OPA2374AIDRG4 [TI]

Dual 6.5MHz, 585uA, Rail-to-Rail I/O CMOS Operational Amplifier 8-SOIC;
OPA2374AIDRG4
型号: OPA2374AIDRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Dual 6.5MHz, 585uA, Rail-to-Rail I/O CMOS Operational Amplifier 8-SOIC

放大器 光电二极管
文件: 总37页 (文件大小:1521K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA373, OPA2373  
OPA374  
OPA2374, OPA4374  
SBOS279E − SEPTEMBER 2003 − REVISED MAY 2008  
6.5MHz, 585µA, Rail-to-Rail I/O  
CMOS Operational Amplifier  
FD EATURES  
DESCRIPTION  
LOW OFFSET: 5mV (max)  
The OPA373 and OPA374 families of operational  
amplifiers are low power and low cost with excellent  
bandwidth (6.5MHz) and slew rate (5V/µs). The input  
range extends 200mV beyond the rails and the output  
range is within 25mV of the rails. The speed/power ratio  
and small size make them ideal for portable and  
battery-powered applications.  
D
D
D
D
D
D
D
LOW I : 10pA (max)  
B
HIGH BANDWIDTH: 6.5MHz  
RAIL-TO-RAIL INPUT AND OUTPUT  
SINGLE SUPPLY: +2.3V to +5.5V  
SHUTDOWN: OPAx373  
SPECIFIED UP TO +125°C  
MicroSIZE PACKAGES: SOT23-5, SOT23-6,  
The OPA373 family includes a shutdown mode. Under  
logic control, the amplifiers can be switched from normal  
operation to a standby current that is less than 1µA.  
SOT23-8 and DFN-10  
AD PPLICATIONS  
PORTABLE EQUIPMENT  
The OPA373 and OPA374 families of operational  
amplifiers are specified for single or dual power supplies  
of +2.7V to +5.5V, with operation from +2.3V to +5.5V. All  
models are specified for −40°C to +125°C.  
D
D
D
BATTERY-POWERED DEVICES  
ACTIVE FILTERS  
DRIVING A/D CONVERTERS  
OPA374  
OPA373  
OPA2373  
Out  
1
2
3
5
4
V+  
Out  
1
2
3
6
5
4
V+  
OUT A  
1
2
3
4
5
10 V+  
V
V
Enable  
IN A  
+IN A  
9
8
7
6
OUT B  
A
+IN  
IN  
+IN  
IN  
IN B  
B
V
+IN B  
SOT236(1)  
SOT235  
Enable A  
Enable B  
OPA2373  
OPA373  
MSOP10  
V+  
OUT A  
NC(2)  
1
2
3
4
8
7
6
5
Enable  
Exposed  
thermal  
die pad on  
underside  
(Must be  
OUT B  
IN A  
OPA4374  
V+  
IN  
IN B  
+IN A  
OUT  
NC(2)  
+IN  
OUT A  
1
2
3
4
5
6
7
14 OUT D  
+IN B  
V
connected to V )  
V
IN D  
IN A  
13  
Enable B  
Enable A  
D
C
A
B
+IN A  
V+  
12 +IN D  
SO8  
DFN−10  
V
11  
OPA374  
OPA2374  
+IN B  
10 +IN C  
NC(2)  
V+  
NC(2)  
1
8
OUT A  
1
2
3
4
8
7
6
5
V+  
IN B  
9
8
IN C  
A
IN A  
OUT B  
IN  
2
3
4
7
6
5
OUT B  
OUT C  
B
OUT  
NC(2)  
+IN A  
IN B  
+IN B  
+IN  
SO14, TSSOP14  
V
V
SO8, SOT238  
SO8  
(1)  
(2)  
Pin 1 of the SOT23-6 is determined by orienting the package marking as shown.  
NC indicates no internal connection.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆꢇ ꢂꢈ ꢃ ꢉꢆꢉ ꢊꢋ ꢌꢍ ꢎ ꢏꢐ ꢑꢊꢍꢋ ꢊꢒ ꢓꢔ ꢎ ꢎ ꢕꢋꢑ ꢐꢒ ꢍꢌ ꢖꢔꢗ ꢘꢊꢓ ꢐꢑꢊ ꢍꢋ ꢙꢐ ꢑꢕꢚ ꢀꢎ ꢍꢙꢔ ꢓꢑꢒ  
ꢓ ꢍꢋ ꢌꢍꢎ ꢏ ꢑꢍ ꢒ ꢖꢕ ꢓ ꢊ ꢌꢊ ꢓ ꢐ ꢑꢊ ꢍꢋꢒ ꢖ ꢕꢎ ꢑꢛꢕ ꢑꢕ ꢎ ꢏꢒ ꢍꢌ ꢆꢕꢜ ꢐꢒ ꢇꢋꢒ ꢑꢎ ꢔꢏ ꢕꢋꢑ ꢒ ꢒꢑ ꢐꢋꢙ ꢐꢎ ꢙ ꢝ ꢐꢎ ꢎ ꢐ ꢋꢑꢞꢚ  
ꢀꢎ ꢍ ꢙꢔꢓ ꢑ ꢊꢍ ꢋ ꢖꢎ ꢍ ꢓ ꢕ ꢒ ꢒ ꢊꢋ ꢟ ꢙꢍ ꢕ ꢒ ꢋꢍꢑ ꢋꢕ ꢓꢕ ꢒꢒ ꢐꢎ ꢊꢘ ꢞ ꢊꢋꢓ ꢘꢔꢙ ꢕ ꢑꢕ ꢒꢑꢊ ꢋꢟ ꢍꢌ ꢐꢘ ꢘ ꢖꢐ ꢎ ꢐꢏ ꢕꢑꢕ ꢎ ꢒꢚ  
Copyright 2003-2008, Texas Instruments Incorporated  
www.ti.com  
ꢂꢀꢉꢠ ꢡꢠ ꢢ ꢂꢀꢉ ꢣꢠꢡ ꢠ  
ꢂꢀꢉ ꢠꢡ ꢤ  
ꢂꢀꢉ ꢣꢠ ꢡ ꢤꢢ ꢂꢀꢉ ꢤꢠ ꢡ ꢤ  
SBOS279E − SEPTEMBER 2003 − REVISED MAY 2008  
www.ti.com  
PACKAGE/ORDERING INFORMATION(1)  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
PACKAGE-LEAD  
Shutdown  
OPA373  
SOT23-6  
DBV  
−40°C to +125°C  
A75  
OPA373AIDBVT  
Tape and Reel, 250  
OPA373AIDBVR Tape and Reel, 3000  
OPA373  
SO-8  
D
−40°C to +125°C  
OPA373A  
OPA373AID  
Rails, 100  
DGS  
DRC  
OPA373AIDR  
Tape and Reel, 2500  
OPA2373  
MSOP-10  
−40°C to +125°C  
AYO  
OPA2373AIDGST Tape and Reel, 250  
OPA2373AIDGSR Tape and Reel, 2500  
OPA2373AIDRCT Tape and Reel, 250  
OPA2373AIDRCR Tape and Reel, 3000  
DFN-10  
OCEQ  
OPA2373  
−40°C to +125°C  
Non-Shutdown  
OPA374  
SOT23-5  
DBV  
−40°C to +125°C  
A76  
OPA374AIDBVT  
Tape and Reel, 250  
OPA374AIDBVR Tape and Reel, 3000  
OPA374  
SO-8  
D
−40°C to +125°C  
OPA274A  
OPA374AID  
Rails, 100  
OPA374AIDR  
Tape and Reel, 2500  
OPA2374  
SOT23-8  
DCN  
−40°C to +125°C  
ATP  
OPA2374A  
OPA2374AIDCNT Tape and Reel, 250  
OPA2374AIDCNR Tape and Reel, 3000  
D
OPA2374  
SO-8  
SO-14  
−40°C to +125°C  
OPA2374AID  
OPA2374AIDR  
OPA4374AID  
Rails, 100  
Tape and Reel, 2500  
Rails, 58  
OPA4374  
D
−40°C to +125°C  
OPA4374A  
PW  
OPA4374AIDR  
OPA4374AIPWT  
OPA4374AIPWR Tape and Reel, 2500  
Tape and Reel, 2500  
Tape and Reel, 250  
OPA4374  
TSSOP-14  
−40°C to +125°C  
OPA4374A  
(1)  
For the most current package and ordering information, see the Package Option Addendum located at the end of this datasheet.  
(1)  
This integrated circuit can be damaged by ESD. Texas  
Instruments recommends that all integrated circuits be  
handledwith appropriate precautions. Failure to observe  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +7.0V  
(2)  
Signal Input Terminals, Voltage  
. . . . . . . . . −0.5V to (V+) + 0.5V  
. . . . . . . . . . . . . . . . . . . 10mA  
proper handling and installation procedures can cause damage.  
(2)  
Current  
(3)  
Output Short-Circuit  
ESD damage can range from subtle performance degradation to  
complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could  
cause the device not to meet its published specifications.  
. . . . . . . . . . . . . . . . . . . . . . . . . Continuous  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . −55°C to +150°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . −65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
Lead Temperature (soldering, 10s) . . . . . . . . . . . . . . . . . . . . +300°C  
(1)  
Stresses above these ratings may cause permanent damage.  
Exposure to absolute maximum conditions for extended periods  
may degrade device reliability. These are stress ratings only, and  
functional operation of the device at these or any other conditions  
beyond those specified is not implied.  
(2)  
(3)  
Input terminals are diode-clamped to the power-supply rails.  
Input signals that can swing more than 0.5V beyond the supply  
rails should be current-limited to 10mA or less.  
Short-circuit to ground, one amplifier per package.  
2
ꢂ ꢀꢉꢠ ꢡ ꢠ ꢢ ꢂ ꢀꢉ ꢣꢠꢡ ꢠ  
ꢂ ꢀꢉ ꢠꢡꢤ  
ꢂ ꢀꢉꢣ ꢠ ꢡ ꢤꢢ ꢂ ꢀꢉ ꢤꢠꢡ ꢤ  
www.ti.com  
SBOS279E − SEPTEMBER 2003 − REVISED MAY 2008  
ELECTRICAL CHARACTERISTICS: V = +2.7V to +5.5V  
S
Boldface limits apply over the specified temperature range, T = −40°C to +125°C.  
A
At T = +25°C, R = 10kconnected to V /2, and V  
= V /2, unless otherwise noted.  
A
L
S
OUT  
S
OPA373, OPA2373, OPA374,  
OPA2374, OPA4374  
PARAMETER  
CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
OFFSET VOLTAGE  
Input Offset Voltage  
over Temperature  
Drift  
V
V
= 5V  
S
1
5
mV  
mV  
OS  
6.5  
dV /dT  
OS  
3
µV/°C  
µV/V  
µV/V  
µV/V  
dB  
vs Power Supply  
over Temperature  
Channel Separation, DC  
PSRR  
V
= 2.7V to 5.5V, V  
< (V+) − 2V  
25  
100  
S
CM  
V
= 2.7V to 5.5V, V  
< (V+) − 2V  
150  
S
CM  
0.4  
f = 1kHz  
128  
INPUT VOLTAGE RANGE  
Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
over Temperature  
V
(V−) − 0.2  
(V+) + 0.2  
V
CM  
CMRR  
(V−) − 0.2V < V  
< (V+) − 2V  
80  
70  
66  
60  
90  
dB  
dB  
dB  
dB  
CM  
(V−) − 0.2V < V  
< (V+) − 2V  
CM  
V
= 5.5V, (V−) − 0.2V < V  
< (V+) + 0.2V  
S
CM  
over Temperature  
V
= 5.5V, (V−) − 0.2V < V  
< (V+) + 0.2V  
S
CM  
INPUT BIAS CURRENT  
Input Bias Current  
I
0.5  
0.5  
10  
10  
pA  
pA  
B
Input Offset Current  
I
OS  
INPUT IMPEDANCE  
Differential  
13  
10  3  
Ω pF  
Ω pF  
13  
Common-Mode  
10  6  
NOISE  
V
< (V+) − 2V  
CM  
Input Voltage Noise, f = 0.1Hz to 10Hz  
Input Voltage Noise Density, f = 10kHz  
Input Current Noise Density, f = 10kHz  
10  
15  
4
µV  
nV/Hz  
fA/Hz  
PP  
e
n
i
n
OPEN-LOOP GAIN  
Open-Loop Voltage Gain  
over Temperature  
A
V
= 5V, R = 100k, 0.025V < V < 4.975V  
94  
80  
94  
80  
110  
106  
dB  
dB  
dB  
dB  
OL  
S
L
O
V
= 5V, R = 100k, 0.025V < V < 4.975V  
S
L O  
V
= 5V, R = 5k, 0.125V < V < 4.875V  
L O  
S
over Temperature  
V
= 5V, R = 5k, 0.125V < V < 4.875V  
S
L O  
OUTPUT  
Voltage Output Swing from Rail  
over Temperature  
R
= 100kΩ  
= 100kΩ  
= 5kΩ  
18  
25  
25  
mV  
mV  
mV  
mV  
L
R
L
R
100  
125  
125  
L
over Temperature  
Short-Circuit Current  
R
= 5kΩ  
L
I
See Typical Characteristics  
See Typical Characteristics  
220  
SC  
Capacitive Load Drive  
Open-Loop Output Impedance  
C
LOAD  
f = 1MHz, I = 0  
O
FREQUENCY RESPONSE  
Gain-Bandwidth Product  
Slew Rate  
C = 100pF  
L
GBW  
SR  
6.5  
5
MHz  
V/µs  
µs  
µs  
µs  
G = +1  
Settling Time, 0.1%  
0.01%  
t
V
V
= 5V, 2V Step, G = +1  
= 5V, 2V Step, G = +1  
1
S
S
S
1.5  
0.3  
0.0013  
Overload Recovery Time  
Total Harmonic Distortion + Noise  
V
Gain > V  
IN  
S
THD+N  
V
= 5V, V = 3V , G = +1, f = 1kHz  
%
S
O
PP  
ENABLE/SHUTDOWN  
t
3
µs  
µs  
V
OFF  
t
12  
ON  
V
V
(shutdown)  
V−  
(V−) + 0.8  
L
(amplifier is active)  
(V−) + 2  
V+  
V
H
Input Bias Current of Enable Pin  
(per amplifier)  
0.2  
µA  
µA  
I
< 0.5  
1
QSD  
3
ꢂꢀꢉꢠ ꢡꢠ ꢢ ꢂꢀꢉ ꢣꢠꢡ ꢠ  
ꢂꢀꢉ ꢠꢡ ꢤ  
ꢂꢀꢉ ꢣꢠ ꢡ ꢤꢢ ꢂꢀꢉ ꢤꢠ ꢡ ꢤ  
SBOS279E − SEPTEMBER 2003 − REVISED MAY 2008  
www.ti.com  
ELECTRICAL CHARACTERISTICS: V = +2.7V to +5.5V (continued)  
S
Boldface limits apply over the specified temperature range, T = −40°C to +125°C.  
A
At T = +25°C, R = 10kconnected to V /2, and V  
= V /2, unless otherwise noted.  
A
L
S
OUT  
S
OPA373, OPA2373, OPA374,  
OPA2374, OPA4374  
PARAMETER  
CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
POWER SUPPLY  
Specified Voltage Range  
Operating Voltage Range  
Quiescent Current (per amplifier)  
over Temperature  
V
I
2.7  
5.5  
V
V
S
2.3 to 5.5  
585  
I
= 0  
O
750  
µA  
µA  
Q
800  
TEMPERATURE RANGE  
Specified Range  
−40  
−55  
−65  
+125  
+150  
+150  
°C  
°C  
°C  
Operating Range  
Storage Range  
Thermal Resistance  
SOT23-5, SOT23-6, SOT23-8  
MSOP-10, SO-8  
q
JA  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
200  
150  
100  
56  
SO-14, TSSOP-14  
DFN-10  
JEDEC High-K Board  
4
ꢂ ꢀꢉꢠ ꢡ ꢠ ꢢ ꢂ ꢀꢉ ꢣꢠꢡ ꢠ  
ꢂ ꢀꢉ ꢠꢡꢤ  
ꢂ ꢀꢉꢣ ꢠ ꢡ ꢤꢢ ꢂ ꢀꢉ ꢤꢠꢡ ꢤ  
www.ti.com  
SBOS279E − SEPTEMBER 2003 − REVISED MAY 2008  
TYPICAL CHARACTERISTICS  
At T = +25°C, R = 10kconnected to V /2, and V  
OUT  
= V /2, unless otherwise noted.  
S
A
L
S
POWERSUPPLY AND COMMONMODE  
REJECTION RATIO vs FREQUENCY  
120  
100  
OPEN−LOOP GAIN AND PHASE vs FREQUENCY  
Gain  
120  
30  
0
100  
80  
60  
40  
20  
0
CMRR  
80  
30  
PSRR  
60  
60  
90  
Phase  
40  
120  
20  
150  
0
20  
180  
10M  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
TOTAL HARMONIC DISTORTION+NOISE  
vs FREQUENCY  
INPUT VOLTAGE NOISE  
SPECTRAL DENSITY vs FREQUENCY  
0.100  
1000  
RL = 5k  
G = 10V/V  
0.010  
0.001  
100  
G = 1V/V  
10k  
10  
10  
100  
1k  
100k  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
OPEN−LOOP GAIN AND POWER−SUPPLY  
REJECTION RATIO vs TEMPERATURE  
COMMON−MODE REJECTION RATIO vs TEMPERATURE  
VS = 5.5V  
120  
110  
100  
90  
130  
120  
110  
100  
90  
RL = 100k  
= 0.2V to 3.5V  
VCM  
RL = 5k  
80  
= 0.2V to 5.7V  
VCM  
70  
PSRR  
60  
50  
40  
80  
25  
50  
25  
50  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
_
_
Temperature ( C)  
Temperature ( C)  
5
ꢂꢀꢉꢠ ꢡꢠ ꢢ ꢂꢀꢉ ꢣꢠꢡ ꢠ  
ꢂꢀꢉ ꢠꢡ ꢤ  
ꢂꢀꢉ ꢣꢠ ꢡ ꢤꢢ ꢂꢀꢉ ꢤꢠ ꢡ ꢤ  
SBOS279E − SEPTEMBER 2003 − REVISED MAY 2008  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At T = +25°C, R = 10kconnected to V /2, and V  
OUT  
= V /2, unless otherwise noted.  
S
A
L
S
QUIESCENT CURRENT vs SUPPLY VOLTAGE  
QUIESCENT CURRENT vs TEMPERATURE  
800  
700  
600  
500  
400  
300  
800  
VOUT = 1/2[(V+) (V )]  
700  
600  
500  
400  
300  
25  
50  
0
25  
50  
75  
100  
125  
150  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
_
Temperature ( C)  
Supply Voltage (V)  
CONTINUOUS SHORT−CIRCUIT CURRENT vs  
POWER−SUPPLY VOLTAGE  
SHORT−CIRCUIT CURRENT vs TEMPERATURE  
+ISC  
12  
10  
8
16  
14  
12  
10  
8
+ISC  
ISC  
6
ISC  
6
4
4
2
2
0
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
50  
25  
0
25  
50  
75  
100  
125  
_
PowerSupply Voltage (V)  
Temperature ( C)  
INPUT BIAS CURRENT vs TEMPERATURE  
OUTPUT VOLTAGE SWING vs OUTPUT CURRENT  
3
2
1
0
10k  
1k  
100  
10  
1
1
_
55 C  
2
3
_
25 C  
_
150 C  
0.1  
25  
50  
0
25  
50  
75  
100  
125  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
_
Temperature ( C)  
Output Current (mA)  
6
ꢂ ꢀꢉꢠ ꢡ ꢠ ꢢ ꢂ ꢀꢉ ꢣꢠꢡ ꢠ  
ꢂ ꢀꢉ ꢠꢡꢤ  
ꢂ ꢀꢉꢣ ꢠ ꢡ ꢤꢢ ꢂ ꢀꢉ ꢤꢠꢡ ꢤ  
www.ti.com  
SBOS279E − SEPTEMBER 2003 − REVISED MAY 2008  
TYPICAL CHARACTERISTICS (continued)  
At T = +25°C, R = 10kconnected to V /2, and V  
OUT  
= V /2, unless otherwise noted.  
S
A
L
S
MAXIMUM OUTPUT VOLTAGE vs FREQUENCY  
VS = 5.5V  
OFFSET VOLTAGE PRODUCTION DISTRIBUTION  
6
5
4
3
2
1
0
VS = 5V  
VS = 2.5V  
10k  
100k  
1M  
10M  
1
5
4
3
2
0
1
2
3
4
5 5.5  
Frequency (Hz)  
Offset Voltage (mV)  
OFFSET VOLTAGE DRIFT MAGNITUDE  
PRODUCTION DISTRIBUTION  
SMALL−SIGNAL STEP RESPONSE  
CL = 100pF  
Typical production distribution  
of packaged units.  
200ns/div  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
µ
_
Offset Voltage Drift ( V/ C)  
LARGESIGNAL STEP RESPONSE  
CL = 100pF  
SMALLSIGNAL OVERSHOOT vs LOAD CAPACITANCE  
60  
50  
40  
30  
20  
10  
0
Refer to the Capacitive Load  
and Stability section for tips  
on improving performance.  
G = +1V/V  
G = 10V/V  
RFB = 10k  
400ns/div  
10  
100  
1k  
10k  
Load Capacitance (pF)  
7
ꢂꢀꢉꢠ ꢡꢠ ꢢ ꢂꢀꢉ ꢣꢠꢡ ꢠ  
ꢂꢀꢉ ꢠꢡ ꢤ  
ꢂꢀꢉ ꢣꢠ ꢡ ꢤꢢ ꢂꢀꢉ ꢤꢠ ꢡ ꢤ  
SBOS279E − SEPTEMBER 2003 − REVISED MAY 2008  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At T = +25°C, R = 10kconnected to V /2, and V  
OUT  
= V /2, unless otherwise noted.  
S
A
L
S
CHANNEL SEPARATION vs FREQUENCY  
SETTLING TIME vs CLOSEDLOOP GAIN  
100  
10  
1
140  
120  
100  
80  
G = +1V/V, All Channels  
RL = 5kΩ  
0.01%  
0.1%  
60  
40  
20  
0.1  
0
1
10  
100  
10  
100  
1K  
10K  
100K  
1M  
10M  
100M  
Frequency (Hz)  
ClosedLoop Gain (V/V)  
8
ꢂ ꢀꢉꢠ ꢡ ꢠ ꢢ ꢂ ꢀꢉ ꢣꢠꢡ ꢠ  
ꢂ ꢀꢉ ꢠꢡꢤ  
ꢂ ꢀꢉꢣ ꢠ ꢡ ꢤꢢ ꢂ ꢀꢉ ꢤꢠꢡ ꢤ  
www.ti.com  
SBOS279E − SEPTEMBER 2003 − REVISED MAY 2008  
APPLICATIONS  
2.0  
1.5  
1.0  
0.5  
0
The OPA373 and OPA374 series op amps are unity-gain  
stable and suitable for a wide range of general-purpose  
applications. Rail-to-rail input and output make them ideal  
for driving sampling Analog-to-Digital Converters (ADCs).  
Excellent ac performance makes them well-suited for  
audio applications. The class AB output stage is capable  
of driving 100kloads connected to any point between V+  
and ground.  
0.5  
1.0  
1.5  
2.0  
The input common-mode voltage range includes both  
rails, allowing the OPA373 and OPA374 series op amps to  
be used in virtually any single-supply application up to a  
supply voltage of +5.5V.  
V
V+  
0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
CommonMode Voltage (V)  
Figure 1. Behavior of Typical Transition Region at  
Room Temperature  
Rail-to-rail input and output swing significantly increases  
dynamic range, especially in low-supply applications.  
Power-supply pins should be bypassed with 0.01µF  
ceramic capacitors.  
RAIL-TO-RAIL INPUT  
The input common-mode range extends from (V−) − 0.2V  
to (V+) + 0.2V. For normal operation, inputs should be  
limited to this range. The absolute maximum input voltage  
is 500mV beyond the supplies. Inputs greater than the  
input common-mode range but less than the maximum  
input voltage, while not valid, will not cause any damage  
to the op amp. Unlike some other op amps, if input current  
is limited, the inputs may go beyond the supplies without  
phase inversion, as shown in Figure 2.  
OPERATING VOLTAGE  
The OPA373 and OPA374 op amps are specified and  
tested over a power-supply range of +2.7V to +5.5V  
( 1.35V to 2.75V). However, the supply voltage may  
range from +2.3V to +5.5V ( 1.15V to 2.75V). Supply  
voltages higher than 7.0V (absolute maximum) can  
permanently damage the amplifier. Parameters that vary  
over supply voltage or temperature are shown in the  
Typical Characteristics section of this data sheet.  
G = +1V/V, VS = 5V  
VIN  
COMMON-MODE VOLTAGE RANGE  
5V  
VOUT  
The input common-mode voltage range of the OPA373  
and OPA374 series extends 200mV beyond the supply  
rails. This is achieved with a complementary input  
stage—an N-channel input differential pair in parallel with  
a P-channel differential pair. The N-channel pair is active  
for input voltages close to the positive rail, typically  
(V+) − 1.65V to 200mV above the positive supply, while  
the P-channel pair is on for inputs from 200mV below the  
negative supply to approximately (V+) − 1.65V. There is a  
500mV transition region, typically (V+) − 1.9V to  
(V+) − 1.4V, in which both pairs are on. This 500mV  
transition region, shown in Figure 1, can vary 300mV with  
process variation. Thus, the transition region (both stages  
on) can range from (V+) − 2.2V to (V+) − 1.7V on the low  
end, up to (V+) − 1.6V to (V+) − 1.1V on the high end.  
Within the 500mV transition region PSRR, CMRR, offset  
voltage, offset drift, and THD may be degraded compared  
to operation outside this region.  
0V  
µ
1 s/div  
Figure 2. OPA373: No Phase Inversion with  
Inputs Greater Than the Power-Supply Voltage  
Normally, input bias current is approximately 500fA;  
however, input voltages exceeding the power supplies by  
more than 500mV can cause excessive current to flow in  
or out of the input pins. Momentary voltages greater than  
500mV beyond the power supply can be tolerated if the  
current on the input pins is limited to 10mA. This is easily  
accomplished with an input resistor; see Figure 3. (Many  
input signals are inherently current-limited to less than  
10mA, therefore, a limiting resistor is not required.)  
9
ꢂꢀꢉꢠ ꢡꢠ ꢢ ꢂꢀꢉ ꢣꢠꢡ ꢠ  
ꢂꢀꢉ ꢠꢡ ꢤ  
ꢂꢀꢉ ꢣꢠ ꢡ ꢤꢢ ꢂꢀꢉ ꢤꢠ ꢡ ꢤ  
SBOS279E − SEPTEMBER 2003 − REVISED MAY 2008  
www.ti.com  
capacitor, CFB, can be inserted in the feedback, as shown  
in Figure 5. This significantly reduces overshoot by  
compensating the effect of capacitance, CIN, which  
includes the amplifier input capacitance and printed circuit  
board (PCP) parasitic capacitance.  
V+  
IOVERLOAD  
10mA max  
VOUT  
OPA373  
R
VIN  
V+  
RS  
10 to 20  
Figure 3. Input Current Protection for Voltages  
Exceeding the Supply Voltage  
OPA373  
VOUT  
VIN  
RL  
CL  
RAIL-TO-RAIL OUTPUT  
A class AB output stage with common-source transistors  
is used to achieve rail-to-rail output. For light resistive  
loads ( > 100k), the output voltage can typically swing to  
within 18mV from the supply rails. With moderate resistive  
loads (5kto 50k), the output can typically swing to  
within 100mV from the supply rails and maintain high  
open-loop gain. See the Typical Characteristic curve,  
Output Voltage Swing vs Output Current, for more  
information.  
Figure 4. Series Resistor in Unity-Gain  
Configuration Improves Capacitive Load Drive  
CFB  
RF  
CAPACITIVE LOAD AND STABILITY  
V+  
OPA373 series op amps can drive a wide range of  
capacitive loads. However, under certain conditions, all op  
amps may become unstable. Op amp configuration, gain,  
and load value are just a few of the factors to consider  
when determining stability. An op amp in unity-gain  
configuration is the most susceptible to the effects of  
capacitive load. The capacitive load reacts with the op amp  
output resistance, along with any additional load  
resistance, to create a pole in the small-signal response  
that degrades the phase margin. The OPA373 series op  
amps perform well in unity-gain configuration, with a pure  
capacitive load up to approximately 250pF. Increased  
gains allow the amplifier to drive more capacitance. See  
the Typical Characteristics curve, Small-Signal Overshoot  
vs Capacitive Load, for further details.  
RI  
VIN  
VOUT  
OPA373  
CIN  
CL  
Figure 5. Improving Capacitive Load Drive  
For example, when driving a 100pF load in unity-gain  
inverter configuration, adding a 6pF capacitor in parallel  
with the 10kfeedback resistor decreases overshoot from  
57% to 12%, as shown in Figure 6.  
60  
One method of improving capacitive load drive in the  
unity-gain configuration is to insert a small (10to 20)  
resistor, RS, in series with the output, as shown in Figure 4.  
This significantly reduces ringing while maintaining dc  
performance for purely capacitive loads. When there is a  
resistive load in parallel with the capacitive load, RS must  
be placed within the feedback loop as shown to allow the  
feedback loop to compensate for the voltage divider  
created by RS and RL.  
G = 1V/V  
RFB = 10k  
50  
40  
30  
20  
10  
0
CFB = 6pF  
In unity-gain inverter configuration, phase margin can be  
reduced by the reaction between the capacitance at the op  
amp input and the gain setting resistors, thus degrading  
capacitive load drive. Best performance is achieved by  
using small valued resistors. However, when large valued  
resistors cannot be avoided, a small (4pF to 6pF)  
10  
100  
1k  
10k  
Load Capacitance (pF)  
Figure 6. Improving Capacitive Load Drive  
10  
ꢂ ꢀꢉꢠ ꢡ ꢠ ꢢ ꢂ ꢀꢉ ꢣꢠꢡ ꢠ  
ꢂ ꢀꢉ ꢠꢡꢤ  
ꢂ ꢀꢉꢣ ꢠ ꢡ ꢤꢢ ꢂ ꢀꢉ ꢤꢠꢡ ꢤ  
www.ti.com  
SBOS279E − SEPTEMBER 2003 − REVISED MAY 2008  
Figure 8 shows the OPA373 driving the ADS7816 in a  
speech band-pass filtered data acquisition system. This  
small, low-cost solution provides the necessary  
amplification and signal conditioning to interface directly  
with an electret microphone. This circuit will operate with  
VS = 2.7V to 5V.  
DRIVING ADCs  
The OPA373 and OPA374 series op amps are optimized  
for driving medium-speed sampling ADCs. The OPA373  
and OPA374 op amps buffer the ADC input capacitance  
and resulting charge injection, while providing signal gain.  
The OPA373 is shown driving the ADS7816 in a basic  
noninverting configuration, as shown in Figure 7. The  
ADS7816 is a 12-bit, MicroPower sampling converter in  
the MSOP-8 package. When used with the low-power,  
miniature packages of the OPA373, the combination is  
ideal for space-limited, low-power applications. In this  
configuration, an RC network at the ADC input can be used  
to provide anti-aliasing filtering.  
The OPA373 is shown in the inverting configuration  
described in Figure 9. In this configuration, filtering may be  
accomplished with the capacitor across the feedback  
resistor.  
ENABLE/SHUTDOWN  
OPA373 and OPA374 series op amps typically require  
585µA quiescent current. The enable/shutdown feature of  
the OPA373 allows the op amp to be shut off in order to  
reduce this current to less than 1µA.  
+5V  
µ
µ
0.1 F  
0.1 F  
1
VREF  
8
V+  
7
6
5
DCLOCK  
DOUT  
500  
+In  
2
Serial  
Interface  
ADS7816  
12Bit ADC  
OPA373  
VIN  
In  
CS/SHDN  
3300pF  
3
GND  
4
VIN = 0V to 5V for  
0V to 5V output.  
fSAMPLE = 100kHz  
NOTE: ADC Input = 0 to VREF  
RC network filters high frequency noise.  
Figure 7. The OPA373 in Noninverting Configuration Driving the ADS7816  
V+ = +2.7V to +5V  
Passband 300Hz to 3kHz  
R9  
510k  
R1  
R4  
R2  
1.5k  
20k  
1M  
C3  
C
33pF  
1
1000pF  
R7  
R8  
150k  
V+  
8
1
VREF  
51k  
1/2  
7
6
DCLOCK  
DOUT  
OPA2373  
+IN  
2
R3  
1/2  
ADS7816  
12Bit ADC  
Electret  
Microphone(1)  
Serial  
Interface  
C2  
OPA2373  
1M  
R6  
5
CS/SHDN  
IN  
1000pF  
100k  
3
4
GND  
G = 100  
NOTE: (1) Electret microphone  
powered by R1.  
R5  
20k  
Figure 8. The OPA2373 as a Speech Bypass Filtered Data Acquisition System  
11  
ꢂꢀꢉꢠ ꢡꢠ ꢢ ꢂꢀꢉ ꢣꢠꢡ ꢠ  
ꢂꢀꢉ ꢠꢡ ꢤ  
ꢂꢀꢉ ꢣꢠ ꢡ ꢤꢢ ꢂꢀꢉ ꢤꢠ ꢡ ꢤ  
SBOS279E − SEPTEMBER 2003 − REVISED MAY 2008  
www.ti.com  
+5V  
330pF  
µ
µ
0.1 F  
0.1 F  
5k  
5k  
VIN  
1
VREF  
8
V+  
7
6
5
DCLOCK  
DOUT  
500k  
+IN  
2
ADS7816  
12Bit ADC  
Serial  
Interface  
OPA373  
VS  
2
IN  
3
CS/SHDN  
3300pF  
GND  
4
NOTE: ADC Input = 0 to VREF  
Figure 9. The OPA373 in Inverting Configuration Driving the ADS7816  
C3  
330pF  
R2  
R3  
2.72k  
21.4k  
R1  
1/2  
11.7k  
OPA373  
1/2  
OPA373  
C1  
680pF  
C2  
330pF  
NOTE: FilterPro is a low-pass filter design program available for download at  
no cost from TI’s web site (www.ti.com). The program can be used to determine  
component values for other cutoff frequencies or filter types.  
Figure 10. Three-Pole Sallen-Key Butterworth Low-Pass Filter  
12  
ꢂ ꢀꢉꢠ ꢡ ꢠ ꢢ ꢂ ꢀꢉ ꢣꢠꢡ ꢠ  
ꢂ ꢀꢉ ꢠꢡꢤ  
ꢂ ꢀꢉꢣ ꢠ ꢡ ꢤꢢ ꢂ ꢀꢉ ꢤꢠꢡ ꢤ  
www.ti.com  
SBOS279E − SEPTEMBER 2003 − REVISED MAY 2008  
DFN PACKAGE  
LAYOUT GUIDELINES  
The OPA2373 is available in a DFN-10 package (also  
known as SON), which is a QFN package with lead  
contacts on only two sides of the bottom of the package.  
This leadless, near-chip-scale package maximizes board  
space and enhances thermal and electrical characteristics  
through an exposed pad. DFN packages are physically  
small, have a smaller routing area, improved thermal  
performance, and improved electrical parasitics, with a  
pinout scheme that is consistent with other  
commonly-used packages, such as SO and MSOP.  
Additionally, the absence of external leads eliminates  
bent-lead issues.  
The leadframe die pad should be soldered to a thermal pad  
on the PCB. A mechanical data sheet showing an example  
layout is attached at the end of this data sheet.  
Refinements to this layout may be required based on  
assembly process requirements.  
Mechanical drawings located at the end of this data sheet  
list the physical dimensions for the package and pad. The  
five holes in the landing pattern are optional, and are  
intended for use with thermal vias that connect the  
leadframe die pad to the heatsink area on the PCB.  
Soldering the exposed pad significantly improves  
board-level reliability during temperature cycling, key  
push, package shear, and similar board-level tests.  
The DFN package can be easily mounted using standard  
PCP assembly techniques. See Application Note,  
QFN/SON PCB Attachment (SLUA271) and Application  
Report, Quad Flatpack No-Lead Logic Packages  
(SCBA017), both available for download at www.ti.com.  
Even with applications that have low-power dissipation,  
the exposed pad must be soldered to the PCB to provide  
structural integrity and long-term reliability.  
The exposed leadframe die pad on the bottom of the  
package should be connected to V−.  
13  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2014  
PACKAGING INFORMATION  
Orderable Device  
OPA2373AIDGSR  
OPA2373AIDGST  
OPA2373AIDRCR  
OPA2373AIDRCRG4  
OPA2373AIDRCT  
OPA2374AID  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
VSSOP  
VSSOP  
SON  
DGS  
10  
10  
10  
10  
10  
8
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAUAG  
CU NIPDAUAG  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
AYO  
AYO  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DGS  
DRC  
DRC  
DRC  
D
250  
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
OCEQ  
OCEQ  
OCEQ  
SON  
Green (RoHS  
& no Sb/Br)  
SON  
Green (RoHS  
& no Sb/Br)  
SOIC  
75  
Green (RoHS  
& no Sb/Br)  
OPA  
2374A  
OPA2374AIDCNR  
OPA2374AIDCNRG4  
OPA2374AIDCNT  
OPA2374AIDCNTG4  
OPA2374AIDG4  
OPA2374AIDR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
DCN  
DCN  
D
8
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
ATP  
ATP  
ATP  
ATP  
8
Green (RoHS  
& no Sb/Br)  
8
Green (RoHS  
& no Sb/Br)  
8
250  
Green (RoHS  
& no Sb/Br)  
8
75  
Green (RoHS  
& no Sb/Br)  
OPA  
2374A  
SOIC  
D
8
2500  
2500  
75  
Green (RoHS  
& no Sb/Br)  
OPA  
2374A  
OPA2374AIDRG4  
OPA373AID  
SOIC  
D
8
Green (RoHS  
& no Sb/Br)  
OPA  
2374A  
SOIC  
D
8
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
OPA  
373A  
OPA373AIDBVR  
OPA373AIDBVRG4  
OPA373AIDBVT  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
6
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
A75  
A75  
A75  
6
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2014  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
OPA373AIDBVTG4  
OPA373AIDG4  
OPA373AIDR  
ACTIVE  
SOT-23  
SOIC  
DBV  
6
8
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
A75  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
D
75  
Green (RoHS  
& no Sb/Br)  
OPA  
373A  
SOIC  
8
2500  
2500  
75  
Green (RoHS  
& no Sb/Br)  
OPA  
373A  
OPA373AIDRG4  
OPA374AID  
SOIC  
D
8
Green (RoHS  
& no Sb/Br)  
OPA  
373A  
SOIC  
D
8
Green (RoHS  
& no Sb/Br)  
OPA  
374A  
OPA374AIDBVR  
OPA374AIDBVRG4  
OPA374AIDBVT  
OPA374AIDBVTG4  
OPA374AIDG4  
OPA374AIDR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
DBV  
DBV  
D
5
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
A76  
A76  
A76  
A76  
5
Green (RoHS  
& no Sb/Br)  
5
Green (RoHS  
& no Sb/Br)  
5
250  
Green (RoHS  
& no Sb/Br)  
8
75  
Green (RoHS  
& no Sb/Br)  
OPA  
374A  
SOIC  
D
8
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
OPA  
374A  
OPA374AIDRG4  
OPA4374AID  
SOIC  
D
8
Green (RoHS  
& no Sb/Br)  
OPA  
374A  
SOIC  
D
14  
14  
14  
14  
14  
14  
Green (RoHS  
& no Sb/Br)  
OPA4374A  
OPA4374A  
OPA4374A  
OPA4374A  
OPA4374AIDG4  
OPA4374AIDR  
OPA4374AIDRG4  
OPA4374AIPWR  
OPA4374AIPWRG4  
SOIC  
D
50  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
2500  
2500  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
PW  
PW  
Green (RoHS  
& no Sb/Br)  
OPA  
4374A  
Green (RoHS  
& no Sb/Br)  
OPA  
4374A  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2014  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
OPA4374AIPWT  
ACTIVE  
TSSOP  
TSSOP  
PW  
14  
14  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-2-260C-1 YEAR  
OPA  
4374A  
OPA4374AIPWTG4  
ACTIVE  
PW  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
OPA  
4374A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2014  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Feb-2014  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2373AIDGSR  
OPA2373AIDGST  
OPA2373AIDRCR  
OPA2373AIDRCT  
OPA2374AIDCNR  
OPA2374AIDCNT  
OPA2374AIDR  
VSSOP  
VSSOP  
SON  
DGS  
DGS  
DRC  
DRC  
DCN  
DCN  
D
10  
10  
10  
10  
8
2500  
250  
330.0  
180.0  
330.0  
180.0  
180.0  
180.0  
330.0  
330.0  
178.0  
178.0  
330.0  
330.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
8.4  
5.3  
5.3  
3.3  
3.3  
3.2  
3.2  
6.4  
6.4  
3.3  
3.3  
6.4  
6.5  
6.9  
6.9  
3.4  
3.4  
3.3  
3.3  
3.1  
3.1  
5.2  
5.2  
3.2  
3.2  
5.2  
9.0  
5.6  
5.6  
1.4  
1.4  
1.1  
1.1  
1.39  
1.39  
2.1  
2.1  
1.4  
1.4  
2.1  
2.1  
1.6  
1.6  
8.0  
8.0  
8.0  
8.0  
4.0  
4.0  
8.0  
8.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q2  
Q2  
Q3  
Q3  
Q1  
Q1  
Q3  
Q3  
Q1  
Q1  
Q1  
Q1  
3000  
250  
SON  
SOT-23  
SOT-23  
SOIC  
3000  
250  
8
8.4  
8.0  
8
2500  
2500  
3000  
250  
12.4  
12.4  
8.4  
12.0  
12.0  
8.0  
OPA373AIDR  
SOIC  
D
8
OPA374AIDBVR  
OPA374AIDBVT  
OPA374AIDR  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
5
5
8.4  
8.0  
8
2500  
2500  
2500  
250  
12.4  
16.4  
12.4  
12.4  
12.0  
16.0  
12.0  
12.0  
OPA4374AIDR  
SOIC  
D
14  
14  
14  
OPA4374AIPWR  
OPA4374AIPWT  
TSSOP  
TSSOP  
PW  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Feb-2014  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2373AIDGSR  
OPA2373AIDGST  
OPA2373AIDRCR  
OPA2373AIDRCT  
OPA2374AIDCNR  
OPA2374AIDCNT  
OPA2374AIDR  
VSSOP  
VSSOP  
SON  
DGS  
DGS  
DRC  
DRC  
DCN  
DCN  
D
10  
10  
10  
10  
8
2500  
250  
367.0  
210.0  
367.0  
210.0  
210.0  
210.0  
367.0  
367.0  
565.0  
565.0  
367.0  
367.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
185.0  
185.0  
367.0  
367.0  
140.0  
140.0  
367.0  
367.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
75.0  
75.0  
35.0  
38.0  
35.0  
35.0  
3000  
250  
SON  
SOT-23  
SOT-23  
SOIC  
3000  
250  
8
8
2500  
2500  
3000  
250  
OPA373AIDR  
SOIC  
D
8
OPA374AIDBVR  
OPA374AIDBVT  
OPA374AIDR  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
5
5
8
2500  
2500  
2500  
250  
OPA4374AIDR  
SOIC  
D
14  
14  
14  
OPA4374AIPWR  
OPA4374AIPWT  
TSSOP  
TSSOP  
PW  
PW  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2014, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY