OPA2234U-1/2K5G4 [TI]

DUAL OP-AMP, 250uV OFFSET-MAX, 0.35MHz BAND WIDTH, PDSO8, GREEN, PLASTIC, SOIC-8;
OPA2234U-1/2K5G4
型号: OPA2234U-1/2K5G4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DUAL OP-AMP, 250uV OFFSET-MAX, 0.35MHz BAND WIDTH, PDSO8, GREEN, PLASTIC, SOIC-8

放大器 光电二极管
文件: 总33页 (文件大小:1659K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA347  
OPA2347  
OPA4347  
O
®
P
OPA347  
O
A
P
3
4
A
7
3
4
7
O
O
P
P
A
4
A
2
3
3
4
4
7
7
SBOS167D NOVEMBER 2000REVISED JULY 2007  
microPower, Rail-to-Rail  
Operational Amplifiers  
FEATURES  
LOW IQ: 20µA  
DESCRIPTION  
The OPA347 is a microPower, low-cost operational amplifier  
available in micropackages. The OPA347 (single version) is  
available in the SC-70 and SOT23-5 packages. The OPA2347  
(dual version) is available in the SOT23-8 and WCSP-8  
packages. Both are also available in the SO-8. The OPA347  
is also available in the DIP-8. The OPA4347 (quad) is  
available in the SO-14 and the TSSOP-14.  
microSIZE PACKAGES: WCSP-8, SC70-5  
SOT23-5, SOT23-8, and TSSOP-14  
HIGH SPEED/POWER RATIO WITH  
BANDWIDTH: 350kHz  
RAIL-TO-RAIL INPUT AND OUTPUT  
SINGLE SUPPLY: 2.3V to 5.5V  
The small size and low power consumption (34µA per chan-  
nel maximum) of the OPA347 make it ideal for portable and  
battery-powered applications. The input range of the OPA347  
extends 200mV beyond the rails, and the output range is  
within 5mV of the rails. The OPA347 also features an  
excellent speed/power ratio with a bandwidth of 350kHz.  
APPLICATIONS  
PORTABLE EQUIPMENT  
BATTERY-POWERED EQUIPMENT  
2-WIRE TRANSMITTERS  
SMOKE DETECTORS  
The OPA347 can be operated with a single or dual power  
supply from 2.3V to 5.5V. All models are specified for  
operation from –55°C to +125°C.  
CO DETECTORS  
OPA347  
OPA347  
Out  
V–  
1
2
3
5
4
V+  
OPA4347  
+In  
V–  
In  
1
2
3
5
4
V+  
OPA2347  
(bump side down)  
Not to Scale  
Out A  
In A  
+In A  
V+  
1
2
3
4
5
6
7
14 Out D  
13 In D  
12 +In D  
11 V–  
Out  
+In  
In  
SC70-5  
A
B
D
C
V+  
Out A  
In A  
+In A  
V–  
1
2
3
4
8
7
6
5
SOT23-5  
Out B  
In B  
+In B  
OPA347  
OPA2347  
+In B  
In B  
Out B  
10 +In C  
NC  
V+  
NC  
In  
+In  
V–  
1
8
Out A  
In A  
+In A  
V–  
1
2
3
4
8
7
6
5
V+  
9
8
In C  
A
2
3
4
7
6
5
Out B  
In B  
+In B  
Out C  
WCSP-8  
(top view)  
B
Out  
NC  
TSSOP-14, SO-14  
SO-8, DIP-8  
SOT23-8, SO-8  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
Copyright © 2000-2007, Texas Instruments Incorporated  
www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
Supply Voltage, V+ to V................................................................... 7.5V  
Signal Input Terminals, Voltage(2) .................. (V) 0.5V to (V+) + 0.5V  
Current(2) .................................................... 10mA  
This integrated circuit can be damaged by ESD. Texas  
Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper  
handling and installation procedures can cause damage.  
Output Short-Circuit(3) .............................................................. Continuous  
Operating Temperature ..................................................65°C to +150°C  
Storage Temperature .....................................................65°C to +150°C  
Junction Temperature ...................................................................... 150°C  
NOTES: (1) Stresses above these ratings may cause permanent damage.  
Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only. Functional opera-  
tion of the device at these conditions, or beyond the specified operating  
conditions, is not implied. (2) Input terminals are diode-clamped to the  
power-supply rails. Input signals that can swing more than 0.5V beyond the  
supply rails should be current-limited to 10mA or less. (3) Short-circuit to  
ground, one amplifier per package.  
ESD damage can range from subtle performance degrada-  
tion to complete device failure. Precision integrated circuits  
may be more susceptible to damage because very small  
parametric changes could cause the device not to meet its  
published specifications.  
PACKAGE/ORDERING INFORMATION(1)  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
PRODUCT  
PACKAGE/LEAD  
OPA347NA  
SOT23-5  
DBV  
A47  
"
"
DIP-8  
SO-8  
"
SC-70  
"
"
P
D
"
OPA347PA  
OPA347PA  
OPA347UA  
OPA347UA  
"
"
"
S47  
"
OPA347SA  
DCK  
"
"
OPA2347EA  
SOT23-8  
DCN  
B47  
"
"
SO-8  
"
"
D
"
"
OPA2347UA  
OPA2347UA  
"
"
OPA2347YED  
"
OPA2347YZDR  
WCSP-8  
YED  
"
YZD  
YMD CCS  
"
"
A9  
Lead-Free WCSP-8  
OPA4347EA  
TSSOP-14  
PW  
"
OPA4347EA  
"
"
SO-14  
"
"
OPA4347UA  
D
OPA4347UA  
"
"
"
NOTE: (1) For the most current package and ordering information, see the Package Option Addendum at the end of this data sheet, or see the TI web site at www.ti.com.  
OPA347, 2347, 4347  
2
SBOS167D  
www.ti.com  
ELECTRICAL CHARACTERISTICS: VS = 2.5V to 5.5V  
Boldface limits apply over the specified temperature range, TA = 55°C to +125°C.  
At TA = +25°C, RL = 100kconnected to VS/2 and VOUT = VS/2, unless otherwise noted.  
OPA347NA, UA, PA, SA  
OPA2347EA, UA, YED  
OPA4347EA, UA  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
OFFSET VOLTAGE  
Input Offset Voltage  
over Temperature  
Drift  
vs Power Supply  
over Temperature  
Channel Separation, DC  
VOS  
VS = 5.5V, VCM = (V) + 0.8V  
2
2
3
6
7
mV  
mV  
dVOS/dT  
PSRR  
µV/°C  
µV/V  
µV/V  
µV/V  
dB  
VS = 2.5V to 5.5V, VCM < (V+) 1.7V  
VS = 2.5V to 5.5V, VCM < (V+) 1.7V  
60  
175  
300  
0.3  
128  
f = 1kHz  
INPUT VOLTAGE RANGE  
Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
over Temperature  
VCM  
CMRR  
(V) 0.2  
(V+) + 0.2  
V
VS = 5.5V, (V) 0.2V < VCM < (V+) 1.7V  
VS = 5.5V, V< VCM < (V+) 1.7V  
Vs = 5.5V, (V) 0.2V < VCM < (V+) + 0.2V  
Vs = 5.5V, V< VCM < V+  
70  
66  
54  
48  
80  
70  
dB  
dB  
dB  
dB  
over Temperature  
INPUT BIAS CURRENT(1)  
Input Bias Current  
Input Offset Current  
Ib  
IOS  
±0.5  
±0.5  
±10  
±10  
pA  
pA  
INPUT IMPEDANCE  
Differential  
Common-Mode  
1013 || 3  
1013 || 6  
|| pF  
|| pF  
NOISE  
VCM < (V+) 1.7V  
Input Voltage Noise, f = 0.1Hz to 10Hz  
Input Voltage Noise Density, f = 1kHz  
Input Current Noise Density, f = 1kHz  
12  
60  
0.7  
µVPP  
nV/Hz  
fA/Hz  
en  
in  
OPEN-LOOP GAIN  
Open-Loop Voltage Gain  
over Temperature  
AOL VS = 5.5V, RL = 100k, 0.015V < VO < 5.485V  
VS = 5.5V, RL = 100k , 0.015V < VO < 5.485V  
VS = 5.5V, RL = 5k, 0.125V < VO < 5.375V  
VS = 5.5V, RL = 5k , 0.125V < VO < 5.375V  
100  
88  
100  
88  
115  
115  
115  
dB  
dB  
dB  
dB  
dB  
over Temperature  
A
OL (SC-70 only) VS = 5.5V, RL = 5k0.125V < VO < 5.375V  
96  
OUTPUT  
Voltage Output Swing from Rail  
RL = 100k, AOL > 100dB  
5
15  
15  
125  
125  
mV  
mV  
mV  
mV  
mA  
over Temperature  
RL = 100k, AOL > 88dB  
RL = 5k, AOL > 100dB  
90  
over Temperature  
Short-Circuit Current  
Capacitive Load Drive  
RL = 5k, AOL > 88dB  
ISC  
CLOAD  
±17  
See Typical Characteristics  
FREQUENCY RESPONSE  
Gain-Bandwidth Product  
Slew Rate  
Settling Time, 0.1%  
0.01%  
CL = 100pF  
G = +1  
VS = 5V, 2V Step, G = +1  
VS = 5V, 2V Step, G = +1  
VIN × Gain = VS  
GBW  
SR  
tS  
350  
0.17  
21  
27  
23  
kHz  
V/µs  
µs  
µs  
µs  
Overload Recovery Time  
POWER SUPPLY  
Specified Voltage Range  
VS  
2.5  
5.5  
V
V
V
µA  
µA  
Minimum Operating Voltage  
Minimum Operating Voltage (OPA347SA)  
Quiescent Current (per amplifier)  
over Temperature  
2.3  
2.4  
20  
IQ  
IO = 0  
34  
38  
TEMPERATURE RANGE  
Specified Range  
Operating Range  
55  
65  
65  
125  
150  
150  
°C  
°C  
°C  
Storage Range  
Thermal Resistance  
SOT23-5 Surface-Mount  
SOT23-8 Surface-Mount  
SO-8 Surface-Mount  
SO-14 Surface-Mount  
TSSOP-14 Surface-Mount  
DIP-8  
θJA  
200  
150  
150  
100  
100  
100  
250  
250  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
SC70-5 Surface-Mount  
WCSP  
NOTE: (1) Input bias current for the OPA2347YED package is specified in the absence of light. See the Photosensitivity section for further detail.  
OPA347, 2347, 4347  
3
SBOS167D  
www.ti.com  
TYPICAL CHARACTERISTICS  
At TA = +25°C, VS = +5V, and RL = 100kconnected to VS/2, unless otherwise noted.  
POWER-SUPPLY AND COMMON-MODE  
REJECTION vs FREQUENCY  
OPEN-LOOP GAIN/PHASE vs FREQUENCY  
100  
80  
60  
40  
20  
0
0
100  
80  
60  
40  
20  
0
30  
60  
90  
120  
150  
180  
PSRR  
CMRR  
20  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
MAXIMUM OUTPUT VOLTAGE vs FREQUENCY  
VS = 5.5V  
CHANNEL SEPARATION vs FREQUENCY  
6
140  
120  
100  
80  
5
4
3
2
1
0
VS = 5.0V  
VS = 2.5V  
60  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
QUIESCENT AND SHORT-CIRCUIT CURRENT  
vs SUPPLY VOLTAGE  
OUTPUT VOLTAGE SWING vs OUTPUT CURRENT  
V+  
(V+) 1  
(V+) 2  
30  
25  
20  
15  
10  
25  
20  
15  
10  
5
Sourcing  
55°C  
55°C  
125°C  
25°C  
IQ  
2
1
0
Sinking  
ISC  
0
5
10  
15  
20  
25  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Output Current (±mA)  
Supply Voltage (V)  
OPA347, 2347, 4347  
4
SBOS167D  
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
At TA = +25°C, VS = +5V, and RL = 100kconnected to VS/2, unless otherwise noted.  
OPEN-LOOP GAIN AND POWER-SUPPLY  
REJECTION vs TEMPERATURE  
COMMON-MODE REJECTION vs TEMPERATURE  
100  
130  
120  
110  
100  
90  
90  
V< VCM < (V+) 1.7V  
AOL  
80  
70  
V< VCM < V+  
60  
PSRR  
50  
40  
80  
70  
75 50 25  
0
25  
50  
75 100 125 150  
75 50 25  
0
25  
50  
75 100 125 150  
Temperature (°C)  
Temperature (°C)  
QUIESCENT AND SHORT-CIRCUIT CURRENT  
vs TEMPERATURE  
INPUT BIAS CURRENT vs TEMPERATURE  
30  
25  
20  
15  
10  
10k  
1k  
25  
20  
15  
10  
5
ISC  
100  
10  
IQ  
1
0.1  
50 25  
0
25  
50  
75  
100 125 150  
75  
125  
75 50 25  
0
25  
50  
75  
100  
150  
Temperature (°C)  
Temperature (°C)  
OFFSET VOLTAGE DRIFT MAGNITUDE  
PRODUCTION DISTRIBUTION  
OFFSET VOLTAGE PRODUCTION DISTRIBUTION  
25  
20  
15  
10  
5
18  
16  
14  
12  
10  
8
Typical production  
distribution of  
packaged units.  
6
4
2
0
0
1
2
3
4
5
6
7
8
9
10 11 12  
6 5 4 3 2 1  
0
1
2
3
4
5
6
Offset Voltage (mV)  
Offset Voltage Drift (µV/°C)  
OPA347, 2347, 4347  
5
SBOS167D  
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
At TA = +25°C, VS = +5V, and RL = 100kconnected to VS/2, unless otherwise noted.  
SMALL-SIGNAL OVERSHOOT  
vs LOAD CAPACITANCE  
SMALL-SIGNAL OVERSHOOT  
vs LOAD CAPACITANCE  
60  
50  
40  
30  
20  
10  
0
G = 1V/V  
G = ±5V/V  
RFB = 100kΩ  
RFB = 100kΩ  
50  
40  
G = +1V/V  
RL = 100kΩ  
30  
20  
G = 1V/V  
RFB = 5kΩ  
10  
0
10  
100  
1k  
10k  
10  
100  
1k  
10k  
Load Capacitance (pF)  
Load Capacitance (pF)  
SMALL-SIGNAL STEP RESPONSE  
SMALL-SIGNAL STEP RESPONSE  
G = +1V/V, RL = 100k, CL = 100pF  
G = +1V/V, RL = 5k, CL = 100pF  
10µs/div  
10µs/div  
LARGE-SIGNAL STEP RESPONSE  
INPUT VOLTAGE AND CURRENT NOISE  
SPECTRAL DENSITY vs FREQUENCY  
G = +1V/V, RL = 100k, CL = 100pF  
10k  
1k  
100  
10  
1.0  
0.1  
100  
10  
20µs/div  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
OPA347, 2347, 4347  
6
SBOS167D  
www.ti.com  
OPERATING VOLTAGE  
APPLICATIONS INFORMATION  
The OPA347 series op amps are unity-gain stable and can  
operate on a single supply, making them highly versatile and  
easy to use.  
The OPA347 series op amps are fully specified and en-  
sured from 2.5V to 5.5V. In addition, many specifications  
apply from 55°C to +125°C. Parameters that vary signifi-  
cantly with operating voltages or temperature are shown in  
the Typical Characteristics.  
Rail-to-rail input and output swing significantly increases dy-  
namic range, especially in low supply applications. Figure 1  
shows the input and output waveforms for the OPA347 in  
unity-gain configuration. Operation is from VS = +5V with a  
100kload connected to VS/2. The input is a 5VPP sinusoid.  
RAIL-TO-RAIL INPUT  
The input common-mode voltage range of the OPA347  
series extends 200mV beyond the supply rails. This is  
achieved with a complementary input stagean N-channel  
input differential pair in parallel with a P-channel differential  
pair, as shown in Figure 2. The N-channel pair is active for  
input voltages close to the positive rail, typically (V+) 1.3V  
to 200mV above the positive supply, while the P-channel pair  
is on for inputs from 200mV below the negative supply to  
approximately (V+) 1.3V. There is a small transition region,  
typically (V+) 1.5V to (V+) 1.1V, in which both pairs are  
on. This 400mV transition region can vary 300mV with  
process variation. Thus, the transition region (both stages  
on) can range from (V+) 1.65V to (V+) 1.25V on the low  
end, up to (V+) 1.35V to (V+) 0.95V on the high end.  
Within the 400mV transition region PSRR, CMRR, offset  
voltage, and offset drift may be degraded compared to  
operation outside this region. For more information on de-  
signing with rail-to-rail input op amps, see Figure 3, Design  
Optimization with Rail-to-Rail Input Op Amps.  
Output voltage is approximately 4.995VPP  
.
Power-supply pins should be bypassed with 0.01µF ceramic  
capacitors.  
G = +1, VS = +5V  
Input  
5V  
1V/div  
0V  
Output (inverted on scope)  
20µs/div  
FIGURE 1. Rail-to-Rail Input and Output.  
V+  
Reference  
Current  
VIN  
+
VIN  
VBIAS1  
Class AB  
Control  
VO  
Circuitry  
VBIAS2  
V–  
(Ground)  
FIGURE 2. Simplified Schematic.  
OPA347, 2347, 4347  
7
SBOS167D  
www.ti.com  
DESIGN OPTIMIZATION WITH RAIL-TO-RAIL INPUT OP AMPS  
Rail-to-rail op amps can be used in virtually any op amp  
With a unity-gain buffer, for example, signals will traverse  
this transition at approximately 1.3V below the V+ supply  
and may exhibit a small discontinuity at this point.  
configuration. To achieve optimum performance, how-  
ever, applications using these special double-input-stage  
op amps may benefit from consideration of their special  
behavior.  
The common-mode voltage of the noninverting amplifier  
is equal to the input voltage. If the input signal always  
remains less than the transition voltage, no discontinuity  
will be created. The closed-loop gain of this configuration  
can still produce a rail-to-rail output.  
In many applications, operation remains within the com-  
mon-mode range of only one differential input pair. How-  
ever, some applications exercise the amplifier through the  
transition region of both differential input stages. A small  
discontinuity may occur in this transition. Careful selection  
of the circuit configuration, signal levels, and biasing can  
often avoid this transition region.  
Inverting amplifiers have a constant common-mode volt-  
age equal to VB. If this bias voltage is constant, no  
discontinuity will be created. The bias voltage can gener-  
ally be chosen to avoid the transition region.  
Unity-Gain Buffer  
Noninverting Amplifier  
Inverting Amplifier  
V+  
V+  
V+  
VB  
VIN  
VO  
VO  
VO  
VIN  
VIN  
VB  
VCM = VIN = VO  
VCM = VIN  
VCM = VB  
FIGURE 3. Design Optimization with Rail-to-Rail Input Op Amps.  
COMMON-MODE REJECTION  
The CMRR for the OPA347 is specified in several ways so  
the best match for a given application may be used. First, the  
CMRR of the device in the common-mode range below the  
transition region (VCM < (V+) 1.7V) is given. This specifica-  
tion is the best indicator of the capability of the device when  
the application requires use of one of the differential input  
pairs. Second, the CMRR at VS = 5.5V over the entire  
common-mode range is specified.  
5.5V  
0V  
0.5V  
INPUT VOLTAGE  
200µs/div  
The input common-mode range extends from (V) 0.2V to  
(V+) + 0.2V. For normal operation, inputs should be limited  
to this range. The absolute maximum input voltage is 500mV  
beyond the supplies. Inputs greater than the input  
common-mode range but less than the maximum input  
voltage, while not valid, will not cause any damage to the op  
amp. Furthermore, if input current is limited the inputs may go  
beyond the power supplies without phase inversion, as  
shown in Figure 4, unlike some other op amps.  
FIGURE 4. OPA347No Phase Inversion with Inputs Greater  
than the Power-Supply Voltage.  
+5V  
IOVERLOAD  
Normally, input currents are 0.4pA. However, large inputs  
(greater than 500mV beyond the supply rails) can cause  
excessive current to flow in or out of the input pins. There-  
fore, as well as keeping the input voltage below the maxi-  
mum rating, it is also important to limit the input current to  
less than 10mA. This is easily accomplished with an input  
resistor, as shown in Figure 5.  
10mA max  
VOUT  
OPA347  
VIN  
5kΩ  
FIGURE 5. Input Current Protection for Voltages Exceeding  
the Supply Voltage.  
OPA347, 2347, 4347  
8
SBOS167D  
www.ti.com  
RAIL-TO-RAIL OUTPUT  
load, reducing the resistor values from 100kto 5kde-  
creases overshoot from 40% to 8% (see the characteristic  
curve Small-Signal Overshoot vs Load Capacitance). How-  
ever, when large-valued resistors can not be avoided, a  
small (4pF to 6pF) capacitor, CFB, can be inserted in the  
feedback, as shown in Figure 7. This significantly reduces  
overshoot by compensating the effect of capacitance, CIN,  
which includes the amplifier input capacitance and PC board  
A class AB output stage with common-source transistors is  
used to achieve rail-to-rail output. This output stage is ca-  
pable of driving 5kloads connected to any potential be-  
tween V+ and ground. For light resistive loads (> 100k), the  
output voltage can typically swing to within 5mV from supply  
rail. With moderate resistive loads (10kto 50k), the output  
can swing to within a few tens of millivolts from the supply  
rails while maintaining high open-loop gain (see the typical  
characteristic Output Voltage Swing vs Output Current).  
parasitic capacitance.  
CFB  
RF  
CAPACITIVE LOAD AND STABILITY  
The OPA347 in a unity-gain configuration can directly drive  
up to 250pF pure capacitive load. Increasing the gain en-  
hances the amplifiers ability to drive greater capacitive loads  
(see the characteristic curve Small-Signal Overshoot vs  
Capacitive Load). In unity-gain configurations, capacitive  
load drive can be improved by inserting a small (10to 20)  
resistor, RS, in series with the output, as shown in Figure 6.  
This significantly reduces ringing while maintaining Direct  
Current (DC) performance for purely capacitive loads. How-  
ever, if there is a resistive load in parallel with the capacitive  
load, a voltage divider is created, introducing a DC error at  
the output and slightly reducing the output swing. The error  
introduced is proportional to the ratio RS/RL, and is generally  
negligible.  
RI  
VIN  
VOUT  
OPA347  
CIN  
CL  
FIGURE 7. Adding a Feedback Capacitor In the Unity-Gain  
Inverter Configuration Improves Capacitative  
Load.  
DRIVING ADCs  
The OPA347 series op amps are optimized for driving  
medium-speed sampling Analog-to-Digital Converters (ADCs).  
The OPA347 op amps buffer the ADCs input capacitance  
and resulting charge injection while providing signal gain.  
V+  
RS  
VOUT  
OPA347  
See Figure 8 for the OPA347 in a basic noninverting configu-  
ration driving the ADS7822. The ADS7822 is a 12-bit,  
microPower sampling converter in the MSOP-8 package.  
When used with the low-power, miniature packages of the  
OPA347, the combination is ideal for space-limited, low-  
power applications. In this configuration, an RC network at  
the ADC input can be used to provide for anti-aliasing filter  
and charge injection current.  
10to  
20Ω  
VIN  
CL  
RL  
FIGURE 6. Series Resistor in Unity-Gain Buffer Configura-  
tion Improves Capacitive Load Drive.  
See Figure 9 for the OPA2347 driving an ADS7822 in a  
speech bandpass filtered data acquisition system. This small,  
low-cost solution provides the necessary amplification and  
signal conditioning to interface directly with an electret micro-  
phone. This circuit will operate with VS = 2.7V to 5V with less  
than 250µA typical quiescent current.  
In unity-gain inverter configuration, phase margin can be  
reduced by the reaction between the capacitance at the op  
amp input, and the gain setting resistors, thus degrading  
capacitive load drive. Best performance is achieved by using  
small valued resistors. For example, when driving a 500pF  
OPA347, 2347, 4347  
9
SBOS167D  
www.ti.com  
+5V  
0.1µF  
0.1µF  
1
VREF  
8
V+  
7
6
5
DCLOCK  
DOUT  
500Ω  
+In  
2
Serial  
Interface  
ADS7822  
12-Bit ADC  
OPA347  
VIN  
In  
CS/SHDN  
3
3300pF  
GND  
4
VIN = 0V to 5V for  
0V to 5V output.  
NOTE: ADC Input = 0V to VREF  
RC network filters high-frequency noise.  
FIGURE 8. OPA347 in Noninverting Configuration Driving ADS7822.  
V+ = +2.7V to 5V  
Passband 300Hz to 3kHz  
R9  
510kΩ  
R1  
R4  
R2  
1.5kΩ  
20kΩ  
1MΩ  
C3  
C
1
33pF  
1000pF  
R7  
51kΩ  
R8  
150kΩ  
V
8
+
1
VREF  
1/2  
7
6
DCLOCK  
DOUT  
OPA2347  
+IN  
2
IN  
1/2  
OPA2347  
R3  
1MΩ  
ADS7822  
12-Bit A/D  
Electret  
Microphone(1)  
Serial  
Interface  
C2  
1000pF  
R6  
100kΩ  
5
CS/SHDN  
3
4
G = 100  
NOTE: (1) Electret microphone  
powered by R1.  
R5  
20kΩ  
GND  
FIGURE 9. Speech Bandpass Filtered Data Acquisition System.  
OPA347, 2347, 4347  
10  
SBOS167D  
www.ti.com  
OPA2347 WCSP PACKAGE  
OPA2347YED  
The OPA2347YED and OPA2347YZDR are die-level pack-  
ages using bump-on-pad technology. The OPA2347YED de-  
vice has tin-lead balls; the OPA2347YZDR has lead-free  
balls. Unlike devices that are in plastic packages, these  
devices have no molding compound, lead frame, wire bonds,  
or leads. Using standard surface-mount assembly procedures,  
the WCSP can be mounted to a printed circuit board without  
additional under fill. Figures 10 and 11 detail pinout and  
package marking.  
Top View  
Actual Size:  
Package Marking Code:  
YMD = year/month/day  
CC = indicates OPA2347YED  
A9 = indicates OPA2347YZD  
S = for engineering purposes only  
Exact Size:  
1.008mm x 2.100mm  
(bump side down)  
FIGURE 11. Top View Package Marking.  
PHOTOSENSITIVITY  
OPA2347  
(bump side down)  
Not to Scale  
Although the OPA2347YED/YZD package has a protective  
backside coating that reduces the amount of light exposure  
on the die, unless fully shielded, ambient light will still reach  
the active region of the device. Input bias current for the  
OPA2347YED/YZD package is specified in the absence of  
light. Depending on the amount of light exposure in a given  
application, an increase in bias current, and possible in-  
creases in offset voltage should be expected. In circuit board  
tests under ambient light conditions, a typical increase in bias  
current reached 100pA. Flourescent lighting may introduce  
noise or hum due to their time varying light output. Best  
practice should include end-product packaging that provides  
shielding from possible light souces during operation.  
V+  
Out A  
In A  
+In A  
V–  
1
2
3
4
8
7
6
5
Out B  
In B  
+In B  
WCSP-8  
(top view)  
FIGURE 10. Pin Description.  
RELIABILITY TESTING  
To ensure reliability, the OPA2347YED and OPA2347YZDR  
devices have been verified to successfully pass a series of  
reliability stress tests. A summary of JEDEC standard reli-  
ability tests is shown in Table I.  
TEST  
CONDITION  
ACCEPT CRITERIA (ACTUAL)  
SAMPLE SIZE  
Temperature Cycle  
40°C to 125°C, 1 Cycle/hr, 15 Minute Ramp(1)  
10 Minute Dwell  
500 (1600) Cycles, R < 1.2X from R0  
10 (129) Drops, R < 1.2X from R0  
5K (6.23K) Cycles, R < 1.2X from R0  
36  
8
Drop  
50cm  
Key Push  
100 Cycles/min,  
8
1300 µε, Displacement = 2.7mm Max  
3 Point Bend  
Strain Rate 5 mm/min, 85 mm Span  
R < 1.2X from R0  
8
NOTE: (1) Per IPC9701.  
TABLE I. Reliability Test Results.  
OPA347, 2347, 4347  
11  
SBOS167D  
www.ti.com  
LAND PATTERNS AND ASSEMBLY  
The recommended land pattern for the OPA2347YED pack-  
age is detailed in Figure 12 with specifications listed in Table  
II. The maximum amount of force during assembly should be  
limited to 30 grams of force per bump.  
FIGURE 12. Recommended Land Area.  
SOLDER PAD  
DEFINITION  
SOLDER MASK  
OPENING  
COPPER  
THICKNESS  
COPPER PAD  
STENCIL OPENING  
STENCIL THICKNESS  
Non-Solder Mask  
Defined (NSMD)  
275µm  
(+0.0, 25µm)  
375µm  
(+0.0, 25µm)  
1 oz max  
275µm X 275µm, sq  
125µm Thick  
NOTES: (1) Circuit traces from NSMD-defined PWB lands should be less tham 100µm (preferrably = 75µm) wide in the exposed area inside the solder mask  
opening. Wider trace widths will reduce device stand off and impact reliability. (2) Recommended solder paste is type 3 or type 4. (3) Best reliability results are  
achieved when the PWB laminate glass transistion temperature is above the operating range of the intended application. (4) For PWB using an Ni/Au surface  
finish, the gold thickness should be less than 0.5um to avoid solder embrittlement and a reduction in thermal fatigue performance. (5) Solder mask thickness  
should be less than 20um on top of the copper circuit pattern. (6) Best solder stencil performance will be achieved using laser-cut stencils with electro polishing.  
Use of chemically etched stencils results in inferior solder paste volume control. (7) Trace routing away from the WLCSP device should be balanced in X and  
Y directions to avoid unintentional component movement due to solder wetting forces.  
TABLE II. Recommended Land Pattern.  
OPA347, 2347, 4347  
12  
SBOS167D  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
OPA2347EA/250  
OPA2347EA/250G4  
OPA2347EA/3K  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DCN  
8
8
8
8
8
8
8
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
B47  
B47  
B47  
B47  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DCN  
DCN  
DCN  
D
250  
3000  
3000  
75  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
OPA2347EA/3KG4  
OPA2347UA  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
OPA  
2347UA  
OPA2347UA/2K5  
OPA2347UA/2K5G4  
SOIC  
D
2500  
2500  
Green (RoHS  
& no Sb/Br)  
OPA  
2347UA  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
OPA  
2347UA  
OPA2347UA/2K5Q1  
OPA2347UAG4  
OBSOLETE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
TBD  
Call TI  
Call TI  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-2-260C-1 YEAR  
-55 to 125  
OPA  
2347UA  
OPA2347YEDR  
OPA2347YEDT  
OPA2347YZDR  
OBSOLETE  
OBSOLETE  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
YED  
YED  
YZD  
8
8
8
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-55 to 125  
-55 to 125  
3000  
250  
250  
250  
3000  
3000  
50  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
(A9 ~ OPA2347)  
OPA2347  
A47  
OPA2347YZDT  
OPA347NA/250  
OPA347NA/250G4  
OPA347NA/3K  
OPA347NA/3KG4  
OPA347PA  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
PDIP  
YZD  
DBV  
DBV  
DBV  
DBV  
P
8
5
5
5
5
8
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
N / A for Pkg Type  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Green (RoHS  
& no Sb/Br)  
A47  
Green (RoHS  
& no Sb/Br)  
A47  
Green (RoHS  
& no Sb/Br)  
A47  
Green (RoHS  
& no Sb/Br)  
OPA347PA  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
OPA347PAG4  
OPA347SA/250  
OPA347SA/250G4  
OPA347SA/3K  
ACTIVE  
PDIP  
SC70  
SC70  
SC70  
SC70  
SOIC  
P
8
5
50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
N / A for Pkg Type  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
OPA347PA  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DCK  
DCK  
DCK  
DCK  
D
250  
250  
3000  
3000  
75  
Green (RoHS  
& no Sb/Br)  
S47  
S47  
S47  
S47  
5
Green (RoHS  
& no Sb/Br)  
5
Green (RoHS  
& no Sb/Br)  
OPA347SA/3KG4  
OPA347UA  
5
Green (RoHS  
& no Sb/Br)  
8
Green (RoHS  
& no Sb/Br)  
OPA  
347UA  
OPA347UA/2K5  
OPA347UA/2K5G4  
OPA347UAG4  
SOIC  
D
8
2500  
2500  
75  
Green (RoHS  
& no Sb/Br)  
OPA  
347UA  
SOIC  
D
8
Green (RoHS  
& no Sb/Br)  
OPA  
347UA  
SOIC  
D
8
Green (RoHS  
& no Sb/Br)  
OPA  
347UA  
OPA4347EA/250  
OPA4347EA/250G4  
OPA4347EA/2K5  
OPA4347EA/2K5G4  
OPA4347UA  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
PW  
PW  
D
14  
14  
14  
14  
14  
14  
14  
14  
250  
250  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
OPA  
4347EA  
Green (RoHS  
& no Sb/Br)  
OPA  
4347EA  
Green (RoHS  
& no Sb/Br)  
OPA  
4347EA  
Green (RoHS  
& no Sb/Br)  
OPA  
4347EA  
Green (RoHS  
& no Sb/Br)  
OPA4347UA  
OPA4347UA  
OPA4347UA  
OPA4347UA  
OPA4347UA/2K5  
OPA4347UA/2K5G4  
OPA4347UAG4  
SOIC  
D
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Jun-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2347EA/250  
OPA2347EA/3K  
OPA347SA/250  
OPA347SA/250  
OPA347SA/3K  
OPA347SA/3K  
OPA347UA/2K5  
OPA4347EA/250  
OPA4347EA/2K5  
OPA4347UA/2K5  
SOT-23  
SOT-23  
SC70  
DCN  
DCN  
DCK  
DCK  
DCK  
DCK  
D
8
8
250  
3000  
250  
179.0  
179.0  
178.0  
179.0  
178.0  
179.0  
330.0  
180.0  
330.0  
330.0  
8.4  
8.4  
3.2  
3.2  
2.4  
2.2  
2.4  
2.2  
6.4  
6.9  
6.9  
6.5  
3.2  
3.2  
2.5  
2.5  
2.5  
2.5  
5.2  
5.6  
5.6  
9.0  
1.4  
1.4  
1.2  
1.2  
1.2  
1.2  
2.1  
1.6  
1.6  
2.1  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q1  
Q1  
Q1  
Q1  
5
9.0  
8.0  
SC70  
5
250  
8.4  
8.0  
SC70  
5
3000  
3000  
2500  
250  
9.0  
8.0  
SC70  
5
8.4  
8.0  
SOIC  
8
12.4  
12.4  
12.4  
16.4  
12.0  
12.0  
12.0  
16.0  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
14  
14  
14  
2500  
2500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Jun-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2347EA/250  
OPA2347EA/3K  
OPA347SA/250  
OPA347SA/250  
OPA347SA/3K  
OPA347SA/3K  
OPA347UA/2K5  
OPA4347EA/250  
OPA4347EA/2K5  
OPA4347UA/2K5  
SOT-23  
SOT-23  
SC70  
DCN  
DCN  
DCK  
DCK  
DCK  
DCK  
D
8
8
250  
3000  
250  
203.0  
203.0  
180.0  
203.0  
180.0  
203.0  
367.0  
210.0  
367.0  
367.0  
203.0  
203.0  
180.0  
203.0  
180.0  
203.0  
367.0  
185.0  
367.0  
367.0  
35.0  
35.0  
18.0  
35.0  
18.0  
35.0  
35.0  
35.0  
35.0  
38.0  
5
SC70  
5
250  
SC70  
5
3000  
3000  
2500  
250  
SC70  
5
SOIC  
8
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
14  
14  
14  
2500  
2500  
Pack Materials-Page 2  
D: Max = 2.092 mm, Min =2.031 mm  
E: Max = 0.999 mm, Min =0.938 mm  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY