OPA227PG4 [TI]

High Precision, Low Noise Operational Amplifiers;
OPA227PG4
型号: OPA227PG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

High Precision, Low Noise Operational Amplifiers

放大器 光电二极管
文件: 总27页 (文件大小:838K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA227  
OPA2227  
OPA4227  
O
PA  
4227  
OP  
A227  
O
PA  
2227  
O
P
A
4
2
2
7
O
P
OPA228  
OPA2228  
OPA4228  
A
2
O
P
A
2
2
7
2
2
7
SBOS110A – MAY 1998 – REVISED JANUARY 2005  
High Precision, Low Noise  
OPERATIONAL AMPLIFIERS  
FEATURES  
LOW NOISE: 3nV/Hz  
DESCRIPTION  
The OPA227 and OPA228 series op amps combine low  
WIDE BANDWIDTH:  
noise and wide bandwidth with high precision to make them  
the ideal choice for applications requiring both ac and preci-  
sion dc performance.  
OPA227: 8MHz, 2.3V/µs  
OPA228: 33MHz, 10V/µs  
SETTLING TIME: 5µs  
The OPA227 is unity-gain stable and features high slew rate  
(2.3V/µs) and wide bandwidth (8MHz). The OPA228 is opti-  
mized for closed-loop gains of 5 or greater, and offers higher  
speed with a slew rate of 10V/µs and a bandwidth of 33MHz.  
(significant improvement over OP-27)  
HIGH CMRR: 138dB  
HIGH OPEN-LOOP GAIN: 160dB  
LOW INPUT BIAS CURRENT: 10nA max  
LOW OFFSET VOLTAGE: 75µV max  
WIDE SUPPLY RANGE: ±2.5V to ±18V  
OPA227 REPLACES OP-27, LT1007, MAX427  
OPA228 REPLACES OP-37, LT1037, MAX437  
SINGLE, DUAL, AND QUAD VERSIONS  
The OPA227 and OPA228 series op amps are ideal for  
professional audio equipment. In addition, low quiescent  
current and low cost make them ideal for portable applica-  
tions requiring high precision.  
The OPA227 and OPA228 series op amps are pin-for-pin  
replacements for the industry standard OP-27 and OP-37  
with substantial improvements across the board. The dual  
and quad versions are available for space savings and per-  
channel cost reduction.  
APPLICATIONS  
DATA ACQUISITION  
The OPA227, OPA228, OPA2227, and OPA2228 are  
available in DIP-8 and SO-8 packages. The OPA4227 and  
OPA4228 are available in DIP-14 and SO-14 packages  
with standard pin configurations. Operation is specified  
from –40°C to +85°C.  
TELECOM EQUIPMENT  
GEOPHYSICAL ANALYSIS  
VIBRATION ANALYSIS  
SPECTRAL ANALYSIS  
PROFESSIONAL AUDIO EQUIPMENT  
ACTIVE FILTERS  
OPA4227, OPA4228  
POWER SUPPLY CONTROL  
Out A  
In A  
+In A  
V+  
1
2
3
4
5
6
7
14 Out D  
13 In D  
12 +In D  
11 V–  
SPICE model available for OPA227 at www.ti.com  
A
D
C
OPA2227, OPA2228  
OPA227, OPA228  
Out A  
1
2
3
4
8
7
6
5
V+  
+In B  
In B  
Out B  
10 +In C  
A
Trim  
In  
+In  
V–  
1
2
3
4
8
7
6
5
Trim  
V+  
In A  
+In A  
V–  
Out B  
In B  
+In B  
B
9
8
In C  
B
Out C  
Output  
NC  
DIP-14, SO-14  
DIP-8, SO-8  
DIP-8, SO-8  
NC = Not Connected  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
Copyright © 1998-2005, Texas Instruments Incorporated  
www.ti.com  
SPECIFICATIONS: VS = ±5V to ±15V  
OPA227 Series  
At TA = +25°C, and RL = 10k, unless otherwise noted.  
Boldface limits apply over the specified temperature range, TA = 40°C to +85°C.  
OPA227PA, UA  
OPA2227PA, UA  
OPA4227PA, UA  
OPA227P, U  
OPA2227P, U  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
OFFSET VOLTAGE  
Input Offset Voltage  
OTA = –40°C to +85°Cver Temperature  
vs Temperature  
vs Power Supply  
VOS  
±5  
±75  
±100  
±0.6  
±2  
±10  
±200  
±200  
±2  
µV  
µV  
dVOS/dT  
PSRR  
±0.1  
±0.5  
±0.3  
µV/°C  
µV/V  
µV/V  
µV/mo  
µV/V  
dB  
VS = ±2.5V to ±18V  
T
A = –40°C to +85°C  
±2  
vs Time  
0.2  
0.2  
110  
Channel Separation (dual, quad)  
dc  
f = 1kHz, RL = 5kΩ  
INPUT BIAS CURRENT  
Input Bias Current  
IB  
±2.5  
±2.5  
±10  
±10  
±10  
±10  
nA  
nA  
nA  
nA  
T
A = –40°C to +85°C  
Input Offset Current  
A = –40°C to +85°C  
NOISE  
IOS  
T
Input Voltage Noise, f = 0.1Hz to 10Hz  
90  
15  
3.5  
3
3
0.4  
nVp-p  
nVrms  
nV/Hz  
nV/Hz  
nV/Hz  
pA/Hz  
Input Voltage Noise Density, f = 10Hz en  
f = 100Hz  
f = 1kHz  
Current Noise Density, f = 1kHz  
in  
INPUT VOLTAGE RANGE  
Common-Mode Voltage Range  
Common-Mode Rejection  
VCM  
CMRR  
(V)+2  
120  
120  
(V+)2  
V
dB  
dB  
VCM = (V)+2V to (V+)2V  
VCM = (V)+2V to (V+)2V  
138  
T
A = –40°C to +85°C  
INPUT IMPEDANCE  
Differential  
Common-Mode  
107 || 12  
109 || 3  
|| pF  
|| pF  
OPEN-LOOP GAIN  
Open-Loop Voltage Gain  
AOL  
VO = (V)+2V to (V+)2V, RL = 10k  
VO = (V)+3.5V to (V+)3.5V, RL = 600  
132  
132  
132  
132  
160  
160  
dB  
dB  
dB  
dB  
T
A = –40°C to +85°C  
TA = –40°C to +85°C  
FREQUENCY RESPONSE  
Gain Bandwidth Product  
Slew Rate  
Settling Time: 0.1%  
0.01%  
GBW  
SR  
8
2.3  
5
5.6  
1.3  
MHz  
V/µs  
µs  
µs  
µs  
G = 1, 10V Step, CL = 100pF  
G = 1, 10V Step, CL = 100pF  
VIN G = VS  
Overload Recovery Time  
Total Harmonic Distortion + Noise THD+N  
f = 1kHz, G = 1, VO = 3.5Vrms  
0.00005  
%
OUTPUT  
Voltage Output  
RL = 10kΩ  
RL = 10kΩ  
RL = 600Ω  
RL = 600Ω  
(V)+2  
(V–)+2  
(V)+3.5  
(V–)+3.5  
(V+)2  
(V+)–2  
(V+)3.5  
(V+)–3.5  
V
V
V
V
mA  
T
A = –40°C to +85°C  
TA = –40°C to +85°C  
Short-Circuit Current  
Capacitive Load Drive  
ISC  
CLOAD  
±45  
See Typical Curve  
POWER SUPPLY  
Specified Voltage Range  
Operating Voltage Range  
Quiescent Current (per amplifier)  
VS  
IQ  
±5  
±2.5  
±15  
±18  
±3.8  
±4.2  
V
V
mA  
mA  
IO = 0  
IO = 0  
±3.7  
T
A = –40°C to +85°C  
TEMPERATURE RANGE  
Specified Range  
Operating Range  
Storage Range  
Thermal Resistance  
SO-8 Surface Mount  
DIP-8  
40  
55  
65  
+85  
+125  
+150  
°C  
°C  
°C  
θJA  
150  
100  
80  
°C/W  
°C/W  
°C/W  
°C/W  
DIP-14  
SO-14 Surface Mount  
100  
Specifications same as OPA227P, U.  
OPA227, 2227, 4227  
OPA228, 2228, 4228  
2
www.ti.com  
SBOS110A  
SPECIFICATIONS: VS = ±5V to ±15V  
OPA228 Series  
At TA = +25°C, and RL = 10k, unless otherwise noted.  
Boldface limits apply over the specified temperature range, TA = 40°C to +85°C.  
OPA228PA, UA  
OPA2228PA, UA  
OPA4228PA, UA  
OPA228P, U  
OPA2228P, U  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
OFFSET VOLTAGE  
Input Offset Voltage  
OTA = –40°C to +85°Cver Temperature  
vs Temperature  
vs Power Supply  
VOS  
±5  
±75  
±100  
±0.6  
±2  
±10  
±200  
±200  
±2  
µV  
µV  
dVOS/dT  
PSRR  
±0.1  
±0.5  
±0.3  
µV/°C  
µV/V  
µV/V  
µV/mo  
µV/V  
dB  
VS = ±2.5V to ±18V  
TA = –40°C to +85°C  
±2  
vs Time  
0.2  
0.2  
110  
Channel Separation (dual, quad)  
dc  
f = 1kHz, RL = 5kΩ  
INPUT BIAS CURRENT  
Input Bias Current  
IB  
±2.5  
±2.5  
±10  
±10  
±10  
±10  
nA  
nA  
nA  
nA  
T
A = –40°C to +85°C  
Input Offset Current  
A = –40°C to +85°C  
IOS  
T
NOISE  
Input Voltage Noise, f = 0.1Hz to 10Hz  
90  
15  
3.5  
3
3
0.4  
nVp-p  
nVrms  
nV/Hz  
nV/Hz  
nV/Hz  
pA/Hz  
Input Voltage Noise Density, f = 10Hz en  
f = 100Hz  
f = 1kHz  
Current Noise Density, f = 1kHz  
in  
INPUT VOLTAGE RANGE  
Common-Mode Voltage Range  
Common-Mode Rejection  
VCM  
CMRR  
(V)+2  
120  
120  
(V+)2  
V
dB  
dB  
VCM = (V)+2V to (V+)2V  
VCM = (V)+2V to (V+)2V  
138  
TA = –40°C to +85°C  
INPUT IMPEDANCE  
Differential  
Common-Mode  
107 || 12  
109 || 3  
|| pF  
|| pF  
OPEN-LOOP GAIN  
Open-Loop Voltage Gain  
AOL  
VO = (V)+2V to (V+)2V, RL = 10kΩ  
VO = (V)+3.5V to (V+)3.5V, RL = 600Ω  
132  
132  
132  
132  
160  
160  
dB  
dB  
dB  
dB  
TA = –40°C to +85°C  
TA = –40°C to +85°C  
FREQUENCY RESPONSE  
Minimum Closed-Loop Gain  
Gain Bandwidth Product  
Slew Rate  
Settling Time: 0.1%  
0.01%  
5
33  
11  
1.5  
2
V/V  
MHz  
V/µs  
µs  
µs  
µs  
GBW  
SR  
G = 5, 10V Step, CL = 100pF, CF =12pF  
G = 5, 10V Step, CL = 100pF, CF =12pF  
VIN G = VS  
Overload Recovery Time  
Total Harmonic Distortion + Noise THD+N  
0.6  
0.00005  
f = 1kHz, G = 5, VO = 3.5Vrms  
%
OUTPUT  
Voltage Output  
RL = 10kΩ  
RL = 10kΩ  
RL = 600Ω  
RL = 600Ω  
(V)+2  
(V–)+2  
(V)+3.5  
(V–)+3.5  
(V+)2  
(V+)–2  
(V+)3.5  
(V+)–3.5  
V
V
V
V
mA  
TA = –40°C to +85°C  
TA = –40°C to +85°C  
Short-Circuit Current  
Capacitive Load Drive  
ISC  
CLOAD  
±45  
See Typical Curve  
POWER SUPPLY  
Specified Voltage Range  
Operating Voltage Range  
Quiescent Current (per amplifier)  
VS  
IQ  
±5  
±2.5  
±15  
±18  
±3.8  
±4.2  
V
V
mA  
mA  
IO = 0  
IO = 0  
±3.7  
TA = –40°C to +85°C  
TEMPERATURE RANGE  
Specified Range  
Operating Range  
Storage Range  
Thermal Resistance  
SO-8 Surface Mount  
DIP-8  
40  
55  
65  
+85  
+125  
+150  
°C  
°C  
°C  
θJA  
150  
100  
80  
°C/W  
°C/W  
°C/W  
°C/W  
DIP-14  
SO-14 Surface Mount  
100  
Specifications same as OPA228P, U.  
OPA227, 2227, 4227  
OPA228, 2228, 4228  
SBOS110A  
3
www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
Supply Voltage .................................................................................. ±18V  
Signal Input Terminals, Voltage ........................(V) 0.7V to (V+) +0.7V  
Current ....................................................... 20mA  
Output Short-Circuit(2) .............................................................. Continuous  
Operating Temperature ..................................................55°C to +125°C  
Storage Temperature .....................................................65°C to +150°C  
Junction Temperature ...................................................................... 150°C  
Lead Temperature (soldering, 10s) ................................................. 300°C  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Texas Instru-  
ments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
NOTE: (1) Stresses above these ratings may cause permanent damage.  
Exposure to absolute maximum conditions for extended periods may degrade  
device reliability. (2) Short-circuit to ground, one amplifier per package.  
ESD damage can range from subtle performance degradation  
to complete device failure. Precision integrated circuits may be  
more susceptible to damage because very small parametric  
changes could cause the device not to meet its published  
specifications.  
PACKAGE/ORDERING INFORMATION  
For the most current package and ordering information, see  
the Package Option Addendum located at the end of this  
datasheet, or refer to our web site at www.ti.com.  
OPA227, 2227, 4227  
OPA228, 2228, 4228  
4
www.ti.com  
SBOS110A  
TYPICAL PERFORMANCE CURVES  
At TA = +25°C, RL = 10k, and VS = ±15V, unless otherwise noted.  
OPEN-LOOP GAIN/PHASE vs FREQUENCY  
OPA228  
OPEN-LOOP GAIN/PHASE vs FREQUENCY  
180  
160  
140  
120  
100  
80  
180  
0
0
OPA227  
160  
20  
20  
140  
40  
40  
G
120  
G
60  
60  
100  
80  
80  
φ
80  
φ
100  
120  
140  
160  
180  
200  
100  
60  
60  
120  
40  
40  
140  
20  
20  
160  
0
0
180  
20  
20  
200  
0.01 0.10  
1
10 100 1k 10k 100k 1M 10M 100M  
0.01 0.10  
1
10 100 1k 10k 100k 1M 10M 100M  
Frequency (Hz)  
Frequency (Hz)  
POWER SUPPLY AND COMMON-MODE  
REJECTION RATIO vs FREQUENCY  
INPUT VOLTAGE AND CURRENT NOISE  
SPECTRAL DENSITY vs FREQUENCY  
140  
120  
100  
80  
100k  
10k  
1k  
+CMRR  
Current Noise  
+PSRR  
60  
PSRR  
100  
10  
40  
Voltage Noise  
-20  
0  
1
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
0.1  
1
10  
100  
1k  
10k  
Frequency (Hz)  
Frequency (Hz)  
TOTAL HARMONIC DISTORTION + NOISE  
vs FREQUENCY  
TOTAL HARMONIC DISTORTION + NOISE  
vs FREQUENCY  
0.01  
0.001  
0.01  
0.001  
VOUT = 3.5Vrms  
OPA227  
VOUT = 3.5Vrms  
OPA228  
0.0001  
0.00001  
0.0001  
0.00001  
G = 1, RL = 10k  
G = 1, RL = 10kΩ  
20  
100  
1k  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 50k  
Frequency (Hz)  
OPA227, 2227, 4227  
OPA228, 2228, 4228  
SBOS110A  
5
www.ti.com  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, RL =10k, and VS = ±15V, unless otherwise noted.  
INPUT NOISE VOLTAGE vs TIME  
140  
CHANNEL SEPARATION vs FREQUENCY  
120  
100  
80  
Dual and quad devices. G = 1, all channels.  
Quad measured Channel A to D, or B to C;  
other combinations yield similiar or improved  
rejection.  
60  
40  
10  
100  
1k  
10k  
100k  
1M  
1s/div  
Frequency (Hz)  
VOLTAGE NOISE DISTRIBUTION (10Hz)  
OFFSET VOLTAGE PRODUCTION DISTRIBUTION  
24  
16  
8
17.5  
15.0  
12.5  
10.0  
5.5  
Typical distribution  
of packaged units.  
5.0  
2.5  
0
0
0
3.16 3.25 3.34 3.43 3.51 3.60 3.69 3.78  
Noise (nV/Hz)  
Offset Voltage (µV)  
OFFSET VOLTAGE DRIFT PRODUCTION DISTRIBUTION  
WARM-UP OFFSET VOLTAGE DRIFT  
12  
8
10  
8
Typical distribution  
of packaged units.  
6
4
2
0
2  
4  
6  
8  
10  
4
0
0
50  
100  
150  
200  
250  
300  
0
0.5  
1.0  
1.5  
Time from Power Supply Turn-On (s)  
Offset Voltage Drift (µV)/°C  
OPA227, 2227, 4227  
OPA228, 2228, 4228  
6
www.ti.com  
SBOS110A  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, RL = 10k, and VS = ±15V, unless otherwise noted.  
AOL, CMRR, PSRR vs TEMPERATURE  
AOL, CMRR, PSRR vs TEMPERATURE  
160  
150  
140  
130  
120  
110  
100  
90  
160  
150  
140  
130  
120  
110  
100  
90  
AOL  
AOL  
CMRR  
CMRR  
PSRR  
PSRR  
80  
80  
OPA227  
OPA228  
70  
70  
60  
60  
75  
75  
0
50  
25  
0
25  
50  
75  
100  
125  
125  
20  
75  
50  
25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
SHORT-CIRCUIT CURRENT vs TEMPERATURE  
INPUT BIAS CURRENT vs TEMPERATURE  
60  
50  
40  
30  
20  
10  
0
2.0  
1.5  
1.0  
ISC  
0.5  
+ISC  
0
0.5  
1.0  
1.5  
2.0  
50  
25  
0
25  
50  
75  
100  
60 40 20  
0
20  
40  
60  
80 100 120 140  
Temperature (°C)  
Temperature (°C)  
QUIESCENT CURRENT vs SUPPLY VOLTAGE  
QUIESCENT CURRENT vs TEMPERATURE  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
±18V  
±15V  
±12V  
±10V  
±5V  
±2.5V  
2
4
6
8
10  
12  
14  
16  
18  
60 40 20  
0
20  
40 60  
80 100 120 140  
Supply Voltage (±V)  
Temperature (°C)  
OPA227, 2227, 4227  
OPA228, 2228, 4228  
SBOS110A  
7
www.ti.com  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, RL = 10k, and VS = ±15V, unless otherwise noted.  
SLEW RATE vs TEMPERATURE  
SLEW RATE vs TEMPERATURE  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
12  
10  
8
OPA227  
OPA228  
Positive Slew Rate  
Negative Slew Rate  
6
4
RLOAD = 2kΩ  
RLOAD = 2kΩ  
LOAD = 100pF  
2
CLOAD = 100pF  
C
0
75  
50  
25  
0
25  
50  
75  
100  
125  
75  
50  
25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
CHANGE IN INPUT BIAS CURRENT  
vs COMMON-MODE VOLTAGE  
CHANGE IN INPUT BIAS CURRENT  
vs POWER SUPPLY VOLTAGE  
1.5  
1.0  
2.0  
1.5  
Curve shows normalized change in bias current  
with respect to VCM = 0V. Typical IB may range  
from 2nA to +2nA at VCM = 0V.  
Curve shows normalized change in bias current  
with respect to VS = ±10V. Typical IB may range  
from 2nA to +2nA at VS = ±10V.  
1.0  
0.5  
0.5  
0
0
VS = ±15V  
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
VS = ±5V  
15  
10  
5  
0
5
10  
15  
0
5
10  
15  
20  
25  
30  
35  
40  
Common-Mode Voltage (V)  
Supply Voltage (V)  
OUTPUT VOLTAGE SWING vs OUTPUT CURRENT  
SETTLING TIME vs CLOSED-LOOP GAIN  
15  
14  
13  
12  
11  
10  
V+  
100  
10  
1
VS = ±15V, 10V Step  
CL = 1500pF  
RL = 2kΩ  
(V+) 1V  
(V+) 2V  
(V+) 3V  
40°C  
125°C  
85°C  
25°C  
55°C  
OPA227  
0.01%  
0.1%  
10  
11  
12  
13  
14  
15  
55°C  
OPA228  
85°C  
0.01%  
0.1%  
125°C  
(V) +3V  
(V) +2V  
(V) +1V  
V–  
40°C  
25°C  
0
10  
20  
30  
40  
50  
60  
±1  
±10  
±100  
Output Current (mA)  
Gain (V/V)  
OPA227, 2227, 4227  
OPA228, 2228, 4228  
8
www.ti.com  
SBOS110A  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, RL = 10k, and VS = ±15V, unless otherwise noted.  
SMALL-SIGNAL OVERSHOOT  
vs LOAD CAPACITANCE  
MAXIMUM OUTPUT VOLTAGE vs FREQUENCY  
30  
25  
20  
15  
10  
5
70  
60  
50  
40  
30  
20  
10  
0
OPA227  
OPA227  
VS = ±15V  
Gain = +10  
VS = ±5V  
Gain = 10  
Gain = 1  
Gain = +1  
0
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Load Capacitance (pF)  
SMALL-SIGNAL STEP RESPONSE  
G = +1, CL = 1000pF  
LARGE-SIGNAL STEP RESPONSE  
G = 1, CL = 1500pF  
OPA227  
OPA227  
400ns/div  
5µs/div  
SMALL-SIGNAL STEP RESPONSE  
G = +1, CL = 5pF  
OPA227  
400ns/div  
OPA227, 2227, 4227  
OPA228, 2228, 4228  
SBOS110A  
9
www.ti.com  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, RL = 10k, and VS = ±15V, unless otherwise noted.  
SMALL-SIGNAL OVERSHOOT  
vs LOAD CAPACITANCE  
MAXIMUM OUTPUT VOLTAGE vs FREQUENCY  
30  
25  
20  
15  
10  
5
70  
60  
50  
40  
30  
20  
10  
0
VS = ±15V  
OPA228  
OPA228  
G = 100  
VS = ±5V  
G = +100  
G = ±10  
0
1
10  
100  
1k  
10k  
100k  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
Load Capacitance (pF)  
LARGE-SIGNAL STEP RESPONSE  
SMALL-SIGNAL STEP RESPONSE  
G = 10, CL = 100pF  
G = +10, CL = 1000pF, RL = 1.8kΩ  
OPA228  
OPA228  
2µs/div  
500ns/div  
SMALL-SIGNAL STEP RESPONSE  
G = +10, CL = 5pF, RL = 1.8kΩ  
OPA228  
500ns/div  
OPA227, 2227, 4227  
OPA228, 2228, 4228  
10  
www.ti.com  
SBOS110A  
APPLICATIONS INFORMATION  
Trim range exceeds  
offset voltage specification  
V+  
The OPA227 and OPA228 series are precision op amps with  
very low noise. The OPA227 series is unity-gain stable with  
a slew rate of 2.3V/µs and 8MHz bandwidth. The OPA228  
series is optimized for higher-speed applications with gains  
of 5 or greater, featuring a slew rate of 10V/µs and 33MHz  
bandwidth. Applications with noisy or high impedance  
power supplies may require decoupling capacitors close to  
the device pins. In most cases, 0.1µF capacitors are ad-  
equate.  
0.1µF  
20kΩ  
7
1
2
3
8
OPA227  
6
OPA227 and OPA228 single op amps only.  
Use offset adjust pins only to  
null offset voltage of op amp.  
See text.  
4
0.1µF  
V–  
OFFSET VOLTAGE AND DRIFT  
The OPA227 and OPA228 series have very low offset  
voltage and drift. To achieve highest dc precision, circuit  
layout and mechanical conditions should be optimized.  
Connections of dissimilar metals can generate thermal po-  
tentials at the op amp inputs which can degrade the offset  
voltage and drift. These thermocouple effects can exceed  
the inherent drift of the amplifier and ultimately degrade its  
performance. The thermal potentials can be made to cancel  
by assuring that they are equal at both input terminals. In  
addition:  
FIGURE 1. OPA227 Offset Voltage Trim Circuit.  
amp. This adjustment should not be used to compensate for  
offsets created elsewhere in the system since this can  
introduce additional temperature drift.  
INPUT PROTECTION  
Back-to-back diodes (see Figure 2) are used for input protec-  
tion on the OPA227 and OPA228. Exceeding the turn-on  
threshold of these diodes, as in a pulse condition, can cause  
current to flow through the input protection diodes due to the  
amplifier’s finite slew rate. Without external current-limiting  
resistors, the input devices can be destroyed. Sources of high  
input current can cause subtle damage to the amplifier.  
Although the unit may still be functional, important param-  
eters such as input offset voltage, drift, and noise may shift.  
• Keep thermal mass of the connections made to the two  
input terminals similar.  
• Locate heat sources as far as possible from the critical  
input circuitry.  
• Shield op amp and input circuitry from air currents such  
as those created by cooling fans.  
OPERATING VOLTAGE  
RF  
500  
OPA227 and OPA228 series op amps operate from ±2.5V to  
±18V supplies with excellent performance. Unlike most op  
amps which are specified at only one supply voltage, the  
OPA227 series is specified for real-world applications; a  
single set of specifications applies over the ±5V to ±15V  
supply range. Specifications are assured for applications  
between ±5V and ±15V power supplies. Some applications  
do not require equal positive and negative output voltage  
swing. Power supply voltages do not need to be equal. The  
OPA227 and OPA228 series can operate with as little as 5V  
between the supplies and with up to 36V between the  
supplies. For example, the positive supply could be set to  
25V with the negative supply at –5V or vice-versa. In  
addition, key parameters are assured over the specified  
temperature range, –40°C to +85°C. Parameters which vary  
significantly with operating voltage or temperature are shown  
in the Typical Performance Curves.  
OPA227  
Output  
+
Input  
FIGURE 2. Pulsed Operation.  
When using the OPA227 as a unity-gain buffer (follower), the  
input current should be limited to 20mA. This can be accom-  
plished by inserting a feedback resistor or a resistor in series  
with the source. Sufficient resistor size can be calculated:  
RX = VS/20mA – RSOURCE  
where RX is either in series with the source or inserted in  
the feedback path. For example, for a 10V pulse (VS =  
10V), total loop resistance must be 500. If the source  
impedance is large enough to sufficiently limit the current  
on its own, no additional resistors are needed. The size of  
any external resistors must be carefully chosen since they  
will increase noise. See the Noise Performance section of  
this data sheet for further information on noise calcula-  
tion. Figure 2 shows an example implementing a current-  
limiting feedback resistor.  
OFFSET VOLTAGE ADJUSTMENT  
The OPA227 and OPA228 series are laser-trimmed for  
very low offset and drift so most applications will not  
require external adjustment. However, the OPA227 and  
OPA228 (single versions) provide offset voltage trim con-  
nections on pins 1 and 8. Offset voltage can be adjusted by  
connecting a potentiometer as shown in Figure 1. This  
adjustment should be used only to null the offset of the op  
OPA227, 2227, 4227  
OPA228, 2228, 4228  
11  
www.ti.com  
SBOS110A  
INPUT BIAS CURRENT CANCELLATION  
NOISE PERFORMANCE  
The input bias current of the OPA227 and OPA228 series is  
internally compensated with an equal and opposite cancella-  
tion current. The resulting input bias current is the difference  
between with input bias current and the cancellation current.  
The residual input bias current can be positive or negative.  
Figure 4 shows total circuit noise for varying source imped-  
ances with the op amp in a unity-gain configuration (no  
feedback resistor network, therefore no additional noise con-  
tributions). Two different op amps are shown with total circuit  
noise calculated. The OPA227 has very low voltage noise,  
making it ideal for low source impedances (less than 20k).  
Asimilar precision op amp, the OPA277, has somewhat higher  
voltage noise but lower current noise. It provides excellent  
noise performance at moderate source impedance (10kto  
100k). Above 100k, a FET-input op amp such as the  
OPA132 (very low current noise) may provide improved  
performance. The equation is shown for the calculation of the  
total circuit noise. Note that en = voltage noise, in = current  
noise, RS = source impedance, k = Boltzmann’s constant =  
1.38 • 10–23 J/K and T is temperature in K. For more details on  
calculating noise, see the insert titled “Basic Noise Calcula-  
tions.”  
When the bias current is cancelled in this manner, the input  
bias current and input offset current are approximately equal.  
A resistor added to cancel the effect of the input bias current  
(as shown in Figure 3) may actually increase offset and noise  
and is therefore not recommended.  
Conventional Op Amp Configuration  
R2  
R1  
Op Amp  
Not recommended  
for OPA227  
VOLTAGE NOISE SPECTRAL DENSITY  
vs SOURCE RESISTANCE  
1.00+03  
RB = R2 || R1  
External Cancellation Resistor  
EO  
OPA227  
RS  
Recommended OPA227 Configuration  
1.00E+02  
R2  
OPA277  
OPA277  
R1  
Resistor Noise  
OPA227  
1.00E+01  
1.00E+00  
Resistor Noise  
EO2 = en2 + (in RS)2 + 4kTRS  
OPA227  
No cancellation resistor.  
See text.  
100  
1k  
10k  
100k  
10M  
Source Resistance, RS ()  
FIGURE 4. Noise Performance of the OPA227 in Unity-  
Gain Buffer Configuration.  
FIGURE 3. Input Bias Current Cancellation.  
BASIC NOISE CALCULATIONS  
noise component. The voltage noise is commonly mod-  
Design of low noise op amp circuits requires careful  
consideration of a variety of possible noise contributors:  
noise from the signal source, noise generated in the op  
amp, and noise from the feedback network resistors. The  
total noise of the circuit is the root-sum-square combina-  
tion of all noise components.  
eled as a time-varying component of the offset voltage.  
The current noise is modeled as the time-varying compo-  
nent of the input bias current and reacts with the source  
resistance to create a voltage component of noise. Conse-  
quently, the lowest noise op amp for a given application  
depends on the source impedance. For low source imped-  
ance, current noise is negligible and voltage noise gener-  
ally dominates. For high source impedance, current noise  
may dominate.  
The resistive portion of the source impedance produces  
thermal noise proportional to the square root of the  
resistance. This function is shown plotted in Figure 4.  
Since the source impedance is usually fixed, select the op  
amp and the feedback resistors to minimize their contri-  
bution to the total noise.  
Figure 5 shows both inverting and noninverting op amp  
circuit configurations with gain. In circuit configurations  
with gain, the feedback network resistors also contribute  
noise. The current noise of the op amp reacts with the  
feedback resistors to create additional noise components.  
The feedback resistor values can generally be chosen to  
make these noise sources negligible. The equations for  
total noise are shown for both configurations.  
Figure 4 shows total noise for varying source imped-  
ances with the op amp in a unity-gain configuration (no  
feedback resistor network and therefore no additional  
noise contributions). The operational amplifier itself con-  
tributes both a voltage noise component and a current  
OPA227, 2227, 4227  
OPA228, 2228, 4228  
12  
www.ti.com  
SBOS110A  
Noise in Noninverting Gain Configuration  
R2  
Noise at the output:  
2
2
R2  
R2  
R1  
R1  
2
2
2
2
2
2
2
EO = 1+  
en + e1 + e2 + i R  
+ eS + i R  
1+  
(
)
(
)
n
2
n
S
R1  
EO  
R2  
Where eS = 4kTRS •  
= thermal noise of RS  
1+  
R1  
RS  
R2  
R1  
e1 = 4kTR1 •  
e2 = 4kTR2  
= thermal noise of R1  
= thermal noise of R2  
VS  
Noise in Inverting Gain Configuration  
R2  
Noise at the output:  
2
R1  
R2  
2
2
2
2
2
2
EO = 1+  
en + e1 + e2 + i R  
+ eS  
(
)
n
2
R1 + RS  
EO  
RS  
R2  
Where eS = 4kTRS •  
= thermal noise of RS  
R1 + RS  
VS  
R2  
e1 = 4kTR1 •  
e2 = 4kTR2  
= thermal noise of R1  
= thermal noise of R2  
R1 + RS  
For the OPA227 and OPA228 series op amps at 1kHz, en = 3nV/Hz and in = 0.4pA/Hz.  
FIGURE 5. Noise Calculation in Gain Configurations.  
OPA227, 2227, 4227  
OPA228, 2228, 4228  
13  
www.ti.com  
SBOS110A  
R1  
2MΩ  
R2  
2MΩ  
R8  
402kΩ  
R11  
178kΩ  
C6  
10nF  
C4  
22nF  
R3  
1kΩ  
R4  
9.09kΩ  
R6  
R7  
R9  
R10  
40.2kΩ  
97.6kΩ  
178kΩ  
226kΩ  
2
3
2
3
C1  
1µF  
C2  
1µF  
6
6
U2  
VOUT  
U3  
U1  
C3  
C5  
0.47µF  
0.47µF  
(OPA227)  
(OPA227)  
(OPA227)  
Input from  
Device  
Under  
R5  
634kΩ  
Test  
FIGURE 6. 0.1Hz to 10Hz Bandpass Filter Used to Test Wideband Noise of the OPA227 and OPA228 Series.  
USING THE OPA228 IN LOW GAINS  
The OPA228 family is intended for applications with signal  
gains of 5 or greater, but it is possible to take advantage of  
their high speed in lower gains. Without external compen-  
sation, the OPA228 has sufficient phase margin to maintain  
stability in unity gain with purely resistive loads. However,  
the addition of load capacitance can reduce the phase  
margin and destabilize the op amp.  
22pF  
100k  
10Ω  
2
3
6
VOUT  
A variety of compensation techniques have been evaluated  
specifically for use with the OPA228. The recommended  
configuration consists of an additional capacitor (CF) in  
parallel with the feedback resistance, as shown in Figures  
8 and 11. This feedback capacitor serves two purposes in  
compensating the circuit. The op amp’s input capacitance  
and the feedback resistors interact to cause phase shift that  
can result in instability. CF compensates the input capaci-  
tance, minimizing peaking. Additionally, at high frequen-  
cies, the closed-loop gain of the amplifier is strongly  
influenced by the ratio of the input capacitance and the  
feedback capacitor. Thus, CF can be selected to yield good  
stability while maintaining high speed.  
OPA227  
Device  
Under  
Test  
FIGURE 7. Noise Test Circuit.  
Figure 6 shows the 0.1Hz 10Hz bandpass filter used to test  
the noise of the OPA227 and OPA228. The filter circuit was  
designed using Texas InstrumentsFilterPro software (avail-  
able at www.ti.com). Figure 7 shows the configuration of  
the OPA227 and OPA228 for noise testing.  
OPA227, 2227, 4227  
OPA228, 2228, 4228  
14  
www.ti.com  
SBOS110A  
Without external compensation, the noise specification of  
the OPA228 is the same as that for the OPA227 in gains of  
5 or greater. With the additional external compensation, the  
output noise of the of the OPA228 will be higher. The  
amount of noise increase is directly related to the increase  
in high frequency closed-loop gain established by the CIN/  
CF ratio.  
values for CF. Because compensation is highly dependent  
on circuit design, board layout, and load conditions, CF  
should be optimized experimentally for best results. Fig-  
ures 9 and 10 show the large- and small-signal step re-  
sponses for the G = +2 configuration with 100pF load  
capacitance. Figures 12 and 13 show the large- and small-  
signal step responses for the G = –2 configuration with  
100pF load capacitance.  
Figures 8 and 11 show the recommended circuit for gains  
of +2 and –2, respectively. The figures suggest approximate  
15pF  
22pF  
1k  
2kΩ  
2kΩ  
2kΩ  
OPA228  
OPA228  
100pF  
2kΩ  
100pF  
2kΩ  
FIGURE 8. Compensation of the OPA228 for G =+2.  
FIGURE 11. Compensation for OPA228 for G = –2.  
OPA228  
OPA228  
400ns/div  
400ns/div  
FIGURE 12. Large-Signal Step Response, G = –2, CLOAD  
100pF, Input Signal = 5Vp-p.  
=
FIGURE 9. Large-Signal Step Response, G = +2, CLOAD  
100pF, Input Signal = 5Vp-p.  
=
OPA228  
OPA228  
200ns/div  
200ns/div  
FIGURE 10. Small-Signal Step Response, G = +2, CLOAD  
100pF, Input Signal = 50mVp-p.  
=
FIGURE 13. Small-Signal Step Response, G = –2, CLOAD  
100pF, Input Signal = 50mVp-p.  
=
OPA227, 2227, 4227  
OPA228, 2228, 4228  
15  
www.ti.com  
SBOS110A  
1.1kΩ  
1.43kΩ  
330pF  
dc Gain = 1  
2.2nF  
1.1kΩ  
1.65kΩ  
VIN  
1.43kΩ  
1.91kΩ  
OPA227  
33nF  
2.21kΩ  
VOUT  
10nF  
OPA227  
68nF  
fN = 13.86kHz  
Q = 1.186  
fN = 20.33kHz  
Q = 4.519  
f = 7.2kHz  
FIGURE 14. Three-Pole, 20kHz Low Pass, 0.5dB Chebyshev Filter.  
20pF  
0.1µF  
TTL INPUT GAIN  
9.76kΩ  
1”  
0”  
+1  
1  
100Ω  
100kΩ  
Balance  
Trim  
500Ω  
2
3
Output  
10kΩ  
Input  
6
2
3
OPA227  
Output  
6
8
4.99kΩ  
OPA227  
D1  
D2  
NOTE: Use metal film resistors  
and plastic film capacitor. Circuit  
must be well shielded to achieve  
low noise.  
S1  
S2  
Dexter 1M  
Thermopile  
Detector  
1
4.75kΩ  
4.75kΩ  
1kΩ  
Responsivity 2.5 x 104V/W  
Output Noise 30µVrms, 0.1Hz to 10Hz  
TTL  
In  
DG188  
Offset  
Trim  
+VCC  
FIGURE 16. High Performance Synchronous Demodulator.  
FIGURE 15. Long-Wavelength Infrared Detector Amplifier.  
OPA227, 2227, 4227  
OPA228, 2228, 4228  
16  
www.ti.com  
SBOS110A  
+15V  
0.1µF  
1kΩ  
1kΩ  
Audio  
In  
1/2  
OPA2227  
200Ω  
200Ω  
To  
Headphone  
1/2  
OPA2227  
This application uses two op amps  
in parallel for higher output current drive.  
0.1µF  
15V  
FIGURE 17. Headphone Amplifier.  
Bass Tone Control  
R2  
50k  
CW  
R1  
7.5kΩ  
R3  
7.5kΩ  
3
1
2
R10  
100kΩ  
Midrange Tone Control  
C1  
940pF  
R5  
50kΩ  
CW  
R4  
2.7kΩ  
R6  
2.7kΩ  
3
1
VIN  
2
C2  
0.0047µF  
Treble Tone Control  
R8  
50kΩ  
CW  
R7  
7.5kΩ  
R9  
7.5kΩ  
R11  
100kΩ  
3
1
2
C3  
680pF  
2
6
VOUT  
OPA227  
3
FIGURE 18. Three-Band ActiveTone Control (bass, midrange and treble).  
OPA227, 2227, 4227  
OPA228, 2228, 4228  
17  
www.ti.com  
SBOS110A  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Oct-2007  
PACKAGING INFORMATION  
Orderable Device  
OPA2227P  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
PDIP  
P
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
50 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
OPA2227PA  
PDIP  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
PDIP  
PDIP  
P
P
P
D
D
D
D
D
D
D
D
D
D
P
P
P
P
50 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
OPA2227PAG4  
OPA2227PG4  
OPA2227U  
50 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
50 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
100 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
OPA2227U/2K5  
OPA2227U/2K5G4  
OPA2227UA  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
100 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
OPA2227UA/2K5  
OPA2227UA/2K5E4  
OPA2227UAE4  
OPA2227UAG4  
OPA2227UE4  
OPA2227UG4  
OPA2228P  
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-3-260C-168 HR  
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-3-260C-168 HR  
100 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
100 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
100  
Pb-Free  
(RoHS)  
CU NIPDAU Level-3-260C-168 HR  
100 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
50 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
OPA2228PA  
50 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
OPA2228PAG4  
OPA2228PG4  
50 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
50 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
OPA2228U  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
100  
TBD  
Call TI  
Call TI  
OPA2228U/2K5  
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
OPA2228U/2K5E4  
OPA2228UA  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
8
8
8
8
8
2500  
100  
Pb-Free  
(RoHS)  
Pb-Free  
(RoHS)  
OPA2228UA/2K5  
OPA2228UA/2K5E4  
OPA2228UAE4  
2500  
2500  
100  
Pb-Free  
(RoHS)  
Pb-Free  
(RoHS)  
Pb-Free  
(RoHS)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Oct-2007  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
SOIC  
PDIP  
Drawing  
OPA2228UE4  
OPA227P  
ACTIVE  
ACTIVE  
D
P
8
8
100  
TBD  
Call TI  
Call TI  
50 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
OPA227PA  
OPA227PAG4  
OPA227PG4  
OPA227U  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
P
P
P
D
D
D
D
D
D
D
D
P
P
P
P
D
D
D
D
D
D
N
N
D
8
8
50 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
50 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
8
50 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
8
100  
2500  
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
OPA227U/2K5  
OPA227U/2K5E4  
OPA227UA  
8
Pb-Free  
(RoHS)  
8
Pb-Free  
(RoHS)  
8
100 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
OPA227UA/2K5  
OPA227UA/2K5G4  
OPA227UAG4  
OPA227UE4  
OPA228P  
8
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
8
100 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
8
100  
Pb-Free  
(RoHS)  
CU NIPDAU Level-3-260C-168 HR  
8
50 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
OPA228PA  
8
50 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
OPA228PAG4  
OPA228PG4  
OPA228U  
8
50 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
8
50 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
8
100 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
OPA228UA  
8
100 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
OPA228UA/2K5  
OPA228UA/2K5E4  
OPA228UAG4  
OPA228UG4  
OPA4227PA  
OPA4227PAG4  
OPA4227UA  
8
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-3-260C-168 HR  
8
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-3-260C-168 HR  
8
100 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
8
100 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
14  
14  
14  
25 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
58 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Oct-2007  
Orderable Device  
OPA4227UA/2K5  
OPA4227UA/2K5G4  
OPA4227UAG4  
OPA4228PA  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
14  
14  
14  
14  
14  
14  
14  
14  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
D
D
N
N
D
D
D
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
58 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
OPA4228PAG4  
OPA4228UA  
25 Green (RoHS & CU NIPDAU N / A for Pkg Type  
no Sb/Br)  
58  
2500  
58  
Pb-Free  
(RoHS)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
OPA4228UA/2K5  
OPA4228UAE4  
Pb-Free  
(RoHS)  
Pb-Free  
(RoHS)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Oct-2007  
TAPE AND REEL BOX INFORMATION  
Device  
Package Pins  
Site  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) (mm) Quadrant  
(mm)  
330  
330  
330  
330  
330  
330  
330  
330  
(mm)  
12  
OPA2227U/2K5  
OPA2227UA/2K5  
OPA2228UA/2K5  
OPA227U/2K5  
D
D
D
D
D
D
D
D
8
8
SITE 41  
SITE 41  
SITE 41  
SITE 41  
SITE 41  
SITE 41  
SITE 41  
SITE 41  
6.9  
6.9  
6.9  
6.9  
6.9  
6.9  
6.5  
6.5  
5.4  
5.4  
5.4  
5.4  
5.4  
5.4  
9.5  
9.5  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.1  
2.1  
8
8
8
8
8
8
8
8
12  
12  
12  
12  
12  
12  
16  
16  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
12  
8
12  
8
12  
OPA227UA/2K5  
OPA228UA/2K5  
OPA4227UA/2K5  
OPA4228UA/2K5  
8
12  
8
12  
14  
14  
16  
16  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Oct-2007  
Device  
Package  
Pins  
Site  
Length (mm) Width (mm) Height (mm)  
OPA2227U/2K5  
OPA2227UA/2K5  
OPA2228UA/2K5  
OPA227U/2K5  
D
D
D
D
D
D
D
D
8
8
SITE 41  
SITE 41  
SITE 41  
SITE 41  
SITE 41  
SITE 41  
SITE 41  
SITE 41  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
29.0  
29.0  
29.0  
29.0  
29.0  
29.0  
33.0  
33.0  
8
8
OPA227UA/2K5  
OPA228UA/2K5  
OPA4227UA/2K5  
OPA4228UA/2K5  
8
8
14  
14  
Pack Materials-Page 2  
MECHANICAL DATA  
MPDI001A – JANUARY 1995 – REVISED JUNE 1999  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.325 (8,26)  
0.300 (7,62)  
0.020 (0,51) MIN  
0.015 (0,38)  
Gage Plane  
0.200 (5,08) MAX  
Seating Plane  
0.010 (0,25) NOM  
0.125 (3,18) MIN  
0.100 (2,54)  
0.021 (0,53)  
0.430 (10,92)  
MAX  
0.010 (0,25)  
M
0.015 (0,38)  
4040082/D 05/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.  
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an  
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties  
may be subject to additional restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would  
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement  
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications  
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related  
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any  
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its  
representatives against any damages arising out of the use of TI products in such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is  
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products  
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any  
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Applications  
Audio  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
interface.ti.com  
logic.ti.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/lpw  
Telephony  
Low Power  
Wireless  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

OPA227U

High Precision, Low Noise OPERATIONAL AMPLIFIERS
BB

OPA227U

High Precision, Low Noise OPERATIONAL AMPLIFIERS
TI

OPA227U/2K5

高精度低噪声运算放大器 | D | 8 | -40 to 85
TI

OPA227U/2K5

High Precision, Low Noise OPERATIONAL AMPLIFIERS
BB

OPA227U/2K5E4

High Precision, Low Noise OPERATIONAL AMPLIFIERS
BB

OPA227U2K5

High Precision, Low Noise OPERATIONAL AMPLIFIERS
TI

OPA227UA

High Precision, Low Noise OPERATIONAL AMPLIFIERS
BB

OPA227UA

High Precision, Low Noise OPERATIONAL AMPLIFIERS
TI

OPA227UA/2K5

高精度低噪声运算放大器 | D | 8 | -40 to 85
TI

OPA227UA/2K5

High Precision, Low Noise OPERATIONAL AMPLIFIERS
BB

OPA227UA/2K5G4

高精度低噪声运算放大器 | D | 8 | -40 to 85
TI

OPA227UA/2K5G4

High Precision, Low Noise OPERATIONAL AMPLIFIERS
BB