OPA2313-Q1 [TI]

汽车级、双路、5.5V、1MHz、低静态电流 (50μA)、RRIO 运算放大器;
OPA2313-Q1
型号: OPA2313-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车级、双路、5.5V、1MHz、低静态电流 (50μA)、RRIO 运算放大器

放大器 运算放大器
文件: 总33页 (文件大小:2717K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA2313-Q1  
ZHCSJ37 DECEMBER 2018  
适用于成本敏感型系统的 OPA2313-Q1 低功耗、轨至轨输入/输出、  
500µV 典型失调电压、1MHz 运算放大器  
1 特性  
3 说明  
1
符合面向汽车应用的 AEC-Q100 标准  
OPA2313-Q1 双通道运算放大器兼具低功耗和高性能  
优势。因此,可将其用于广泛的 应用,例如信息娱乐  
系统、发动机控制单元、汽车照明等。OPA2313-Q1  
具有 轨至轨输入和输出 (RRIO) 摆幅、低静态电流  
(典型值:50µA)、高带宽 (1MHz) 以及超低噪声  
1kHz 时为 25nV/Hz)等特性,因此特别适合需要  
在成本和性能之间取得良好平衡的各种 应用 。此外,  
由于具有低输入偏置电流,该器件非常适合用于 源阻  
抗高达兆欧级 的应用。  
器件温度等级 1:  
–40°C +125°C TA  
面向成本敏感型系统的精密放大器  
IQ50µA/ch  
宽电源电压:1.8V 5.5V  
低噪声:1kHz 下为 25nV/Hz  
增益带宽:1MHz  
轨到轨输入/输出  
低输入偏置电流:0.2pA  
低失调电压:0.5mV  
OPA2313-Q1 采用稳健耐用的设计,方便电路设计人  
员使用。该器件在容性负载高达 150pF 的条件下具有  
单位增益稳定性,集成了 RFI/EMI 抑制滤波器,在过  
驱条件下无相位反转,并具有高静电放电 (ESD) 保护  
(4kV HBM)。  
单位增益稳定  
内部射频干扰 (RFI)/电磁干扰 (EMI) 滤波器  
2 应用  
此器件经过优化,适合在低至 1.8V (±0.9V) 和高达  
5.5V (±2.75V) 的电压下工作,且额定的扩展工作温度  
范围为 –40°C +125°C。  
信息娱乐  
引擎控制单元  
汽车照明  
低侧检测  
器件信息(1)  
电池管理系统  
无源安全性  
电容式检测  
燃油泵  
器件型号  
封装  
SOIC (8)  
VSSOP (8)  
封装尺寸(标称值)  
4.90mm × 3.91mm  
3.00mm × 3.00mm  
OPA2313-Q1  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
EMIRR IN+ 与频率间的关系  
120  
100  
80  
60  
40  
20  
0
10  
100  
1000  
10000  
Frequency (MHz)  
C033  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS823  
 
 
 
OPA2313-Q1  
ZHCSJ37 DECEMBER 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 18  
Application and Implementation ........................ 19  
8.1 Application Information............................................ 19  
8.2 Typical Application ................................................. 19  
8.3 System Examples ................................................... 20  
Power Supply Recommendations...................... 21  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics: 5.5 V ................................ 5  
6.6 Electrical Characteristics: 1.8 V ................................ 7  
6.7 Typical Characteristics: Tables of Graphs ................ 9  
6.8 Typical Characteristics............................................ 10  
Detailed Description ............................................ 16  
7.1 Overview ................................................................. 16  
7.2 Functional Block Diagram ....................................... 16  
7.3 Feature Description................................................. 17  
10 Layout................................................................... 22  
10.1 Layout Guidelines ................................................. 22  
10.2 Layout Example .................................................... 22  
11 器件和文档支持 ..................................................... 23  
11.1 文档支持................................................................ 23  
11.2 接收文档更新通知 ................................................. 23  
11.3 社区资源................................................................ 23  
11.4 ....................................................................... 23  
11.5 静电放电警告......................................................... 23  
11.6 术语表 ................................................................... 23  
12 机械、封装和可订购信息....................................... 23  
7
4 修订历史记录  
日期  
修订版本  
说明  
2018 12 月  
*
最初发布版本。  
2
Copyright © 2018, Texas Instruments Incorporated  
 
OPA2313-Q1  
www.ti.com.cn  
ZHCSJ37 DECEMBER 2018  
5 Pin Configuration and Functions  
OPA2313-Q1 D, DGK Packages  
8-Pin SOIC, VSSOP  
Top View  
OUT1  
IN1œ  
IN1+  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT2  
IN2œ  
IN2+  
Not to scale  
Pin Functions: OPA2313-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
IN1–  
NO.  
2
I
I
Inverting input, channel 1  
IN1+  
IN2–  
IN2+  
OUT1  
OUT2  
V–  
3
Noninverting input, channel 1  
Inverting input, channel 2  
6
I
5
I
Noninverting input, channel 2  
Output, channel 1  
1
O
O
7
Output, channel 2  
4
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
V+  
8
Copyright © 2018, Texas Instruments Incorporated  
3
OPA2313-Q1  
ZHCSJ37 DECEMBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0
MAX  
UNIT  
V
Supply voltage (V+) – (V–)  
Signal input terminals(2)  
Signal input terminals(2)  
Output short circuit(3)  
7
(V+) + 0.5  
10  
Voltage  
(V–) – (0.5)  
–10  
mA  
Current  
Continuous  
Operating, TA  
–40  
–65  
150  
150  
150  
Temperature  
Junction, TJ  
Storage, Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Input signals that may swing more than 0.5 V beyond the supply rails must be  
current limited to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
HBM ESD Classification Level 3A  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
CDM ESD Classification Level C6  
±4000  
V(ESD)  
Electrostatic discharge  
V
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
5.5  
UNIT  
VS  
TA  
Supply voltage (V+) – (V–)  
Specified temperature  
1.8  
V
–40  
125  
°C  
6.4 Thermal Information  
OPA2313-Q1  
THERMAL METRIC(1)  
D (SOIC)  
8 Pins  
138.4  
89.5  
DGK (VSSOP)  
8 Pins  
191.2  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
61.9  
78.6  
111.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
29.9  
5.1  
ψJB  
78.1  
110.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018, Texas Instruments Incorporated  
 
OPA2313-Q1  
www.ti.com.cn  
ZHCSJ37 DECEMBER 2018  
6.5 Electrical Characteristics: 5.5 V(1)  
For VS= (V+) – (V–) = 5.5 V at TA = 25°C, RL = 10 kΩ connected to VS / 2, and VCM = VOUT = VS / 2, (unless otherwise  
noted)(1)  
PARAMETER  
OFFSET VOLTAGE  
VOS Input offset voltage  
dVOS/dT Input offset voltage vs temperature  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.5  
2
2.5  
mV  
µV/°C  
dB  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
PSRR  
Power-supply rejection ratio  
Channel separation, dc  
74  
90  
10  
At dc  
µV/V  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
No phase reversal, rail-to-rail input  
(V–) – 0.2  
(V+) + 0.2  
V
(V–) – 0.2 V < VCM < (V+) – 1.3 V TA = –40°C to 125°C  
70  
64  
85  
80  
CMRR  
Common-mode rejection ratio  
dB  
VCM = –0.2 V to 5.7 V  
TA = –40°C to 125°C  
INPUT BIAS CURRENT  
±0.2  
±0.2  
±10  
±50  
IB  
Input bias current  
Input offset current  
TA = –40°C to 85°C(2)  
TA = –40°C to 125°C(2)  
pA  
pA  
±600  
±10  
IOS  
TA = –40°C to 85°C(2)  
TA = –40°C to 125°C(2)  
±50  
±600  
NOISE  
Input voltage noise (peak-to-peak)  
Input voltage noise density  
Input current noise density  
f = 0.1 Hz to 10 Hz  
f = 10 kHz  
6
22  
25  
5
µVPP  
nV/Hz  
fA/Hz  
en  
in  
f = 1 kHz  
f = 1 kHz  
INPUT CAPACITANCE  
Differential  
CIN  
1
5
pF  
Common-mode  
OPEN-LOOP GAIN  
0.05 V < VO < (V+) – 0.05 V, RL = 100 kΩ  
0.3 V < VO < (V+) – 0.3 V, RL = 2 kΩ  
90  
100  
104  
104  
110  
116  
65  
AOL  
Open-loop voltage gain  
dB  
°
0.1 V < VO < (V+) – 0.1 V  
VS = 5 V, G = +1  
TA = –40°C to 125°C  
Phase margin  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
VS = 5 V, CL = 10 pF  
1
MHz  
V/µs  
Slew rate  
VS = 5 V, G = +1  
0.5  
To 0.1%, VS = 5 V, 2-V step, G = +1  
To 0.01%, VS = 5 V, 2-V step, G = +1  
VS = 5 V, VIN × Gain > VS  
5
tS  
Settling time  
6
3
µs  
Overload recovery time  
THD+N  
Total harmonic distortion + noise(3)  
VS = 5 V, VO = 1 VRMS, G = +1, f = 1 kHz  
0.0045%  
OUTPUT  
RL = 100 kΩ(2)  
5
20  
30  
RL = 100 kΩ(2)  
RL = 2 kΩ(2)  
RL = 2 kΩ(2)  
TA = –40°C to 125°C  
VO  
Voltage output swing from supply rails  
mV  
75  
100  
125  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
±15  
±12  
ISC  
RO  
Short-circuit current  
mA  
Open-loop output impedance  
2300  
Ω
(1) Parameters with minimum or maximum specification limits are 100% production tested at 25°C, unless otherwise noted. Over-  
temperature limits are based on characterization and statistical analysis.  
(2) Specified by design and characterization; not production tested.  
(3) Third-order filter; bandwidth = 80 kHz at –3 dB.  
Copyright © 2018, Texas Instruments Incorporated  
5
OPA2313-Q1  
ZHCSJ37 DECEMBER 2018  
www.ti.com.cn  
Electrical Characteristics: 5.5 V(1) (continued)  
For VS= (V+) – (V–) = 5.5 V at TA = 25°C, RL = 10 kΩ connected to VS / 2, and VCM = VOUT = VS / 2, (unless otherwise  
noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VS  
IQ  
Specified voltage range  
Quiescent current per amplifier  
Power-on time  
1.8 (±0.9)  
5.5 (±2.75)  
V
VS = 5 V, IO = 0 mA  
VS = 5 V, IO = 0 mA  
50  
10  
60  
85  
µA  
µs  
TA = –40°C to 125°C  
VS = 0 V to 5 V, to 90% IQ level  
6
Copyright © 2018, Texas Instruments Incorporated  
 
OPA2313-Q1  
www.ti.com.cn  
ZHCSJ37 DECEMBER 2018  
6.6 Electrical Characteristics: 1.8 V(1)  
For VS= (V+) – (V–) = 1.8 V at TA = 25°C, RL = 10 kΩ connected to VS / 2, VCM = VS+ – 1.3 V, and VOUT = VS / 2, (unless  
otherwise noted)(1)  
PARAMETER  
OFFSET VOLTAGE  
VOS Input offset voltage  
dVOS/dT Input offset voltage vs temperature  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.5  
2
2.5  
mV  
µV/°C  
dB  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
PSRR  
Power-supply rejection ratio  
Channel separation, dc  
74  
90  
10  
At dc  
µV/V  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
No phase reversal, rail-to-rail input  
(V–) – 0.2  
(V+) + 0.2  
V
(V–) – 0.2 V < VCM < (V+) – 1.3 V TA = –40°C to 125°C  
VS= 1.8 V, VCM = –0.2 V to 1.8 V  
70  
58  
58  
85  
73  
70  
CMRR  
Common-mode rejection ratio  
dB  
VCM = –0.2 V to 1.6 V  
TA = –40°C to 125°C  
INPUT BIAS CURRENT  
±0.2  
±0.2  
±10  
±50  
IB  
Input bias current  
Input offset current  
TA = –40°C to 85°C(2)  
TA = –40°C to 125°C(2)  
pA  
pA  
±600  
±10  
IOS  
TA = –40°C to 85°C(2)  
TA = –40°C to 125°C(2)  
±50  
±600  
NOISE  
Input voltage noise (peak-to-peak)  
Input voltage noise density  
Input current noise density  
f = 0.1 Hz to 10 Hz  
f = 10 kHz  
6
22  
25  
5
µVPP  
nV/Hz  
fA/Hz  
en  
in  
f = 1 kHz  
f = 1 kHz  
INPUT CAPACITANCE  
Differential  
CIN  
1
5
pF  
dB  
Common-mode  
OPEN-LOOP GAIN  
0.05 V < VO < (V+) – 0.05 V, RL = 100 kΩ  
100  
90  
110  
110  
AOL  
Open-loop voltage gain  
0.1 V < VO < (V+) – 0.1 V  
TA = –40°C to 125°C  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
CL = 10 pF  
0.9  
MHz  
V/µs  
Slew rate  
G = +1  
0.45  
To 0.1%, VS = 5 V, 2-V step, G = +1  
To 0.01%, VS = 5 V, 2-V step, G = +1  
VS = 5 V, VIN × Gain > VS  
VS = 5 V, VO = 1 VRMS, G = +1, f = 1kHz  
5
tS  
Settling time  
6
3
µs  
Overload recovery time  
Total harmonic distortion + noise(3)  
THD+N  
0.0045%  
OUTPUT  
RL = 100 kΩ(2)  
5
15  
30  
RL = 100 kΩ(2)  
RL = 2 kΩ(2)  
RL = 2 kΩ(2)  
TA = –40°C to 125°C  
VO  
Voltage output swing from supply rails  
mV  
25  
50  
TA = –40°C to 125°C  
125  
ISC  
RO  
Short-circuit current  
±6  
mA  
Open-loop output impedance  
2300  
Ω
(1) Parameters with minimum or maximum specification limits are 100% production tested at 25°C, unless otherwise noted. Over-  
temperature limits are based on characterization and statistical analysis.  
(2) Specified by design and characterization; not production tested.  
(3) Third-order filter; bandwidth = 80 kHz at –3 dB.  
Copyright © 2018, Texas Instruments Incorporated  
7
 
OPA2313-Q1  
ZHCSJ37 DECEMBER 2018  
www.ti.com.cn  
Electrical Characteristics: 1.8 V(1) (continued)  
For VS= (V+) – (V–) = 1.8 V at TA = 25°C, RL = 10 kΩ connected to VS / 2, VCM = VS+ – 1.3 V, and VOUT = VS / 2, (unless  
otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VS  
IQ  
Specified voltage range  
Quiescent current per amplifier  
Power-on time  
1.8 (±0.9)  
5.5 (±2.75)  
60  
V
VS = 5 V, IO = 0 mA  
VS = 0 V to 5 V, to 90% IQ level  
50  
10  
µA  
µs  
8
版权 © 2018, Texas Instruments Incorporated  
 
OPA2313-Q1  
www.ti.com.cn  
ZHCSJ37 DECEMBER 2018  
6.7 Typical Characteristics: Tables of Graphs  
1. Characteristic Performance Measurements  
TITLE  
FIGURE  
1  
Open-Loop Gain and Phase vs Frequency  
Open-Loop Gain vs Temperature  
Quiescent Current vs Supply Voltage  
Quiescent Current vs Temperature  
Offset Voltage Production Distribution  
Offset Voltage Drift Distribution  
2  
3  
4  
5  
6  
Offset Voltage vs Common-Mode Voltage (Maximum Supply)  
Offset Voltage vs Temperature  
7  
8  
CMRR and PSRR vs Frequency (RTI)  
9  
CMRR and PSRR vs Temperature  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
0.1-Hz to 10-Hz Input Voltage Noise (5.5 V)  
Input Voltage Noise Spectral Density vs Frequency (1.8 V, 5.5 V)  
Input Voltage Noise vs Common-Mode Voltage (5.5 V)  
Input Bias and Offset Current vs Temperature  
Open-Loop Output Impedance vs Frequency  
Maximum Output Voltage vs Frequency and Supply Voltage  
Output Voltage Swing vs Output Current (over Temperature)  
Closed-Loop Gain vs Frequency, G = 1, –1, 10 (1.8 V)  
Closed-Loop Gain vs Frequency, G = 1, –1, 10 (5.5 V)  
Small-Signal Overshoot vs Load Capacitance  
Phase Margin vs Capacitive Load  
Small-Signal Step Response, Noninverting (1.8 V)  
Small-Signal Step Response, Noninverting ( 5.5 V)  
Large-Signal Step Response, Noninverting (1.8 V)  
Large-Signal Step Response, Noninverting ( 5.5 V)  
Positive Overload Recovery  
Negative Overload Recovery  
No Phase Reversal  
Channel Separation vs Frequency (Dual)  
THD+N vs Amplitude (G = +1, 2 kΩ, 10 kΩ)  
THD+N vs Amplitude (G = –1, 2 kΩ, 10 kΩ)  
THD+N vs Frequency (0.5 VRMS, G = +1, 2 kΩ, 10 kΩ)  
EMIRR IN+ vs Frequency  
版权 © 2018, Texas Instruments Incorporated  
9
OPA2313-Q1  
ZHCSJ37 DECEMBER 2018  
www.ti.com.cn  
6.8 Typical Characteristics  
At TA = 25°C, VS = 5 V, RL = 10 kΩ connected to VS / 2, and VCM = VOUT = VS / 2, unless otherwise noted.  
140  
120  
100  
80  
180  
135  
90  
140  
135  
130  
125  
120  
115  
110  
105  
100  
Gain  
100 k, 5.5 V  
Phase  
CL = 10 pF  
10 k, 5.5 V  
60  
2 k, 5.5 V  
40  
20  
45  
CL = 100 pF  
0
10 k, 1.8 V  
-25  
-20  
0
1
10  
100  
1k  
10k 100k 1M  
10M 100M  
-50  
0
25  
50  
75  
100  
125  
C002  
C001  
Frequency (Hz)  
Temperature (oC)  
1. Open-Loop Gain and Phase vs Frequency  
2. Open-Loop Gain vs Temperature  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
65  
60  
55  
50  
45  
40  
35  
VS = 5.5 V  
VS = 1.8 V  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
C003  
C004  
Supply Voltage (V)  
3. Quiescent Current vs Supply  
4. Quiescent Current vs Temperature  
9
8
7
6
5
4
3
2
1
0
25  
20  
15  
10  
5
0
Offset Voltage Drift (µV/oC)  
C006  
Offset Voltage (mV)  
C005  
5. Offset Voltage Production Distribution  
6. Offset Voltage Drift Distribution  
10  
版权 © 2018, Texas Instruments Incorporated  
 
OPA2313-Q1  
www.ti.com.cn  
ZHCSJ37 DECEMBER 2018  
Typical Characteristics (接下页)  
At TA = 25°C, VS = 5 V, RL = 10 kΩ connected to VS / 2, and VCM = VOUT = VS / 2, unless otherwise noted.  
1500  
1200  
900  
1500  
1200  
900  
600  
600  
300  
300  
0
0
-300  
-600  
-900  
-1200  
-1500  
-300  
-600  
-900  
-1200  
-1500  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
-50  
-25  
0
25  
50  
75  
100  
125  
Common-Mode Voltage (V)  
Temperature (oC)  
C007  
C008  
7. Offset Voltage vs Common-Mode Voltage  
8. Offset Voltage vs Temperature  
110  
105  
100  
95  
120  
100  
80  
60  
40  
20  
0
PSRR  
90  
+PSRR  
CMRR  
85  
CMRR  
80  
75  
70  
65  
-PSRR  
60  
-50  
-25  
0
25  
50  
75  
100  
125  
C001  
10  
100  
1k  
10k  
100k  
1M  
C009  
Temperature (oC)  
Frequency (Hz)  
10. CMRR and PSRR vs Temperature  
9. CMRR and PSRR vs Frequency  
(Referred-to-Input)  
1000  
100  
10  
VS = 1.8 V  
VS = 5.5 V  
1
Time (1 s/div)  
1
10  
100  
1k  
10k  
100k  
C011  
C012  
Frequency (Hz)  
11. 0.1-Hz to 10-Hz Input Voltage Noise  
12. Input Voltage Noise Spectral Density vs Frequency  
版权 © 2018, Texas Instruments Incorporated  
11  
 
OPA2313-Q1  
ZHCSJ37 DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TA = 25°C, VS = 5 V, RL = 10 kΩ connected to VS / 2, and VCM = VOUT = VS / 2, unless otherwise noted.  
40  
35  
30  
25  
20  
15  
10  
200  
150  
100  
50  
IBN  
IBP  
0
IOS  
-50  
-100  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
-50  
-25  
0
25  
50  
75  
100  
125  
C014  
Temperature (oC)  
C013  
Common-Mode Input Voltage (V)  
13. Voltage Noise vs Common-Mode Voltage  
14. Input Bias and Offset Current vs Temperature  
100k  
6
5
VS = 5.5 V  
4
VS = 1.8 V  
VS = 1.8 V  
3
10k  
2
1
0
VS = 5.5 V  
1000  
1000  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
C016  
Frequency (Hz)  
C015  
15. Open-Loop Output Impedance vs Frequency  
16. Maximum Output Voltage vs Frequency and Supply  
Voltage  
3
2
1
40  
G = +10 V/V  
20  
G = +1 V/V  
o
o
-40 o  
C
+125C  
+25  
C
0
-1  
-2  
-3  
0
G = -1 V/V  
-20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
5
10  
Output Current (mA)  
15  
20  
Frequency (Hz)  
C018  
C017  
17. Output Voltage Swing vs Output Current (Over  
18. Closed-Loop Gain vs Frequency (Minimum Supply)  
Temperature)  
12  
版权 © 2018, Texas Instruments Incorporated  
 
OPA2313-Q1  
www.ti.com.cn  
ZHCSJ37 DECEMBER 2018  
Typical Characteristics (接下页)  
At TA = 25°C, VS = 5 V, RL = 10 kΩ connected to VS / 2, and VCM = VOUT = VS / 2, unless otherwise noted.  
42  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
VS = 1.8V, VCM = 0.5V  
G = +12 V/V  
±2  
G = +1 V/V  
VS = 5.5V  
2
G = -1 V/V  
±±2  
0
12  
122  
1k  
12k 122k  
Frequency (Hz)  
1M  
12M  
122M  
C222  
0
100  
200  
Capacitive Load (pF)  
300  
400  
C002  
19. Closed-Loop Gain vs Frequency  
20. Small-Signal Overshoot vs  
(Maximum Supply)  
Load Capacitance  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
CL = 100 pF  
VIN  
CL = 10 pF  
VS = 5.5V  
VS = 1.8V, VCM = 0.5V  
0
100  
200  
300  
400  
C003  
C004  
Time (1 µs/div)  
Capacitive Load (pF)  
22. Small-Signal Pulse Response  
21. Phase Margin vs Capacitive Load  
(Minimum Supply)  
CL = 100 pF  
VIN  
VOUT  
CL = 10 pF  
VIN  
Time (1 µs/div)  
Time (2.5 µs/div)  
C023  
C024  
23. Small-Signal Pulse Response  
24. Large-Signal Pulse Response  
(Maximum Supply)  
(Minimum Supply)  
版权 © 2018, Texas Instruments Incorporated  
13  
 
OPA2313-Q1  
ZHCSJ37 DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TA = 25°C, VS = 5 V, RL = 10 kΩ connected to VS / 2, and VCM = VOUT = VS / 2, unless otherwise noted.  
VOUT  
VOUT  
VIN  
VIN  
Time (2.5 µs/div)  
Time (2 µs/div)  
C025  
C026  
25. Large-Signal Pulse Response  
26. Positive Overload Recovery  
(Maximum Supply)  
VIN  
VOUT  
VOUT  
VIN  
Time (125 µs/div)  
Time (2 µs/div)  
C028  
C027  
27. Negative Overload Recovery  
28. No Phase Reversal  
-60  
-80  
0.1  
0.01  
RL = 2 k  
-100  
-120  
-140  
-160  
chB to chA  
chA to chB  
0.001  
0.0001  
RL = 10 k  
100  
1k  
10k  
100k  
1M  
10M  
0.01  
0.1 1  
Output Amplitude (VRMS  
10  
C030  
)
C029  
Frequency (Hz)  
30. THD+N vs Output Amplitude  
29. Channel Separation vs Frequency  
(Minimum Supply)  
14  
版权 © 2018, Texas Instruments Incorporated  
OPA2313-Q1  
www.ti.com.cn  
ZHCSJ37 DECEMBER 2018  
Typical Characteristics (接下页)  
At TA = 25°C, VS = 5 V, RL = 10 kΩ connected to VS / 2, and VCM = VOUT = VS / 2, unless otherwise noted.  
0.1  
0.1  
RL = 2 k  
0.01  
0.01  
RL = 2 k  
0.001  
0.0001  
0.001  
0.0001  
RL = 10 k  
10k  
R L = 10 k  
10  
100  
1k  
Frequency (Hz)  
100k  
0.01  
0.1 1  
Output Amplitude (VRMS  
10  
C032  
)
C031  
32. THD+N vs Frequency  
31. THD+N vs Output Amplitude  
(Maximum Supply)  
120  
100  
80  
60  
40  
20  
0
10  
100  
1000  
10000  
Frequency (MHz)  
C033  
33. EMIRR IN+ vs Frequency  
版权 © 2018, Texas Instruments Incorporated  
15  
 
OPA2313-Q1  
ZHCSJ37 DECEMBER 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPA2313-Q1 is a low-power, rail-to-rail input and output operational amplifier designed for cost-constrained  
applications. This device operates from 1.8 V to 5.5 V, is unity-gain stable, and suitable for a wide range of  
general-purpose applications. The class AB output stage is capable of driving loads greater than 10-kΩ  
connected to any point between V+ and ground. The input common-mode voltage range includes both rails, and  
allows the OPA2313-Q1 to be used in virtually any single-supply application. Rail-to-rail input and output swing  
significantly increases dynamic range, especially in low-supply applications, and makes this device ideal for  
driving sampling analog-to-digital converters (ADCs).  
The OPA2313-Q1 features 1-MHz bandwidth and 0.5-V/µs slew rate with only 50-µA supply current per channel,  
providing good ac performance at very low power consumption. Low frequency (dc) applications are also well  
served with a low input noise voltage of 25 nV/Hz at 1 kHz, low input bias current (0.2 pA), and an input offset  
voltage of 0.5 mV (typical). The typical offset voltage drift is 2 µV/°C; over the full temperature range the input  
offset voltage changes only 200 µV (0.5 mV to 0.7 mV).  
7.2 Functional Block Diagram  
V+  
Reference  
Current  
VIN+  
VIN-  
VBIAS1  
Class AB  
Control  
Circuitry  
VO  
VBIAS2  
V-  
(Ground)  
16  
版权 © 2018, Texas Instruments Incorporated  
 
OPA2313-Q1  
www.ti.com.cn  
ZHCSJ37 DECEMBER 2018  
7.3 Feature Description  
7.3.1 Operating Voltage  
The OPA2313-Q1 device is fully specified and tested from 1.8 V to 5.5 V (±0.9 V to ±2.75 V). Parameters that  
vary with supply voltage are illustrated in the Typical Characteristics section.  
7.3.2 Rail-to-Rail Input  
The input common-mode voltage range of the OPA2313-Q1 device extends 200 mV beyond the supply rails.  
This performance is achieved with a complementary input stage: an N-channel input differential pair in parallel  
with a P-channel differential pair, as shown in the Functional Block Diagram section. The N-channel pair is active  
for input voltages close to the positive rail, typically (V+) – 1.3 V to 200 mV above the positive supply, while the  
P-channel pair is on for inputs from 200 mV below the negative supply to approximately (V+) – 1.3 V. There is a  
small transition region, typically (V+) – 1.4 V to (V+) – 1.2 V, in which both pairs are on. This 200-mV transition  
region may vary up to 300 mV with process variation. Thus, the transition region (both stages on) may range  
from (V+) – 1.7 V to (V+) – 1.5 V on the low end, up to (V+) – 1.1 V to (V+) – 0.9 V on the high end. Within this  
transition region, PSRR, CMRR, offset voltage, offset drift, and THD may be degraded compared to device  
operation outside this region.  
7.3.3 Rail-to-Rail Output  
Designed as a micro-power, low-noise operational amplifier, the OPA2313-Q1 delivers a robust output drive  
capability. A class AB output stage with common-source transistors is used to achieve full rail-to-rail output swing  
capability. For resistive loads up to 10 kΩ, the output swings typically to within 5 mV of either supply rail  
regardless of the power-supply voltage applied. Different load conditions change the ability of the amplifier to  
swing close to the rails, as shown in 17.  
7.3.4 Common-Mode Rejection Ratio (CMRR)  
CMRR for the OPA2313-Q1 device is specified in several ways so the best match for a given application may be  
used; see the Electrical Characteristics. First, the CMRR of the device in the common-mode range below the  
transition region (VCM < (V+) – 1.3 V) is given. This specification is the best indicator of the capability of the  
device when the application requires use of one of the differential input pairs. Second, the CMRR over the entire  
common-mode range is specified at (VCM = –0.2 V to 5.7 V). This last value includes the variations seen through  
the transition region, as shown in 7.  
7.3.5 Capacitive Load and Stability  
The OPA2313-Q1 device is designed to be used in applications where driving a capacitive load is required. As  
with all op amps, there may be specific instances where the OPA2313-Q1 device may become unstable. The  
particular op amp circuit configuration, layout, gain, and output loading are some of the factors to consider when  
establishing whether or not an amplifier is stable in operation. An op amp in the unity-gain (+1-V/V) buffer  
configuration that drives a capacitive load exhibits a greater tendency to be unstable than an amplifier operated  
at a higher noise gain. The capacitive load, in conjunction with the op amp output resistance, creates a pole  
within the feedback loop that degrades the phase margin. The degradation of the phase margin increases as the  
capacitive loading increases. When operating in the unity-gain configuration, the OPA2313-Q1 device remains  
stable with a pure capacitive load up to approximately 1 nF. The equivalent series resistance (ESR) of some  
capacitors (CL greater than 1 µF) is sufficient to alter the phase characteristics in the feedback loop such that the  
amplifier remains stable. Increasing the amplifier closed-loop gain allows the amplifier to drive increasingly larger  
capacitance. This increased capability is evident when observing the overshoot response of the amplifier at  
higher voltage gains. See the typical characteristic graph, 20.  
版权 © 2018, Texas Instruments Incorporated  
17  
OPA2313-Q1  
ZHCSJ37 DECEMBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
One technique for increasing the capacitive load drive capability of the amplifier when it operates in a unity-gain  
configuration is to insert a small resistor, typically 10 Ω to 20 Ω, in series with the output, as shown in 34. This  
resistor significantly reduces the overshoot and ringing associated with large capacitive loads. One possible  
problem with this technique is that a voltage divider is created with the added series resistor and any resistor  
connected in parallel with the capacitive load. The voltage divider introduces a gain error at the output that  
reduces the output swing.  
V+  
RS  
VOUT  
Device  
VIN  
10 W to  
20 W  
RL  
CL  
34. Improving Capacitive Load Drive  
7.3.6 EMI Susceptibility and Input Filtering  
Operational amplifiers vary with regard to the susceptibility of the device to electromagnetic interference (EMI). If  
conducted EMI enters the op amp, the DC offset observed at the amplifier output may shift from the nominal  
value while EMI is present. This shift is a result of signal rectification associated with the internal semiconductor  
junctions. While all op amp pin functions may be affected by EMI, the signal input pins are likely to be the most  
susceptible. The OPA2313-Q1 device incorporates an internal input low-pass filter that reduces the amplifiers  
response to EMI. Both common-mode and differential mode filtering are provided by this filter. The filter is  
designed for a common-mode cutoff frequency of approximately 35 MHz (–3 dB), with a rolloff of 20 dB per  
decade.  
Texas Instruments has developed the ability to accurately measure and quantify the immunity of an operational  
amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. The EMI rejection ratio (EMIRR)  
metric allows op amps to be directly compared by the EMI immunity. 33 illustrates the results of this testing on  
the OPA2313-Q1 device. Detailed information may be found in EMI Rejection Ratio of Operational Amplifiers,  
available for download from www.ti.com.  
7.3.7 Input and ESD Protection  
The OPA2313-Q1 device incorporates internal electrostatic discharge (ESD) protection circuits on all pins. In the  
case of input and output pins, this protection primarily consists of current-steering diodes connected between the  
input and power-supply pins. The ESD protection diodes also provide in-circuit, input overdrive protection, as  
long as the current is limited to 10 mA as stated in the Absolute Maximum Ratings. 35 shows how a series  
input resistor may be added to the driven input to limit the input current. The added resistor contributes thermal  
noise at the amplifier input and the value must be kept to a minimum in noise-sensitive applications.  
V+  
IOVERLOAD  
10-mA max  
VOUT  
Device  
VIN  
5 kW  
35. Input Current Protection  
7.4 Device Functional Modes  
The OPA2313-Q1 device has a single functional mode. The device is powered on as long as the power-supply  
voltage is between 1.8 V (±0.9 V) and 5.5 V (±2.75 V).  
18  
版权 © 2018, Texas Instruments Incorporated  
 
 
OPA2313-Q1  
www.ti.com.cn  
ZHCSJ37 DECEMBER 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The OPA2313-Q1 device is a low-power, rail-to-rail input and output operational amplifier. The device operates  
from 1.8 V to 5.5 V, is unity-gain stable, and is designed for a wide range of general-purpose applications. The  
class AB output stage is capable of driving loads greater than 10 kΩ connected to any point between V+ and  
ground. The input common-mode voltage range includes both rails, and allows the OPA2313-Q1 to be used in  
virtually any single-supply application.  
8.2 Typical Application  
A typical application for an operational amplifier is an inverting amplifier, as shown in 36. An inverting amplifier  
takes a positive voltage on the input and outputs a signal inverted to the input, making a negative voltage of the  
same magnitude. In the same manner, the amplifier also makes negative input voltages positive on the output. In  
addition, amplification may be added by selecting the input resistor (RI) and the feedback resistor (RF.)  
RF  
VSUP+  
RI  
VOUT  
+
VIN  
VSUPœ  
36. Inverting Amplifier Application  
8.2.1 Design Requirements  
The supply voltage must be chosen to be larger than the input voltage range and the desired output range. The  
limits of the input common-mode range (VCM) and the output voltage swing to the rails (VO) must also be  
considered. For instance, this application scales a signal of ±0.5 V (1 V) to ±1.8 V (3.6 V). Setting the supply at  
±2.5 V is sufficient to accommodate this application.  
8.2.2 Detailed Design Procedure  
Determine the gain required by the inverting amplifier using 公式 1 and 公式 2:  
VOUT  
AV  
=
V
IN  
(1)  
(2)  
1.8  
AV  
=
= -3.6  
-0.5  
版权 © 2018, Texas Instruments Incorporated  
19  
 
 
 
OPA2313-Q1  
ZHCSJ37 DECEMBER 2018  
www.ti.com.cn  
Typical Application (接下页)  
When the desired gain is determined, choose a value for RI or RF. Choosing a value in the kilohm range is  
desirable for general-purpose applications because the amplifier circuit uses currents in the milliamp range. This  
milliamp current range ensures the device does not draw too much current. The trade-off is that very large  
resistors (100s of kilohms) draw the smallest current but generate the highest noise. Small resistors (100s of  
ohms) generate low noise but draw high current. This example uses 10 kΩ for RI, resulting in a 36-kΩ resistor  
being used for RF. The values are determined by 公式 3:  
RF  
AV = -  
RI  
(3)  
8.2.3 Application Curve  
2
1.5  
1
Input  
Output  
0.5  
0
-0.5  
-1  
-1.5  
-2  
Time  
37. Inverting Amplifier Input and Output  
8.3 System Examples  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required.  
The simplest way to establish this limited bandwidth is to place an RC filter at the noninverting terminal of the  
amplifier, as shown in 38.  
RG  
RF  
R1  
VOUT  
VIN  
C1  
1
2pR1C1  
f
=
-3 dB  
VOUT  
VIN  
RF  
1
1 + sR1C1  
=
1 +  
(
(
(  
(
RG  
38. Single-Pole Low-Pass Filter  
20  
版权 © 2018, Texas Instruments Incorporated  
 
 
OPA2313-Q1  
www.ti.com.cn  
ZHCSJ37 DECEMBER 2018  
System Examples (接下页)  
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter may be used for this  
task, as shown in 39. For best results, the amplifier must have a bandwidth that is 8 to 10 times the filter  
frequency bandwidth. Failure to follow this guideline may result in phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
R1  
R2  
Q = Peaking factor  
(Butterworth Q = 0.707)  
VIN  
VOUT  
C2  
1
2pRC  
f
=
-3 dB  
RF  
RF  
RG  
=
1
2 -  
RG  
(
(
Q
39. Two-Pole, Low-Pass, Sallen-Key Filter  
9 Power Supply Recommendations  
The OPA2313-Q1 device is specified for operation from 1.8 V to 5.5 V (±0.9 V to ±2.75 V); many specifications  
apply from –40°C to +125°C. The Typical Characteristics section presents parameters that may exhibit significant  
variance with regard to operating voltage or temperature.  
CAUTION  
Supply voltages larger than 7 V can permanently damage the device (see the Absolute  
Maximum Ratings table).  
Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Layout  
Guidelines section.  
版权 © 2018, Texas Instruments Incorporated  
21  
 
OPA2313-Q1  
ZHCSJ37 DECEMBER 2018  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Noise may propagate into analog circuitry through the power pins of the circuit and the operational  
amplifier. Use bypass capacitors to reduce the coupled noise by providing low-impedance power sources  
local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of the circuitry is one of the simplest and most  
effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to  
ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Take care to  
physically separate digital and analog grounds, paying attention to the flow of the ground current. For  
more detailed information, see Circuit Board Layout Techniques.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If the traces cannot be kept separate, crossing the sensitive trace perpendicularly is much better  
than crossing in parallel with the noisy trace.  
Place the external components as close to the device as possible. Keep RF and RG close to the inverting  
input to minimize parasitic capacitance, as shown in 40.  
Keep the length of input traces as short as possible. Remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring may significantly  
reduce leakage currents from nearby traces that are at different potentials.  
10.2 Layout Example  
VIN 1  
VIN 2  
+
+
VOUT 1  
VOUT 2  
RG  
RG  
RF  
RF  
40. Schematic Representation for 41  
Place components  
close to device and to  
each other to reduce  
parasitic errors.  
OUT 1  
Use low-ESR,  
ceramic bypass  
capacitor . Place as  
close to the device  
as possible .  
VS+  
GND  
OUT1  
V+  
RF  
OUT 2  
GND  
IN1œ  
IN1+  
Vœ  
OUT2  
IN2œ  
IN2+  
RF  
RG  
RG  
VIN 1  
GND  
VIN 2  
Keep input traces short  
and run the input traces  
as far away from  
the supply lines  
Use low-ESR,  
GND  
ceramic bypass  
capacitor . Place as  
close to the device  
as possible .  
VSœ  
Ground (GND) plane on another layer  
as possible .  
41. Layout Example  
22  
版权 © 2018, Texas Instruments Incorporated  
 
 
OPA2313-Q1  
www.ti.com.cn  
ZHCSJ37 DECEMBER 2018  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
《运算放大器的电磁干扰 (EMI) 抑制比》  
《电路板布局布线技巧》  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018, Texas Instruments Incorporated  
23  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2313QDGKRQ1  
OPA2313QDRQ1  
ACTIVE  
ACTIVE  
VSSOP  
SOIC  
DGK  
D
8
8
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
23131  
O2313Q  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jul-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2313QDGKRQ1  
OPA2313QDRQ1  
VSSOP  
SOIC  
DGK  
D
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
5.3  
6.4  
3.4  
5.2  
1.4  
2.1  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jul-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2313QDGKRQ1  
OPA2313QDRQ1  
VSSOP  
SOIC  
DGK  
D
8
8
2500  
2500  
366.0  
340.5  
364.0  
336.1  
50.0  
25.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY