levels that exceed the operational amplifier absolute maximum ratings.  
版权 © 2016–2017, Texas Instruments Incorporated  
21  
 
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Feature Description (接下页)  
Another common question involves what happens to the amplifier if an input signal is applied to the input when  
the power supplies (V+ or V–) are at 0 V. Again, this question depends on the supply characteristic when at 0 V,  
or at a level below the input signal amplitude. If the supplies appear as high impedance, then the input source  
supplies the operational amplifier current through the current-steering diodes. This state is not a normal bias  
condition; most likely, the amplifier does not operate normally. If the supplies are low impedance, then the current  
through the steering diodes can become quite high. The current level depends on the ability of the input source  
to deliver current, and any resistance in the input path.  
If there is any uncertainty about the ability of the supply to absorb this current, add external Zener diodes to the  
supply pins; see 38. Select the Zener voltage so that the diode does not turn on during normal operation.  
However, the Zener voltage must be low enough so that the Zener diode conducts if the supply pin begins to rise  
above the safe-operating, supply-voltage level.  
The OPAx170-Q1 input pins are protected from excessive differential voltage with back-to-back diodes, as shown  
in 38. In most circuit applications, the input protection circuitry has no effect. However, in low-gain or G = 1  
circuits, fast-ramping input signals can forward-bias these diodes because the output of the amplifier cannot  
respond rapidly enough to the input ramp. If the input signal is fast enough to create this forward-bias condition,  
limit the input signal current to 10 mA or less. If the input signal current is not inherently limited, an input series  
resistor can limit the input signal current. This input series resistor degrades the low-noise performance of the  
OPAx170-Q1. 38 is an example configuration that implements a current-limiting feedback resistor.  
7.3.4 Capacitive Load and Stability  
The dynamic characteristics of the OPAx170-Q1 are optimized for common operating conditions. The  
combination of low closed-loop gain and high capacitive loads decreases the phase margin of the amplifier and  
can lead to gain peaking or oscillations. As a result, heavier capacitive loads must be isolated from the output.  
The simplest way to achieve this isolation is to add a small resistor (for example, ROUT equal to 50 Ω) in series  
with the output. 39 and 40 are graphs showing small-signal overshoot versus capacitive load for several  
values of ROUT. See Feedback Plots Define Op Amp AC Performance for details of analysis techniques and  
application circuits.  
Ω
RL = 10 kW  
G = +1  
+18 V  
RF = 10 kW  
RI = 10 kW  
G = -1  
ROUT  
+18 V  
OPAx170-Q1  
ROUT  
Ω
RL  
CL  
Ω
-18 V  
OPAx170-Q1  
-18 V  
CL  
Ω
Ω
Ω
Ω
100-mV output step  
G = 1  
100-mV output step  
G = –1  
39. Small-Signal Overshoot vs Capacitive Load  
40. Small-Signal Overshoot vs Capacitive Load  
22  
版权 © 2016–2017, Texas Instruments Incorporated  
 
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
www.ti.com.cn  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
7.4 Device Functional Modes  
7.4.1 Common-Mode Voltage Range  
The input common-mode voltage range of the OPAx170-Q1 series extends 100 mV below the negative rail and  
within 2 V of the top rail for normal operation.  
This device can operate with full rail-to-rail input 100 mV beyond the top rail, but with reduced performance within  
2 V of the top rail. The typical performance in this range is summarized in 5.  
5. Typical Performance for Common-Mode Voltages Within 2 V of the Positive Supply  
PARAMETER  
Input common-mode voltage  
MIN  
TYP  
MAX  
UNIT  
V
(V+) – 2  
(V+) + 0.1  
7
12  
mV  
Offset voltage  
vs temperature  
µV/°C  
dB  
Common-mode rejection  
Open-loop gain  
65  
60  
dB  
Gain-bandwidth product  
Slew rate  
0.3  
0.3  
MHz  
V/µs  
7.4.2 Overload Recovery  
Overload recovery is defined as the time required for the operational amplifier output to recover from the  
saturated state to the linear state. The output devices of the operational amplifier enter the saturation region  
when the output voltage exceeds the rated operating voltage, either resulting from the high input voltage or the  
high gain. After the device enters the saturation region, the charge carriers in the output devices need time to  
return back to the normal state. After the charge carriers return back to the equilibrium state, the device begins to  
slew at the normal slew rate. Thus, the propagation delay in case of an overload condition is the sum of the  
overload recovery time and the slew time. The overload recovery time for the OPAx170-Q1 is approximately 2  
µs.  
版权 © 2016–2017, Texas Instruments Incorporated  
23  
 
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The OPAx170-Q1 family of operational amplifiers provides high overall performance in a large number of  
general-purpose applications. As with all amplifiers, applications with noisy or high-impedance power supplies  
require decoupling capacitors placed close to the device pins. In most cases, capacitors with a value of 0.1 µF  
are adequate. Follow the additional recommendations in the Layout Guidelines section to achieve the maximum  
performance from this device. Many applications may introduce capacitive loading to the output of the amplifier  
that may cause instability. Adding an isolation resistor between the amplifier output and the capacitive load  
stabilizes the amplifier. The design process for selecting this resistor is shown in the Typical Application section.  
8.2 Typical Application  
This circuit can drive capacitive loads such as cable shields, reference buffers, MOSFET gates, and diodes. The  
circuit uses an isolation resistor (RISO) to stabilize the output of an operational amplifier. RISO modifies the open-  
loop gain of the system to ensure the circuit has sufficient phase margin.  
+VS  
VOUT  
RISO  
+
CLOAD  
+
VIN  
-VS  
œ
41. Unity-Gain Buffer With RISO Stability Compensation  
8.2.1 Design Requirements  
The design requirements are:  
Supply voltage: 30 V (±15 V)  
Capacitive loads: 100-pF, 1000-pF, 0.01-μF, 0.1-μF, and 1-μF  
Phase margin: 45° and 60°  
8.2.2 Detailed Design Procedure  
41 shows a unity-gain buffer driving a capacitive load. 公式 1 shows the transfer function for the circuit in 图  
41. Not shown in 41 is the open-loop output resistance of the operational amplifier, RO.  
1 + CLOAD × RISO × s  
T(s) =  
1 + R + R  
× C  
× s  
(
)
o
ISO  
LOAD  
(1)  
The transfer function in 公式 1 has a pole and a zero. The frequency of the pole (fp) is determined by (RO + RISO  
)
and CLOAD. RISO and CLOAD determine the frequency of the zero (fz). A stable system is obtained by selecting  
RISO, so the rate of closure (ROC) between the open-loop gain (AOL) and 1/β is 20 dB / decade. 42 depicts the  
concept. The 1/β curve for a unity-gain buffer is 0 dB.  
24  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
www.ti.com.cn  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
Typical Application (接下页)  
120  
AOL  
100  
80  
60  
40  
20  
0
1
fp  
=
2 ì Œ ì  
R
+ Ro ì C  
(
)
ISO  
LOAD  
40 dB  
1
fz  
=
2 ì Œ ì RISO ì CLOAD  
1 dec  
1/  
20 dB  
dec  
ROC =  
100M  
10M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
42. Unity-Gain Amplifier With RISO Compensation  
ROC stability analysis is typically simulated. The validity of the analysis depends on multiple factors, especially  
the accurate modeling of R  
. In addition to simulating the ROC, a robust stability analysis includes a  
O
measurement of overshoot percentage and ac gain peaking of the circuit using a function generator,  
oscilloscope, and gain and phase analyzer. Phase margin is then calculated from these measurements. 6  
shows the overshoot percentage and ac gain peaking that correspond to 45° and 60° phase margins. For more  
details on this design and other alternative devices that can be used in place of the OPAx170-Q1 family, see  
Capacitive Load Drive Solution Using an Isolation Resistor.  
6. Phase Margin versus Overshoot and AC Gain  
Peaking  
PHASE  
MARGIN  
OVERSHOOT  
AC GAIN PEAKING  
45°  
23.3%  
8.8%  
2.35 dB  
0.28 dB  
60°  
8.2.3 Application Curve  
Using the described methodology, the values of RISO that yield phase margins of 45º and 60º for various  
capacitive loads were determined. 43 shows the results.  
10000  
45°Phase Margin  
60°Phase Margin  
1000  
100  
10  
0.1  
1
10  
100  
1000  
Capacitive Load (nF)  
C002  
43. Isolation Resistor Required for Various Capacitive Loads to Achieve a Target Phase Margin  
版权 © 2016–2017, Texas Instruments Incorporated  
25  
 
 
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
9 Power Supply Recommendations  
The OPAx170-Q1 family is specified for operation from 2.7 V to 36 V (±1.35 V to ±18 V); many specifications  
apply from –40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in 4.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see the  
Absolute Maximum Ratings table.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout  
section.  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the  
operational amplifier itself. Bypass capacitors are used to reduce the coupled noise by providing low-  
impedance power sources local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close as possible to the device. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are typically devoted to ground  
planes. A ground plane helps distribute heat and reduces EMI noise pickup. Take care to physically  
separate digital and analog grounds, paying attention to the flow of the ground current.  
To reduce parasitic coupling, run the input traces as far away as possible from the supply or output  
traces. If these traces cannot be kept separate, crossing the sensitive trace perpendicularly is much  
better than in parallel with the noisy trace.  
Place the external components as close as possible to the device. As shown in 45, keeping RF and RG  
close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly  
reduce leakage currents from nearby traces that are at different potentials.  
26  
版权 © 2016–2017, Texas Instruments Incorporated  
 
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
www.ti.com.cn  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
10.2 Layout Example  
VIN  
+
VOUT  
RG  
RF  
44. Schematic Representation of a Noninverting Configuration  
Place components close  
to device and to each  
other to reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
VS+  
RF  
N/C  
N/C  
Use a low-ESR,  
ceramic bypass  
capacitor  
RG  
GND  
œIN  
+IN  
Vœ  
V+  
OUTPUT  
N/C  
VIN  
GND  
GND  
VSœ  
VOUT  
Ground (GND) plane on another layer  
Use low-ESR,  
ceramic bypass  
capacitor  
Copyright © 2017, Texas Instruments Incorporated  
45. Operational Amplifier Board Layout for a Noninverting Configuration  
版权 © 2016–2017, Texas Instruments Incorporated  
27  
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 TINA-TI™(免费软件下载)  
TINA™是一款简单、功能强大且易于使用的电路仿真程序,此程序基于 SPICE 引擎。 TINA-TI™ TINA 软件的  
一款免费全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。TINA-TI 提供所有  
传统的 SPICE 直流、瞬态和频域分析,以及其他设计功能。  
TINA-TI 可从 WEBENCH® 设计中心免费下载,它提供全面的后续处理能力,使得用户能够以多种方式形成结果。  
虚拟仪器提供选择输入波形和探测电路节点、电压和波形的功能,从而创建一个动态的快速入门工具。  
这些文件需要安装 TINA 软件(由 DesignSoft™提供)或者 TINA-TI 软件。请从 TINA-TI 文  
件夹 中下载免费的 TINA-TI 软件。  
11.1.1.2 DIP 适配器 EVM  
DIP 适配器 EVM 工具提供了一种针对小型表面贴装器件进行原型设计的简易低成本方法。评估工具适用于以下 TI  
封装:D U (SOIC-8)PW (TSSOP-8)DGK (MSOP-8)DBVSOT-23-6SOT-23-5 SOT-23-3)、DCK  
SC70-6 SC70-5)以及 DRL (SOT563-6)DIP 适配器 EVM 也可搭配引脚排使用或直接与现有电路相连。  
11.1.1.3 通用运算放大器评估模块 (EVM)  
通用运放 EVM 是一系列通用空白电路板,可简化采用各种器件封装类型的电路板原型设计。借助评估模块电路板  
设计,可以轻松快速地构造多种不同电路。共有  
5
个模型可供选用,每个模型都对应一种特定封装类型。支持  
PDIPSOICMSOPTSSOP SOT-23 封装。  
这些电路板均为空白电路板,用户必须自行提供相关器件。TI 建议您在订购通用运算放大器  
EVM 时申请几个运算放大器器件样品。  
11.1.1.4 TI 高精度设计  
TI 高精度设计的模拟设计方案是由 TI 公司高精度模拟实验室设计 应用 专家创建的模拟解决方案,提供了许多实用  
电路的工作原理、组件选择、仿真、完整印刷电路板 (PCB) 电路原理图和布局布线、物料清单以及性能测量结果。  
欲获取 TI 高精度设计,请访问 http://www.ti.com.cn/ww/analog/precision-designs/。  
28  
版权 © 2016–2017, Texas Instruments Incorporated  
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
www.ti.com.cn  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
器件支持 (接下页)  
11.1.1.5 WEBENCH®滤波器设计器  
WEBENCH®  
滤波器设计器是一款简单、功能强大且便于使用的有源滤波器设计程序。WEBENCH®  
Filter  
Designer 允许用户通过选择 TI 运算放大器以及 TI 供应商合作伙伴的无源组件构建优化滤波器设计方案。  
WEBENCH® 设计中心以基于网络的工具形式提供 WEBENCH® 滤波器设计器。用户通过该工具可在短时间内完  
成多级有源滤波器解决方案的设计、优化和仿真。  
11.2 文档支持  
11.2.1 相关文档  
相关文档如下(下载网站 www.ti.com.cn):  
《反馈曲线图定义运算放大器交流性能》  
《采用隔离电阻的电容式负载驱动器解决方案》  
11.3 相关链接  
下面的表格列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的  
快速链接。  
7. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
OPA170-Q1  
OPA2170-Q1  
OPA4170-Q1  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
TINA-TI, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
TINA, DesignSoft are trademarks of DesignSoft, Inc.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2016–2017, Texas Instruments Incorporated  
29  
OPA170-Q1, OPA2170-Q1, OPA4170-Q1  
ZHCSFP9B DECEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
30  
版权 © 2016–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA170AQDBVRQ1  
OPA2170AQDGKRQ1  
OPA4170AQPWRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
VSSOP  
TSSOP  
DBV  
DGK  
PW  
5
8
3000 RoHS & Green  
2500 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
170Q  
2170  
NIPDAUAG  
NIPDAU  
14  
4170Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA170AQDBVRQ1  
OPA2170AQDGKRQ1  
OPA4170AQPWRQ1  
SOT-23  
VSSOP  
TSSOP  
DBV  
DGK  
PW  
5
8
3000  
2500  
2000  
178.0  
330.0  
330.0  
9.0  
3.3  
5.3  
6.9  
3.2  
3.4  
5.6  
1.4  
1.4  
1.6  
4.0  
8.0  
8.0  
8.0  
Q3  
Q1  
Q1  
12.4  
12.4  
12.0  
12.0  
14  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA170AQDBVRQ1  
OPA2170AQDGKRQ1  
OPA4170AQPWRQ1  
SOT-23  
VSSOP  
TSSOP  
DBV  
DGK  
PW  
5
8
3000  
2500  
2000  
180.0  
366.0  
356.0  
180.0  
364.0  
356.0  
18.0  
50.0  
35.0  
14  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA170ASDRLREP

OPA170ASDRLREP
TI

OPA170ASDRLTEP

Enhanced product, single, 36-V, 1.2-MHz, low-power operational amplifier | DRL | 5 | -40 to 150
TI

OPA170TDA1

SINGLE-SUPPLY, LOW-POWER OPERATIONAL AMPLIFIER VALUE LINE SERIES Check for Samples: OPA170-DIE
TI

OPA170TDA2

SINGLE-SUPPLY, LOW-POWER OPERATIONAL AMPLIFIER VALUE LINE SERIES Check for Samples: OPA170-DIE
TI

OPA170_12

36V, Single-Supply, SOT553, Low-Power OPERATIONAL AMPLIFIERS
TI

OPA171

36V, Single-Supply, SOT553, General-Purpose OPERATIONAL AMPLIFIERS
TI

OPA171-Q1

36V, SINGLE-SUPPLY, GENERAL-PURPOSE OPERATIONAL AMPLIFIER
TI

OPA171-Q1_15

Single-Supply, General-Purpose Operational Amplifier
TI

OPA171AID

36V, Single-Supply, SOT553, General-Purpose OPERATIONAL AMPLIFIERS
TI

OPA171AIDBVR

36V, Single-Supply, SOT553, General-Purpose OPERATIONAL AMPLIFIERS
TI

OPA171AIDBVT

36V, Single-Supply, SOT553, General-Purpose OPERATIONAL AMPLIFIERS
TI

OPA171AIDR

36V, Single-Supply, SOT553, General-Purpose OPERATIONAL AMPLIFIERS
TI