OPA2340UA/2K5 [TI]

双路、单电源、轨到轨、低功耗运算放大器 | D | 8;
OPA2340UA/2K5
型号: OPA2340UA/2K5
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双路、单电源、轨到轨、低功耗运算放大器 | D | 8

放大器 光电二极管 运算放大器
文件: 总44页 (文件大小:1640K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
OPA340, OPA2340, OPA4340  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
OPAx340 Single-Supply, Rail-to-Rail Operational Amplifiers  
MicroAmplifier™ Series  
The OPA340 series operate on a single supply as low  
1 Features  
as 2.5 V with an input common-mode voltage range  
that extends 500 mV below ground and 500 mV  
above the positive supply. Output voltage swing is to  
within 1 mV of the supply rails with a 100-kload.  
These devices offer excellent dynamic response  
(BW = 5.5 MHz, SR = 6 V/µs), yet quiescent current  
is only 750 A. Dual and quad designs feature  
completely independent circuitry for lowest crosstalk  
and freedom from interaction.  
1
Rail-to-Rail Input  
Rail-to-Rail Output (Within 1 mV)  
MicroSize Packages  
Wide Bandwidth: 5.5 MHz  
High Slew Rate: 6 V/µs  
Low THD + Noise: 0.0007% (f = 1 kHz)  
Low Quiescent Current: 750 µA/Channel  
Single, Dual, and Quad Versions  
The single (OPA340) packages are the tiny 5-pin  
SOT-23 surface mount, 8-pin SOIC surface mount,  
and 8-pin DIP. The dual (OPA2340) comes in the  
miniature 8-pin VSSOP surface mount, 8-pin SOIC  
surface mount, and 8-pin PDIP packages. The quad  
(OPA4340) packages are the space-saving 16-pin  
SSOP surface mount and 14-pin SOIC surface  
mount. All are specified from –40°C to 85°C and  
operate from –55°C to 125°C. A SPICE macromodel  
is available for design analysis.  
2 Applications  
Driving A/D Converters  
PCMCIA Cards  
Data Acquisition  
Process Control  
Audio Processing  
Communications  
Active Filters  
Device Information(1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
3.00 mm × 3.00 mm  
9.81 mm × 6.35 mm  
4.90 mm × 3.91 mm  
3.00 mm × 3.00 mm  
8.65 mm × 3.91 mm  
4.90 mm × 3.90 mm  
Test Equipment  
OPA340  
SOT-23 (5)  
PDIP (8)  
3 Description  
OPA340, OPA2340  
OPA2340  
SOIC (8)  
The OPA340 series rail-to-rail CMOS operational  
amplifiers are optimized for low-voltage, single-supply  
operation. Rail-to-rail input and output and high-  
speed operation make them ideal for driving sampling  
analog-to-digital (A/D) converters. They are also well-  
suited for general purpose and audio applications as  
well as providing I/V conversion at the output of  
digital-to-analog (D/A) converters. Single, dual, and  
quad versions have identical specifications for design  
flexibility.  
VSSOP (8)  
SOIC (14)  
SSOP (16)  
OPA4340  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
OPA340 in Noninverting Configuration Driving ADS7816  
+5V  
0.1mF  
0.1mF  
1
VREF  
8
V+  
7
6
5
DCLOCK  
DOUT  
500W  
+In  
2
Serial  
ADS7816  
OPA340  
Interface  
12-Bit A/D  
VIN  
-In  
CS/SHDN  
3
3300pF  
GND  
4
VIN = 0V to 5V for  
0V to 5V output.  
NOTE: A/D Input = 0 to VREF  
RC network filters high-frequency noise.  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
OPA340, OPA2340, OPA4340  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
www.ti.com  
Table of Contents  
7.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Applications ................................................ 16  
Power Supply Recommendations...................... 19  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings ............................................................ 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information – OPA340 ................................ 5  
6.5 Thermal Information – OPA2340 .............................. 6  
6.6 Thermal Information – OPA4340 .............................. 6  
6.7 Electrical Characteristics........................................... 6  
6.8 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 13  
8
9
10 Layout................................................................... 20  
10.1 Layout Guidelines ................................................. 20  
10.2 Layout Example .................................................... 20  
11 Device and Documentation Support ................. 21  
11.1 Device Support...................................................... 21  
11.2 Documentation Support ........................................ 22  
11.3 Related Links ........................................................ 22  
11.4 Receiving Notification of Documentation Updates 22  
11.5 Community Resources.......................................... 22  
11.6 Trademarks........................................................... 22  
11.7 Electrostatic Discharge Caution............................ 22  
11.8 Glossary................................................................ 23  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 23  
4 Revision History  
Changes from Revision B (November 2007) to Revision C  
Page  
Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation  
section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and  
Mechanical, Packaging, and Orderable Information section. ................................................................................................. 1  
Deleted Package/Ordering Information table, see POA at the end of the data sheet............................................................ 1  
2
Submit Documentation Feedback  
Copyright © 1997–2016, Texas Instruments Incorporated  
Product Folder Links: OPA340 OPA2340 OPA4340  
 
OPA340, OPA2340, OPA4340  
www.ti.com  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
5 Pin Configuration and Functions  
OPA340: DBV Package  
5-Pin SOT-23  
OPA340: P and D Packages  
8-Pin PDIP and SOIC  
Top View  
Top View  
Pin Functions: OPA340  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN  
SOT-23  
SOIC, PDIP  
4
3
2
I
Negative (inverting) input  
+IN  
NC  
3
I
Positive (noninverting) input  
1
1, 5, 8  
O
No internal connection (can be left floating)  
Output  
OUT  
V–  
6
4
7
2
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
5
OPA2340: P, D, and DGK Packages  
8-Pin PDIP, SOIC, and VSSOP  
Top View  
Pin Functions: OPA2340  
PIN  
I/O  
DESCRIPTION  
VSSOP, SOIC,  
PDIP  
NAME  
–IN A  
+IN A  
–IN B  
+IN B  
OUT A  
OUT B  
V–  
2
3
6
5
1
7
4
8
I
I
Negative (inverting) input channel A  
Positive (noninverting) input channel A  
Negative (inverting) input channel B  
Positive (noninverting) input channel B  
Output channel A  
I
I
O
O
Output channel B  
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
Copyright © 1997–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: OPA340 OPA2340 OPA4340  
OPA340, OPA2340, OPA4340  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
www.ti.com  
OPA4340: D Package  
14-Pin SOIC  
OPA4340: DBQ Package  
16-Pin SSOP  
Top View  
Top View  
Pin Functions: OPA4340  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN A  
–IN B  
–IN C  
–IN D  
+IN A  
+IN B  
+IN C  
+IN D  
NC  
SOIC  
2
SSOP  
2
I
I
Negative (inverting) input channel A  
Negative (inverting) input channel B  
Negative (inverting) input channel C  
Negative (inverting) input channel D  
Positive (noninverting) input channel A  
Positive (noninverting) input channel B  
Positive (noninverting) input channel C  
Positive (noninverting) input channel D  
No internal connection (can be left floating)  
Output, channel A  
6
6
9
11  
15  
3
I
13  
3
I
I
5
5
I
10  
12  
1
12  
14  
8, 9  
1
I
I
O
O
O
O
OUT A  
OUT B  
OUT C  
OUT D  
V–  
7
7
Output, channel B  
8
10  
16  
13  
4
Output, channel C  
14  
11  
4
Output, channel D  
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
4
Submit Documentation Feedback  
Copyright © 1997–2016, Texas Instruments Incorporated  
Product Folder Links: OPA340 OPA2340 OPA4340  
OPA340, OPA2340, OPA4340  
www.ti.com  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
5.5  
UNIT  
V
Supply voltage  
Voltage  
Signal input terminals(2)  
–0.5  
0.5  
Signal input terminals(2)  
Output short circuit(3)  
10  
mA  
Current  
Continuous  
Operating, TA  
–55  
125  
150  
125  
Temperature  
Junction, TJ  
Storage, Tstg  
°C  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails should  
be current limited to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±600  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
5.5  
UNIT  
Supply voltage  
2.7  
V
Specified temperature  
–40  
125  
°C  
6.4 Thermal Information – OPA340  
OPA340  
DBV  
(SOT-23)  
P
D
D
THERMAL METRIC(1)  
UNIT  
(PDIP)  
(SOIC)  
8 PINS  
142  
(SOIC)  
5 PINS  
207.9  
71.2  
36.0  
2.0  
8 PINS  
53.1  
42.5  
30.3  
19.7  
30.2  
14 PINS  
83.8  
70.7  
59.5  
11.6  
37.7  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
90.2  
82.5  
39.4  
82  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
35.2  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 1997–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: OPA340 OPA2340 OPA4340  
 
 
OPA340, OPA2340, OPA4340  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
www.ti.com  
6.5 Thermal Information – OPA2340  
OPA2340  
D
DGK  
(VSSOP)  
THERMAL METRIC(1)  
UNIT  
(SOIC)  
8 PINS  
138.4  
89.5  
78.6  
29.9  
78.1  
8 PINS  
169.2  
62.8  
89.8  
7.5  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
88.2  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Thermal Information – OPA4340  
OPA4340  
DBQ  
(SSOP)  
16 PINS  
115.8  
67  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
58.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
19.9  
ψJB  
57.9  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.7 Electrical Characteristics  
At TA = 25°C, RL = 10 kΩ connected to VS/2, and VOUT = VS/2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
OFFSET VOLTAGE  
VOS  
Input offset voltage  
VS = 5 V  
±150  
±2.5  
30  
±500  
µV  
dVOS/dt  
Input offset voltage vs temperature  
TA = –40°C to 85°C, VS = 5 V  
VS = 2.7 V to 5.5 V, VCM = 0 V  
µV/°C  
µV/V  
120  
120  
Input offset voltage vs  
power supply  
PSRR  
VS = 2.7 V to 5.5 V, VCM = 0 V,  
TA = –40°C to 85°C, VS = 5 V  
Over temperature  
µV/°C  
µV/V  
Channel separation, DC  
INPUT BIAS CURRENT  
0.2  
±0.2  
±0.2  
±10  
±60  
±10  
IS  
Input bias current  
Input offset current  
pA  
pA  
Over temperature  
TA = –40°C to 85°C, VS = 5 V  
IOS  
NOISE  
Input voltage noise  
f = 0.1 kHz to 50 kHz  
f = 1 kHz  
8
25  
3
µVRMS  
nV/Hz  
fA/Hz  
en  
in  
Input voltage noise density  
Current noise density  
f = 1 kHz  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
–0.3  
80  
(V+) + 0.3  
V
–0.3 V < VCM < (V+) – 1.8 V  
VS = 5 V, –0.3 V < VCM < 5.3 V  
VS = 2.7 V, –0.3 V < VCM < 3 V  
92  
84  
80  
CMRR  
Common-mode rejection ratio  
70  
dB  
66  
(1) VS = 5 V.  
6
Submit Documentation Feedback  
Copyright © 1997–2016, Texas Instruments Incorporated  
Product Folder Links: OPA340 OPA2340 OPA4340  
OPA340, OPA2340, OPA4340  
www.ti.com  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
Electrical Characteristics (continued)  
At TA = 25°C, RL = 10 kΩ connected to VS/2, and VOUT = VS/2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
INPUT IMPEDANCE  
1013 || 3  
1013 || 6  
Differential  
Ω || pF  
Ω || pF  
Common-mode  
OPEN-LOOP GAIN  
RL = 100 k,  
5 mV < VO < (V+) – 5 mV  
106  
100  
94  
124  
120  
114  
RL = 10 k,  
5 mV < VO < (V+) – 50 mV  
RL = 2 k,  
200 mV < VO < (V+) – 200 mV  
RL = 100 k,  
5 mV < VO < (V+) – 5 mV,  
TA = –40°C to 85°C, VS = 5 V  
AOL  
Open-loop voltage gain  
dB  
106  
100  
94  
RL = 10 k,  
5 mV < VO < (V+) – 50 mV,  
TA = –40°C to 85°C, VS = 5 V  
Over temperature  
RL = 2 k,  
200 mV < VO < (V+) – 200 mV,  
TA = –40°C to 85°C, VS = 5 V  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
G = 1  
5.5  
6
MHz  
V/µs  
µs  
Slew rate  
VS = 5 V, G = 1, CL = 100 pF  
VS = 5 V, 2-V step, CL = 100 pF  
VS = 5 V, 2-V step, CL = 100 pF  
VIN × G = VS  
Settling time, 0.1%  
Settling time, 0.01%  
Overload recovery time  
1
1.6  
0.2  
µs  
µs  
VS = 5 V, VO = 3VPP(2), G = 1,  
f = 1 kHz  
THD+N  
Total harmonic distortion + noise  
0.0007%  
OUTPUT  
RL = 100 kΩ, AOL 106 dB  
RL = 10 kΩ, AOL 106 dB  
RL = 2 kΩ, AOL 106 dB  
1
10  
40  
5
RL = 100 kΩ, AOL 106 dB,  
TA = –40°C to 85°C, VS = 5 V  
Voltage output swing from  
rail(2)  
5
50  
mV  
mA  
RL = 10 kΩ, AOL 106 dB,  
TA = –40°C to 85°C, VS = 5 V  
Over temperature  
RL = 2 kΩ, AOL 106 dB,  
TA = –40°C to 85°C, VS = 5 V  
200  
ISC  
Short-circuit current  
Capacitive load drive  
±50  
CLOAD  
See Typical Characteristics  
POWER SUPPLY  
VS Specified voltage range  
2.7  
2.5  
5.5  
750  
5
V
V
Lower end  
Operating voltage range  
Higher end  
IO = 0, VS = 5 V  
950  
100  
Quiescent current  
(per amplifier)  
IQ  
µA  
Over temperature  
IO = 0, VS = 5 V, TA = –40°C to 85°C  
TEMPERATURE RANGE  
Specified range  
–40  
–55  
–55  
85  
125  
125  
°C  
°C  
°C  
Operating range  
Storage range  
(2) Output voltage swings are measured between the output and power-supply rails.  
Copyright © 1997–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: OPA340 OPA2340 OPA4340  
OPA340, OPA2340, OPA4340  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
www.ti.com  
6.8 Typical Characteristics  
At TA = 25°C, VS = 5 V, and RL = 10 kΩ connected to VS/2, unless otherwise noted.  
160  
140  
120  
100  
80  
0
100  
80  
60  
40  
20  
0
PSRR  
-45  
-90  
-135  
-180  
60  
CMRR  
40  
20  
0
-20  
0.1  
1
10  
100  
1k  
10k 100k  
1M  
10M  
1
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
1M  
Frequency (Hz)  
Figure 1. Open-Loop Gain/Phase vs Frequency  
Figure 2. Power-Supply and Common-Mode Rejection vs  
Frequency  
1k  
140  
130  
120  
10k  
1k  
Current Noise  
100  
10  
1
Voltage Noise  
100  
10  
1
110  
G = 1, All Channels  
0.1  
100  
1
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Figure 4. Channel Separation vs Frequency  
Figure 3. Input Voltage and Current Noise Spectral Density  
vs Frequency  
0.1  
5k  
4k  
3k  
2k  
1k  
0
G = 100  
RL = 600  
RL = 2kW  
G = 10  
0.01  
G = 10  
RL = 10kW  
RL = 600  
RL = 2kW  
G = 1  
0.001  
G = 1  
RL = 10kW  
0.0001  
10  
100  
1k  
10k  
100k  
1M  
10M  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 6. Closed-Loop Output Impedance vs Frequency  
Figure 5. Total Harmonic Distortion + Noise vs Frequency  
8
Submit Documentation Feedback  
Copyright © 1997–2016, Texas Instruments Incorporated  
Product Folder Links: OPA340 OPA2340 OPA4340  
 
OPA340, OPA2340, OPA4340  
www.ti.com  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
Typical Characteristics (continued)  
At TA = 25°C, VS = 5 V, and RL = 10 kΩ connected to VS/2, unless otherwise noted.  
130  
120  
110  
100  
90  
100  
90  
80  
70  
60  
50  
40  
RL = 100kW  
AOL  
RL = 10kW  
RL = 2kW  
PSRR  
VS = 2.7V to 5V, VCM = -0.3V to (V+) -1.8V  
VS = 5V, VCM = -0.3V to 5.3V  
VS = 2.7V, VCM = -0.3V to 3V  
80  
-75  
-50 -25  
0
25  
50  
75  
100 125  
-75  
-50 -25  
0
25  
50  
75  
100 125  
Temperature (°C)  
Temperature (°C)  
Figure 7. Open-Loop Gain and Power-Supply Rejection vs  
Temperature  
Figure 8. Common-Mode Rejection vs Temperature  
1000  
800  
750  
700  
650  
600  
Per Amplifier  
Per Amplifier  
900  
800  
700  
600  
500  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
-75  
-50 -25  
0
25  
50  
75  
100 125  
Supply Voltage (V)  
Temperature (°C)  
Figure 10. Quiescent Current vs Supply Voltage  
Figure 9. Quiescent Current vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
-ISC  
-ISC  
+ISC  
+ISC  
-75  
-50  
-25  
0
25  
50  
75  
100  
125  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Temperature (°C)  
Supply Voltage (V)  
Figure 11. Short-Circuit Current vs Temperature  
Figure 12. Short-Circuit Current vs Supply Voltage  
Copyright © 1997–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: OPA340 OPA2340 OPA4340  
OPA340, OPA2340, OPA4340  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
www.ti.com  
Typical Characteristics (continued)  
At TA = 25°C, VS = 5 V, and RL = 10 kΩ connected to VS/2, unless otherwise noted.  
1.0  
1k  
100  
10  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
1
0.1  
-75  
-50  
-25  
0
25  
50  
75  
100  
125  
-1  
0
1
2
3
4
5
6
Temperature (°C)  
Common-Mode Voltage (V)  
Figure 13. Input Bias Current vs Temperature  
Figure 14. Input Bias Current vs Input Common-Mode  
Voltage  
5
6
VS = 5.5V  
Maximum output  
voltage without  
slew rate-induced  
distortion.  
+125°C  
+25°C  
-55°C  
5
4
3
2
1
0
4
3
2
1
0
VS = 2.7V  
-55°C  
+125°C  
+25°C  
100k  
1M  
10M  
0
±10 ±20 ±30 ±40 ±50 ±60 ±70 ±80 ±90 ±100  
Frequency (Hz)  
Output Current (mA)  
Figure 16. Maximum Output Voltage vs Frequency  
Figure 15. Output Voltage Swing vs Output Current  
18  
25  
Typical production  
distribution of  
Typical production  
distribution of  
16  
14  
12  
10  
8
packaged units.  
packaged units.  
20  
15  
10  
5
6
4
2
0
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 15  
Offset Voltage Drift (mV/°C)  
Offset Voltage (mV)  
Figure 18. Offset Voltage Drift Magnitude Production  
Distribution  
Figure 17. Offset Voltage Production Distribution  
10  
Submit Documentation Feedback  
Copyright © 1997–2016, Texas Instruments Incorporated  
Product Folder Links: OPA340 OPA2340 OPA4340  
 
OPA340, OPA2340, OPA4340  
www.ti.com  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
Typical Characteristics (continued)  
At TA = 25°C, VS = 5 V, and RL = 10 kΩ connected to VS/2, unless otherwise noted.  
1ms/div  
1ms/div  
CL = 100 pF  
CL = 100 pF  
Figure 19. Small-Signal Step Response  
Figure 20. Large-Signal Step Response  
60  
50  
40  
30  
20  
100  
G = -1  
0.01%  
0.1%  
G = +1  
10  
1
G = -5  
See text for  
G = +5  
10  
0
reducing overshoot.  
0.1  
1
100  
1000  
Load Capacitance (pF)  
10k  
10  
100  
1000  
Closed-Loop Gain (V/V)  
Figure 21. Small-Signal Overshoot vs Load Capacitance  
Figure 22. Settling Time vs Closed-Loop Gain  
Copyright © 1997–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: OPA340 OPA2340 OPA4340  
 
OPA340, OPA2340, OPA4340  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The OPA340 series operational amplifiers are fabricated on a state-of-the-art, 0.6-micron CMOS process. These  
devices are unity-gain stable and suitable for a wide range of general-purpose applications. Rail-to-rail input and  
output make them ideal for driving sampling A/D converters. In addition, excellent AC performance makes them  
well-suited for audio applications. The class AB output stage is capable of driving 600-loads series and  
extends 500 mV beyond the supply. Rail-to-rail input and output swing significantly increases dynamic range,  
especially in low-supply applications. Figure 23 shows the input and output waveforms for the OPA340 in unity-  
gain configuration. Operation is from a single 5-V supply with a 10-kload connected to V/2. The input is a 5-  
VPP sinusoid. Output voltage is approximately 4.98 VPP. Power-supply pins must be bypassed with 0.01-µF  
ceramic capacitors.  
VS = +5, G = +1, RL = 10kW  
5
VIN  
5
VOUT  
0
Figure 23. Rail-to-Rail Input and Output  
7.2 Functional Block Diagram  
V+  
Reference  
Current  
VIN+  
VIN  
-
VBIAS1  
Class AB  
Control  
VO  
Circuitry  
VBIAS2  
V-  
(Ground)  
Copyright © 2016, Texas Instruments Incorporated  
12  
Submit Documentation Feedback  
Copyright © 1997–2016, Texas Instruments Incorporated  
Product Folder Links: OPA340 OPA2340 OPA4340  
 
OPA340, OPA2340, OPA4340  
www.ti.com  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
7.3 Feature Description  
7.3.1 Operating Voltage  
The OPA340 series operational amplifiers are fully specified from 2.7 V to 5 V. However, supply voltage may  
range from 2.5 V to 5.5 V. Parameters are ensured over the specified supply range—a unique feature of the  
OPA340 series. In addition, many specifications apply from –40°C to 85°C. Most behavior remains virtually  
unchanged throughout the full operating voltage range. Parameters which vary significantly with operating  
voltages or temperature are shown in the Typical Characteristics.  
7.3.2 Rail-to-Rail Input  
The input common-mode voltage range of the OPA340 series extends 500 mV beyond the supply rails. This  
extended range is achieved with a complementary input stage—an N-channel input differential pair in parallel  
with a P-channel differential pair. The N-channel pair is active for input voltages close to the positive rail, typically  
(V+) – 1.3 V to 500 mV above the positive supply, while the P-channel pair is on for inputs from 500 mV below  
the negative supply to approximately (V+) – 1.3 V. There is a small transition region, typically (V+) – 1.5 V to  
(V+) – 1.1 V, in which both pairs are on. This 400-mV transition region can vary ±300 mV with process variation.  
Thus, the transition region (both stages on) can range from (V+) – 1.8 V to (V+) – 1.4 V on the low end, up to  
(V+) – 1.2 V to (V+) – 0.8 V on the high end.  
OPA340 series operational amplifiers are laser-trimmed to the reduce offset voltage difference between the N-  
channel and P-channel input stages, resulting in improved common-mode rejection and a smooth transition  
between the N-channel pair and the P-channel pair. However, within the 400-mV transition region PSRR, CMRR,  
offset voltage, offset drift, and THD may be degraded compared to operation outside this region.  
A double-folded cascode adds the signal from the two input pairs and presents a differential signal to the class  
AB output stage. Normally, input bias current is approximately 200 fA; however, input voltages exceeding the  
power supplies by more than 500 mV can cause excessive current to flow in or out of the input pins. Momentary  
voltages greater than 500 mV beyond the power supply can be tolerated if the current on the input pins is limited  
to 10 mA. This current limiting is easily accomplished with an input resistor, as shown in Figure 24. Many input  
signals are inherently current-limited to less than 10 mA; therefore, a limiting resistor is not required.  
V+  
IOVERLOAD  
10mA max  
VOUT  
OPAx340  
VIN  
5kW  
Copyright © 2016, Texas Instruments Incorporated  
Figure 24. Input Current Protection for Voltages Exceeding the Supply Voltage  
7.3.3 Rail-to-Rail Output  
A class AB output stage with common-source transistors is used to achieve rail-to-rail output. For light resistive  
loads (> 50 k), the output voltage is typically a few millivolts from the supply rails. With moderate resistive loads  
(2 kto 50 k), the output can swing to within a few tens of millivolts from the supply rails and maintain high  
open-loop gain (see Figure 15).  
7.3.4 Capacitive Load and Stability  
OPA340 series operational amplifiers can drive a wide range of capacitive loads. However, all operational  
amplifiers under certain conditions can become unstable. operational amplifier configuration, gain, and load value  
are some of the factors to consider when determining stability. An operational amplifier in unity-gain configuration  
is most susceptible to the effects of capacitive load. The capacitive load reacts with the output resistance of the  
operational amplifier, along with any additional load resistance, to create a pole in the small-signal response that  
degrades the phase margin. In unity-gain configuration, the OPA340 series operational amplifiers perform well,  
with a pure capacitive load up to approximately 1000 pF. Increasing gain enhances the amplifier ability to drive  
more capacitance (see Figure 21).  
Copyright © 1997–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: OPA340 OPA2340 OPA4340  
 
OPA340, OPA2340, OPA4340  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
www.ti.com  
Feature Description (continued)  
One method of improving capacitive load drive in the unity-gain configuration is to insert a 10-to 20-resistor  
in series with the output, as shown in Figure 25. This resistor significantly reduces ringing with large capacitive  
loads. However, if there is a resistive load in parallel with the capacitive load, it creates a voltage divider  
introducing a DC error at the output and slightly reduces output swing. This error can be insignificant. For  
instance, with RL = 10 kand RS = 20 , there is only an approximate 0.2% error at the output.  
When used with the miniature package options of the OPA340 series, the combination is ideal for space-limited  
and low-power applications. For further information, consult the ADS7816 data sheet, 12-Bit High Speed Micro  
Power Sampling Analog-To-Digital Converter (SBAS061). With the OPA340 in a noninverting configuration, an  
RC network at the output of the amplifier can be used to filter high-frequency noise in the signal (see Figure 26).  
In the inverting configuration, filtering may be accomplished with a capacitor across the feedback resistor (see  
Figure 27).  
V+  
RS  
VOUT  
OPAx340  
10W to  
20W  
VIN  
CL  
RL  
Copyright © 2016, Texas Instruments Incorporated  
Figure 25. Series Resistor in Unity-Gain Configuration Improves Capacitive Load Drive  
7.3.5 Driving A/D Converters  
The OPA340 series operational amplifiers are optimized for driving medium-speed (up to 100 kHz) sampling A/D  
converters. However, they also offer excellent performance for higher speed converters. The OPA340 series  
provides an effective means of buffering the converter input capacitance and resulting charge injection while  
providing signal gain. Figure 26 and Figure 27 show the OPA340 driving an ADS7816. The ADS7816 is a 12-bit,  
micro-power sampling converter in the tiny 8-pin VSSOP package.  
+5V  
0.1mF  
0.1mF  
1
VREF  
8
V+  
7
6
5
DCLOCK  
DOUT  
500W  
+In  
2
Serial  
ADS7816  
OPA340  
Interface  
12-Bit A/D  
VIN  
-In  
CS/SHDN  
3
3300pF  
GND  
4
VIN = 0V to 5V for  
0V to 5V output.  
NOTE: A/D Input = 0 to VREF  
RC network filters high-frequency noise.  
Copyright © 2016, Texas Instruments Incorporated  
Figure 26. OPA340 in Noninverting Configuration Driving ADS7816  
14  
Submit Documentation Feedback  
Copyright © 1997–2016, Texas Instruments Incorporated  
Product Folder Links: OPA340 OPA2340 OPA4340  
 
 
OPA340, OPA2340, OPA4340  
www.ti.com  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
Feature Description (continued)  
+5V  
330pF  
0.1mF  
0.1mF  
5kW  
5kW  
VIN  
1
VREF  
8
V+  
7
6
5
DCLOCK  
DOUT  
+In  
2
Serial  
ADS7816  
OPA340  
Interface  
12-Bit A/D  
-In  
CS/SHDN  
3
GND  
4
VIN = 0V to -5V for 0V to 5V output.  
NOTE: A/D Input = 0 to VREF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 27. OPA340 in Inverting Configuration Driving ADS7816  
Filters 160Hz to 2.4kHz  
+5V  
10MW  
10MW  
VIN  
243kW  
1.74MW  
1/2  
OPA2340  
200pF  
1/2  
47pF  
OPA2340  
RL  
220pF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 28. Speech Bandpass Filter  
7.4 Device Functional Modes  
The OPAx340 has a single functional mode and is operational when the power-supply voltage is greater than  
2.7 V (±1.35 V). The maximum power supply voltage for the OPAx340 is 5.5 V (±2.75 V).  
Copyright © 1997–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: OPA340 OPA2340 OPA4340  
OPA340, OPA2340, OPA4340  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
www.ti.com  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The OPAx340 amplifier is a single-supply, CMOS operational amplifier with 5.5-MHz unity-gain bandwidth and  
supply current of 950 µA. Its performance is optimized for low-voltage (2.7 V to 5.5 V), single-supply applications,  
with its input common-mode voltage linear range extending 300 mV beyond the rails and the output voltage  
swing within 5 mV of either rail. The OPAx340 series features wide bandwidth and unity-gain stability with rail-to-  
rail input and output for increased dynamic range. Power-supply pins must be bypassed with 0.01-µF ceramic  
capacitors.  
8.2 Typical Applications  
8.2.1 Single-Pole, Low-Pass Filter  
Figure 29 shows the OPA340 in a typical noninverting application with the input signal bandwidth limited by the  
input lowpass filter.  
Figure 29. Single-Pole, Low-Pass Filter  
Equation 1 through Equation 2 show calculations for corner frequency and gain:  
(1)  
(2)  
16  
Submit Documentation Feedback  
Copyright © 1997–2016, Texas Instruments Incorporated  
Product Folder Links: OPA340 OPA2340 OPA4340  
 
 
 
OPA340, OPA2340, OPA4340  
www.ti.com  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
Typical Applications (continued)  
8.2.1.1 Design Requirements  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required.  
The simplest way to establish this limited bandwidth is to place an RC filter at the noninverting terminal of the  
amplifier, as shown in Figure 29. If a steeper attenuation level is required, a two-pole or higher-order filter may be  
used.  
8.2.1.2 Detailed Design Procedure  
The design goals for this circuit include these parameters:  
A noninverting gain of 10 V/V (20 dB)  
Design a single-pole response circuit with –3-dB rolloff at 15.9 kHz and 159 Hz  
Modify the design to increase attenuation level to –40 dB/decade (Sallen-Key Filter)  
Use these design values:  
C1 = 0 nF, 10 nF, 1 µF  
R1 = 1 kΩ  
RG = 10 kΩ  
RF = 90 kΩ  
Figure 30 shows how the output voltage of OPA340 changes over frequency depending on the value of C1 with a  
constant R1 of 1 kΩ. Without any filtering of the input signal (C1 = 0), the –3-dB effective bandwidth is a function  
of the OPA340 unity-gain bandwidth and closed-loop gain, f(–3dB) = UGBW/ACL, where ACL is closed-loop gain  
and UGBW denotes unity-gain bandwidth. Thus, for a closed-loop gain = 10, f(–3dB) = 1 MHz/10 =100 kHz; see  
Figure 30.  
To further limit the output bandwidth, an appropriate choice of C1 must be made: for C1 = 10 nF,  
= 15.9 kHz.  
To further limit the bandwidth, a larger C1 must be used: choosing C1 = 1 µF,  
= 159 Hz (see Figure 30).  
8.2.1.3 Application Curve  
40  
C1 = 0  
20  
C1 = 10 nF  
0
C1 = 1 mF  
-20  
-40  
1
10  
100  
1 k  
10 k  
100 k  
1 M  
Frequency (Hz)  
Figure 30. OPA340 Single-Pole AC Gain vs Frequency Response  
Copyright © 1997–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: OPA340 OPA2340 OPA4340  
 
OPA340, OPA2340, OPA4340  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
www.ti.com  
Typical Applications (continued)  
8.2.2 Two-Pole, Low-Pass Filter  
If even more attenuation is required, a multiple pole filter is required. The Sallen-Key filter may be used for this  
task, as shown in Figure 31. For best results, the amplifier must have effective bandwidth that is at least 10 times  
higher than the filter cutoff frequency. Failure to follow this guideline results in a phase shift of the amplifier,  
which in turn leads to lower precision of the filter bandwidth. Additionally, to minimize the loading effect between  
multiple RC pairs on overall the filter cutoff frequency, choose R = 10 × R1 and C2 = C1/10; see Figure 32.  
Figure 31. Two-Pole, Lowpass Filter  
Equation 3 through Equation 5 show calculations for corner frequency and gain:  
(3)  
(4)  
(5)  
8.2.2.1 Detailed Design Procedure  
Use these design values:  
C1 = 10 nF and C2 = 1 nF  
R1 = 1 kΩ and R2= 10 kΩ  
RG = 10 kΩ  
RF = 90 kΩ  
Figure 32 shows the Sallen-Key filter second-order response for different RC values: for R and C values above,  
= 15.9 kHz.  
To further limit the bandwidth, a larger RC value must be used: increasing C values 100 times, such as  
C1  
=
1
µF and C2  
=
0.1 µF, with unchanged resistors, results in the second-order rolloff at  
= 159 Hz. See Figure 32.  
18  
Submit Documentation Feedback  
Copyright © 1997–2016, Texas Instruments Incorporated  
Product Folder Links: OPA340 OPA2340 OPA4340  
 
 
 
OPA340, OPA2340, OPA4340  
www.ti.com  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
Typical Applications (continued)  
8.2.2.2 Application Curve  
Figure 32. OPA340 Two-Pole, Lowpass Sallen-Key AC Gain vs Frequency Response  
9 Power Supply Recommendations  
The OPAx340 is specified for operation from 2.7 V to 5.5 V (±1.35 V to ±2.75 V).  
CAUTION  
Supply voltages larger than 7 V can permanently damage the device (see the Absolute  
Maximum Ratings).  
TI recommends placing 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in  
from noisy or high-impedance power supplies.  
Copyright © 1997–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: OPA340 OPA2340 OPA4340  
OPA340, OPA2340, OPA4340  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
www.ti.com  
10 Layout  
10.1 Layout Guidelines  
Pay attention to good layout practices. Keep traces short and when possible, use a printed-circuit board (PCB)  
ground plane with surface-mount components placed as close to the device pins as possible. Place a 0.1-μF  
capacitor closely across the supply pins. Apply these guidelines throughout the analog circuit to improve  
performance and provide benefits, such as reducing the electromagnetic interference (EMI) susceptibility.  
Operational amplifiers vary in susceptibility to radio frequency interference (RFI). RFI can generally be identified  
as a variation in offset voltage or DC signal levels with changes in the interfering RF signal. The OPA340 is  
specifically designed to minimize susceptibility to RFI and demonstrates remarkably low sensitivity compared to  
previous generation devices. Strong RF fields can still cause varying offset levels.  
10.2 Layout Example  
Place components  
close to device and  
to eachother to  
Run the input traces  
reduce parasitic  
as far away from  
the supply lines  
as possible  
errors  
VS+  
RF  
N/C  
N/C  
RG  
GND  
VIN  
–IN  
+IN  
V–  
V+  
OUTPUT  
N/C  
GND  
Use low-ESR, ceramic  
bypass capacitor  
GND  
VS–  
Use low-ESR,  
ceramic bypass  
capacitor  
VOUT  
Copyright © 2016, Texas Instruments Incorporated  
Figure 33. Layout Recommendation  
+
VIN  
VOUT  
œ
RG  
RF  
Copyright © 2016,  
Texas Instruments Incorporated  
Figure 34. Schematic Representation  
20  
Submit Documentation Feedback  
Copyright © 1997–2016, Texas Instruments Incorporated  
Product Folder Links: OPA340 OPA2340 OPA4340  
OPA340, OPA2340, OPA4340  
www.ti.com  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 TINA-TI™ (Free Software Download)  
TINA™ is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI™ is  
a free, fully-functional version of the TINA software, preloaded with a library of macro models in addition to a  
range of both passive and active models. TINA-TI provides all the conventional DC, transient, and frequency  
domain analysis of SPICE, as well as additional design capabilities.  
Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing  
capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select  
input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.  
NOTE  
These files require that either the TINA software (from DesignSoft™) or TINA-TI software  
be installed. Download the free TINA-TI software from the TINA-TI folder.  
11.1.1.2 DIP Adapter EVM  
The DIP Adapter EVM tool provides an easy, low-cost way to prototype small surface mount ICs. The evaluation  
tool these TI packages: D or U (SOIC-8), PW (TSSOP-8), DGK (MSOP-8), DBV (SOT23-6, SOT23-5 and  
SOT23-3), DCK (SC70-6 and SC70-5), and DRL (SOT563-6). The DIP Adapter EVM may also be used with  
terminal strips or may be wired directly to existing circuits.  
11.1.1.3 Universal Operational Amplifier EVM  
The Universal Op Amp EVM is a series of general-purpose, blank circuit boards that simplify prototyping circuits  
for a variety of IC package types. The evaluation module board design allows many different circuits to be  
constructed easily and quickly. Five models are offered, with each model intended for a specific package type.  
PDIP, SOIC, MSOP, TSSOP and SOT23 packages are all supported.  
NOTE  
These boards are unpopulated, so users must provide their own ICs. TI recommends  
requesting several operational amplifier device samples when ordering the Universal Op  
Amp EVM.  
11.1.1.4 TI Precision Designs  
TI Precision Designs are analog solutions created by TI’s precision analog applications experts and offer the  
theory of operation, component selection, simulation, complete PCB schematic and layout, bill of materials, and  
measured performance of many useful circuits. TI Precision Designs are available online at  
http://www.ti.com/ww/en/analog/precision-designs/.  
11.1.1.5 WEBENCH® Filter Designer  
WEBENCH® Filter Designer is a simple, powerful, and easy-to-use active filter design program. The WEBENCH  
Filter Designer lets you create optimized filter designs using a selection of TI operational amplifiers and passive  
components from TI's vendor partners.  
Available as a web-based tool from the WEBENCH® Design Center, WEBENCH® Filter Designer allows you to  
design, optimize, and simulate complete multistage active filter solutions within minutes.  
Copyright © 1997–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: OPA340 OPA2340 OPA4340  
OPA340, OPA2340, OPA4340  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
www.ti.com  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation, see the following application reports and publications (available for download from  
www.ti.com):  
12-Bit High Speed Micro Power Sampling Analog-To-Digital Converter (SBAS061)  
A Dual-Polarity, Bidirectional Current-Shunt Monitor (SLYT311)  
OPA340, OPA2340, OPA4340 EMI Immunity Performance (SBOZ010)  
Getting the Full Potential from your ADC (SBAA069)  
Feedback Plots Define Op Amp AC Performance (SBOA015)  
Capacitive Load Drive Solution Using an Isolation Resistor (TIPD128)  
Circuit Board Layout Techniques (SLOA089)  
11.3 Related Links  
Table 1 lists quick access links. Categories include technical documents, support and community resources,  
tools and software, and quick access to sample or buy.  
Table 1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
OPA340  
OPA2340  
OPA4340  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
11.4 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.5 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.6 Trademarks  
MicroAmplifier, TINA-TI, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
TINA, DesignSoft are trademarks of DesignSoft, Inc.  
All other trademarks are the property of their respective owners.  
11.7 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
22  
Submit Documentation Feedback  
Copyright © 1997–2016, Texas Instruments Incorporated  
Product Folder Links: OPA340 OPA2340 OPA4340  
 
OPA340, OPA2340, OPA4340  
www.ti.com  
SBOS073C SEPTEMBER 1997REVISED AUGUST 2016  
11.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 1997–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: OPA340 OPA2340 OPA4340  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2340EA/250  
OPA2340EA/250G4  
OPA2340EA/2K5  
OPA2340EA/2K5G4  
OPA2340UA  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
8
8
8
8
250  
250  
RoHS & Green  
RoHS & Green  
NIPDAUAG | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
A40A  
A40A  
A40A  
A40A  
OPA  
Samples  
Samples  
Samples  
Samples  
Samples  
SN  
NIPDAUAG | SN  
SN  
2500 RoHS & Green  
2500 RoHS & Green  
75  
RoHS & Green  
NIPDAU  
-40 to 85  
2340UA  
OPA2340UA/2K5  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
OPA  
2340UA  
Samples  
Samples  
OPA2340UA/2K5G4  
OPA  
2340UA  
OPA340NA/250  
OPA340NA/250G4  
OPA340NA/3K  
OPA340NA/3KG4  
OPA340PA  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
PDIP  
DBV  
DBV  
DBV  
DBV  
P
5
5
5
5
8
8
250  
250  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
N / A for Pkg Type  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
A40  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
A40  
3000 RoHS & Green  
3000 RoHS & Green  
A40  
A40  
50  
75  
RoHS & Green  
RoHS & Green  
OPA340PA  
OPA340UA  
SOIC  
D
Level-2-260C-1 YEAR  
OPA  
340UA  
OPA340UA/2K5  
OPA340UA/2K5G4  
OPA4340EA/250  
OPA4340EA/250G4  
OPA4340EA/2K5  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SSOP  
SSOP  
SSOP  
D
8
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
OPA  
340UA  
Samples  
Samples  
Samples  
Samples  
Samples  
D
8
OPA  
340UA  
DBQ  
DBQ  
DBQ  
16  
16  
16  
250  
250  
RoHS & Green  
RoHS & Green  
OPA  
4340EA  
OPA  
4340EA  
2500 RoHS & Green  
OPA  
4340EA  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Dec-2022  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA4340UA  
OPA4340UA/2K5  
OPA4340UA/2K5G4  
OPA4340UAG4  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
14  
14  
14  
14  
50  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
OPA4340UA  
Samples  
Samples  
Samples  
Samples  
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
OPA4340UA  
OPA4340UA  
OPA4340UA  
50  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Dec-2022  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF OPA340 :  
Enhanced Product : OPA340-EP  
NOTE: Qualified Version Definitions:  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2340EA/250  
OPA2340EA/250  
OPA2340EA/2K5  
OPA2340EA/2K5  
OPA2340UA/2K5  
OPA340NA/250  
OPA340NA/250  
OPA340NA/3K  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
8
250  
250  
330.0  
330.0  
330.0  
330.0  
330.0  
179.0  
178.0  
178.0  
179.0  
330.0  
180.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
8.4  
5.3  
5.3  
5.3  
5.3  
6.4  
3.2  
3.3  
3.3  
3.2  
6.4  
6.4  
6.4  
6.5  
3.4  
3.4  
3.4  
3.4  
5.2  
3.2  
3.2  
3.2  
3.2  
5.2  
5.2  
5.2  
9.0  
1.4  
1.4  
1.4  
1.4  
2.1  
1.4  
1.4  
1.4  
1.4  
2.1  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q3  
Q3  
Q3  
Q3  
Q1  
Q1  
Q1  
Q1  
8
2500  
2500  
2500  
250  
8
8
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
DBV  
DBV  
D
5
5
250  
9.0  
8.0  
5
3000  
3000  
2500  
250  
9.0  
8.0  
OPA340NA/3K  
5
8.4  
8.0  
OPA340UA/2K5  
OPA4340EA/250  
OPA4340EA/2K5  
OPA4340UA/2K5  
8
12.4  
12.4  
12.4  
16.4  
12.0  
12.0  
12.0  
16.0  
SSOP  
DBQ  
DBQ  
D
16  
16  
14  
SSOP  
2500  
2500  
SOIC  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2340EA/250  
OPA2340EA/250  
OPA2340EA/2K5  
OPA2340EA/2K5  
OPA2340UA/2K5  
OPA340NA/250  
OPA340NA/250  
OPA340NA/3K  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
8
250  
250  
366.0  
366.0  
366.0  
366.0  
356.0  
213.0  
180.0  
180.0  
213.0  
356.0  
210.0  
356.0  
356.0  
364.0  
364.0  
364.0  
364.0  
356.0  
191.0  
180.0  
180.0  
191.0  
356.0  
185.0  
356.0  
356.0  
50.0  
50.0  
50.0  
50.0  
35.0  
35.0  
18.0  
18.0  
35.0  
35.0  
35.0  
35.0  
35.0  
8
2500  
2500  
2500  
250  
8
8
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
DBV  
DBV  
D
5
5
250  
5
3000  
3000  
2500  
250  
OPA340NA/3K  
5
OPA340UA/2K5  
OPA4340EA/250  
OPA4340EA/2K5  
OPA4340UA/2K5  
8
SSOP  
DBQ  
DBQ  
D
16  
16  
14  
SSOP  
2500  
2500  
SOIC  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Jul-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
OPA2340UA  
OPA340PA  
D
P
D
D
D
SOIC  
PDIP  
SOIC  
SOIC  
SOIC  
8
8
75  
50  
75  
50  
50  
506.6  
506  
8
3940  
11230  
3940  
3940  
3940  
4.32  
4.32  
4.32  
4.32  
4.32  
13.97  
OPA340UA  
8
506.6  
506.6  
506.6  
8
8
8
OPA4340UA  
OPA4340UAG4  
14  
14  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBQ0016A  
SSOP - 1.75 mm max height  
SCALE 2.800  
SHRINK SMALL-OUTLINE PACKAGE  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
14X .0250  
[0.635]  
16  
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.175  
[4.45]  
8
9
16X .008-.012  
[0.21-0.30]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.007 [0.17]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
GAGE PLANE  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.035  
[0.41-0.88]  
DETAIL A  
TYPICAL  
(.041 )  
[1.04]  
4214846/A 03/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 inch, per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MO-137, variation AB.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SEE  
DETAILS  
SYMM  
1
16  
16X (.016 )  
[0.41]  
14X (.0250 )  
[0.635]  
8
9
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
.002 MAX  
[0.05]  
ALL AROUND  
.002 MIN  
[0.05]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214846/A 03/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SYMM  
1
16  
16X (.016 )  
[0.41]  
SYMM  
14X (.0250 )  
[0.635]  
9
8
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:8X  
4214846/A 03/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY