OPA2172IDR [TI]

双路、36V、10MHz、低功耗运算放大器 | D | 8 | -40 to 125;
OPA2172IDR
型号: OPA2172IDR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双路、36V、10MHz、低功耗运算放大器 | D | 8 | -40 to 125

放大器 光电二极管 运算放大器
文件: 总56页 (文件大小:3925K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA172, OPA2172, OPA4172  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
OPAx172 36V 单电源 10MHz 轨到轨输出运算放大器  
1 特性  
3 说明  
1
宽电源范围:  
+4.5V +36V±2.25V ±18V  
低偏移电压:±0.2mV  
OPA172OPA2172 OPA4172 (OPAx172) 属于  
36V、单电源、低噪声运算放大器系列,该系列放大器  
能够在 +4.5V (±2.25V) +36V  
低偏移漂移:±0.3µV/°C  
增益带宽:10MHz  
(±18V) 的电源范围内运行。这款最新补充的高压  
CMOS 运算放大器与 OPAx171 OPAx170 搭配,  
为用户提供了广泛的带宽、噪声和功率选择,可以满足  
各种应用的 需要。OPAx172 采用微型封装并且提供低  
偏移、漂移和静态电流。这些器件还提供宽带宽、快速  
转换率和高输出电流驱动能力。单通道、双通道和四通  
道版本均具有相同的技术规格,可最大程度地提高设计  
灵活性。  
低输入偏置电流 :±8pA  
低静态电流:每放大器 1.6mA  
低噪声:7nV/Hz  
已过滤电磁干扰 (EMI) 和射频干扰 (RFI) 的输入  
输入范围包括负电源  
输入范围运行至正电源  
轨到轨输出  
与大多数只在一个电源电压下额定运行的运算放大器不  
同,OPAx172 系列可在 +4.5 +36V 的电压范围内  
额定运行。超过电源轨的输入信号不会导致相位反向。  
输入可在负电源轨以下 100mV 以及正电源轨 2V 之内  
正常运行。请注意这些器件可在正电源轨之上 100mV  
的满轨到轨输入上运行,但是在正电源轨 2V 之内运行  
时性能会受到影响。  
高共模抑制:120dB  
行业标准封装:  
SOIC-8VSSOP-8SOIC-14TSSOP-14  
微型封装:单电源版本采用 SC70 SOT-23 封  
装;  
双电源版本采用 WSON-8 封装  
2 应用  
OPAx172 系列运算放大器额定运行温度范围为 -40°C  
+125°C。  
电源模块内的跟踪放大器  
商用电源  
器件信息(1)  
封装  
传感器放大器  
桥式放大器  
温度测量  
器件型号  
封装尺寸(标称值)  
2.00mm × 1.25mm  
2.90mm × 1.60mm  
4.90mm × 3.91mm  
4.90mm × 3.91mm  
3.00mm × 3.00mm  
3.00mm × 3.00mm  
8.65mm × 3.91mm  
4.40mm × 5.00mm  
SC70 (5)  
OPA172  
SOT-23 (5)  
SOIC (8)  
应力计放大器  
精密积分器  
测试设备  
SOIC (8)  
OPA2172  
OPA4172  
VSSOP (8)(2)  
WSON (8)  
SOIC (14)  
TSSOP (14)  
(1) 如需了解所有可用封装,请参见产品说明书末尾的封装选项附  
录。  
(2) VSSOP 封装与 MSOP 封装相同。  
JFET 输入低噪声放大器  
出色的总谐波失真 (THD) 性能  
VCC  
0.01  
-80  
G = +1 V/V, RL = 10 k  
G = +1 V/V, RL = 2 kꢀ  
G = +1 V/V, RL = 600 ꢀ  
G = -1 V/V, RL = 10 kꢀ  
G = -1 V/V, RL = 2 kꢀ  
G = -1 V/V, RL = 600 ꢀ  
VCC  
VEE  
R1  
3.9 k  
R2  
3.9 kΩ  
VEE  
V1  
15  
V2  
15  
V
V
OPA172  
0.001  
-100  
-120  
-140  
VOUT  
+
+
R3  
LSK489  
VCC  
1.13 kΩ  
0.0001  
0.00001  
Q1  
Q2  
VCC  
R4  
11.5  
VOUT = 3.5 VRMS  
BW = 80 kHz  
R6  
27.4 kΩ  
Q3  
MMBT4401  
Q4  
10  
100  
1k  
10k  
MMBT4401  
Frequency (Hz)  
C007  
R5  
300  
VEE  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS618  
 
 
 
 
 
 
 
 
 
 
 
OPA172, OPA2172, OPA4172  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 19  
8.3 Feature Description................................................. 20  
8.4 Device Functional Modes........................................ 22  
Applications and Implementation ...................... 25  
9.1 Application Information............................................ 25  
9.2 Typical Applications ................................................ 25  
1
2
3
4
5
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison ............................................... 4  
5.1 Device Comparison................................................... 4  
5.2 Device Family Comparison ....................................... 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ..................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information: OPA172 .................................. 8  
7.5 Thermal Information: OPA2172 ................................ 8  
7.6 Thermal Information: OPA4172 ................................ 8  
7.7 Electrical Characteristics........................................... 9  
7.8 Typical Characteristics: Table of Graphs................ 11  
7.9 Typical Characteristics............................................ 12  
Detailed Description ............................................ 19  
8.1 Overview ................................................................. 19  
9
10 Power-Supply Recommendations ..................... 28  
11 Layout................................................................... 29  
11.1 Layout Guidelines ................................................. 29  
11.2 Layout Example .................................................... 29  
12 器件和文档支持 ..................................................... 30  
12.1 器件支持................................................................ 30  
12.2 文档支持................................................................ 30  
12.3 相关链接................................................................ 30  
12.4 社区资源................................................................ 30  
12.5 ....................................................................... 31  
12.6 静电放电警告......................................................... 31  
12.7 术语表 ................................................................... 31  
13 机械、封装和可订购信息....................................... 31  
6
7
8
4 修订历史记录  
Changes from Revision H (September 2015) to Revision I  
Page  
Changed supply voltage values within Absolute Maximum Ratings table ............................................................................. 7  
Changes from Revision G (June 2015) to Revision H  
Page  
已添加 DRG 封装至 OPA2172 器件 ....................................................................................................................................... 1  
已添加 WSON 至最后一个特性要点 ....................................................................................................................................... 1  
已添加 OPA2172 WSON 行至器件信息.............................................................................................................................. 1  
Added WSON-8 to OPA2172 row of Device Comparison table ............................................................................................ 4  
Added DRG pinout drawing ................................................................................................................................................... 6  
Added DRG column to OPA2172 and OPA4172 Pin Functions table .................................................................................. 6  
Added DRG column to OPA2172 Thermal Information table ................................................................................................ 8  
Changes from Revision F (June 2015) to Revision G  
Page  
Added input bias current (IB) values for DGK and PW packages. ......................................................................................... 9  
Changes from Revision E (December 2014) to Revision F  
Page  
已将器件状态从混合状态改为量产数据................................................................................................................................... 1  
已将 OPA2172 DGK OPA4172 PW 封装改为量产数..................................................................................................... 1  
已添加 OPA2172 VSSOP OPA4172 TSSOP 行至器件信息.......................................................................................... 1  
Deleted footnote from Device Comparison table.................................................................................................................... 4  
Deleted footnote from OPA2172 DGK and OPA4172 PW pin out drawings ........................................................................ 6  
Added OPA2172 DGK thermal information ........................................................................................................................... 8  
2
版权 © 2013–2018, Texas Instruments Incorporated  
 
OPA172, OPA2172, OPA4172  
www.ti.com.cn  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
Changes from Revision D (September 2014) to Revision E  
Page  
已将 OPA2172 D 封装从产品预览改为量产数据 .................................................................................................................... 1  
已更改器件信息................................................................................................................................................................... 1  
Changed Device Comparison table note (1) to show preview packages............................................................................... 4  
Changed Handling Ratings table to ESD Ratings table ......................................................................................................... 7  
Changes from Revision C (July 2014) to Revision D  
Page  
已更改低噪声 特性 要点值,从 6nV/Hz 改为 7..................................................................................................................... 1  
已将 特性 要点中的 MSOP 改为 VSSOP ............................................................................................................................... 1  
已添加封装和新的注释 2 器件信息.................................................................................................................................. 1  
Changed OPAx172 voltage noise density from 6 nV/Hz to 7 in Device Family Comparison table ..................................... 4  
Changed OPA4172 package from DGK to PW in Pin Functions table .................................................................................. 6  
Added OPA2172 Thermal Information table........................................................................................................................... 8  
Changed input voltage noise value in Electrical Characteristics from 1.2 µVPP to 2.5 µVPP .................................................. 9  
Changed input voltage noise density value at 100 Hz in Electrical Characteristics from 8.6 nV/Hz to 12 .......................... 9  
Changed input voltage noise density value at 1 kHz in Electrical Characteristics from 6 nV/Hz to 7.................................. 9  
Changed voltage output swing values in the Electrical Characteristics ............................................................................... 10  
Changed 13 .................................................................................................................................................................... 13  
Changed 14 ..................................................................................................................................................................... 13  
Added new note to Applications and Implementation section ............................................................................................. 25  
Changes from Revision B (May 2014) to Revision C  
Page  
已将 OPA4172 D 封装 (SOIC-14) 从产品预览改为量产数.................................................................................................. 1  
Added OPA4172-D Thermal information ............................................................................................................................... 8  
Added Channel separation parameter to the Electrical Characteristics................................................................................. 9  
Added Channel Separation vs Frequency plot .................................................................................................................... 17  
Changes from Revision A (April 2014) to Revision B  
Page  
已将 DCK (SC70) 封装从产品预览改为量产数据.................................................................................................................... 1  
Changes from Original (December 2013) to Revision A  
Page  
已更改文档格式以符合最新产品说明书标准;已添加处理额定值建议运行条件以及器件和文档支持部分,并已移动  
现有部分 ................................................................................................................................................................................. 1  
Changed DCK package pin names from IN+ and IN– to +IN and –IN, respectively ............................................................. 5  
Changed DBV package from product preview to production data ......................................................................................... 5  
Changed 9 ....................................................................................................................................................................... 12  
Added Functional Block Diagram section............................................................................................................................. 19  
Added Capacitive Load Drive Solution Using an Isolation Resistor section ........................................................................ 25  
Added Power-Supply Recommendations section ................................................................................................................ 28  
Changed Layout Guidelines section..................................................................................................................................... 29  
Copyright © 2013–2018, Texas Instruments Incorporated  
3
OPA172, OPA2172, OPA4172  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
www.ti.com.cn  
5 Device Comparison  
5.1 Device Comparison  
DEVICE  
PACKAGE  
OPA172 (single)  
OPA2172 (dual)  
OPA4172 (quad)  
SC70-5, SOT-23-5, SOIC-8  
SOIC-8, VSSOP-8, WSON-8  
SOIC-14, TSSOP-14  
5.2 Device Family Comparison  
QUIESCENT CURRENT  
GAIN BANDWIDTH PRODUCT  
(GBP)  
VOLTAGE NOISE DENSITY  
(en)  
DEVICE  
OPAx172  
OPAx171  
OPAx170  
(IQ)  
1600 µA  
475 µA  
110 µA  
10 MHz  
3.0 MHz  
1.2 MHz  
7 nV/Hz  
14 nV/Hz  
19 nV/Hz  
4
Copyright © 2013–2018, Texas Instruments Incorporated  
OPA172, OPA2172, OPA4172  
www.ti.com.cn  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
6 Pin Configuration and Functions  
DCK Package: OPA172  
SC70-5  
D Package: OPA172  
SOIC-8  
Top View  
Top View  
+IN  
V-  
1
2
3
5
4
V+  
NC(1)  
-IN  
+IN  
V-  
1
2
3
4
8
7
6
5
NC(1)  
V+  
-IN  
OUT  
OUT  
NC(1)  
DBV Package: OPA172  
SOT-23-5  
(1) No internal connection.  
Top View  
V+  
OUT  
1
2
3
5
4
V-  
-IN  
+IN  
Pin Functions: OPA172  
PIN  
OPA172  
NAME  
D (SOIC)  
DBV (SOT)  
DCK (SC70)  
I/O  
I
DESCRIPTION  
+IN  
–IN  
NC  
3
3
4
1
3
Noninverting input  
Inverting input  
No internal connection  
Output  
2
I
1, 5, 8  
1
4
O
OUT  
V+  
6
7
4
5
5
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
2
2
Copyright © 2013–2018, Texas Instruments Incorporated  
5
OPA172, OPA2172, OPA4172  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
www.ti.com.cn  
D and DGK Packages: OPA2172  
SOIC-8 and VSSOP-8  
Top View  
D and PW Packages: OPA4172  
SO-14 and TSSOP-14  
Top View  
OUT A  
-IN A  
+IN A  
V-  
1
2
3
4
8
7
6
5
V+  
OUT A  
1
2
3
4
5
6
7
14 OUT D  
OUT B  
-IN B  
+IN B  
-IN A  
+IN A  
V+  
13 -IN D  
12 +IN D  
11 V-  
+IN B  
-IN B  
OUT B  
10 +IN C  
DRG Package: OPA2172  
WSON-8  
9
8
-IN C  
OUT C  
Top View  
+IN A  
V+  
1
2
3
4
8
7
6
5
-IN A  
A
B
OUT A  
OUT B  
-IN B  
V-  
+IN B  
Pin Functions: OPA2172 and OPA4172  
PIN  
OPA2172  
OPA4172  
D (SOIC),  
D (SOIC),  
DGK  
DRG  
NAME  
+IN A  
(VSSOP)  
(WSON)  
PW (TSSOP)  
I/O  
I
DESCRIPTION  
3
5
1
4
3
5
Noninverting input, channel A  
Noninverting input, channel B  
Noninverting input, channel C  
Noninverting input, channel D  
Inverting input, channel A  
Inverting input, channel B  
Inverting input,,channel C  
Inverting input, channel D  
Output, channel A  
+IN B  
+IN C  
+IN D  
–IN A  
–IN B  
–IN C  
–IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V+  
I
2
8
10  
12  
2
I
I
I
6
5
6
I
1
7
9
I
13  
1
I
O
O
O
O
7
6
7
Output, channel B  
8
2
8
Output, channel C  
14  
4
Output, channel D  
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
4
3
11  
6
Copyright © 2013–2018, Texas Instruments Incorporated  
OPA172, OPA2172, OPA4172  
www.ti.com.cn  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
40  
UNIT  
Supply voltage, [(V+) – (V-)]  
Common-mode  
V
(V–) – 0.5  
(V+) + 0.5  
±0.5  
Signal input pins  
Voltage(2)  
Current  
V
Differential(3)  
Signal input pins  
±10  
mA  
Output short circuit(4)  
Operating temperature  
Junction temperature, TJ  
Storage temperature, Tstg  
Continuous  
–55  
+150  
+150  
+150  
°C  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Transient conditions that exceed these voltage ratings must be current limited to 10 mA or less.  
(3) Refer to the Electrical Overstress section for more information.  
(4) Short-circuit to ground, one amplifier per package.  
7.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
V
Supply voltage (V+ – V–)  
Specified temperature  
4.5 (±2.25)  
–40  
36 (±18)  
125  
°C  
Copyright © 2013–2018, Texas Instruments Incorporated  
7
 
OPA172, OPA2172, OPA4172  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
www.ti.com.cn  
7.4 Thermal Information: OPA172  
OPA172  
DBV (SOT-23)  
5 PINS  
227.9  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
126.5  
80.6  
DCK (SC70)  
5 PINS  
285.2  
60.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
115.7  
67.1  
65.9  
78.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
31.0  
10.7  
0.8  
ψJB  
66.6  
65.3  
77.9  
RθJC(bot)  
N/A  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC package Thermal Metrics application  
report.  
7.5 Thermal Information: OPA2172  
OPA2172  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
116.1  
69.8  
DGK (VSSOP) DRG (WSON)  
UNIT  
8 PINS  
158  
8 PINS  
63.2  
63.5  
36.5  
1.4  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
48.6  
78.7  
3.9  
56.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
22.5  
ψJB  
56.1  
77.3  
N/A  
36.6  
6.3  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC package Thermal Metrics application  
report.  
7.6 Thermal Information: OPA4172  
OPA4172  
THERMAL METRIC(1)  
D (SOIC)  
14 PINS  
82.7  
PW (TSSOP)  
14 PINS  
111.1  
40.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
42.3  
37.3  
54.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
8.9  
3.8  
ψJB  
37  
53.3  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC package Thermal Metrics application  
report.  
8
Copyright © 2013–2018, Texas Instruments Incorporated  
OPA172, OPA2172, OPA4172  
www.ti.com.cn  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
7.7 Electrical Characteristics  
At TA = +25°C, VS = ±2.25 V to ±18 V, VCM = VOUT = VS / 2, and RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
±0.2  
±0.3  
MAX  
UNIT  
OFFSET VOLTAGE  
±1  
±1.15  
±1.5  
±1.8  
±3  
VOS  
Input offset voltage  
Drift  
mV  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
OPA172, OPA4172  
dVOS/dT  
PSRR  
µV/°C  
OPA2172  
vs power supply  
TA = –40°C to +125°C  
At dc  
±1  
5
µV/V  
µV/V  
Channel separation, dc  
INPUT BIAS CURRENT  
±8  
±15  
±14  
pA  
nA  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
IB  
Input bias current  
OPA2172IDGK  
OPA41721PW  
±18  
±2  
±15  
±1  
pA  
nA  
IOS  
Input offset current  
OPA172, OPA4172  
OPA2172  
TA = –40°C to +125°C  
±3  
NOISE  
En  
Input voltage noise  
f = 0.1 Hz to 10 Hz  
f = 100 Hz  
2.5  
12  
7
µVPP  
en  
in  
Input voltage noise density  
Input current noise density  
nV/Hz  
fA/Hz  
f = 1 kHz  
f = 1 kHz  
1.6  
Copyright © 2013–2018, Texas Instruments Incorporated  
9
OPA172, OPA2172, OPA4172  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
At TA = +25°C, VS = ±2.25 V to ±18 V, VCM = VOUT = VS / 2, and RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT VOLTAGE  
VCM  
Common-mode voltage range(1)  
Common-mode rejection ratio  
(V–) – 0.1 V  
90  
(V+) – 2 V  
V
VS = ±2.25 V, (V–) – 0.1 V < VCM < (V+) – 2 V,  
TA = –40°C to +125°C  
104  
120  
CMRR  
dB  
VS = ±18 V, (V–) – 0.1 V < VCM < (V+) – 2 V,  
TA = –40°C to +125°C  
110  
INPUT IMPEDANCE  
Differential  
Common-mode  
OPEN-LOOP GAIN  
100 || 4  
6 || 4  
MΩ || pF  
1013Ω || pF  
OPA172, OPA4172  
OPA2172  
110  
107  
130  
115  
116  
107  
(V–) + 0.35 V < VO < (V+) – 0.35 V, RL  
10 kΩ, TA = –40°C to +125°C  
=
AOL  
Open-loop voltage gain  
dB  
OPA172, OPA4172  
OPA2172  
(V–) + 0.5 V < VO < (V+) – 0.5 V,  
RL = 2 kΩ, TA = –40°C to +125°C  
FREQUENCY RESPONSE  
GBP  
SR  
Gain bandwidth product  
10  
MHz  
V/µs  
Slew rate  
G = +1  
10  
To 0.1%, VS = ±18 V, G = +1, 10-V step  
2
3.2  
tS  
Settling time  
µs  
ns  
To 0.01% (12 bit), VS = ±18 V, G = +1, 10-V step  
VIN × Gain > VS  
Overload recovery time  
200  
THD+N  
Total harmonic distortion + noise  
VS = +36 V, G = +1, f = 1 kHz, VO = 3.5 VRMS  
0.00005%  
OUTPUT  
RL = 10 kΩ  
70  
330  
95  
90  
400  
120  
530  
20  
VS = +36 V  
RL = 2 kΩ  
RL = 10 kΩ  
RL = 2 kΩ  
RL = 10 kΩ  
RL = 2 kΩ  
RL = 10 kΩ  
RL = 2 kΩ  
VS = +36 V,  
TA = –40°C to +125°C  
470  
10  
VO  
Voltage output swing from rail  
mV  
VS = +4.5V  
40  
50  
10  
25  
VS = +4.5 V,  
TA = –40°C to +125°C  
55  
70  
ISC  
Short-circuit current  
±75  
mA  
pF  
Ω
CLOAD  
ZO  
Capacitive load drive  
See Typical Characteristics  
Open-loop output impedance  
f = 1 MHz, IO = 0 A  
60  
POWER SUPPLY  
VS  
Specified voltage range  
+4.5  
+36  
1.8  
2
V
IO = 0 A  
1.6  
IQ  
Quiescent current per amplifier  
mA  
IO = 0 A, TA = –40°C to +125°C  
TEMPERATURE  
Specified range  
–40  
+125  
°C  
(1) The input range can be extended beyond (V+) – 2 V up to (V+) + 0.1 V. For additional information, see the Typical Characteristics and  
Application Information sections.  
10  
版权 © 2013–2018, Texas Instruments Incorporated  
OPA172, OPA2172, OPA4172  
www.ti.com.cn  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
7.8 Typical Characteristics: Table of Graphs  
1. List of Typical Characteristics  
DESCRIPTION  
Offset Voltage Production Distribution  
Offset Voltage Drift Distribution  
FIGURE  
1  
2  
Offset Voltage vs Temperature (VS = ±18 V)  
Offset Voltage vs Common-Mode Voltage (VS = ±18 V)  
Offset Voltage vs Common-Mode Voltage (Upper Stage)  
Offset Voltage vs Power Supply  
3  
4  
5  
6  
IB vs Common-Mode Voltage  
7  
Input Bias Current vs Temperature  
Output Voltage Swing vs Output Current (Maximum Supply)  
CMRR and PSRR vs Frequency (Referred-to Input)  
CMRR vs Temperature  
8  
9  
10  
11  
PSRR vs Temperature  
12  
0.1-Hz to 10-Hz Noise  
13  
Input Voltage Noise Spectral Density vs Frequency  
THD+N Ratio vs Frequency  
14  
15  
THD+N vs Output Amplitude  
16  
Quiescent Current vs Temperature  
Quiescent Current vs Supply Voltage  
Open-Loop Gain and Phase vs Frequency  
Closed-Loop Gain vs Frequency  
17  
18  
19  
20  
Open-Loop Gain vs Temperature  
21  
Open-Loop Output Impedance vs Frequency  
Small-Signal Overshoot vs Capacitive Load (100-mV Output Step)  
Positive Overload Recovery  
22  
23, 24  
25, 26  
27, 28  
29, 30  
31, 32  
33, 34  
35  
Negative Overload Recovery  
Small-Signal Step Response (10 mV)  
Small-Signal Step Response (100 mV)  
Large-Signal Step Response (1 V)  
Large-Signal Settling Time (10-V Positive Step)  
Large-Signal Settling Time (10-V Negative Step)  
No Phase Reversal  
36  
37  
Short-Circuit Current vs Temperature  
Maximum Output Voltage vs Frequency  
EMIRR vs Frequency  
38  
39  
40  
Channel Separation vs Frequency  
41  
版权 © 2013–2018, Texas Instruments Incorporated  
11  
 
OPA172, OPA2172, OPA4172  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
www.ti.com.cn  
7.9 Typical Characteristics  
At VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
25  
25  
Distribution Taken From 5185 Amplifiers  
Distribution Taken From 47 Amplifiers  
Temperature = -40°C to 125°C  
20  
15  
10  
5
20  
15  
10  
5
0
0
Offset Voltage Drift (µV/°C)  
Offset Voltage (mV)  
C013  
C013  
1. Offset Voltage Production Distribution  
2. Offset Voltage Drift Production Distribution  
250  
200  
150  
100  
50  
225  
150  
75  
5 Typical Units Shown  
VS = ±18 V  
5 Typical Units Shown  
VS = ±18 V  
VCM =16V  
VCM = -18.1V  
0
0
œ50  
œ100  
œ150  
œ200  
œ250  
œ75  
œ150  
œ225  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ20  
œ15  
œ10  
œ5  
0
5
10  
15  
20  
Temperature (°C)  
C001  
VCM (V)  
C001  
3. Offset Voltage vs Temperature  
4. Offset Voltage vs Common-Mode Voltage  
(VS = ±18 V)  
(VS = ±18 V)  
500  
400  
20  
10  
5 Typical Units Shown  
VS = ±2.25V to ±18V  
5 Typical Units Shown  
VS = ±18 V  
Vs = ±2.25V  
300  
0
200  
100  
-10  
-20  
-30  
-40  
-50  
0
œ100  
œ200  
œ300  
œ400  
œ500  
0.0  
2.0  
4.0  
6.0 8.0 10.0 12.0 14.0 16.0 18.0  
VSUPPLY (V)  
14  
15  
16  
17  
18  
VCM (V)  
C001  
C001  
6. Offset Voltage vs Power Supply  
5. Offset Voltage vs Common-Mode Voltage  
(Upper Stage)  
12  
版权 © 2013–2018, Texas Instruments Incorporated  
 
OPA172, OPA2172, OPA4172  
www.ti.com.cn  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
Typical Characteristics (接下页)  
At VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
12  
10  
8
8000  
6000  
4000  
2000  
0
IB+  
IB -  
Ios  
IbP  
6
IbN  
4
2
0
œ2  
œ4  
Ios  
TA = 25°C  
œ2000  
œ18.0 œ13.5 œ9.0 œ4.5  
0.0  
4.5  
9.0  
13.5 18.0  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
VCM (V)  
Temperature (°C)  
C001  
C001  
7. Input Bias Current vs Common-Mode Voltage  
8. Input Bias Current vs Temperature  
160.0  
140.0  
120.0  
100.0  
80.0  
60.0  
40.0  
20.0  
0.0  
(V+) +1  
(V+)  
(V+) -1  
(V+) -2  
(V+) -3  
(V+) -4  
(V+) -5  
(V-) +5  
(V-) +4  
(V-) +3  
(V-) +2  
(V-) +1  
(V-)  
25°C  
œ40°C  
125°C  
85°C  
85°C  
125°C  
+PSRR  
-PSRR  
CMRR  
œ40°C  
25°C  
(V-) -1  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
1
10  
100  
1k  
10k  
100k  
1M  
C011  
C012  
Output Current (mA)  
Frequency (Hz)  
9. Output Voltage Swing vs Output Current (Maximum  
10. CMRR and PSRR vs Frequency  
Supply)  
(Referred-To-Input)  
30  
10  
8
20  
VS = ±2.25V, -2.35V ≤ VCM ≤ 0.25V  
6
10  
4
2
0
0
VS = ±18 V, -18.1V ≤ VCM ≤ 16V  
œ10  
œ2  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
Temperature (°C)  
C001  
C001  
11. CMRR vs Temperature  
12. PSRR vs Temperature  
版权 © 2013–2018, Texas Instruments Incorporated  
13  
OPA172, OPA2172, OPA4172  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
At VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
100  
10  
1
Time (1 s/div)  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
C002  
C001  
13. 0.1-Hz to 10-Hz Noise  
14. Input Voltage Noise Spectral Density vs Frequency  
0.01  
0.001  
-80  
0.1  
-60  
G = +1 V/V, RL = 10 k  
G = +1 V/V, RL = 2 kꢀ  
G = +1 V/V, RL = 600 ꢀ  
G = -1 V/V, RL = 10 kꢀ  
G = -1 V/V, RL = 2 kꢀ  
G = -1 V/V, RL = 600 ꢀ  
G = +1 V/V, RL = 10 k  
G = +1 V/V, RL = 2 kꢀ  
G = +1 V/V, RL = 600 ꢀ  
G = -1 V/V, RL = 10 kꢀ  
G = -1 V/V, RL = 2 kꢀ  
G = -1 V/V, RL = 600 ꢀ  
0.01  
-80  
-100  
-120  
-140  
0.001  
-100  
-120  
-140  
0.0001  
0.00001  
0.0001  
VOUT = 3.5 VRMS  
BW = 80 kHz  
f = 1 kHz  
BW = 80 kHz  
0.00001  
10  
100  
1k  
10k  
0.01  
0.1  
1
10  
Frequency (Hz)  
Output Amplitude (VRMS)  
C007  
C008  
15. THD+N Ratio vs Frequency  
16. THD+N vs Output Amplitude  
2.0  
1.8  
1.6  
1.4  
1.2  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
Vs = ±18V  
Vs = ±2.25V  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Temperature (°C)  
Supply Voltage (V)  
C001  
C001  
17. Quiescent Current vs Temperature  
18. Quiescent Current vs Supply Voltage  
14  
版权 © 2013–2018, Texas Instruments Incorporated  
OPA172, OPA2172, OPA4172  
www.ti.com.cn  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
Typical Characteristics (接下页)  
At VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
140  
120  
100  
80  
180  
135  
90  
25.0  
20.0  
15.0  
10.0  
5.0  
CLOAD = 15 pF  
Open-Loop Gain  
Phase  
60  
0.0  
40  
œ5.0  
œ10.0  
œ15.0  
œ20.0  
20  
45  
G = +1  
G = -10  
G = -1  
0
œ20  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1000  
10k  
100k  
1M  
10M  
C003  
Frequency (Hz)  
Frequency (Hz)  
C004  
19. Open-Loop Gain and Phase vs Frequency  
20. Closed-Loop Gain vs Frequency  
2.0  
1.5  
1.0  
0.5  
0.0  
1000  
100  
10  
1
Vs = 4.5 V  
Vs = 36 V  
RL = 10k  
œ0.5  
0
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Temperature (°C)  
Frequency (Hz)  
C001  
C016  
21. Open-Loop Gain vs Temperature  
22. Open-Loop Output Impedance vs Frequency  
60  
50  
40  
30  
20  
10  
0
50  
RI  
=
1 k  
RF  
=
1 kꢀ  
G = +1  
G = -1  
+
18 V  
œ
ROUT  
+
OPA172  
40  
30  
20  
10  
0
VIN  
= 100mV  
+
CL  
œ
œ 18 V  
+
18  
V
V
ROUT = 0  
ROUT= 0  
œ
ROUT  
OPA172  
+
+
RL  
CL  
R
= 25 ꢀ  
RO = 25  
RRO ==2255ꢀ  
OUT  
VIN = 100mV  
OUT  
œ
18  
œ
RRO ==5500 ꢀ  
RO = 50  
ROUT= 50 ꢀ  
OUT  
0p  
100p  
200p  
300p  
400p  
500p  
0p  
100p  
200p  
300p  
400p  
500p  
Capacitive Load (F)  
Capacitive Load (F)  
C013  
C013  
23. Small-Signal Overshoot vs Capacitive Load  
24. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step)  
(100-mV Output Step)  
版权 © 2013–2018, Texas Instruments Incorporated  
15  
OPA172, OPA2172, OPA4172  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
At VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
RI = 1 k  
RF = 10 kꢁ  
+ 18 V  
œ
+
OPA172  
VOUT  
VIN = 2V  
+
VOUT  
œ
œ 18 V  
RI  
=
1
k  
RF = 10 kꢁ  
+
18  
V
VOUT  
œ
+
OPA172  
VOUT  
VIN  
= 2V  
+
œ
œ
18  
V
VIN  
VIN  
Time (1 s/div)  
Time (1 s/div)  
C009  
C010  
C006  
C009  
25. Positive Overload Recovery  
26. Positive Overload Recovery (Zoomed In)  
VIN  
VIN  
RI  
=
1
k  
RF = 10 kꢁ  
+
18  
V
œ
+
OPA172  
VOUT  
VIN  
= 2V  
+
œ
œ
18  
V
VOUT  
RI = 1 k  
RF = 10 kꢁ  
+ 18 V  
VOUT  
œ
+
OPA172  
VOUT  
VIN = 2V  
+
œ
œ 18 V  
Time (1 s/div)  
Time (1 s/div)  
C010  
27. Negative Overload Recovery  
28. Negative Overload Recovery (Zoomed In)  
+ 18 V  
RL = 1kΩ  
CL = 10pF  
CL = 10pF  
œ
OPA172  
+
+
CL  
VIN = 10mV  
œ 18 V  
œ
RI  
=
1
k  
RF  
=
+
1 kꢀ  
18  
V
œ
+
OPA172  
VIN  
= 10mV  
+
RL  
CL  
œ
œ
18  
V
Time (200 ns/div)  
Time (200 ns/div)  
C014  
29. Small-Signal Step Response (10 mV, G = –1)  
30. Small-Signal Step Response (10 mV, G = +1)  
版权 © 2013–2018, Texas Instruments Incorporated  
16  
OPA172, OPA2172, OPA4172  
www.ti.com.cn  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
Typical Characteristics (接下页)  
At VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
+ 18 V  
CL = 10pF  
RL = 1kΩ  
CL = 10pF  
œ
OPA172  
+
+
CL  
VIN = 100mV  
œ 18 V  
œ
RI  
=
1
k  
RF  
=
+
1 kꢀ  
18  
V
œ
+
OPA172  
VIN  
= 100mV  
+
RL  
CL  
œ
œ
18  
V
Time (200 ns/div)  
Time (200 ns/div)  
C006  
C014  
31. Small-Signal Step Response (100 mV, G = –1)  
32. Small-Signal Step Response (100 mV, G = +1)  
+ 18 V  
RL = 1kΩ  
CL = 10 pF  
CL = 10pF  
œ
OPA172  
+
+
CL  
VIN = 10V  
œ 18 V  
œ
RI  
=
1
k  
RF  
=
+
1 kꢀ  
18  
V
œ
+
OPA172  
VIN  
= 10V  
+
RL  
CL  
œ
œ
18  
V
Time (500 ns/div)  
Time (500 ns/div)  
C005  
C014  
33. Large-Signal Step Response (10 V, G = –1)  
34. Large-Signal Step Response (10 V, G = +1)  
20  
20  
G = +1  
G = +1  
CL = 10 pF  
CL = 10 pF  
15  
10  
5
15  
10  
5
0
0
-5  
-5  
0.1% Settling = ±10 mV  
0.1% Settling = ±10 mV  
-10  
-15  
-20  
-10  
-15  
-20  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Time (s)  
Time (s)  
C034  
C034  
35. Large-Signal Settling Time (10-V Positive Step)  
版权 © 2013–2018, Texas Instruments Incorporated  
36. Large-Signal Settling Time (10-V Negative Step)  
17  
OPA172, OPA2172, OPA4172  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
At VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
100  
+ 18 V  
œ
OPA172  
VOUT  
VOUT  
+
+
75  
50  
25  
0
œ 18 V  
37 VPP  
ISC, Sink ±18V  
œ
Sine Wave  
(±18.5V)  
ISC, Source ±18V  
VIN  
Time (200 s/div)  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
C011  
Temperature (°C)  
C001  
37. No Phase Reversal  
38. Short-Circuit Current vs Temperature  
160.0  
140.0  
120.0  
100.0  
80.0  
60.0  
40.0  
20.0  
0.0  
30  
25  
20  
15  
10  
5
PRF = -10 dBm  
VSUPPLY = ±18 V  
VCM = 0 V  
VS = ±15 V  
Maximum output voltage without  
slew-rate induced distortion.  
VS = ±5 V  
VS = ±2.25 V  
0
10k  
100k  
1M  
Frequency (Hz)  
10M  
10M  
100M  
Frequency (Hz)  
1G  
10G  
C017  
C033  
39. Maximum Output Voltage vs Frequency  
40. EMIRR vs Frequency  
0
œ20  
œ40  
œ60  
œ80  
œ100  
œ120  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
C041  
41. Channel Separation vs Frequency  
18  
版权 © 2013–2018, Texas Instruments Incorporated  
OPA172, OPA2172, OPA4172  
www.ti.com.cn  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
8 Detailed Description  
8.1 Overview  
The OPAx172 family of operational amplifiers provide high overall performance, making them ideal for many  
general-purpose applications. The excellent offset drift of only 1.5 µV/°C (max) provides excellent stability over  
the entire temperature range. In addition, the device offers very good overall performance with high CMRR,  
PSRR, AOL, and superior THD.  
The Functional Block Diagram section shows the simplified diagram of the OPA172 design. The design topology  
is a highly-optimized, three-stage amplifier with an active-feedforward gain stage.  
8.2 Functional Block Diagram  
OPA172  
PCH  
FF Stage  
Ca  
Cb  
+IN  
PCH  
Input Stage  
2nd Stage  
OUT  
Output  
Stage  
-IN  
NCH  
Input Stage  
版权 © 2013–2018, Texas Instruments Incorporated  
19  
 
OPA172, OPA2172, OPA4172  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 EMI Rejection  
The OPAx172 uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from  
sources such as wireless communications and densely-populated boards with a mix of analog signal chain and  
digital components. EMI immunity can be improved with circuit design techniques; the OPAx172 benefits from  
these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the  
immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. 42  
shows the results of this testing on the OPAx172. 2 shows the EMIRR IN+ values for the OPAx172 at  
particular frequencies commonly encountered in real-world applications. Applications listed in 2 can be  
centered on or operated near the particular frequency shown. Detailed information can also be found in  
Application Report SBOA128, EMI Rejection Ratio of Operational Amplifiers, available for download from  
www.ti.com.  
160.0  
PRF = -10 dBm  
VSUPPLY = ±18 V  
VCM = 0 V  
140.0  
120.0  
100.0  
80.0  
60.0  
40.0  
20.0  
0.0  
10M  
100M  
Frequency (Hz)  
1G  
10G  
C017  
42. EMIRR Testing  
2. OPAx172 EMIRR IN+ for Frequencies of Interest  
FREQUENCY  
APPLICATION OR ALLOCATION  
EMIRR IN+  
Mobile radio, mobile satellite, space operation, weather, radar, ultrahigh frequency (UHF)  
applications  
400 MHz  
47.6 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation,  
GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
5.0 GHz  
58.5 dB  
68 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
69.2 dB  
82.9 dB  
114 dB  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite  
operation, C-band (4 GHz to 8 GHz)  
20  
版权 © 2013–2018, Texas Instruments Incorporated  
 
 
OPA172, OPA2172, OPA4172  
www.ti.com.cn  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
8.3.2 Phase-Reversal Protection  
The OPAx172 family has internal phase-reversal protection. Many op amps exhibit a phase reversal when the  
input is driven beyond the linear common-mode range. This condition is most often encountered in noninverting  
circuits when the input is driven beyond the specified common-mode voltage range, causing the output to  
reverse into the opposite rail. The input of the OPAx172 prevents phase reversal with excessive common-mode  
voltage. Instead, the appropriate rail limits the output voltage. This performance is shown in 43.  
+ 18 V  
œ
OPA172  
VOUT  
VOUT  
+
+
œ 18 V  
37 VPP  
œ
Sine Wave  
(±18.5V)  
VIN  
Time (200 s/div)  
C011  
43. No Phase Reversal  
8.3.3 Capacitive Load and Stability  
The dynamic characteristics of the OPAx172 are optimized for commonly-used operating conditions. The  
combination of low closed-loop gain and high capacitive loads decreases the phase margin of the amplifier and  
may lead to gain peaking or oscillations. As a result, heavier capacitive loads must be isolated from the output.  
The simplest way to achieve this isolation is to add a small resistor (for example, ROUT = 50 Ω) in series with the  
output. 44 and 45 show graphs of small-signal overshoot versus capacitive load for several values of ROUT  
.
Refer to Application Bulletin SBOA015 (AB-028), Feedback Plots Define Op Amp AC Performance, available for  
download from www.ti.com, for details of analysis techniques and application circuits.  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
RI  
=
1 kꢀ  
RF  
=
+
1 kꢀ  
G = +1  
G = -1  
18 V  
œ
ROUT  
+
OPA172  
VIN  
= 100mV  
+
CL  
œ
œ 18 V  
+
18  
V
V
ROUT = 0 ꢀ  
ROUT= 0 ꢀ  
œ
ROUT  
OPA172  
+
+
RL  
CL  
R
= 25 ꢀ  
RO = 25  
RRO ==2255ꢀ  
OUT  
VIN = 100mV  
OUT  
œ
18  
œ
RRO ==5500 ꢀ  
RO = 50  
ROUT= 50 ꢀ  
OUT  
0p  
100p  
200p  
300p  
400p  
500p  
0p  
100p  
200p  
300p  
400p  
500p  
Capacitive Load (F)  
Capacitive Load (F)  
C013  
C013  
44. Small-Signal Overshoot vs Capacitive Load (100-mV  
45. Small-Signal Overshoot vs Capacitive Load (100-mV  
Output Step)  
Output Step)  
版权 © 2013–2018, Texas Instruments Incorporated  
21  
 
 
OPA172, OPA2172, OPA4172  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Common-Mode Voltage Range  
The input common-mode voltage range of the OPAx172 series extends 100 mV below the negative rail and  
within 2 V of the top rail for normal operation.  
This device can operate with full rail-to-rail input 100 mV beyond the top rail, but with reduced performance within  
2 V of the top rail. The typical performance in this range is summarized in 3.  
3. Typical Performance Range (VS = ±18 V)  
PARAMETER  
Input Common-Mode Voltage  
MIN  
TYP  
MAX  
UNIT  
V
(V+) – 2  
(V+) + 0.1  
Offset voltage  
5
10  
70  
60  
4
mV  
Offset voltage vs temperature (TA = –40°C to +125°C)  
Common-mode rejection  
Open-loop gain  
µV/°C  
dB  
dB  
Gain bandwidth product (GBP)  
Slew rate  
MHz  
V/µs  
nV/Hz  
4
Noise at f = 1 kHz  
22  
8.4.2 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress.  
These questions tend to focus on the device inputs, but may involve the supply voltage terminals or even the  
output terminal. Each of these different terminal functions have electrical stress limits determined by the voltage  
breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to  
the terminal. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect  
them from accidental ESD events both before and during product assembly.  
A good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is helpful. 图  
46 illustrates the ESD circuits contained in the OPAx172 (indicated by the dashed line area). The ESD  
protection circuitry involves several current-steering diodes connected from the input and output terminals and  
routed back to the internal power-supply lines, where the diodes meet at an absorption device internal to the  
operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation.  
22  
版权 © 2013–2018, Texas Instruments Incorporated  
 
OPA172, OPA2172, OPA4172  
www.ti.com.cn  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
TVS  
R
F
+V  
S
R
1
2.5 kΩ  
INœ  
2.5 kΩ  
R
S
IN+  
+
Power-Supply  
ESD Cell  
I
R
L
D
+
œ
V
IN  
œV  
S
TVS  
46. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
An ESD event produces a short-duration, high-voltage pulse that is transformed into a short-duration, high-  
current pulse while discharging through a semiconductor device. The ESD protection circuits are designed to  
provide a current path around the operational amplifier core to prevent damage. The energy absorbed by the  
protection circuitry is then dissipated as heat.  
When an ESD voltage develops across two or more amplifier device terminals, current flows through one or more  
steering diodes. Depending on the path that the current takes, the absorption device may activate. The  
absorption device has a trigger, or threshold voltage, that is above the normal operating voltage of the OPAx172  
but below the device breakdown voltage level. When this threshold is exceeded, the absorption device quickly  
activates and clamps the voltage across the supply rails to a safe level.  
When the operational amplifier connects into a circuit (as shown in 46), the ESD protection components are  
intended to remain inactive and do not become involved in the application circuit operation. However,  
circumstances may arise where an applied voltage exceeds the operating voltage range of a given terminal. If  
this condition occurs, there is a risk that some internal ESD protection circuits can turn on and conduct current.  
Any such current flow occurs through steering-diode paths and rarely involves the absorption device.  
46 shows a specific example where the input voltage (VIN) exceeds the positive supply voltage (+VS) by 500  
mV or more. Much of what happens in the circuit depends on the supply characteristics. If +VS can sink the  
current, one of the upper input steering diodes conducts and directs current to +VS. Excessively high current  
levels can flow with increasingly higher VIN. As a result, the data sheet specifications recommend that  
applications limit the input current to 10 mA.  
If the supply is not capable of sinking the current, VIN can begin sourcing current to the operational amplifier, and  
then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to  
levels that exceed the operational amplifier absolute maximum ratings.  
版权 © 2013–2018, Texas Instruments Incorporated  
23  
 
OPA172, OPA2172, OPA4172  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
www.ti.com.cn  
Another common question involves what happens to the amplifier if an input signal is applied to the input while  
the power supplies +VS or –VS are at 0 V. Again, this question depends on the supply characteristic while at 0 V,  
or at a level below the input-signal amplitude. If the supplies appear as high impedance, then the input source  
supplies the operational amplifier current through the current-steering diodes. This state is not a normal bias  
condition; most likely, the amplifier will not operate normally. If the supplies are low impedance, then the current  
through the steering diodes can become quite high. The current level depends on the ability of the input source  
to deliver current, and any resistance in the input path.  
If there is any uncertainty about the ability of the supply to absorb this current, add external zener diodes to the  
supply terminals; see 46. Select the zener voltage so that the diode does not turn on during normal operation.  
However, the zener voltage must be low enough so that the zener diode conducts if the supply terminal begins to  
rise above the safe-operating, supply-voltage level.  
The OPAx172 input terminals are protected from excessive differential voltage with back-to-back diodes; see 图  
46. In most circuit applications, the input protection circuitry has no effect. However, in low-gain or G = 1 circuits,  
fast-ramping input signals can forward-bias these diodes because the output of the amplifier cannot respond  
rapidly enough to the input ramp. If the input signal is fast enough to create this forward-bias condition, limit the  
input signal current to 10 mA or less. If the input signal current is not inherently limited, an input series resistor  
can be used to limit the input signal current. This input series resistor degrades the low-noise performance of the  
OPAx172. 46 illustrates an example configuration that implements a current-limiting feedback resistor.  
8.4.3 Overload Recovery  
Overload recovery is defined as the time it takes for the op amp output to recover from the saturated state to the  
linear state. The output devices of the op amp enter the saturation region when the output voltage exceeds the  
rated operating voltage, either due to the high input voltage or the high gain. After the device enters the  
saturation region, the charge carriers in the output devices need time to return back to the normal state. After the  
charge carriers return back to the equilibrium state, the device begins to slew at the normal slew rate. Thus, the  
propagation delay in case of an overload condition is the sum of the overload recovery time and the slew time.  
The overload recovery time for the OPAx172 is approximately 200 ns.  
24  
版权 © 2013–2018, Texas Instruments Incorporated  
OPA172, OPA2172, OPA4172  
www.ti.com.cn  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
9 Applications and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The OPAx172 family of amplifiers is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V). Many of the  
specifications apply from –40°C to +125°C. Parameters that can exhibit significant variance with regard to  
operating voltage or temperature are presented in the Typical Characteristics.  
9.2 Typical Applications  
The following application examples highlight only a few of the circuits where the OPAx172 can be used.  
9.2.1 Capacitive Load Drive Solution Using an Isolation Resistor  
The OPA172 can be used capacitive loads such as cable shields, reference buffers, MOSFET gates, and diodes.  
The circuit uses an isolation resistor (RISO) to stabilize the output of an op amp. RISO modifies the open-loop gain  
of the system to ensure the circuit has sufficient phase margin.  
+VS  
VOUT  
RISO  
+
CLOAD  
+
VIN  
-VS  
œ
47. Unity-Gain Buffer with RISO Stability Compensation  
9.2.1.1 Design Requirements  
The design requirements are:  
Supply voltage: 30 V (±15 V)  
Capacitive loads: 100 pF, 1000 pF, 0.01 μF, 0.1 μF, and 1 μF  
Phase margin: 45° and 60°  
版权 © 2013–2018, Texas Instruments Incorporated  
25  
 
OPA172, OPA2172, OPA4172  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
www.ti.com.cn  
Typical Applications (接下页)  
9.2.1.2 Detailed Design Procedure  
47 depicts a unity-gain buffer driving a capacitive load. 公式 1 shows the transfer function for the circuit in 图  
47. Not depicted in 47 is the open-loop output resistance of the op amp, Ro.  
1 + CLOAD × RISO × s  
T(s) =  
1 + R + R  
× C  
× s  
(
)
o
ISO  
LOAD  
(1)  
The transfer function in 公式 1 has a pole and a zero. The frequency of the pole (fp) is determined by (Ro + RISO  
)
and CLOAD. Components RISO and CLOAD determine the frequency of the zero (fz). A stable system is obtained by  
selecting RISO such that the rate of closure (ROC) between the open-loop gain (AOL) and 1 / β is 20 dB per  
decade. 48 shows the concept. Note that the 1 / β curve for a unity-gain buffer is 0 dB.  
120  
AOL  
100  
1
fp  
=
2 ì Œ ì  
R
+ Ro ì C  
(
)
ISO  
LOAD  
80  
60  
40  
20  
0
40 dB  
1
fz  
=
2 ì Œ ì RISO ì CLOAD  
1 dec  
1/  
20 dB  
dec  
ROC =  
100M  
10M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
48. Unity-Gain Amplifier with RISO Compensation  
ROC stability analysis is typically simulated. The validity of the analysis depends on multiple factors, especially  
the accurate modeling of Ro. In addition to simulating the ROC, a robust stability analysis includes a  
measurement of overshoot percentage and ac gain peaking of the circuit using a function generator,  
oscilloscope, and gain and phase analyzer. Phase margin is then calculated from these measurements. 4  
shows the overshoot percentage and ac gain peaking that correspond to phase margins of 45° and 60°. For  
more details on this design and other alternative devices that can be used in place of the OPA172, refer to the  
precision design, Capacitive Load Drive Solution using an Isolation Resistor (TIPD128).  
4. Phase Margin versus Overshoot and AC Gain Peaking  
PHASE MARGIN  
OVERSHOOT  
23.3%  
AC GAIN PEAKING  
2.35 dB  
45°  
60°  
8.8%  
0.28 dB  
26  
版权 © 2013–2018, Texas Instruments Incorporated  
 
 
 
OPA172, OPA2172, OPA4172  
www.ti.com.cn  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
9.2.1.3 Application Curve  
The OPA172 meets the supply voltage requirements of 30 V. The OPA172 is tested for various capacitive loads  
and RISO is adjusted to get an overshoot corresponding to 4. The results of the these tests are summarized in  
49.  
1000  
60°Phase Margin  
45°Phase Margin  
100  
10  
1
0.01  
0.1  
1
10  
CLOAD (nF)  
100  
1000  
C041  
49. RISO vs CLOAD  
9.2.2 Bidirectional Current Source  
The improved Howland current-pump topology shown in 50 provides excellent performance because of the  
extremely tight tolerances of the on-chip resistors of the INA132. By buffering the output using an OPA172, the  
output current the circuit is able to deliver is greatly extended.  
The circuit dc transfer function is shown in 公式 2:  
IOUT = VIN / R1  
(2)  
The OPA172 can also be used as the feedback amplifier because the low bias current minimizes error voltages  
produced across R1. However, for improved performance, select a FET-input device with extremely low offset,  
such as the OPA192, OPA140, or OPA188 as the feedback amplifier.  
INA132  
40 kΩ  
40 kΩ  
SENSE  
OUTPUT  
REF  
œIN  
VCC  
VIN  
OPA172  
+
+
+
40 kΩ  
40 kΩ  
+IN  
VEE  
VCC  
R1  
OPA172  
+
+
IOUT  
VEE  
50. Bidirectional Current Source  
版权 © 2013–2018, Texas Instruments Incorporated  
27  
 
 
 
OPA172, OPA2172, OPA4172  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
www.ti.com.cn  
9.2.3 JFET-Input Low-Noise Amplifier  
51 shows a low-noise composite amplifier built by adding a low noise JFET pair (Q1 and Q2) as an input  
preamplifier for the OPA172. Transistors Q3 and Q4 form a 2-mA current sink that biases each JFET with 1 mA  
of drain current. Using 3.9-kΩ drain resistors produces a gain of approximately 10 in the input amplifier, making  
the extremely-low, broadband-noise spectral density of the JFET pair, Q1 and Q2, the dominant noise source of  
the amplifier. The output impedance of the input differential amplifier is large enough that a FET-input amplifier  
such as the OPA172 provides superior noise performance over bipolar-input amplifiers.  
The gain of the composite amplifier is given by 公式 3:  
AV = (1 + R3 / R4)  
(3)  
The resistances shown are standard 1% resistor values that produce a gain of approximately 100 (99.26) with  
68° of phase margin. Gains less than 10 may require additional compensation methods to provide stability.  
Select low resistor values to minimize the resistor thermal noise contribution to the total output noise.  
VCC  
VCC  
VEE  
R1  
3.9 k  
R2  
3.9 kΩ  
VEE  
V1  
V2  
15 V  
15 V  
OPA172  
VOUT  
+
+
R3  
1.13 kΩ  
LSK489  
VCC  
Q1  
Q2  
VCC  
R4  
11.5 Ω  
R6  
Q3  
R5  
27.4 kΩ  
MMBT4401  
Q4  
MMBT4401  
300 Ω  
VEE  
51. JFET-Input Low-Noise Amplifier  
10 Power-Supply Recommendations  
The OPA172 is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications apply from  
–40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in the Typical Characteristics.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see the  
Absolute Maximum Ratings.  
Place 0.1-μF bypass capacitors close to the power-supply terminals to reduce errors coupling in from noisy or  
high-impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout  
section.  
28  
版权 © 2013–2018, Texas Instruments Incorporated  
 
 
OPA172, OPA2172, OPA4172  
www.ti.com.cn  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
11 Layout  
11.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power  
sources local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground  
planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically  
separate digital and analog grounds paying attention to the flow of the ground current. For more detailed  
information refer to SLOA089, Circuit Board Layout Techniques.  
In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular as opposed  
to in parallel with the noisy trace is preferable.  
Place the external components as close to the device as possible. As shown in 52, keeping RF and  
RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly  
reduce leakage currents from nearby traces that are at different potentials.  
11.2 Layout Example  
Place components close  
to device and to each  
other to reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
VS+  
RF  
NC  
NC  
Use a low-ESR,  
ceramic bypass  
capacitor  
RG  
GND  
œIN  
+IN  
Vœ  
V+  
OUTPUT  
NC  
VIN  
GND  
GND  
VSœ  
VOUT  
Ground (GND) plane on another layer  
Use low-ESR,  
ceramic bypass  
capacitor  
52. Operational Amplifier Board Layout for Noninverting Configuration  
版权 © 2013–2018, Texas Instruments Incorporated  
29  
 
OPA172, OPA2172, OPA4172  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
12.1.1.1 TINA-TI™(免费软件下载)  
TINA™是一款简单、功能强大且易于使用的电路仿真程序,此程序基于 SPICE 引擎。TINA-TI TINA 软件的一  
款免费全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。TINA-TI 提供所有传  
统的 SPICE 直流、瞬态和频域分析,以及其他设计功能。  
TINA-TI 可从 Analog eLab Design Center(模拟电子实验室设计中心)免费下载,它提供全面的后续处理能力,  
使得用户能够以多种方式形成结果。虚拟仪器提供选择输入波形和探测电路节点、电压和波形的功能,从而创建一  
个动态的快速入门工具。  
这些文件需要安装 TINA 软件(由 DesignSoft™提供)或者 TINA-TI 软件。请从 TINA-TI 文  
件夹 中下载免费的 TINA-TI 软件。  
12.2 文档支持  
12.2.1 相关文档  
SBOA015 (AB-028) 《反馈曲线图定义运算放大器交流性能》。  
SLOA089 《电路板布局布线技巧》。  
SLOD006 《适用于所有人的运算放大器》。  
SBOA128 《运算放大器的电磁干扰 (EMI) 抑制比》。  
TIPD128 《使用隔离电阻器实现的电容负载驱动解决方案》。  
12.3 相关链接  
5 列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
5. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
单击此处  
样片与购买  
单击此处  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
单击此处  
OPA172  
OPA2172  
OPA4172  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
30  
版权 © 2013–2018, Texas Instruments Incorporated  
 
OPA172, OPA2172, OPA4172  
www.ti.com.cn  
ZHCSBX8I DECEMBER 2013REVISED MAY 2018  
12.5 商标  
E2E is a trademark of Texas Instruments.  
TINA-TI is a trademark of Texas Instruments, Inc and DesignSoft, Inc.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
TINA, DesignSoft are trademarks of DesignSoft, Inc.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
版权 © 2013–2018, Texas Instruments Incorporated  
31  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA172ID  
OPA172IDBVR  
OPA172IDBVT  
OPA172IDCKR  
OPA172IDCKT  
OPA172IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOT-23  
SOT-23  
SC70  
D
DBV  
DBV  
DCK  
DCK  
D
8
5
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
OPA172  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
OUWQ  
OUWQ  
SIU  
5
5
NIPDAU  
SC70  
5
NIPDAU  
SIU  
SOIC  
8
NIPDAU  
OPA172  
O2172A  
OVJQ  
OPA2172ID  
SOIC  
D
8
75  
80  
RoHS & Green  
RoHS & Green  
NIPDAU  
OPA2172IDGK  
OPA2172IDGKR  
OPA2172IDR  
OPA2172IDRGR  
OPA2172IDRGT  
OPA4172ID  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
NIPDAUAG  
NIPDAUAG | SN  
NIPDAU  
8
2500 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
OVJQ  
8
O2172A  
OP2172  
OP2172  
OPA4172  
OPA4172  
OPA4172  
OPA4172  
SON  
DRG  
DRG  
D
8
NIPDAU  
SON  
8
250  
50  
RoHS & Green  
RoHS & Green  
NIPDAU  
SOIC  
14  
14  
14  
14  
NIPDAU  
OPA4172IDR  
OPA4172IPW  
OPA4172IPWR  
SOIC  
D
2500 RoHS & Green  
90 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
TSSOP  
TSSOP  
PW  
PW  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jun-2023  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF OPA2172, OPA4172 :  
Automotive : OPA2172-Q1, OPA4172-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA172IDBVR  
OPA172IDBVT  
OPA172IDCKR  
OPA172IDCKT  
OPA172IDR  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
D
5
5
3000  
250  
180.0  
180.0  
178.0  
178.0  
330.0  
330.0  
330.0  
330.0  
330.0  
180.0  
330.0  
330.0  
8.4  
8.4  
3.23  
3.23  
2.4  
2.4  
6.4  
5.3  
5.3  
6.4  
3.3  
3.3  
6.5  
6.9  
3.17  
3.17  
2.5  
2.5  
5.2  
3.4  
3.4  
5.2  
3.3  
3.3  
9.0  
5.6  
1.37  
1.37  
1.2  
1.2  
2.1  
1.4  
1.4  
2.1  
1.1  
1.1  
2.1  
1.6  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q1  
Q1  
Q1  
Q1  
Q2  
Q2  
Q1  
Q1  
5
3000  
250  
9.0  
8.0  
SC70  
5
9.0  
8.0  
SOIC  
8
2500  
2500  
2500  
2500  
3000  
250  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
16.4  
12.4  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
12.0  
OPA2172IDGKR  
OPA2172IDGKR  
OPA2172IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
OPA2172IDRGR  
OPA2172IDRGT  
OPA4172IDR  
SON  
DRG  
DRG  
D
8
SON  
8
SOIC  
14  
14  
2500  
2000  
OPA4172IPWR  
TSSOP  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA172IDBVR  
OPA172IDBVT  
OPA172IDCKR  
OPA172IDCKT  
OPA172IDR  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
D
5
5
3000  
250  
223.0  
223.0  
180.0  
180.0  
356.0  
366.0  
366.0  
356.0  
346.0  
210.0  
356.0  
356.0  
270.0  
270.0  
180.0  
180.0  
356.0  
364.0  
364.0  
356.0  
346.0  
185.0  
356.0  
356.0  
35.0  
35.0  
18.0  
18.0  
35.0  
50.0  
50.0  
35.0  
33.0  
35.0  
35.0  
35.0  
5
3000  
250  
SC70  
5
SOIC  
8
2500  
2500  
2500  
2500  
3000  
250  
OPA2172IDGKR  
OPA2172IDGKR  
OPA2172IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
OPA2172IDRGR  
OPA2172IDRGT  
OPA4172IDR  
SON  
DRG  
DRG  
D
8
SON  
8
SOIC  
14  
14  
2500  
2000  
OPA4172IPWR  
TSSOP  
PW  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Jul-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
OPA172ID  
OPA2172ID  
D
D
SOIC  
SOIC  
8
8
75  
75  
80  
50  
90  
506.6  
506.6  
330  
8
8
3940  
3940  
500  
4.32  
4.32  
2.88  
4.32  
3.5  
OPA2172IDGK  
OPA4172ID  
DGK  
D
VSSOP  
SOIC  
8
6.55  
8
14  
14  
506.6  
530  
3940  
3600  
OPA4172IPW  
PW  
TSSOP  
10.2  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DRG0008A  
WSON - 0.8 mm max height  
SCALE 5.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
3.1  
2.9  
PIN 1 INDEX AREA  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
1.2 0.1  
4
1
5
8
2X  
1.5  
2 0.1  
6X 0.5  
0.3  
8X  
0.2  
0.1  
0.08  
0.6  
0.4  
PIN 1 ID  
8X  
C A B  
C
4218885/A 03/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.2)  
SYMM  
8X (0.7)  
1
8
8X (0.25)  
SYMM  
(2)  
(0.75)  
5
6X (0.5)  
4
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.35)  
(2.7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED  
EXPOSED  
METAL  
METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218885/A 03/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
METAL  
TYP  
8X (0.7)  
8
8X (0.25)  
1
SYMM  
(1.79)  
6X (0.5)  
4
5
(R0.05) TYP  
(1.13)  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
84% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218885/A 03/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY