OPA180-Q1 [TI]

通过汽车级认证的 0.1μV/°C 漂移、低噪声、RRO、36V 零漂移运算放大器;
OPA180-Q1
型号: OPA180-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

通过汽车级认证的 0.1μV/°C 漂移、低噪声、RRO、36V 零漂移运算放大器

放大器 运算放大器
文件: 总33页 (文件大小:1503K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA180-Q1, OPA2180-Q1  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
OPAx180-Q1 0.1μV/°C 漂移、低噪声、轨至轨输出、36V 零漂移  
运算放大器  
1 特性  
3 说明  
1
符合汽车类应用的 要求  
OPA180-Q1 OPA2180-Q1 运算放大器采用 TI 的专  
零漂移技术,可同时提供低失调电压 (75μV),并随  
时间推移和温度变化实现接近零漂移的性能。这些高精  
度、低静态电流微型运算放大器提供高输入阻抗和摆幅  
在电源轨 18mV 之内的轨至轨输出。输入共模范围包  
括负电源轨。电压范围为 4V 36V±2V ±18V)  
的单电源或双电源均可使用。  
具有符合 AEC-Q100 标准的下列特性:  
OPA180-Q1 器件温度等级 1:  
–40°C +125°C 环境运行温度范围  
OPA2180-Q1 器件温度等级 2:  
–40°C +105°C 环境运行温度范围  
器件 HBM ESD 分类等级 1C  
器件 CDM ESD 分类等级 C5  
宽电源电压:±2V ±18V  
低失调电压:75μV(最大值)  
零漂移:0.1μV/°C  
单通道和双通道版本均采用 VSSOP-8 封装。单封装产  
(OPA180-Q1) 的额定温度范围为 –40°C +125°  
C,双封装 (OPA2180-Q1) 的额定温度范围为 –40°C  
+105°C。  
低噪声:10 nV/Hz  
极低 1/f 噪声  
器件信息(1)  
器件名称  
OPA180-Q1  
OPA2180-Q1  
封装  
VSSOP (8)  
VSSOP (8)  
封装尺寸(标称值)  
3.00mm × 3.00mm  
3.00mm × 3.00mm  
出色的直流精度:  
电源抑制比 (PSRR)126dB  
共模抑制比 (CMRR)114dB  
开环路增益 (AOL)120dB  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
静态电流:525μA(最大值)  
空白  
空白  
空白  
轨至轨输出:  
输入包括负电源轨  
低偏置电流:250pA(典型值)  
已过滤射频干扰 (RFI) 的输入  
MicroSIZE 封装  
低噪声  
(峰值到峰值噪声 = 250nV)  
2 应用范围  
汽车高精度电流测量  
车载充电器 (OBC)  
电池管理系统 (BMS)  
电机控制  
牵引逆变器  
Time (1 s/div)  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS861  
 
 
 
 
 
OPA180-Q1, OPA2180-Q1  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ....................................... 15  
8.3 Feature Description................................................. 16  
8.4 Device Functional Modes........................................ 18  
Application and Implementation ........................ 19  
9.1 Application Information............................................ 19  
9.2 Typical Applications ................................................ 19  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information: OPA180-Q1 ............................ 7  
7.5 Thermal Information: OPA2180-Q1 .......................... 7  
9
10 Power Supply Recommendations ..................... 23  
11 Layout................................................................... 24  
11.1 Layout Guidelines ................................................. 24  
11.2 Layout Example .................................................... 24  
12 器件和文档支持 ..................................................... 25  
12.1 相关链接................................................................ 25  
12.2 ....................................................................... 25  
12.3 静电放电警告......................................................... 25  
12.4 术语表 ................................................................... 25  
13 机械、封装和可订购信息....................................... 25  
7.6 Electrical Characteristics: VS = ±2 V to ±18 V (VS  
=
4 V to 36 V)................................................................ 8  
7.7 Typical Characteristics: Table of Graphs................ 10  
7.8 Typical Characteristics............................................ 11  
Detailed Description ............................................ 15  
8
4 修订历史记录  
Changes from Original (June 2017) to Revision A  
Page  
已添加 在特性 列表中添加了 OPA180-Q1 OPA4180-Q1 器件温度等级............................................................................ 1  
已更改 在特性 列表中将 OPA2180-Q1 器件温度等级从等级 1 更改为等级 2 ........................................................................ 1  
已更改 在特性 列表中将 OPA2180-Q1 环境运行温度范围从“–40°C +105°C”更改为“–40°C +125°C” .......................... 1  
已更改 在说明 部分中将 OPA180-Q1 OPA4180-Q1 运行温度从“–40°C +105°C”更改为“–40°C +125°C” ............... 1  
Changed input offset voltage drift temperature range from TA = –40°C to 105°C to TA = –40°C to +125°C in  
Electrical Characteristics table ............................................................................................................................................... 8  
Changed power supply rejection ratio temperature range from TA = –40°C to 105°C to TA = –40°C to +125°C in  
Electrical Characteristics table ............................................................................................................................................... 8  
Changed OPA180-Q1 input bias current temperature range from TA = –40°C to 105°C to TA = –40°C to +125°C in  
Electrical Characteristics table ............................................................................................................................................... 8  
Changed OPA180-Q1 input offset current temperature range from TA = –40°C to 105°C to TA = –40°C to +125°C in  
Electrical Characteristics table ............................................................................................................................................... 8  
Changed common-mode rejection ratio temperature range from TA = –40°C to 105°C to TA = –40°C to +125°C in  
Electrical Characteristics table ............................................................................................................................................... 8  
Changed open-loop voltage gain temperature range from TA = –40°C to 105°C to TA = –40°C to +125°C in Electrical  
Characteristics table ............................................................................................................................................................... 8  
Changed voltage output swing from rail temperature range from TA = –40°C to 105°C to TA = –40°C to +125°C in  
Electrical Characteristics table ............................................................................................................................................... 9  
Changed quiescent current temperature range from TA = –40°C to 105°C to TA = –40°C to +125°C in Electrical  
Characteristics table ............................................................................................................................................................... 9  
已更改 operating temperature from "–40°C to +105°C" to " –40°C to +125°C" in Feature Description section .................. 16  
Updated 34 ..................................................................................................................................................................... 22  
2
Copyright © 2017–2018, Texas Instruments Incorporated  
 
OPA180-Q1, OPA2180-Q1  
www.ti.com.cn  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
5 Device Comparison Table  
Table 1. Zero-Drift Amplifier Portfolio  
OFFSET VOLTAGE  
(µV)  
OFFSET VOLTAGE DRIFT  
BANDWIDTH  
(MHz)  
VERSION  
PRODUCT  
(µV/°C)  
0.085  
0.35  
OPA188-Q1(4 V to 36 V)  
OPA180-Q1 (4 V to 36 V)  
OPA333 (5 V)  
25  
75  
10  
50  
5
2
2
Single  
0.05  
0.35  
0.9  
1.6  
2
OPA378 (5 V)  
0.25  
OPA735 (12 V)  
0.05  
OPA2188-Q1 (4 V to 36 V)  
OPA2180-Q1 (4 V to 36 V)  
OPA2333 (5 V)  
25  
75  
10  
50  
5
0.085  
0.35  
2
Dual  
0.05  
0.35  
0.9  
1.6  
2
OPA2378 (5 V)  
0.25  
OPA2735 (12 V)  
0.05  
OPA4188 (4 V to 36 V)  
OPA4180 (4 V to 36 V)  
OPA4330 (5 V)  
25  
75  
50  
0.085  
0.35  
Quad  
2
0.25  
0.35  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
OPA180-Q1, OPA2180-Q1  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
www.ti.com.cn  
6 Pin Configuration and Functions  
OPA180-Q1 DGK Package  
8-Pin VSSOP  
Top View  
NC(1)  
-IN  
+IN  
V-  
1
2
3
4
8
7
6
5
NC(1)  
V+  
OUT  
NC(1)  
(1) NC- no internal connection  
Pin Functions: OPA180-Q1  
PIN  
DESCRIPTION  
NAME  
–IN  
NO.  
2
Inverting input  
+IN  
NC  
3
Noninverting input  
No connection  
1, 5, 8  
OUT  
V–  
6
4
7
Output  
Negative power supply  
Positive power supply  
V+  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
OPA180-Q1, OPA2180-Q1  
www.ti.com.cn  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
OPA2180-Q1 DGK Package  
8-Pin VSSOP  
Top View  
OUT A  
-IN A  
+IN A  
V-  
1
2
3
4
8
7
6
5
V+  
A
OUT B  
-IN B  
+IN B  
B
Pin Functions: OPA2180-Q1  
PIN  
DESCRIPTION  
NAME  
–IN A  
+IN A  
–IN B  
+IN B  
OUT A  
OUT B  
V–  
NO.  
2
Inverting input, channel A  
3
Noninverting input, channel A  
Inverting input, channel B  
Noninverting input, channel B  
Output, channel A  
6
5
1
7
Output, channel B  
4
Negative power supply  
Positive power supply  
V+  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
5
OPA180-Q1, OPA2180-Q1  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
±20, ±40  
Supply voltage  
V
(single-supply)  
(V+) + 0.5  
±10  
Voltage  
(V–) – 0.5  
V
Signal input terminals  
Current  
mA  
Output short-circuit(2)  
Operating temperature  
Continuous  
125  
–55  
–65  
°C  
°C  
°C  
TJ  
Junction temperature  
Storage temperature  
150  
Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Short-circuit to ground, one amplifier per package.  
7.2 ESD Ratings  
VALUE  
±1500  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted), RL = 10 kΩ connected to VS / 2, and VCOM = VOUT = VS /  
2, (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
36  
UNIT  
V
Single-supply  
Bipolar-supply  
Supply voltage [(V+) – (V–)]  
Operating temperature  
±2.25  
–40  
±18  
125  
V
°C  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
 
OPA180-Q1, OPA2180-Q1  
www.ti.com.cn  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
7.4 Thermal Information: OPA180-Q1  
OPA180-Q1  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
180.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
67.9  
102.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
10.4  
ψJB  
100.3  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Thermal Information: OPA2180-Q1  
OPA2180-Q1  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
159.3  
37.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
48.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.2  
ψJB  
77.1  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
OPA180-Q1, OPA2180-Q1  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
www.ti.com.cn  
7.6 Electrical Characteristics: VS = ±2 V to ±18 V (VS = 4 V to 36 V)  
at TA = 25°C, RL = 10 kΩ connected to VS / 2, and VCOM = VOUT = VS / 2, (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VIO  
Input offset voltage  
15  
75  
μV  
dVIO/dT  
Input offset voltage drift  
TA = –40°C to +125°C  
0.1  
0.35  
μV/°C  
VS = 4 V to 36 V  
VCM = VS / 2  
0.1  
0.5  
0.5  
μV/V  
μV/V  
PSRR  
Power-supply rejection ratio  
TA = –40°C to +125°C,  
VS = 4 V to 36 V  
VCM = VS / 2  
Long-term stability  
4(1)  
1
μV  
Channel separation, DC  
μV/V  
INPUT BIAS CURRENT  
OPA2180-Q1  
±0.25  
±0.25  
±0.5  
±1  
±5  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
OPA2180-Q1:  
TA = –40°C to +105°C  
18  
18  
6
IIB  
Input bias current  
OPA180-Q1  
±1.7  
±6  
OPA180-Q1:  
TA = –40°C to +125°C  
OPA2180-Q1  
±2  
OPA2180-Q1:  
TA = –40°C to +105°C  
±2.5  
±3.4  
±3  
IIO  
Input offset current  
OPA180-Q1  
OPA180-Q1:  
TA = –40°C to +125°C  
6
NOISE  
Input voltage noise  
ƒ = 0.1 Hz to 10 Hz  
ƒ = 1 kHz  
0.25  
10  
μVPP  
en  
in  
Input voltage noise density  
Input current noise density  
nV/Hz  
fA/Hz  
ƒ = 1 kHz  
10  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
V–  
(V+) – 1.5  
V
(V–) < VCM < (V+) – 1.5 V  
104  
114  
104  
dB  
CMRR  
Common-mode rejection ratio  
TA = –40°C to +125°C  
(V–) + 0.5 V < VCM < (V+) – 1.5 V  
100  
dB  
INPUT IMPEDANCE  
zid  
zic  
Differential  
Common-mode  
100 || 6  
6 || 9.5  
MΩ || pF  
1012 Ω || pF  
OPEN-LOOP GAIN  
(V–) + 500 mV < VO < (V+) – 500 mV  
RL = 10 kΩ  
110  
104  
120  
114  
dB  
dB  
AOL  
Open-loop voltage gain  
TA = –40°C to +125°C  
(V–) + 500 mV < VO < (V+) – 500 mV  
RL = 10 kΩ  
FREQUENCY RESPONSE  
GBW  
SR  
Gain bandwidth product  
2
MHz  
V/μs  
μs  
Slew rate  
G = 1  
0.8  
0.1%  
VS = ±18 V, G = 1, 10-V step  
VS = ±18 V, G = 1, 10-V step  
VIN × G = VS  
22  
ts  
Settling time  
0.01%  
30  
1
μs  
tor  
Overload recovery time  
μs  
THD+N  
Total harmonic distortion + noise  
ƒ = 1 kHz, G = 1, VOUT = 1 VRMS  
0.0001%  
(1) 1000-hour life test at 125°C demonstrated randomly distributed variation in the range of measurement limits, or approximately 4 μV.  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
OPA180-Q1, OPA2180-Q1  
www.ti.com.cn  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
Electrical Characteristics: VS = ±2 V to ±18 V (VS = 4 V to 36 V) (continued)  
at TA = 25°C, RL = 10 kΩ connected to VS / 2, and VCOM = VOUT = VS / 2, (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
No load  
8
18  
mV  
mV  
RL = 10 kΩ  
250  
300  
Voltage output swing from rail  
TA = –40°C to +125°C  
RL = 10 kΩ  
325  
360  
mV  
IOS  
Short-circuit current  
±18  
120  
1
mA  
Ω
ro  
Output resistance (open loop)  
Capacitive load drive  
ƒ = 2 MHz, IO = 0 mA  
CLOAD  
nF  
POWER SUPPLY  
VS  
Operating voltage range  
±2 (or 4)  
±18 (or 36)  
525  
V
450  
μA  
IQ  
Quiescent current (per amplifier)  
TA = –40°C to +125°C  
IO = 0 mA  
600  
μA  
TEMPERATURE  
Specified range  
–40  
–40  
105  
105  
°C  
°C  
Operating range  
版权 © 2017–2018, Texas Instruments Incorporated  
9
OPA180-Q1, OPA2180-Q1  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
www.ti.com.cn  
7.7 Typical Characteristics: Table of Graphs  
2. Characteristic Performance Measurements  
DESCRIPTION  
FIGURE  
1  
IB and IOS vs Common-Mode Voltage  
Input Bias Current vs Temperature  
2  
Output Voltage Swing vs Output Current (Maximum Supply)  
CMRR vs Temperature  
3  
4  
0.1-Hz to 10-Hz Noise  
5  
Input Voltage Noise Spectral Density vs Frequency  
Open-Loop Gain and Phase vs Frequency  
Open-Loop Gain vs Temperature  
6  
7  
8  
Open-Loop Output Impedance vs Frequency  
Small-Signal Overshoot vs Capacitive Load (100-mV Output Step)  
No Phase Reversal  
9  
10, 11  
12  
Positive Overload Recovery  
13  
Negative Overload Recovery  
14  
Small-Signal Step Response (100 mV)  
Large-Signal Step Response  
15, 16  
17, 18  
19  
Large-Signal Settling Time (10-V Positive Step)  
Large-Signal Settling Time (10-V Negative Step)  
Short-Circuit Current vs Temperature  
Maximum Output Voltage vs Frequency  
Channel Separation vs Frequency  
20  
21  
22  
23  
EMIRR IN+ vs Frequency  
24  
10  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA180-Q1, OPA2180-Q1  
www.ti.com.cn  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
7.8 Typical Characteristics  
VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
4000  
3000  
2000  
1000  
0
500  
400  
300  
200  
100  
0
IIB+  
IIB-  
IIO  
+IIB  
-IIB  
IIO  
-100  
-200  
-300  
-1000  
-2000  
-55 -35 -15  
5
25  
45  
65  
85  
105 125  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
Temperature (°C)  
VCM (V)  
2. Input Bias Current vs Temperature  
1. IIB and IIO vs Common-Mode Voltage  
20  
19  
40  
35  
30  
25  
20  
15  
10  
5
(V-) < VCM < (V+) - 1.5 V  
-40°C  
(V-) + 0.5 V < VCM < (V+) - 1.5 V  
85°C  
18  
125°C  
17  
16  
15  
14  
-14  
-15  
-16  
-17  
-18  
-19  
-20  
0
0
2
4
6
8
10 12 14 16 18 20 22 24  
-55 -35 -15  
5
25  
45  
65  
85  
105 125  
Output Current (mA)  
Temperature (°C)  
VSUPPLY = ±2 V  
3. Output Voltage Swing vs Output Current  
4. CMRR vs Temperature  
(Maximum Supply)  
100  
10  
1
Time (1 s/div)  
0.1  
1
10  
100  
1k  
10k  
100k  
Peak-to-Peak Noise = 250 nV  
Frequency (Hz)  
5. 0.1-Hz to 10-Hz Noise  
6. Input Voltage Noise Spectral Density vs Frequency  
版权 © 2017–2018, Texas Instruments Incorporated  
11  
 
OPA180-Q1, OPA2180-Q1  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
140  
120  
100  
80  
180  
135  
90  
45  
0
3
2.5  
2
Gain  
Phase  
VSUPPLY = 4 V, RL = 10 kW  
VSUPPLY = 36 V, RL = 10 kW  
60  
1.5  
1
40  
20  
0
0.5  
0
−20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
G007  
-55 -35 -15  
5
25  
45  
65  
85  
105 125  
Temperature (°C)  
7. Open-Loop Gain and Phase vs Frequency  
8. Open-Loop Gain vs Temperature  
10k  
40  
35  
30  
25  
20  
15  
10  
5
ROUT = 0 W  
ROUT = 25 W  
ROUT = 50 W  
1k  
100  
10  
G = 1  
18 V  
ROUT  
Device  
1
RL  
CL  
-18 V  
0
1m  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (Hz)  
Capacitive Load (pF)  
RL = 10 kΩ  
9. Open-Loop Output Impedance vs Frequency  
10. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step)  
40  
35  
30  
25  
20  
15  
10  
5
18 V  
ROUT = 0 W  
ROUT = 25 W  
ROUT = 50 W  
Device  
-18 V  
37 VPP  
Sine Wave  
(±18.5 V)  
RF = 10 kW  
RI = 10 kW  
G = -1  
18 V  
ROUT  
VI  
Device  
CL  
VO  
-18 V  
0
Time (100 ms/div)  
0
100 200 300 400 500 600 700 800 900 1000  
Capacitive Load (pF)  
RL = 10 kΩ  
12. No Phase Reversal  
11. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step)  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA180-Q1, OPA2180-Q1  
www.ti.com.cn  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
Typical Characteristics (接下页)  
VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
VI  
VO  
20 kW  
20 kW  
18 V  
2 kW  
18 V  
2 kW  
VO  
Device  
VO  
VI  
Device  
VI  
-18 V  
-18 V  
G = -10  
G = -10  
VO  
VI  
Time (5 ms/div)  
Time (5 ms/div)  
13. Positive Overload Recovery  
14. Negative Overload Recovery  
RI = 2 kW RF = 2 kW  
G = 1  
+18 V  
18 V  
Device  
Device  
-18 V  
RL  
CL  
CL  
-18 V  
G = -1  
Time (20 ms/div)  
Time (1 ms/div)  
RL = 10 kΩ  
CL = 10 pF  
RL = 10 kΩ  
CL = 10 pF  
16. Small-Signal Step Response (100 mV)  
15. Small-Signal Step Response  
(100 mV)  
Time (50 ms/div)  
Time (50 ms/div)  
G = 1  
RL = 10 kΩ  
CL = 10 pF  
G = –1  
RL = 10 kΩ  
CL = 10 pF  
17. Large-Signal Step Response  
18. Large-Signal Step Response  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
OPA180-Q1, OPA2180-Q1  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
10  
10  
8
8
6
6
4
4
12-Bit Settling  
12-Bit Settling  
2
2
0
0
-2  
-4  
-6  
-8  
-10  
-2  
-4  
-6  
-8  
-10  
(±1/2 LSB = ±0.024%)  
(±1/2 LSB = ±0.024%)  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Time (ms)  
Time (ms)  
G = –1  
G = –1  
19. Large-Signal Settling Time (10-V Positive Step)  
20. Large-Signal Settling Time (10-V Negative Step)  
30  
15  
VS = ±15 V  
20  
10  
12.5  
10  
7.5  
5
Maximum output voltage without  
slew-rate induced distortion.  
ISC, Source  
ISC, Sink  
0
VS = ±5 V  
-10  
-20  
-30  
2.5  
0
VS = ±2.25 V  
-55 -35 -15  
5
25  
45  
65  
85  
105 125  
1k  
10k  
100k  
1M  
10M  
Temperature (°C)  
Frequency (Hz)  
21. Short-Circuit Current vs Temperature  
22. Maximum Output Voltage vs Frequency  
-60  
-70  
160  
140  
120  
100  
80  
Channel A to B  
Channel B to A  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
60  
40  
20  
0
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
10M  
100M  
Frequency (Hz)  
1G  
10G  
Frequency (Hz)  
23. Channel Separation vs Frequency  
24. EMIRR IN+ vs Frequency  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA180-Q1, OPA2180-Q1  
www.ti.com.cn  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
8 Detailed Description  
8.1 Overview  
The OPAx180-Q1 family of operational amplifiers combine precision offset and drift with excellent overall  
performance, making them designed for many precision applications. The precision offset drift of only 0.1 µV/°C  
provides stability over the entire temperature range. In addition, the devices offer excellent overall performance  
with high CMRR, PSRR, and AOL  
.
As with all amplifiers, applications with noisy or  
high-impedance power supplies require decoupling capacitors close to the device pins. In most cases, 0.1-µF  
capacitors are adequate.  
8.2 Functional Block Diagram  
V+  
C2  
Notch  
CHOP1  
GM1  
CHOP2  
Filter  
GM2  
GM3  
+
-
+
+
OUT  
+IN  
-IN  
-
+
-
-
C1  
+
-
GM_FF  
Copyright © 2017, Texas Instruments Incorporated  
V-  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
OPA180-Q1, OPA2180-Q1  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Operating Characteristics  
The OPAx180-Q1 family of amplifiers is specified for operation from 4 V to 36 V (±2 V to ±18 V). Many of the  
specifications apply from –40°C to +125°C. Parameters that can exhibit significant variance with regard to  
operating voltage or temperature are presented in the Typical Characteristics.  
8.3.2 EMI Rejection  
The OPAx180-Q1 family uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI  
interference from sources such as wireless communications and densely populated boards with a mix of analog  
signal chain and digital components. EMI immunity can improve with circuit design techniques; the OPAx180-Q1  
family benefits from these design improvements. Texas Instruments has developed the ability to accurately  
measure and quantify the immunity of an operational amplifier over a broad frequency spectrum extending from  
10 MHz to 6 GHz. 25 shows the results of this testing on the OPAx180-Q1 family . For more detailed  
information, see the EMI Rejection Ratio of Operational Amplifiers application report, available for download from  
www.ti.com.  
160  
140  
120  
100  
80  
60  
40  
20  
0
10M  
100M  
Frequency (Hz)  
1G  
10G  
25. OPAx180-Q1 EMIRR Testing  
8.3.3 Phase-Reversal Protection  
The OPAx180-Q1 family has an internal phase-reversal protection. Many op amps exhibit a phase reversal when  
the input is driven beyond the linear common-mode range. This condition is most often encountered in  
noninverting circuits when the input is driven beyond the specified common-mode voltage range, causing the  
output to reverse into the opposite rail. The input of the OPAx180-Q1 prevents phase reversal with excessive  
common-mode voltage. Instead, the output limits into the appropriate rail. This performance is shown in 26.  
18 V  
Device  
-18 V  
37 VPP  
Sine Wave  
(±18.5 V)  
VI  
VO  
Time (100 ms/div)  
26. No Phase Reversal  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
OPA180-Q1, OPA2180-Q1  
www.ti.com.cn  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
Feature Description (接下页)  
8.3.4 Capacitive Load and Stability  
The dynamic characteristics of the OPAx180-Q1 are optimized for a range of common operating conditions. The  
combination of low closed-loop gain and high capacitive loads decreases the phase margin of the amplifier and  
can lead to gain peaking or oscillations. As a result, heavier capacitive loads must be isolated from the output.  
The simplest way to achieve this isolation is to add a small resistor (for example, ROUT equal to 50 Ω) in series  
with the output. 27 and 28 illustrate graphs of small-signal overshoot versus capacitive load for several  
values of ROUT. See the Feedback Plots Define Op Amp AC Performance, application report, available for  
download from the TI website, for details of analysis techniques and application circuits.  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
ROUT = 0 W  
ROUT = 25 W  
ROUT = 50 W  
ROUT = 0 W  
ROUT = 25 W  
ROUT = 50 W  
G = 1  
18  
V
RF = 10 kW  
RI = 10 kW  
G = -1  
ROUT  
18 V  
Device  
ROUT  
RL  
CL  
-18  
V
Device  
CL  
-18 V  
0
0
0
100 200 300 400 500 600 700 800 900 1000  
Capacitive Load (pF)  
0
100 200 300 400 500 600 700 800 900 1000  
Capacitive Load (pF)  
100-mV output  
100-mV output  
RL = 10 kΩ  
RL = 10 kΩ  
step  
step  
27. Small-Signal Overshoot Versus Capacitive Load  
28. Small-Signal Overshoot Versus Capacitive Load  
8.3.5 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress.  
These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output  
pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly.  
These ESD protection diodes also provide in-circuit, input overdrive protection, as long as the current is limited to  
10 mA as stated in the Absolute Maximum Ratings table. 29 shows how a series input resistor may be added  
to the driven input to limit the input current. The added resistor contributes thermal noise at the amplifier input  
and the value must be kept to a minimum in noise-sensitive applications.  
V+  
IOVERLOAD  
10 mA max  
VOUT  
VIN  
Device  
5 kW  
29. Input Current Protection  
An ESD event produces a short duration, high-voltage pulse that is transformed into a short duration, high-  
current pulse as the pulse discharges through a semiconductor device. The ESD protection circuits are designed  
to provide a current path around the operational amplifier core to protect the core from damage. The energy  
absorbed by the protection circuitry is then dissipated as heat.  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
 
 
OPA180-Q1, OPA2180-Q1  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
www.ti.com.cn  
Feature Description (接下页)  
When the operational amplifier connects into a circuit, the ESD protection components are intended to remain  
inactive and not become involved in the application circuit operation. However, circumstances may arise when an  
applied voltage exceeds the operating voltage range of a given pin. If this condition occurs, there is a risk that  
some of the internal ESD protection circuits may be biased on, and conduct current. Any such current flow  
occurs through ESD cells and rarely involves the absorption device.  
If there is an uncertainty about the ability of the supply to absorb this current, external zener diodes may be  
added to the supply pins. The zener voltage must be selected so the diode does not turn on during normal  
operation.  
However, the zener voltage must be low enough so that the zener diode conducts if the supply pin begins to rise  
above the safe operating supply voltage level.  
8.4 Device Functional Modes  
The OPAx180-Q1, and OPA2180-Q1 devices are powered on when the supply is connected. These devices can  
operate as a single-supply operational amplifier or dual-supply amplifier depending on the application. In single-  
supply operation with V– at ground (0 V), V+ can be any value between 4 V and 36 V. In dual-supply operation,  
the supply voltage difference between V– and V+ is from 4 V to 36 V. Typical examples of dual-supply  
configuration are ±5 V, ±10 V, ±15 V, and ±18 V. However, the supplies must not be symmetrical. Less common  
examples are V– at –3 V and V+ at 9 V, or V– at –16 V and V+ at 5 V. Any combination where the difference  
between V– and V+ is at least 4 V and no greater than 36 V is within the normal operating capabilities of these  
devices.  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA180-Q1, OPA2180-Q1  
www.ti.com.cn  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
9 Application and Implementation  
9.1 Application Information  
The OPAx180-Q1 family offers excellent DC precision and AC performance. These devices operate up to 36-V  
supply rails and offer rail-to-rail output, ultra-low offset voltage, offset voltage drift and 2-MHz bandwidth. These  
features make the OPAx180-Q1 a robust, high-performance amplifier for high-voltage industrial applications.  
9.2 Typical Applications  
These application examples highlight a few of the circuits where the OPAx180-Q1 family can be used.  
9.2.1 Bipolar ±10-V Analog Output from a Unipolar Voltage Output DAC  
This design is used for conditioning a unipolar digital-to-analog converter (DAC) into an accurate bipolar signal  
source using the OPAx180-Q1 family and three resistors. The circuit is designed with reactive load stability in  
mind, and is compensated to drive nearly any conventional capacitive load associated with long cable lengths.  
RG1  
RFB  
CCOMP  
VREF  
RG2  
VOUT  
+
DAC8560  
RISO  
CLOAD  
Device  
Copyright © 2017, Texas Instruments Incorporated  
30. Circuit Schematic  
9.2.1.1 Design Requirements  
The design requirements are as follows:  
DAC Supply Voltage: 5-V DC  
Amplifier Supply Voltage: ±15-V DC  
Input: 3-Wire, 24-Bit SPI  
Output: ±10-V DC  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
OPA180-Q1, OPA2180-Q1  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
www.ti.com.cn  
Typical Applications (接下页)  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Component Selection  
DAC: For convenience, devices with an external reference option or devices with accessible internal references  
are desirable in this application because the reference creates an offset. The DAC selection in this design must  
primarily be based on DC error contributions typically described by offset error, gain error, and integral  
nonlinearity error. Occasionally, additional specifications are provided that summarize end-point errors of the  
DAC typically called zero-code and full-scale errors. For AC applications, slew rate and settling time may require  
additional consideration.  
Amplifier: Amplifier input offset voltage (VIO) is a key consideration for this design. VIO of an operational amplifier  
is a typical data sheet specification, but in-circuit performance is affected by drift over temperature, the common-  
mode rejection ratio (CMRR), and power-supply rejection ratio (PSRR). Consideration must be given to these  
parameters. For AC operation, additional considerations must be made for slew rate and settling time. Input bias  
current (IIB) is also a factor, but typically the resistor network is implemented with sufficiently small resistor values  
that the effects of input bias current are negligible.  
Passive: Resistor matching for the op-amp resistor network is critical for the success of this design; components  
with tight tolerances must be selected. For this design, 0.1% resistor values are implemented, but this constraint  
may be adjusted based on application-specific design goals. Resistor matching contributes to offset error and  
gain error in this design; see Bipolar ±10V Analog Output from a Unipolar Voltage Output DAC for further details.  
The tolerance of the RISOand CCOMP stability components is not critical, and 1% components are acceptable.  
9.2.1.3 Application Curves  
31. Full-Scale Output Waveform  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA180-Q1, OPA2180-Q1  
www.ti.com.cn  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
Typical Applications (接下页)  
32. DC Transfer Characteristic  
For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test  
results, refer to TI Precision Design TIPD125, Bipolar ±10V Analog Output from a Unipolar Voltage Output DAC  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
OPA180-Q1, OPA2180-Q1  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
www.ti.com.cn  
9.2.2 Discrete INA + Attenuation  
The OPAx180-Q1 family can be used as a high-voltage, high-impedance front-end for a precision, discrete  
instrumentation amplifier with attenuation. The INA159 in 33 provides the attenuation that allows this circuit to  
simply interface with 3.3-V or 5-V analog-to-digital converters (ADCs).  
15 V  
U2  
½
VOUTP  
OPA2180-Q1  
3.3 V  
R5  
VDIFF / 2  
-15 V  
1 kW  
Ref 1  
Ref 2  
RG  
500 W  
R7  
U1  
INA159  
VOUT  
+
1 kW  
VCM  
10  
Sense  
-15 V  
-VDIFF / 2  
U5  
½
VOUTN  
OPA2180-Q1  
15 V  
Copyright © 2017, Texas Instruments Incorporated  
33. Discrete INA + Attenuation for ADC With a 3.3-V Supply  
9.2.3 RTD Amplifier  
The OPAx180-Q1 is excellent for use in analog linearization of resistance temperature detectors (RTDs). The  
circuit below (34) combines the precision of the OPAx180-Q1 amplifier and the precision reference of the  
REF5050 to linearize a Pt100 RTD.  
15 V  
(5 V)  
Out  
In  
REF5050  
1 µF  
R2  
49.1 k  
GND  
1 µF  
GND  
R1  
4.99 kꢀ  
R3  
60.4 kꢀ  
œ
0°C = 0 V  
200°C = 5 V  
VOUT  
+
OPA2180-Q1  
RTD  
Pt100  
R5  
105.8 kꢀ  
R4  
1 kꢀ  
GND  
Copyright © 2017, Texas Instruments Incorporated  
(1) R5 provides positive-varying excitation to linearize output.  
34. RTD Amplifier with Linearization  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
OPA180-Q1, OPA2180-Q1  
www.ti.com.cn  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
10 Power Supply Recommendations  
The OPAx180-Q1 family is specified for operation from 4 V to 36 V (±2 V to ±18 V); many specifications apply  
from –40°C to +105°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in Layout  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see the  
Absolute Maximum Ratings.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see Layout .  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
OPA180-Q1, OPA2180-Q1  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power  
sources local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are typically devoted to ground  
planes. A ground plane helps distribute heat and reduces EMI noise pickup. Take care to physically  
separate digital and analog grounds, paying attention to the flow of the ground current.  
In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If it is not possible to keep the input traces separate, it is much better to cross the sensitive  
trace perpendicular as opposed to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As shown in 35, keeping RF and  
RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly  
reduce leakage currents from nearby traces that are at different potentials.  
11.2 Layout Example  
Place components close  
to device and to each  
other to reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
VS+  
RF  
NC  
NC  
Use a low-ESR,  
ceramic bypass  
capacitor  
RG  
GND  
œIN  
+IN  
Vœ  
V+  
OUTPUT  
NC  
VIN  
GND  
GND  
VSœ  
VOUT  
Ground (GND) plane on another layer  
Use low-ESR,  
ceramic bypass  
capacitor  
35. Operational Amplifier Board Layout for Noninverting Configuration  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
 
OPA180-Q1, OPA2180-Q1  
www.ti.com.cn  
ZHCSGA5A JUNE 2017REVISED JUNE 2018  
12 器件和文档支持  
12.1 相关链接  
3 列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
3. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
OPA180-Q1  
OPA2180-Q1  
12.2 商标  
12.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
 
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2018 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA180QDGKRQ1  
OPA2180QDGKRQ1  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 105  
-40 to 105  
180  
NIPDAUAG  
2180  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA180QDGKRQ1  
OPA2180QDGKRQ1  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA180QDGKRQ1  
OPA2180QDGKRQ1  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500  
2500  
366.0  
366.0  
364.0  
364.0  
50.0  
50.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY