OPA170ASDRLTEP [TI]

Enhanced product, single, 36-V, 1.2-MHz, low-power operational amplifier | DRL | 5 | -40 to 150;
OPA170ASDRLTEP
型号: OPA170ASDRLTEP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Enhanced product, single, 36-V, 1.2-MHz, low-power operational amplifier | DRL | 5 | -40 to 150

放大器 光电二极管
文件: 总21页 (文件大小:1807K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA170-EP  
www.ti.com.cn  
ZHCSAL5A DECEMBER 2012REVISED DECEMBER 2012  
36V,单电源,低功耗运算放大器  
查询样品: OPA170-EP  
1
特性  
2
电源范围:+2.7V +36V±1.35V ±18V  
说明  
低噪声:19 nV/Hz  
已过滤的射频干扰 (RFI) 输入  
输入范围包括负电源  
输入范围运行至正电源  
轨至轨输出  
OPA170 是一款 36V,单电源,低噪声运算放大器,  
此运算放大器特有一个微型封装,此封装能够在 +2.7V  
(±1.35V) +36V (±18V) 的电源范围内运行。 它们在  
保证低静态电流的情况下提供令人满意的偏移、漂移和  
带宽。  
增益带宽:1.2MHz  
与大多数只有一个额定电源电压的运算放大器不  
同,OPA170 的额定电压范围为 +2.7V +36V。 超  
过电源轨的输入信号不会导致相位反转。 OPA170 在  
电容负载高达 300pF 时保持稳定。 输入可在负电源轨  
以下 100mV 以及正电源轨 2V 之内正常运行。 请注  
意,这些器件可在正电源轨之上 100mV 的满轨到轨输  
入上运行,但是在正电源轨 2V 之内运行时性能会受到  
影响。  
低静态电流:每个放大器 110µA  
高共模抑制:120dB  
低偏置电流:15pA(最大值)  
微型封装:  
单通道采用 5 引脚小外形尺寸晶体管 (SOT)553  
封装  
应用范围  
OPA170 采用 SOT553-5 封装,额定温度范围介于 -  
40°C +150°C 之间。  
电源模块内的跟踪放大器  
商用电源  
变频器放大器  
桥式放大器  
温度测量  
Package Footprint (to Scale)  
应力计放大器  
精密积分器  
电池供电仪器  
测试设备  
Package Height (to Scale)  
支持国防、航空航天、和医疗应用  
DRL (SOT553)  
受控基线  
针对 36V 运算放大器的最小封装  
一个组装或测试场所  
一个制造场所  
(1)  
支持扩展(-40°C 150°C)温度范围  
延长的产品生命周期  
延长的产品变更通知  
产品可追溯性  
(1) 可提供额外温度范围-请与厂家联系  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
2
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2012, Texas Instruments Incorporated  
English Data Sheet: SBOS598  
OPA170-EP  
ZHCSAL5A DECEMBER 2012REVISED DECEMBER 2012  
www.ti.com.cn  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
TA  
PACKAGE  
ORDERABLE PART NUMBER  
TOP-SIDE MARKING  
VID NUMBER  
–40°C to 150°C  
SOT553-5 - DRL  
OPA170ASDRLTEP  
SHN  
V62/12627-01XE  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
PIN CONFIGURATIONS  
DRL PACKAGE  
SOT553-5  
(TOP VIEW)  
V+  
IN+  
V-  
1
2
3
5
4
OUT  
IN-  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range, unless otherwise noted.  
UNIT  
V
Supply voltage  
±20, +40 (single supply)  
Voltage  
Signal input terminals  
Current  
Output short circuit(2)  
Operating temperature  
Storage temperature  
Junction temperature  
(V–) – 0.5 to (V+) + 0.5  
V
±10  
Continuous  
–40 to +150  
–65 to +150  
+150  
mA  
°C  
°C  
°C  
kV  
V
Human body model (HBM)  
ESD ratings  
4
Charged device model (CDM)  
750  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
(2) Short-circuit to ground, one amplifier per package.  
THERMAL INFORMATION  
OPA170  
THERMAL METRIC(1)  
DRL (SOT553)  
5 PINS  
226.8  
80.3  
UNITS  
θJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
θJC(top)  
θJB  
42.9  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
3.2  
ψJB  
42.5  
θJC(bottom)  
N/A  
(1) 有关传统和新的热 度量的更多信息,请参阅IC 封装热度量应用报告, SPRA953。  
2
Copyright © 2012, Texas Instruments Incorporated  
 
OPA170-EP  
www.ti.com.cn  
ZHCSAL5A DECEMBER 2012REVISED DECEMBER 2012  
ELECTRICAL CHARACTERISTICS  
Boldface limits apply over the specified temperature range, TA = –40°C to +150°C.  
At TA = +25°C, VCM = VOUT = VS/2, and RL = 10kΩ connected to VS/2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
Input offset voltage  
Over temperature  
Drift  
VOS  
0.25  
±1.8  
mV  
mV  
TJ = –40°C to +150°C  
±2.5  
dVOS/dT  
PSRR  
±0.3  
1
µV/°C  
µV/V  
µV/V  
vs power supply  
Channel separation, dc  
INPUT BIAS CURRENT  
Input bias current  
Over temperature  
Input offset current  
Over temperature  
NOISE  
VS = +4V to +36V  
±5  
dc  
5
IB  
±8  
±4  
±15  
±8  
pA  
nA  
pA  
nA  
TJ = –40°C to +150°C  
TJ = –40°C to +150°C  
IOS  
±15  
±8  
Input voltage noise  
f = 0.1Hz to 10Hz  
f = 100Hz  
2
22  
19  
µVPP  
nV/Hz  
nV/Hz  
Input voltage noise density  
en  
f = 1kHz  
INPUT VOLTAGE  
Common-mode voltage range(1)  
VCM  
(V–) – 0.1V  
(V+) – 2V  
V
VS = ±2V, (V–) – 0.1V < VCM < (V+) – 2V  
VS = ±18V, (V–) – 0.1V < VCM < (V+) – 2V  
87  
104  
120  
dB  
dB  
Common-mode rejection ratio  
CMRR  
100  
INPUT IMPEDANCE  
Differential  
100 || 3  
6 || 3  
MΩ || pF  
1012 Ω || pF  
Common-mode  
OPEN-LOOP GAIN  
VS = +4V to +36V,  
(V–) + 0.35V < VO < (V+) – 0.35V  
Open-loop voltage gain  
AOL  
107  
130  
dB  
FREQUENCY RESPONSE  
Gain bandwidth product  
Slew rate  
GBP  
SR  
1.2  
0.4  
MHz  
V/µs  
µs  
G = +1  
To 0.1%, VS = ±18V, G = +1, 10V step  
To 0.01% (12 bit), VS = ±18V, G = +1, 10V step  
VIN × Gain > VS  
20  
Settling time  
tS  
28  
µs  
Overload recovery time  
2
µs  
Total harmonic distortion + noise  
THD+N  
G = +1, f = 1kHz, VO = 3VRMS  
0.0002  
%
(1) The input range can be extended beyond (V+) – 2V up to V+. See the Typical Characteristics and Application Information sections for  
additional information.  
Copyright © 2012, Texas Instruments Incorporated  
3
OPA170-EP  
ZHCSAL5A DECEMBER 2012REVISED DECEMBER 2012  
www.ti.com.cn  
ELECTRICAL CHARACTERISTICS (continued)  
Boldface limits apply over the specified temperature range, TA = –40°C to +150°C.  
At TA = +25°C, VCM = VOUT = VS/2, and RL = 10kΩ connected to VS/2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
Voltage output swing from rail  
VO  
IL = 0mA, VS = +4V to +36V  
IL sourcing 1mA, VS = +4V to +36V  
IL = 0mA, VS = +4V to +36V  
IL sinking 1mA, VS = +4V to +36V  
VS = 5V, RL = 10kΩ  
10  
mV  
mV  
mV  
mV  
V
Positive rail  
130  
8
72  
Negative Rail  
(V–) + 0.03  
(V–) + 0.35  
(V+) – 0.05  
(V+) – 0.35  
Over temperature  
RL = 10kΩ, AOL 107dB  
V
Short-circuit current  
Capacitive load drive  
Open-loop output resistance  
POWER SUPPLY  
ISC  
CLOAD  
RO  
+17/–20  
mA  
pF  
Ω
See Typical Characteristics  
900  
f = 1MHz, IO = 0A  
Specified voltage range  
Quiescent current per amplifier  
Over temperature  
VS  
IQ  
+2.7  
+36  
145  
160  
V
IO = 0A  
110  
µA  
µA  
IO = 0A  
TEMPERATURE  
Specified range  
–40  
–40  
+150  
+150  
°C  
°C  
Operating range  
10000.00  
1000.00  
100.00  
10.00  
Electromigration Fail Mode  
Wirebond Voiding  
Fail Mode  
1.00  
0.10  
80  
100  
120  
140  
160  
180  
200  
Continuous TJ (°C)  
(1) See datasheet for absolute maximum and minimum recommended operating conditions.  
(2) Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect  
life).  
(3) Enhanced plastic product disclaimer applies.  
Figure 1. OPA170-EP Operating Life Derating Chart  
4
Copyright © 2012, Texas Instruments Incorporated  
OPA170-EP  
www.ti.com.cn  
ZHCSAL5A DECEMBER 2012REVISED DECEMBER 2012  
TYPICAL CHARACTERISTICS  
VS = ±18V, VCM = VS/2, RLOAD = 10kΩ connected to VS/2, and CL = 100pF, unless otherwise noted.  
OFFSET VOLTAGE PRODUCTION DISTRIBUTION  
OFFSET VOLTAGE DRIFT DISTRIBUTION  
20  
18  
16  
14  
12  
10  
8
25  
20  
15  
10  
5
Distribution Taken From 400 Amplifiers  
Distribution Taken From 104 Amplifiers  
6
4
2
0
0
Offset Voltage (µV)  
Offset Voltage Drift (µV/°C)  
G001  
G002  
Figure 2.  
Figure 3.  
OFFSET VOLTAGE vs TEMPERATURE  
OFFSET VOLTAGE vs COMMON-MODE VOLTAGE  
800  
600  
5 Typical Units Shown  
VS = ±18V  
400  
200  
0
−200  
−400  
−600  
−800  
VCM = - 18.1V  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Common-Mode Voltage (V)  
G003  
Figure 4.  
Figure 5.  
OFFSET VOLTAGE vs COMMON-MODE VOLTAGE  
(Upper Stage)  
OFFSET VOLTAGE vs POWER SUPPLY  
500  
300  
VSUPPLY = ±1.35V to ± 18V  
5 Typical Units Shown  
5 Typical Units Shown  
100  
−100  
−300  
−500  
Normal  
Operation  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
VSUPPLY (V)  
Common-Mode Voltage (V)  
G006  
Figure 6.  
Figure 7.  
Copyright © 2012, Texas Instruments Incorporated  
5
OPA170-EP  
ZHCSAL5A DECEMBER 2012REVISED DECEMBER 2012  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
VS = ±18V, VCM = VS/2, RLOAD = 10kΩ connected to VS/2, and CL = 100pF, unless otherwise noted.  
IB AND IOS vs COMMON-MODE VOLTAGE  
INPUT BIAS CURRENT vs TEMPERATURE  
3000  
2500  
2000  
1500  
1000  
500  
12  
10  
8
IB+  
IB−  
IOS  
+IB  
6
IOS  
4
0
-IB  
2
−500  
−1000  
VCM = 16.1V  
10  
VCM = -18.1V  
-10 -5  
0
−50  
−25  
0
25  
50  
75  
100  
125  
150  
-20  
-15  
0
5
15  
20  
Temperature (°C)  
G008  
VCM (V)  
Figure 8.  
Figure 9.  
OUTPUT VOLTAGE SWING vs OUTPUT CURRENT  
(Maximum Supply)  
CMRR AND PSRR vs FREQUENCY  
(Referred-to Input)  
18  
17  
16  
140  
120  
100  
80  
15  
14.5  
–14.5  
–15  
60  
–40°C  
+25°C  
+125°C  
+150°C  
40  
–16  
–17  
–18  
+PSRR  
-PSRR  
CMRR  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
1
10  
100  
1k  
10k  
100k  
1M  
Output Current (mA)  
Frequency (Hz)  
G009  
Figure 10.  
Figure 11.  
CMRR vs TEMPERATURE  
PSRR vs TEMPERATURE  
30  
3
2
VS = ±1.35V  
VS = ±2V  
VS = ±18V  
VS = 2.7V to 36V  
VS = 4V to 36V  
25  
20  
15  
10  
5
1
0
−1  
−2  
−3  
0
−50  
−25  
0
25  
50  
75  
100  
125  
150  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Temperature (°C)  
G011  
G012  
Figure 12.  
Figure 13.  
6
Copyright © 2012, Texas Instruments Incorporated  
OPA170-EP  
www.ti.com.cn  
ZHCSAL5A DECEMBER 2012REVISED DECEMBER 2012  
TYPICAL CHARACTERISTICS (continued)  
VS = ±18V, VCM = VS/2, RLOAD = 10kΩ connected to VS/2, and CL = 100pF, unless otherwise noted.  
INPUT VOLTAGE NOISE SPECTRAL DENSITY vs  
FREQUENCY  
0.1Hz TO 10Hz NOISE  
1000  
100  
10  
1
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
G014  
Figure 14.  
Figure 15.  
THD+N RATIO vs FREQUENCY  
THD+N vs OUTPUT AMPLITUDE  
0.1  
-60  
0.01  
0.001  
-80  
BW = 80kHz  
G = +1  
RL = 10kW  
VOUT = 3VRMS  
BW = 80kHz  
G = +1  
RL = 10kW  
0.01  
0.001  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0.0001  
0.0001  
0.00001  
0.00001  
0.01  
0.1  
1
10 20  
10  
100  
1k  
10k  
100k  
Output Amplitude (VRMS  
)
Frequency (Hz)  
Figure 16.  
Figure 17.  
QUIESCENT CURRENT vs TEMPERATURE  
QUIESCENT CURRENT vs SUPPLY VOLTAGE  
140  
130  
120  
110  
100  
90  
VS = ±1.35V  
VS = ±18V  
80  
70  
60  
50  
40  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
G017  
Figure 18.  
Figure 19.  
Copyright © 2012, Texas Instruments Incorporated  
7
OPA170-EP  
ZHCSAL5A DECEMBER 2012REVISED DECEMBER 2012  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
VS = ±18V, VCM = VS/2, RLOAD = 10kΩ connected to VS/2, and CL = 100pF, unless otherwise noted.  
OPEN-LOOP GAIN AND PHASE vs FREQUENCY  
CLOSED-LOOP GAIN vs FREQUENCY  
50  
40  
140  
120  
100  
80  
135  
90  
Gain  
45  
30  
0
20  
Phase  
60  
-45  
-90  
-135  
-180  
-225  
-270  
40  
10  
20  
0
0
G = −1  
G = 1  
G = 10  
−10  
−20  
-20  
-40  
1k  
10k  
100k 1M  
Frequency (Hz)  
10M  
100M  
0.1  
1
10  
100  
1k  
10k 100k  
1M  
10M  
G020  
Frequency (Hz)  
Figure 20.  
Figure 21.  
OPEN-LOOP GAIN vs TEMPERATURE  
OPEN-LOOP OUTPUT IMPEDANCE vs FREQUENCY  
10k  
3
VS = 2.7V  
VS = 4V  
2.5  
2
1k  
100  
10  
VS = 36V  
1.5  
1
1
0.5  
0
1m  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
-75 -50 -25  
0
25  
50  
75  
100 125 150  
Frequency (Hz)  
Temperature (°C)  
Figure 22.  
Figure 23.  
SMALL-SIGNAL OVERSHOOT vs CAPACITIVE LOAD  
(100mV Output Step)  
SMALL-SIGNAL OVERSHOOT vs CAPACITIVE LOAD  
(100mV Output Step)  
W
W
G = +1  
+18V  
RF = 10kW  
RI = 10kW  
G = -1  
ROUT  
+18V  
OPA170  
ROUT  
W
RL  
CL  
W
-18V  
OPA170  
CL  
W
W
-18V  
W
W
Figure 24.  
Figure 25.  
8
Copyright © 2012, Texas Instruments Incorporated  
OPA170-EP  
www.ti.com.cn  
ZHCSAL5A DECEMBER 2012REVISED DECEMBER 2012  
TYPICAL CHARACTERISTICS (continued)  
VS = ±18V, VCM = VS/2, RLOAD = 10kΩ connected to VS/2, and CL = 100pF, unless otherwise noted.  
NO PHASE REVERSAL  
POSITIVE OVERLOAD RECOVERY  
+18V  
OPA170  
-18V  
37VPP  
Sine Wave  
(±18.5V)  
20kW  
+18V  
2kW  
VOUT  
OPA170  
VIN  
-18V  
G = -10  
Time (10ms/div)  
Time (100ms/div)  
Figure 26.  
Figure 27.  
SMALL-SIGNAL STEP RESPONSE  
(100mV)  
NEGATIVE OVERLOAD RECOVERY  
20kW  
RL = 10kW  
+18V  
2kW  
CL = 10pF  
VOUT  
OPA170  
VIN  
-18V  
G = -10  
G = +1  
+18V  
OPA170  
-18V  
RL  
CL  
Time (10ms/div)  
Time (5ms/div)  
Figure 28.  
Figure 29.  
SMALL-SIGNAL STEP RESPONSE  
(100mV)  
LARGE-SIGNAL STEP RESPONSE  
G = +1  
RL = 10kW  
CL = 10pF  
RL = 10kW  
CL = 10pF  
RI = 2kW RF = 2kW  
+18V  
OPA170  
CL  
-18V  
G = -1  
Time (50ms/div)  
Time (5ms/div)  
Figure 30.  
Figure 31.  
Copyright © 2012, Texas Instruments Incorporated  
9
OPA170-EP  
ZHCSAL5A DECEMBER 2012REVISED DECEMBER 2012  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
VS = ±18V, VCM = VS/2, RLOAD = 10kΩ connected to VS/2, and CL = 100pF, unless otherwise noted.  
LARGE-SIGNAL SETTLING TIME  
(10V Positive Step)  
LARGE-SIGNAL STEP RESPONSE  
10  
8
G = -1  
RL = 10kW  
CL = 10pF  
6
4
12-Bit Settling  
2
0
-2  
-4  
-6  
-8  
-10  
(±1/2LSB = ±0.012%)  
Time (50ms/div)  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Time (ms)  
Figure 32.  
Figure 33.  
LARGE-SIGNAL SETTLING TIME  
(10V Negative Step)  
SHORT-CIRCUIT CURRENT vs TEMPERATURE  
30  
10  
8
G = -1  
ISC, Source  
ISC, Sink  
25  
20  
6
15  
4
10  
12-Bit Settling  
2
5
0
0
−5  
-2  
-4  
-6  
-8  
-10  
(±1/2LSB = ±0.012%)  
−10  
−15  
−20  
−25  
−30  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
50  
60  
Temperature (°C)  
G034  
Time (ms)  
Figure 34.  
Figure 35.  
MAXIMUM OUTPUT VOLTAGE vs FREQUENCY  
EMIRR IN+ vs FREQUENCY  
15  
140  
VS = ±15 V  
120  
100  
80  
60  
40  
20  
0
12.5  
10  
7.5  
5
Maximum output range without  
slew−rate induced distortion  
VS = ±5 V  
PRP = -10dBm  
VS = ±18V  
2.5  
0
VS = ±1.35 V  
VCM = 0V  
1k  
10k  
100k  
1M  
10M  
10M  
100M  
1G  
10G  
Frequency (Hz)  
G035  
Frequency (Hz)  
Figure 36.  
Figure 37.  
10  
Copyright © 2012, Texas Instruments Incorporated  
OPA170-EP  
www.ti.com.cn  
ZHCSAL5A DECEMBER 2012REVISED DECEMBER 2012  
APPLICATION INFORMATION  
The OPA170 operational amplifier provides high  
overall performance. This device is ideal for many  
general-purpose applications. The excellent offset  
drift of only 2µV/°C provides excellent stability over  
the entire temperature range. In addition, the device  
offers very good overall performance with high  
CMRR, PSRR, and AOL. As with all amplifiers,  
applications with noisy or high-impedance power  
supplies require decoupling capacitors placed close  
to the device pins. In most cases, 0.1µF capacitors  
are adequate.  
This device can operate with full rail-to-rail input  
100mV beyond the positive rail, but with reduced  
performance within 2V of the positive rail. The typical  
performance in this range is summarized in Table 1.  
PHASE-REVERSAL PROTECTION  
The OPA170 has an internal phase-reversal  
protection. Many op amps exhibit a phase reversal  
when the input is driven beyond its linear common-  
mode range. This condition is most often encountered  
in noninverting circuits when the input is driven  
beyond the specified common-mode voltage range,  
causing the output to reverse into the opposite rail.  
The input of the OPA170 prevents phase reversal  
with excessive common-mode voltage. Instead, the  
output limits into the appropriate rail. This  
performance is shown in Figure 38.  
OPERATING CHARACTERISTICS  
The OPA170 is specified for operation from 2.7V to  
36V (±1.35V to ±18V). Many of the specifications  
apply from –40°C to +150°C. Parameters that can  
exhibit significant variance with regard to operating  
voltage or temperature are presented in the Typical  
Characteristics.  
+18V  
OPA170  
GENERAL LAYOUT GUIDELINES  
-18V  
37VPP  
Sine Wave  
(±18.5V)  
For best operational performance of the device, good  
printed circuit board (PCB) layout practices are  
recommended. Low-loss, 0.1µF bypass capacitors  
should be connected between each supply pin and  
ground, placed as close to the device as possible. A  
single bypass capacitor from V+ to ground is  
applicable to single-supply applications.  
Time (100ms/div)  
COMMON-MODE VOLTAGE RANGE  
The input common-mode voltage range of the  
OPA170 extends 100mV below the negative rail and  
within 2V of the positive rail for normal operation.  
Figure 38. No Phase Reversal  
Table 1. Typical Performance Range  
PARAMETER  
Input Common-Mode Voltage  
Offset voltage  
vs Temperature  
MIN  
TYP  
MAX  
UNIT  
V
(V+) – 2  
(V+) + 0.1  
7
mV  
12  
65  
60  
0.3  
0.3  
µV/°C  
dB  
Common-mode rejection  
Open-loop gain  
dB  
Gain-bandwidth product  
Slew rate  
MHz  
V/µs  
Copyright © 2012, Texas Instruments Incorporated  
11  
 
 
OPA170-EP  
ZHCSAL5A DECEMBER 2012REVISED DECEMBER 2012  
www.ti.com.cn  
CAPACITIVE LOAD AND STABILITY  
ELECTRICAL OVERSTRESS  
The dynamic characteristics of the OPA170 have  
been optimized for common operating conditions. The  
combination of low closed-loop gain and high  
capacitive loads decreases the phase margin of the  
amplifier and can lead to gain peaking or oscillations.  
As a result, heavier capacitive loads must be isolated  
from the output. The simplest way to achieve this  
isolation is to add a small resistor (for example, ROUT  
equal to 50Ω) in series with the output. Figure 39 and  
Figure 40 illustrate graphs of small-signal overshoot  
Designers often ask questions about the capability of  
an operational amplifier to withstand electrical  
overstress. These questions tend to focus on the  
device inputs, but may involve the supply voltage pins  
or even the output pin. Each of these different pin  
functions have electrical stress limits determined by  
the voltage breakdown characteristics of the  
particular semiconductor fabrication process and  
specific circuits connected to the pin. Additionally,  
internal electrostatic discharge (ESD) protection is  
built into these circuits to protect them from  
accidental ESD events both before and during  
product assembly.  
versus capacitive load for several values of ROUT  
.
Also, refer to Applications Bulletin AB-028, Feedback  
Plots Define Op Amp AC Performance (literature  
number SBOA015, available for download from the TI  
website), for details of analysis techniques and  
application circuits.  
These ESD protection diodes also provide in-circuit,  
input overdrive protection, as long as the current is  
limited to 10mA as stated in the Absolute Maximum  
Ratings. Figure 41 shows how a series input resistor  
may be added to the driven input to limit the input  
current. The added resistor contributes thermal noise  
at the amplifier input and its value should be kept to a  
minimum in noise-sensitive applications.  
W
V+  
G = +1  
+18V  
IOVERLOAD  
ROUT  
OPA170  
10mA max  
VOUT  
W
RL  
CL  
OPA170  
-18V  
W
VIN  
W
5kW  
Figure 41. Input Current Protection  
Figure 39. Small-Signal Overshoot versus  
Capacitive Load (100mV Output Step, G = +1)  
An ESD event produces a short duration, high-  
voltage pulse that is transformed into  
a short  
duration, high-current pulse as it discharges through  
a semiconductor device. The ESD protection circuits  
are designed to provide a current path around the  
operational amplifier core to prevent it from being  
damaged. The energy absorbed by the protection  
circuitry is then dissipated as heat.  
W
When the operational amplifier connects into a circuit,  
the ESD protection components are intended to  
remain inactive and not become involved in the  
application circuit operation. However, circumstances  
may arise where an applied voltage exceeds the  
operating voltage range of a given pin. Should this  
condition occur, there is a risk that some of the  
internal ESD protection circuits may be biased on,  
and conduct current. Any such current flow occurs  
through ESD cells and rarely involves the absorption  
device.  
RF = 10kW  
RI = 10kW  
G = -1  
+18V  
ROUT  
W
OPA170  
CL  
W
-18V  
W
Figure 40. Small-Signal Overshoot versus  
Capacitive Load (100mV Output Step, G = –1)  
12  
Copyright © 2012, Texas Instruments Incorporated  
 
 
 
OPA170-EP  
www.ti.com.cn  
ZHCSAL5A DECEMBER 2012REVISED DECEMBER 2012  
If there is an uncertainty about the ability of the  
supply to absorb this current, external zener diodes  
may be added to the supply pins. The zener voltage  
must be selected such that the diode does not turn  
on during normal operation. However, its zener  
voltage should be low enough so that the zener diode  
conducts if the supply pin begins to rise above the  
safe operating supply voltage level.  
Copyright © 2012, Texas Instruments Incorporated  
13  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA170ASDRLTEP  
V62/12627-01XE  
ACTIVE  
ACTIVE  
SOT-5X3  
SOT-5X3  
DRL  
DRL  
5
5
250  
250  
RoHS & Green  
RoHS & Green  
NIPDAUAG  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 150  
-40 to 150  
DAQ  
DAQ  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Aug-2017  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA170ASDRLTEP  
SOT-5X3  
DRL  
5
250  
180.0  
8.4  
1.98  
1.78  
0.69  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Aug-2017  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOT-5X3 DRL  
SPQ  
Length (mm) Width (mm) Height (mm)  
202.0 201.0 28.0  
OPA170ASDRLTEP  
5
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DRL0005A  
SOT - 0.6 mm max height  
S
C
A
L
E
8
.
0
0
0
PLASTIC SMALL OUTLINE  
1.7  
1.5  
PIN 1  
ID AREA  
A
1
5
2X 0.5  
1.7  
1.5  
2X 1  
NOTE 3  
4
3
1.3  
1.1  
0.3  
0.1  
0.05  
TYP  
0.00  
B
5X  
0.6 MAX  
C
SEATING PLANE  
0.05 C  
0.18  
0.08  
5X  
SYMM  
SYMM  
0.27  
0.15  
5X  
0.1  
0.05  
C A B  
0.4  
0.2  
5X  
4220753/B 12/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-293 Variation UAAD-1  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRL0005A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
5X (0.67)  
SYMM  
1
5
5X (0.3)  
SYMM  
(1)  
2X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4220753/B 12/2020  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRL0005A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
5X (0.67)  
SYMM  
1
5
5X (0.3)  
SYMM  
(1)  
2X (0.5)  
3
4
(R0.05) TYP  
(1.48)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4220753/B 12/2020  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY