OPA2171MDCUTEP [TI]

Enhanced product, dual, 36-V, 3-MHz, low-power operational amplifier | DCU | 8 | -55 to 125;
OPA2171MDCUTEP
型号: OPA2171MDCUTEP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Enhanced product, dual, 36-V, 3-MHz, low-power operational amplifier | DCU | 8 | -55 to 125

放大器 光电二极管
文件: 总27页 (文件大小:960K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
OPA2171-EP  
ZHCSE93 SEPTEMBER 2015  
OPA2171-EP 36V 单电源 SOT553 通用运算放大器  
1 特性  
2 应用范围  
1
电源电压范围:2.7V 36V±1.35V ±18V  
电源模块内的跟踪放大器  
商用电源  
低噪声:14nV/Hz  
低偏移漂移:0.3µV/°C(典型值)  
已过滤的射频干扰 (RFI) 输入  
输入范围包括负电源  
变频器放大器  
桥式放大器  
温度测量  
输入范围运行至正电源  
应力计放大器  
精密积分器  
轨至轨输出  
增益带宽:3MHz  
电池供电仪器  
测试设备  
低静态电流:每个放大器 475µA  
高共模抑制:120dB(典型值)  
低输入偏置电流:8pA  
3 说明  
OPA2171-EP 是一款 36V 单电源低噪声运算放大器,  
能够在 2.7V (±1.35V) 36V (±18V) 的电源电压范围  
内运行。 这个器件采用微型封装并且在保证低静态电  
流的情况下提供低偏移、漂移和带宽。 单通道、双通  
道和四通道版本均具有相同的技术规格,可最大程度地  
提高设计灵活性。  
微型封装:VSSOP-8 双列封装  
支持国防、航天和医疗应用:  
可控基线  
一个组装/测试场所  
一个制造场所  
在扩展(-55°C 125°C)温度范围内可用  
延长的产品生命周期  
延长产品的变更通知周期  
产品可追溯性  
大多数运算放大器仅有一个指定的电源电  
压,OPAx2171-EP 则有所不同,其可在 2.7V 36V  
的电压范围内额定运行。超过电源轨的输入信号不会导  
致相位反向。 OPA2171-EP 在电容负载高达 300pF  
时可保持稳定。 输入可在负电源轨以下 100mV 以及  
正电源轨 2V 之内正常运行。 请注意这些器件可在正  
电源轨之上 100mV 的满轨到轨输入上运行,但是在正  
电源轨 2V 之内运行时性能会受到影响。  
具有 RISO 稳定性补偿的单位增益缓冲器  
+VS  
VOUT  
RISO  
+
OPA2171-EP 运算放大器额定工作温度范围为 –55°C  
125°C。  
CLOAD  
+
VIN  
器件信息(1)  
-VS  
œ
器件型号  
封装  
封装尺寸(标称值)  
超薄小外形尺寸封装  
(VSSOP)(8)  
OPA2171-EP  
2.30mm x 2.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS735  
 
 
 
OPA2171-EP  
ZHCSE93 SEPTEMBER 2015  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 14  
7.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Application ................................................. 17  
Power Supply Recommendations...................... 19  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 14  
8
9
10 Layout................................................................... 20  
10.1 Layout Guidelines ................................................ 20  
10.2 Layout Example .................................................... 20  
11 器件和文档支持 ..................................................... 21  
11.1 社区资源................................................................ 21  
11.2 ....................................................................... 21  
11.3 静电放电警告......................................................... 21  
11.4 Glossary................................................................ 21  
12 机械、封装和可订购信息....................................... 21  
7
4 修订历史记录  
日期  
修订版本  
注释  
2015 9 月  
*
最初发布版本。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
OPA2171-EP  
www.ti.com.cn  
ZHCSE93 SEPTEMBER 2015  
5 Pin Configuration and Functions  
DCU Package  
8-Pin VSSOP  
Top View  
OUT A  
-IN A  
+IN A  
V-  
1
2
3
4
8
7
6
5
V+  
OUT B  
-IN B  
+IN B  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN A  
+IN B  
–IN A  
–IN B  
OUT A  
OUT B  
V+  
NO.  
3
I
I
Noninverting input, channel A  
Noninverting input, channel B  
Inverting input, channel A  
Inverting input, channel B  
Output, channel A  
5
2
I
6
I
1
O
O
7
Output, channel B  
7
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
4
Copyright © 2015, Texas Instruments Incorporated  
3
OPA2171-EP  
ZHCSE93 SEPTEMBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range, unless otherwise noted(1)  
MIN  
±20  
MAX  
UNIT  
V
Supply voltage  
Voltage  
Signal input pins  
(V–) – 0.5  
–10  
(V+) + 0.5  
10  
V
Current  
mA  
Output short circuit(2)  
Junction temperature  
Storage temperature, Tstg  
Continuous  
150  
150  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±4000  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5 (±2.25)  
–55  
NOM  
MAX  
36 (±18)  
125  
UNIT  
V
Supply voltage (V+ – V–)  
Operating temperature, TJ  
°C  
6.4 Thermal Information  
OPA2171-EP  
DCU (VSSOP)  
8 PINS  
175.2  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
74.9  
22.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
1.6  
ψJB  
22.8  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
 
OPA2171-EP  
www.ti.com.cn  
ZHCSE93 SEPTEMBER 2015  
6.5 Electrical Characteristics  
at TJ = 25°C, VS = 2.7 to 36 V, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2, unless otherwise noted.  
PARAMETER  
OFFSET VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Input offset voltage  
Over temperature  
Drift  
VOS  
0.25  
0.3  
0.3  
1
±1.8  
±2  
mV  
mV  
TJ = –55°C to 125°C  
dVOS/dT TJ = –55°C to 125°C  
µV/°C  
vs power supply  
Channel separation, dc  
INPUT BIAS CURRENT  
Input bias current  
Over temperature  
Input offset current  
Over temperature  
NOISE  
PSRR  
VS = 4 to 36 V, TA = –55°C to 125°C  
±5 µV/V  
µV/V  
dc  
5
IB  
±8  
±4  
±15  
pA  
nA  
pA  
nA  
TJ = –55°C to 125°C  
TJ = –55°C to 125°C  
±4  
IOS  
±4  
Input voltage noise  
ƒ = 0.1 to 10 Hz  
ƒ = 100 Hz  
3
25  
14  
µVPP  
nV/Hz  
nV/Hz  
Input voltage noise density  
en  
ƒ = 1 kHz  
INPUT VOLTAGE  
Common-mode voltage  
range(1)  
VCM  
(V–) – 0.1 V  
(V+) – 2 V  
V
VS = ±2 V, (V–) – 0.1 V < VCM < (V+) – 2 V,  
TJ = –55°C to 125°C  
87  
104  
120  
dB  
dB  
Common-mode rejection  
ratio  
CMRR  
VS = ±18 V, (V–) – 0.1 V < VCM < (V+) – 2 V,  
TJ = –55°C to 125°C  
104  
INPUT IMPEDANCE  
MΩ ||  
pF  
1012Ω ||  
pF  
Differential  
100 || 3  
6 || 3  
Common-mode  
OPEN-LOOP GAIN  
Open-loop voltage gain  
VS = 4 to 36 V, (V–) + 0.35 V < VO < (V+) –  
0.35 V, TJ = –55°C to 125°C  
AOL  
110  
130  
dB  
FREQUENCY RESPONSE  
Gain bandwidth product  
Slew rate  
GBP  
SR  
3.0  
1.5  
6
MHz  
V/µs  
µs  
G = +1  
To 0.1%, VS = ±18 V, G = +1, 10-V step  
Settling time  
tS  
To 0.01% (12 bit), VS = ±18 V, G = +1, 10-V  
step  
10  
2
µs  
µs  
Overload recovery time  
VIN × Gain > VS  
Total harmonic distortion +  
noise  
THD+N  
VO  
G = +1, ƒ = 1kHz, VO = 3VRMS  
0.0002%  
OUTPUT  
Voltage output swing from  
rail  
VS = 5 V, RL = 10 kΩ  
30  
mV  
V
RL = 10 kΩ, AOL 110 dB,  
TJ = –55°C to 125°C  
Over temperature  
(V–) + 0.35  
(V+) – 0.35  
Short-circuit current  
Capacitive load drive  
ISC  
+25/–35  
mA  
pF  
Ω
CLOAD  
See Typical Characteristics  
Open-loop output resistance RO  
ƒ = 1 MHz, IO = 0 A  
150  
(1) The input range can be extended beyond (V+) – 2 V up to V+. See Typical Characteristics and Application and Implementation for  
additional information.  
Copyright © 2015, Texas Instruments Incorporated  
5
OPA2171-EP  
ZHCSE93 SEPTEMBER 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TJ = 25°C, VS = 2.7 to 36 V, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2, unless otherwise noted.  
PARAMETER  
POWER SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Specified voltage range  
VS  
IQ  
2.7  
36  
595  
650  
V
Quiescent current per  
amplifier  
IO = 0 A  
IO = 0 A, TJ = –55°C to 125°C  
475  
µA  
µA  
Over temperature  
TEMPERATURE  
Operating temperature  
TJ  
–55  
125  
°C  
6
Copyright © 2015, Texas Instruments Incorporated  
OPA2171-EP  
www.ti.com.cn  
ZHCSE93 SEPTEMBER 2015  
6.6 Typical Characteristics  
Table 1. Characteristic Performance Measurements  
DESCRIPTION  
FIGURE  
Figure 1  
Offset Voltage Production Distribution  
Offset Voltage Drift Distribution  
Figure 2  
Offset Voltage vs Temperature  
Figure 3  
Offset Voltage vs Common-Mode Voltage  
Figure 4  
Offset Voltage vs Common-Mode Voltage (Upper Stage)  
Offset Voltage vs Power Supply  
Figure 5  
Figure 6  
IB and IOS vs Common-Mode Voltage  
Input Bias Current vs Temperature  
Output Voltage Swing vs Output Current (Maximum Supply)  
CMRR and PSRR vs Frequency (Referred-to Input)  
CMRR vs Temperature  
Figure 7  
Figure 8  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 20  
Figure 21  
Figure 22  
Figure 23, Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 28, Figure 29  
Figure 30, Figure 31  
Figure 32  
Figure 33  
Figure 34  
Figure 35  
Figure 36  
PSRR vs Temperature  
0.1-Hz to 10-Hz Noise  
Input Voltage Noise Spectral Density vs Frequency  
THD+N Ratio vs Frequency  
THD+N vs Output Amplitude  
Quiescent Current vs Temperature  
Quiescent Current vs Supply Voltage  
Open-Loop Gain and Phase vs Frequency  
Closed-Loop Gain vs Frequency  
Open-Loop Gain vs Temperature  
Open-Loop Output Impedance vs Frequency  
Small-Signal Overshoot vs Capacitive Load (100-mV Output Step)  
No Phase Reversal  
Positive Overload Recovery  
Negative Overload Recovery  
Small-Signal Step Response (100 mV)  
Large-Signal Step Response  
Large-Signal Settling Time (10-V Positive Step)  
Large-Signal Settling Time (10-V Negative Step)  
Short-Circuit Current vs Temperature  
Maximum Output Voltage vs Frequency  
Channel Separation vs Frequency  
Copyright © 2015, Texas Instruments Incorporated  
7
 
OPA2171-EP  
ZHCSE93 SEPTEMBER 2015  
www.ti.com.cn  
VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
16  
14  
12  
10  
8
25  
20  
15  
10  
5
Distribution Taken From 3500 Amplifiers  
Distribution Taken From 110 Amplifiers  
6
4
2
0
0
Offset Voltage (mV)  
Offset Voltage Drift (mV/°C)  
Figure 2. Offset Voltage Drift Distribution  
Figure 1. Offset Voltage Production Distribution  
1000  
800  
600  
400  
10 Typical Units Shown  
5 Typical Units Shown  
600  
200  
400  
200  
0
0
-200  
-400  
-600  
-800  
-200  
-400  
-600  
-800  
-1000  
VCM = -18.1V  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
-75 -50 -25  
0
25  
50  
75  
100 125 150  
VCM (V)  
Temperature (°C)  
Figure 3. Offset Voltage vs Temperature  
Figure 4. Offset Voltage vs Common-Mode Voltage  
10000  
8000  
350  
10 Typical Units Shown  
VSUPPLY = ±1.35V to ±18V  
10 Typical Units Shown  
250  
150  
6000  
4000  
2000  
50  
0
-50  
-2000  
-4000  
-6000  
-8000  
-10000  
Normal  
Operation  
-150  
-250  
-350  
VCM = +18.1V  
15.5  
16  
16.5  
17  
17.5  
18  
18.5  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
VCM (V)  
VSUPPLY (V)  
Figure 5. Offset Voltage vs Common-Mode Voltage (Upper  
Stage)  
Figure 6. Offset Voltage vs Power Supply  
8
Copyright © 2015, Texas Instruments Incorporated  
OPA2171-EP  
www.ti.com.cn  
ZHCSE93 SEPTEMBER 2015  
VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
15  
14  
13  
12  
11  
10  
9
10000  
1000  
100  
10  
-IB  
IB+  
IB-  
IOS  
+IB  
IB  
-IOS  
8
7
6
IOS  
5
4
3
1
VCM = -18.1V  
VCM = 16V  
2
1
0
0
-20  
-18  
-12  
-6  
0
6
12  
18  
20  
-75 -50 -25  
0
25  
50  
75  
100 125 150  
VCM (V)  
Temperature (°C)  
Figure 7. IB and IOS vs Common-Mode Voltage  
Figure 8. Input Bias Current vs Temperature  
18  
17  
16  
140  
120  
100  
80  
15  
14.5  
-14.5  
-15  
60  
-40°C  
+25°C  
+85°C  
+125°C  
40  
-16  
-17  
-18  
+PSRR  
-PSRR  
CMRR  
20  
0
0
2
4
6
8
10  
12  
14  
16  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Output Current (mA)  
Frequency (Hz)  
Figure 9. Output Voltage Swing vs Output Current  
(Maximum Supply)  
Figure 10. CMRR and PSRR vs Frequency (Referred-to  
Input)  
30  
20  
3
2
10  
1
0
0
-10  
-20  
-30  
-1  
VS = 2.7V  
VS = 4V  
-2  
-3  
VS = 2.7V to 36V  
VS = 4V to 36V  
VS = 36V  
-75 -50 -25  
0
25  
50  
75  
100 125 150  
-75 -50 -25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
Temperature (°C)  
Figure 11. CMRR vs Temperature  
Figure 12. PSRR vs Temperature  
Copyright © 2015, Texas Instruments Incorporated  
9
OPA2171-EP  
ZHCSE93 SEPTEMBER 2015  
www.ti.com.cn  
VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
1000  
100  
10  
1
Time (1s/div)  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Figure 13. 0.1-Hz to 10-Hz Noise  
Figure 14. Input Voltage Noise Spectral Density vs  
Frequency  
0.1  
0.01  
-80  
0.01  
0.001  
-80  
VOUT = 3VRMS  
BW = 80kHz  
BW = 80kHz  
-100  
-120  
-140  
-100  
-120  
-140  
0.001  
0.0001  
0.00001  
0.0001  
0.00001  
G = +1, RL = 10kW  
G = -1, RL = 2kW  
G = +1, RL = 10kW  
G = -1, RL = 2kW  
0.01  
0.1  
1
10 20  
10  
100  
1k  
Frequency (Hz)  
10k 20k  
Output Amplitude (VRMS  
)
Figure 15. THD+N Ratio vs Frequency  
Figure 16. THD+N vs Output Amplitude  
0.65  
0.6  
0.6  
0.55  
0.5  
0.55  
0.5  
0.45  
0.4  
0.45  
0.4  
0.35  
0.3  
Specified Supply-Voltage Range  
0.35  
0.25  
-75 -50 -25  
0
25  
50  
75  
100 125 150  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Temperature (°C)  
Supply Voltage (V)  
Figure 17. Quiescent Current vs Temperature  
Figure 18. Quiescent Current vs Supply Voltage  
10  
Copyright © 2015, Texas Instruments Incorporated  
OPA2171-EP  
www.ti.com.cn  
ZHCSE93 SEPTEMBER 2015  
VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
180  
135  
90  
180  
135  
90  
25  
20  
15  
10  
5
Gain  
Phase  
0
45  
45  
-5  
-10  
-15  
-20  
G = 10  
G = 1  
0
0
G = -1  
-45  
-45  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
Figure 19. Open-Loop Gain and Phase vs Frequency  
Figure 20. Closed-Loop Gain vs Frequency  
3
1M  
5 Typical Units Shown  
VS = 2.7V  
VS = 4V  
100k  
10k  
1k  
2.5  
2
VS = 36V  
1.5  
1
100  
10  
0.5  
0
1
1m  
-75 -50 -25  
0
25  
50  
75  
100 125 150  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Temperature (°C)  
Frequency (Hz)  
Figure 21. Open-Loop Gain vs Temperature  
Figure 22. Open-Loop Output Impedance vs Frequency  
50  
50  
RL = 10kW  
ROUT = 0W  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
ROUT = 25W  
40  
ROUT = 50W  
35  
30  
25  
20  
G = +1  
+18V  
RF = 10kW  
RI = 10kW  
G = -1  
ROUT = 0W  
15  
10  
5
ROUT  
+18V  
OPA171  
ROUT = 25W  
ROUT  
RL  
CL  
-18V  
OPA171  
CL  
ROUT = 50W  
-18V  
0
0
0
100 200 300 400 500 600 700 800 900 1000  
Capacitive Load (pF)  
0
100 200 300 400 500 600 700 800 900 1000  
Capacitive Load (pF)  
Figure 23. Small-Signal Overshoot vs Capacitive Load (100-  
mV Output Step)  
Figure 24. Small-Signal Overshoot vs Capacitive Load (100-  
mV Output Step)  
Copyright © 2015, Texas Instruments Incorporated  
11  
OPA2171-EP  
ZHCSE93 SEPTEMBER 2015  
www.ti.com.cn  
VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
+18V  
VOUT  
OPA171  
Output  
-18V  
37VPP  
Sine Wave  
(±18.5V)  
VIN  
20kW  
+18V  
2kW  
VOUT  
OPA171  
Output  
VIN  
-18V  
G = -10  
Time (5ms/div)  
Time (100ms/div)  
Figure 25. No Phase Reversal  
Figure 26. Positive Overload Recovery  
RL = 10kW  
G = +1  
+18V  
OPA171  
-18V  
CL = 100pF  
RL  
CL  
VIN  
20kW  
+18V  
2kW  
VOUT  
OPA171  
VIN  
VOUT  
-18V  
G = -10  
Time (5ms/div)  
Time (1ms/div)  
Figure 27. Negative Overload Recovery  
Figure 28. Small-Signal Step Response (100 mV)  
G = +1  
RL = 10kW  
CL = 100pF  
CL = 100pF  
RI = 2kW RF = 2kW  
+18V  
OPA171  
CL  
-18V  
G = -1  
Time (20ms/div)  
Time (5ms/div)  
Figure 29. Small-Signal Step Response (100 mV)  
Figure 30. Large-Signal Step Response  
12  
Copyright © 2015, Texas Instruments Incorporated  
OPA2171-EP  
www.ti.com.cn  
ZHCSE93 SEPTEMBER 2015  
VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
10  
G = -1  
G = -1  
8
RL = 10kW  
CL = 100pF  
6
4
12-Bit Settling  
2
0
-2  
-4  
-6  
-8  
-10  
(±1/2LSB = ±0.024%)  
Time (4ms/div)  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Time (ms)  
Figure 31. Large-Signal Step Response  
Figure 32. Large-Signal Settling Time (10-V Positive Step)  
10  
8
50  
45  
G = -1  
ISC, Sink  
6
40  
35  
30  
25  
20  
15  
10  
5
4
12-Bit Settling  
2
0
-2  
-4  
-6  
-8  
-10  
ISC, Source  
(±1/2LSB = ±0.024%)  
0
0
4
8
12  
16  
20  
24  
28  
32  
36  
-75 -50 -25  
0
25  
50  
75  
100 125 150  
Time (ms)  
Temperature (°C)  
Figure 33. Large-Signal Settling Time (10-V Negative Step)  
Figure 34. Short-Circuit Current vs Temperature  
15  
-60  
-70  
VS = ±15V  
12.5  
10  
7.5  
5
-80  
Maximum output voltage without  
slew-rate induced distortion.  
-90  
VS = ±5V  
-100  
-110  
-120  
2.5  
0
VS = ±1.35V  
10k  
100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Figure 35. Maximum Output Voltage vs Frequency  
Figure 36. Channel Separation vs Frequency  
Copyright © 2015, Texas Instruments Incorporated  
13  
OPA2171-EP  
ZHCSE93 SEPTEMBER 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPA2171-EP operational amplifier provides high overall performance, making it ideal for many general-  
purpose applications. The excellent offset drift of only 2 µV/°C provides excellent stability over the entire  
temperature range. In addition, the device offers very good overall performance with high CMRR, PSRR, and  
AOL. As with all amplifiers, applications with noisy or high-impedance power supplies require decoupling  
capacitors close to the device pins. In most cases, 0.1-µF capacitors are adequate.  
7.2 Functional Block Diagram  
+
PCH  
FF Stage  
œ
Ca  
Cb  
+
+IN  
+
+
PCH  
Input Stage  
2nd Stage  
OUT  
Output  
Stage  
œ
œIN  
œ
œ
+
NCH  
Input Stage  
œ
7.3 Feature Description  
7.3.1 Operating Characteristics  
The OPA2171-EP amplifier is specified for operation from 2.7 to 36 V (±1.35 to ±18 V). Many of the  
specifications apply from –55°C to 125°C. Parameters that can exhibit significant variance with regard to  
operating voltage or temperature are presented in Typical Characteristics.  
7.3.2 Phase-Reversal Protection  
The OPA2171-EP has an internal phase-reversal protection. Many operational amplifiers exhibit a phase reversal  
when the input is driven beyond its linear common-mode range. This condition is most often encountered in  
noninverting circuits when the input is driven beyond the specified common-mode voltage range, causing the  
output to reverse into the opposite rail. The input of the OPA2171-EP prevents phase reversal with excessive  
common-mode voltage. Instead, the output limits into the appropriate rail. Figure 37 shows this performance.  
14  
Copyright © 2015, Texas Instruments Incorporated  
OPA2171-EP  
www.ti.com.cn  
ZHCSE93 SEPTEMBER 2015  
Feature Description (continued)  
+18V  
OPA171  
-18V  
Output  
37VPP  
Sine Wave  
(±18.5V)  
Output  
Time (100ms/div)  
Figure 37. No Phase Reversal  
7.4 Device Functional Modes  
7.4.1 Common-Mode Voltage Range  
The input common-mode voltage range of the OPA2171-EP extends 100 mV below the negative rail and within 2  
V of the top rail for normal operation.  
This device can operate with full rail-to-rail input 100 mV beyond the top rail, but with reduced performance within  
2 V of the top rail. Table 2 summarizes the typical performance in this range.  
Table 2. Typical Performance Range  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
V
Input Common-Mode Voltage  
Offset voltage  
(V+) – 2  
(V+) + 0.1  
7
12  
mV  
vs Temperature  
Common-mode rejection  
Open-loop gain  
GBW  
µV/°C  
dB  
65  
60  
dB  
0.7  
0.7  
30  
MHz  
V/µs  
nV/Hz  
Slew rate  
Noise at ƒ = 1kHz  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
OPA2171-EP  
ZHCSE93 SEPTEMBER 2015  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Electrical Overstress  
Designers often ask about the capability of an operational amplifier to withstand electrical overstress. These  
questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output pin.  
Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly.  
These ESD protection diodes also provide in-circuit, input overdrive protection, as long as the current is limited to  
10 mA as stated in Absolute Maximum Ratings. Figure 38 shows how a series input resistor may be added to the  
driven input to limit the input current. The added resistor contributes thermal noise at the amplifier input and its  
value should be kept to a minimum in noise-sensitive applications.  
V+  
IOVERLOAD  
10mA max  
VOUT  
OPA171  
VIN  
5kW  
Figure 38. Input Current Protection  
An ESD event produces a short duration, high-voltage pulse that is transformed into a short duration, high-  
current pulse as it discharges through a semiconductor device. The ESD protection circuits are designed to  
provide a current path around the operational amplifier core to prevent it from being damaged. The energy  
absorbed by the protection circuitry is then dissipated as heat.  
When the operational amplifier connects into a circuit, the ESD protection components are intended to remain  
inactive and not become involved in the application circuit operation. However, circumstances may arise where  
an applied voltage exceeds the operating voltage range of a given pin. If this condition occurs, there is a risk that  
some of the internal ESD protection circuits may be biased on, and conduct current. Any such current flow  
occurs through ESD cells and rarely involves the absorption device.  
If there is uncertainty about the ability of the supply to absorb this current, external Zener diodes may be added  
to the supply pins. Select the Zener voltage such that the diode does not turn on during normal operation.  
However, its Zener voltage should be low enough so that the Zener diode conducts if the supply pin begins to  
rise above the safe operating supply voltage level.  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
OPA2171-EP  
www.ti.com.cn  
ZHCSE93 SEPTEMBER 2015  
8.2 Typical Application  
Figure 39 shows a capacitive load drive solution using an isolation resistor. The OPA2171-EP device can be  
used capacitive loads such as cable shields, reference buffers, MOSFET gates, and diodes. The circuit uses an  
isolation resistor (RISO) to stabilize the output of an op amp. RISO modifies the open loop gain of the system to  
ensure the circuit has sufficient phase margin.  
+VS  
VOUT  
RISO  
+
CLOAD  
+
VIN  
-VS  
œ
Figure 39. Unity-Gain Buffer with RISO Stability Compensation  
8.2.1 Design Requirements  
The design requirements are:  
Supply voltage: 30 V (±15 V)  
Capacitive loads: 100 pF, 1000 pF, 0.01 μF, 0.1 μF, and 1 μF  
Phase margin: 45° and 60°  
8.2.2 Detailed Design Procedure  
Figure 39 shows a unity-gain buffer driving a capacitive load. Equation 1 shows the transfer function for the  
circuit in Figure 39. Not shown in Figure 39 is the open-loop output resistance of the op amp, Ro.  
1 + CLOAD × RISO × s  
T(s) =  
1 + R + R  
× C  
× s  
(
)
o
ISO  
LOAD  
(1)  
The transfer function in Equation 1 has a pole and a zero. The frequency of the pole (fp) is determined by (Ro +  
RISO) and CLOAD. Components RISO and CLOAD determine the frequency of the zero (fz). A stable system is  
obtained by selecting RISO such that the rate of closure (ROC) between the open-loop gain (AOL) and 1/β is 20  
dB/decade. Figure 40 depicts the concept. The 1/β curve for a unity-gain buffer is 0 dB.  
120  
AOL  
100  
1
fp  
=
2 ì Œ ì  
R
+ Ro ì C  
(
)
ISO  
LOAD  
80  
60  
40  
20  
0
40 dB  
1
fz  
=
2 ì Œ ì RISO ì CLOAD  
1 dec  
1/  
20 dB  
dec  
ROC =  
100M  
10M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Figure 40. Unity-Gain Amplifier with RISO Compensation  
Copyright © 2015, Texas Instruments Incorporated  
17  
 
 
 
OPA2171-EP  
ZHCSE93 SEPTEMBER 2015  
www.ti.com.cn  
Typical Application (continued)  
ROC stability analysis is typically simulated. The validity of the analysis depends on multiple factors, especially  
the accurate modeling of Ro. In addition to simulating the ROC, a robust stability analysis includes a  
measurement of overshoot percentage and AC gain peaking of the circuit using a function generator,  
oscilloscope, and gain and phase analyzer. Phase margin is then calculated from these measurements. Table 3  
shows the overshoot percentage and AC gain peaking that correspond to phase margins of 45° and 60°. For  
more details on this design and other alternative devices that can be used in place of the OPA171, refer to the  
Precision Design, Capacitive Load Drive Solution using an Isolation Resistor (TIPD128).  
Table 3. Phase Margin versus Overshoot and AC Gain  
Peaking  
PHASE MARGIN  
OVERSHOOT  
23.3%  
AC GAIN PEAKING  
2.35 dB  
45°  
60°  
8.8%  
0.28 dB  
8.2.2.1 Capacitive Load and Stability  
The dynamic characteristics of the OPA2171-EP have been optimized for commonly encountered operating  
conditions. The combination of low closed-loop gain and high capacitive loads decreases the phase margin of  
the amplifier and can lead to gain peaking or oscillations. As a result, heavier capacitive loads must be isolated  
from the output. The simplest way to achieve this isolation is to add a small resistor (for example, ROUT equal to  
50 Ω) in series with the output. Figure 41 and Figure 42 illustrate graphs of small-signal overshoot versus  
capacitive load for several values of ROUT. Also, refer to Applications Bulletin AB-028 (SBOA015), available for  
download from www.ti.com for details of analysis techniques and application circuits.  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
RL = 10kW  
ROUT = 0W  
ROUT = 25W  
ROUT = 50W  
G = +1  
+18V  
OPA171  
-18V  
RF = 10kW  
RI = 10kW  
G = -1  
ROUT = 0W  
ROUT = 25W  
ROUT = 50W  
ROUT  
+18V  
ROUT  
RL  
CL  
OPA171  
CL  
-18V  
0
0
0
100 200 300 400 500 600 700 800 900 1000  
Capacitive Load (pF)  
0
100 200 300 400 500 600 700 800 900 1000  
Capacitive Load (pF)  
Figure 41. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step)  
Figure 42. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step)  
18  
Copyright © 2015, Texas Instruments Incorporated  
 
 
OPA2171-EP  
www.ti.com.cn  
ZHCSE93 SEPTEMBER 2015  
8.2.3 Application Curve  
The OPA2171-EP device meets the supply voltage requirements of 30 V. The OPA2171-EP device was tested  
for various capacitive loads and RISO was adjusted to achieve an overshoot corresponding to Table 3. Figure 43  
shows the test results.  
10000  
45è Phase Margin  
60è Phase Margin  
1000  
100  
10  
1
0.01  
0.1  
1
10  
100  
1000  
Capacitive Load (nF)  
D001  
Figure 43. RISO vs CLOAD  
9 Power Supply Recommendations  
The OPA2171-EP is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications apply  
from –40°C to 125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in the Typical Characteristics section.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see the  
Absolute Maximum Ratings table.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For detailed information on bypass capacitor placement, see the Layout section.  
Copyright © 2015, Texas Instruments Incorporated  
19  
 
OPA2171-EP  
ZHCSE93 SEPTEMBER 2015  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, TI recommends good printed circuit board (PCB) layout  
practices. Low-loss, 0.1-µF bypass capacitors should be connected between each supply pin and ground, placed  
as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-supply  
applications.  
10.2 Layout Example  
Place components close to  
device and to each other to  
reduce parasitic errors  
VS+  
Run the input traces as  
far away from the supply  
lines as possible  
GND  
OUT A  
V+  
GND  
VIN  
œIN A  
OUT B  
œIN B  
+IN B  
Use low-ESR, ceramic  
bypass capacitor  
+IN A  
Vœ  
VS ±  
(or GND for single supply)  
GND  
Ground (GND) plane on  
another layer  
Only needed for dual-  
supply operation  
VOUT  
Figure 44. Operational Amplifier Board Layout for Noninverting Configuration  
20  
版权 © 2015, Texas Instruments Incorporated  
OPA2171-EP  
www.ti.com.cn  
ZHCSE93 SEPTEMBER 2015  
11 器件和文档支持  
11.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.2 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏  
版权 © 2015, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2171MDCUTEP  
V62/15605-01XE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DCU  
DCU  
8
8
250  
250  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-55 to 125  
-55 to 125  
ZGAA  
ZGAA  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
DCU0008A  
VSSOP - 0.9 mm max height  
S
C
A
L
E
6
.
0
0
0
SMALL OUTLINE PACKAGE  
3.2  
3.0  
TYP  
C
A
0.1 C  
PIN 1 INDEX AREA  
SEATING  
PLANE  
6X 0.5  
8
1
2X  
2.1  
1.9  
1.5  
NOTE 3  
4
5
0.25  
0.17  
8X  
2.4  
2.2  
B
0.08  
C A B  
NOTE 3  
SEE DETAIL A  
0.9  
0.6  
0.12  
GAGE PLANE  
0.1  
0.0  
0.35  
0.20  
0 -6  
(0.13) TYP  
A
30  
DETAIL A  
TYPICAL  
4225266/A 09/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-187 variation CA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCU0008A  
VSSOP - 0.9 mm max height  
SMALL OUTLINE PACKAGE  
SEE SOLDER MASK  
DETAILS  
SYMM  
8X (0.85)  
(R0.05) TYP  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(3.1)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
SOLDER MASK  
OPENING  
METAL UNDER  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4225266/A 09/2014  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCU0008A  
VSSOP - 0.9 mm max height  
SMALL OUTLINE PACKAGE  
8X (0.85)  
SYMM  
(R0.05) TYP  
8
1
8X (0.3)  
SYMM  
6X (0.5)  
4
5
(3.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 25X  
4225266/A 09/2014  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA2172

双路、36V、10MHz、低功耗运算放大器
TI

OPA2172-Q1

汽车级、双路、36V、10MHz、低功耗运算放大器
TI

OPA2172ID

双路、36V、10MHz、低功耗运算放大器 | D | 8 | -40 to 125
TI

OPA2172IDGK

双路、36V、10MHz、低功耗运算放大器 | DGK | 8 | -40 to 125
TI

OPA2172IDGKR

双路、36V、10MHz、低功耗运算放大器 | DGK | 8 | -40 to 125
TI

OPA2172IDR

双路、36V、10MHz、低功耗运算放大器 | D | 8 | -40 to 125
TI

OPA2172IDRGR

双路、36V、10MHz、低功耗运算放大器 | DRG | 8 | -40 to 125
TI

OPA2172IDRGT

双路、36V、10MHz、低功耗运算放大器 | DRG | 8 | -40 to 125
TI

OPA2172QDGKQ1

汽车级、双路、36V、10MHz、低功耗运算放大器 | DGK | 8 | -40 to 125
TI

OPA2172QDGKRQ1

汽车级、双路、36V、10MHz、低功耗运算放大器 | DGK | 8 | -40 to 125
TI

OPA2180

0.1-μV/°C Drift, Low-Noise, Rail-to-Rail Output, 36-V, Zero-Drift OPERATIONAL AMPLIFIERS
TI

OPA2180-Q1

通过汽车级认证的 0.1 uV/°C 漂移、低噪声、RRO、36V 零漂移运算放大器
TI