OPA2625 [TI]

具有关断功能的高带宽、高精密、低 THD+N、16 位和 18 位 ADC 驱动器;
OPA2625
型号: OPA2625
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有关断功能的高带宽、高精密、低 THD+N、16 位和 18 位 ADC 驱动器

驱动 驱动器
文件: 总48页 (文件大小:2997K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
OPA625, OPA2625  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
OPAx625 高带宽、高精度、低 THD+N、  
16 位和 18 位模数转换器 (ADC) 驱动器  
1 特性  
3 说明  
1
高驱动模式:  
OPAx625 系列运算放大器是出色的 16 位和 18 位  
SAR ADC 驱动器,具备高精度、低总谐波失真 (THD)  
及低噪声等诸多优势,可提供一套独特的电源可扩展解  
决方案。该器件系列在额定工作条件下的 16 位稳定时  
间为 280ns,可提供真正的 16 位有效位数 (ENOB)。  
该系列器件具备高直流精度(偏移电压仅为  
增益带宽 (GBW) (G = 100)120MHz  
转换率:115V/μs  
4V 输出时的 16 位稳定时间: 280ns  
低电压噪声:10kHz 时为 2.5nV/Hz  
低输出阻抗:1MHz 时为 1Ω  
100µV)、120MHz 的宽增益带宽积以及 2.5nV/Hz  
的低宽带噪声,并且经优化可驱动高吞吐量、高分辨率  
SAR ADC,例如 ADS88xx 系列 SAR ADC。  
偏移电压:±100µV(最大值)  
偏移电压漂移:±3µV/ºC(最大值)  
低静态电流:2mA(典型值)  
低功耗模式:  
OPAx625 具有 两种工作模式:高驱动模式和低功  
耗模式。在创新型低功耗模式下,OPAx625 会跟踪输  
入信号,从而能够在 170ns 内以 16 ENOB 从低功  
耗模式切换至高驱动模式。  
GBW1MHz  
低静态电流:270µA(典型值)  
功率可扩展性 特性:  
可超快速地从低功耗模式切换至高驱动模  
式:170ns  
OPAx625 系列采用 6 引脚小外形尺寸晶体管 (SOT)  
封装和 10 引脚超薄小外形尺寸 (VSSOP) 封装,额定  
工作温度范围为 –40°C +125℃。  
高交流和直流精度:  
低失真:100kHz 时,HD2 –122dBcHD3  
–140dBc  
器件信息(1)  
输入共模范围包括负电源轨  
轨到轨输出  
器件型号  
OPA625  
OPA2625  
封装  
SOT (6)  
VSSOP (10)  
封装尺寸(标称值)  
2.90mm x 1.60mm  
3.00mm × 3.00mm  
宽额定温度范围:-40℃ 至 +125℃  
(1) 要了解所有可用封装,请参见数据表末尾的封装选项附录。  
2 应用  
精密逐次逼近寄存器 (SAR) ADC 驱动器  
精密电压基准缓冲器  
可编程逻辑控制器  
测试和测量设备  
16 SAR ADCfIN = 10kHz1MSPS FFT  
0
功耗敏感型数据采集系统  
THD = -110.8 dBc  
SNR = 91.88 dB  
SINAD = 91.86 dB  
ENOB = 14.97  
-25  
-50  
SAR ADC 驱动器  
1 k  
1 kꢀ  
Mode  
Control  
-75  
Input  
Voltage  
-115.91 dBc (Third Harmonic)  
5 V  
VREF  
3.3 V  
-100  
-125  
-150  
-175  
œ
4.7 ꢀ  
4.7 ꢀ  
OPA625  
REF AVDD  
ADS8860  
GND  
10 nF  
+
VREF / 4  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (kHz)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS688  
 
 
 
OPA625, OPA2625  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics High-Drive Mode............... 5  
6.6 Electrical Characteristics Low-Power Mode.............. 7  
6.7 Electrical Characteristics High-Drive Mode............... 8  
6.8 Electrical Characteristics Low-Power Mode............ 10  
6.9 Switching Characteristics........................................ 11  
6.10 Typical Characteristics.......................................... 12  
Parameter Measurement Information ................ 23  
7.1 DC Parameter Measurements ................................ 23  
7.2 Transient Parameter Measurements ...................... 24  
7.3 AC Parameter Measurements ................................ 24  
7.4 Noise Parameter Measurements ............................ 25  
8
9
Detailed Description ............................................ 26  
8.1 Overview ................................................................. 26  
8.2 Functional Block Diagram ....................................... 26  
8.3 Feature Description................................................. 27  
8.4 Device Functional Modes........................................ 28  
Application and Implementation ........................ 30  
9.1 Application Information............................................ 30  
9.2 Typical Applications ................................................ 30  
10 Power Supply Recommendations ..................... 34  
11 Layout................................................................... 34  
11.1 Layout Guidelines ................................................. 34  
11.2 Layout Example .................................................... 35  
12 器件和文档支持 ..................................................... 36  
12.1 器件支持................................................................ 36  
12.2 文档支持................................................................ 36  
12.3 相关链接................................................................ 36  
12.4 Community Resources.......................................... 36  
12.5 ....................................................................... 37  
12.6 静电放电警告......................................................... 37  
12.7 Glossary................................................................ 37  
13 机械、封装和可订购信息....................................... 37  
7
4 修订历史记录  
Changes from Original (April 2015) to Revision A  
Page  
已将 OPA2625 产品预览改为量产数据;已添加 OPA2625 规范至数据表 .................................................................... 1  
Changed MODE B pin description options for V+ and V– ..................................................................................................... 3  
Added crosstalk parameter to Electrical Characteristics table .............................................................................................. 5  
Added crosstalk parameter to Electrical Characteristics table .............................................................................................. 8  
Changed short-circuit current value from 150 mA to 80 mA in Electrical Characteristics table............................................. 9  
Changed short-circuit current value from 100 mA to 50 mA in Electrical Characteristics table........................................... 10  
Added OPA2625 data to 12 ............................................................................................................................................ 13  
Added 24.......................................................................................................................................................................... 15  
Deleted "18" from several typical characteristic figure titles (typo) ..................................................................................... 19  
2
Copyright © 2015, Texas Instruments Incorporated  
 
OPA625, OPA2625  
www.ti.com.cn  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
5 Pin Configuration and Functions  
OPA625: DBV Package  
6-Pin SOT  
OPA2625: DGS Package  
10-Pin VSSOP  
Top View  
Top View  
OUT A  
œIN A  
V+  
OUT  
Vœ  
1
2
3
6
5
4
V+  
1
2
3
4
5
10  
9
OUT B  
œIN B  
MODE  
œIN  
+IN A  
8
Vœ  
+IN B  
7
+IN  
MODE B  
MODE A  
6
Pin Functions: OPA625  
PIN  
I/O  
DESCRIPTION  
NAME  
NO  
3
+IN  
–IN  
I
I
Noninverting input  
4
Inverting input  
Controls OPA625 mode:  
V+ = low-power mode  
V– = high-drive mode  
MODE  
5
I
NOTE: Do not float this pin.  
OUT  
V+  
1
6
2
O
Output terminal  
Positive supply voltage  
Negative supply voltage  
V–  
Pin Functions: OPA2625  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
3
+IN A  
–IN A  
+IN B  
–IN B  
I
I
I
I
Noninverting input for channel A  
Inverting input for channel A  
Noninverting input for channel B  
Inverting input for channel B  
2
7
8
Controls OPA2625 mode for channel A:  
V+ = low-power mode  
V– = high-drive mode  
MODE A  
MODE B  
5
6
I
I
NOTE: Do not float this pin.  
Controls OPA2625 mode for channel B:  
V+ = low-power mode  
V– = high-drive mode  
NOTE: Do not float this pin.  
OUT A  
OUT B  
V+  
1
9
O
O
Output terminal for channel A  
Output terminal for channel B  
Positive supply voltage  
10  
4
V–  
Negative supply voltage  
Copyright © 2015, Texas Instruments Incorporated  
3
OPA625, OPA2625  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
6
UNIT  
Supply voltage, VS  
Input voltage(2)  
Output voltage  
(V+) – (V–)  
+IN  
V
(V–) – 0.3  
(V–) – 0.3  
(V–) – 0.3  
(V–)  
(V+) + 0.3  
(V+) + 0.3  
(V+) + 0.3  
(V+)  
10  
–IN  
V
V
MODE  
OUT  
+IN  
–IN  
10  
Sink current  
mA  
MODE  
OUT  
10  
150  
+IN  
10  
–IN  
10  
Source current  
Temperature  
mA  
°C  
MODE  
OUT(2)  
Operating junction  
Storage, Tstg  
10  
150  
–40  
–65  
150  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) For input voltages beyond the power-supply rails, voltage or current must be limited.  
6.2 ESD Ratings  
VALUE  
±3000  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
MAX  
5.5  
UNIT  
VS  
VI  
Supply input voltage, (V+) – (V–)  
Input voltage  
V
+IN  
(V–)  
(V–)  
(V–)  
(V–)  
–120  
–40  
(V+) – 1.15  
(V+) – 1.15  
(V+)  
–IN  
V
MODE  
VO  
IO  
Output voltage  
(V+)  
V
Output current  
120  
mA  
°C  
°C  
TA  
TJ  
Operating free-air temperature  
Operating junction temperature  
125  
–40  
125  
4
Copyright © 2015, Texas Instruments Incorporated  
 
OPA625, OPA2625  
www.ti.com.cn  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
6.4 Thermal Information  
OPA625  
DBV (SOT)  
6 PINS  
184.9  
OPA2625  
DGS (VSSOP)  
10 PINS  
171.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
123.6  
68.4  
30.7  
91.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
22.1  
9.4  
ψJB  
30.2  
90.5  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics High-Drive Mode  
at TA = 25°C, V+ = 5 V, V– = 0 V, MODE pin connected to V– pin, VCOM = VO = 2.5 V, gain (G) = 1, RF = 1 kΩ, CF = 2.7 pF,  
CLOAD = 20 pF, and RLOAD = 2 kΩ connected to 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
Unity gain frequency  
Phase margin  
VO = 10 mVPP  
80  
50  
MHz  
Degrees  
MHz  
φm  
GBW  
Gain-bandwidth product G = 100, VO = 10 mVPP  
120  
45  
VO = 1-V step, G = 1  
Slew rate  
SR  
V/µs  
VO = 4-V step, G = 2  
115  
Settling time to 0.1%  
(10-bit accuracy)  
80  
110  
280  
to 0.005%  
(14-bit accuracy)  
tsettle  
Settling time  
VO = 4-V step, G = 2  
ns  
to 0.00153%  
(16-bit accuracy)  
Overshoot  
VO = 4-V step, G = 2  
VO = 4-V step, G = 2  
2.5%  
3%  
144  
122  
80  
Undershoot  
f = 10 kHz  
f = 100 kHz  
f = 1 MHz  
f = 10 kHz  
f = 100 kHz  
f = 1 MHz  
Second-order harmonic  
Distortion  
HD2  
HD3  
VO = 2 VPP, G = 2  
VO = 2 VPP, G = 2  
dBc  
dBc  
155  
140  
80  
Third-order harmonic  
Distortion  
Second-order  
intermodulation distortion  
VO = 2 VPP, f = 1 MHz, 200-kHz tone spacing  
VO = 2 VPP, f = 1 MHz, 200-kHz tone spacing  
90  
dBc  
dBc  
Third-order  
intermodulation distortion  
100  
f = 0.1 Hz to 10 Hz, peak-to-peak  
f = 0.1 Hz to 10 Hz, rms  
f = 1 kHz  
0.8  
120  
3.2  
2.5  
4.1  
2.8  
50  
µVPP  
VN  
Vn  
In  
Input noise voltage  
nVRMS  
Input voltage noise  
density  
nV/Hz  
pA/Hz  
f = 10 kHz  
f = 1 kHz  
Input current noise  
density  
f = 10 kHz  
tOR  
Zo  
Overload recovery time  
G = 5  
ns  
Open-loop output  
impedance  
f = 1 MHz  
1
Ω
DC  
150  
127  
Crosstalk  
dB  
µV  
f = 1 MHz  
DC PERFORMANCE  
VOS Input offset voltage  
15  
±100  
±300  
TA = –40°C to +125°C  
Copyright © 2015, Texas Instruments Incorporated  
5
OPA625, OPA2625  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
www.ti.com.cn  
Electrical Characteristics High-Drive Mode (continued)  
at TA = 25°C, V+ = 5 V, V– = 0 V, MODE pin connected to V– pin, VCOM = VO = 2.5 V, gain (G) = 1, RF = 1 kΩ, CF = 2.7 pF,  
CLOAD = 20 pF, and RLOAD = 2 kΩ connected to 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TA = –40°C to +125°C  
0.5  
±3  
µV/°C  
dVOS/dT  
PSRR  
Input offset voltage drift  
OPA2625 only, TA = –40°C to +125°C  
0.6  
±4  
100  
90  
Power-supply rejection  
ratio  
2.7 V (V+) 5 V  
dB  
TA = –40°C to +125°C  
120  
2
4
5.7  
6.5  
IB  
Input bias current  
TA = –40°C to +125°C  
µA  
nA/°C  
nA  
OPA2625 only, TA = –40°C to +125°C  
TA = –40°C to +125°C  
dIB/dT  
IOS  
Input bias current drift  
Input offset current  
Input offset current drift  
15  
20  
120  
150  
200  
TA = –40°C to +125°C  
OPA2625 only, TA = –40°C to +125°C  
TA = –40°C to +125°C  
dIOS/dT  
0.6  
nA/°C  
OPEN LOOP GAIN  
(V–) + 0.2 V < VO < (V+) – 0.2 V, RLOAD = 600 Ω  
(V–) + 0.15 V < VO < (V+) – 0.15 V, RLOAD = 10 kΩ  
110  
114  
(V–) + 0.2 V < VO < (V+) – 0.2 V,  
RLOAD = 600 Ω  
AOL  
Open-loop gain  
dB  
106  
110  
128  
132  
TA = –40°C to +125°C  
(V–) + 0.15 V < VO < (V+) – 0.15 V,  
RLOAD = 10 kΩ  
INPUT VOLTAGE  
Common-mode voltage  
range  
(V+) –  
1.15  
VCM  
TA = –40°C to +125°C  
(V–)  
V
100  
90  
117  
115  
Common-mode rejection  
ratio  
CMRR  
(V–) < VCOM < (V+) – 1.15 V  
dB  
TA = –40°C to +125°C  
INPUT IMPEDANCE  
Differential input  
impedance  
ZID  
27 || 1.2  
47 || 1.5  
KΩ || pF  
MΩ || pF  
Common-mode input  
impedance  
ZIC  
OUTPUT  
60  
20  
80  
100  
35  
RLOAD = 600 Ω  
RLOAD = 10 kΩ  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
Output voltage swing to  
the rail  
mV  
mA  
40  
Isc  
Short-circuit current  
Capacitive load drive  
150  
CLOAD  
MODE  
See Typical Characteristics  
High-drive (HD) mode  
threshold  
VIL  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
(V–)  
(V–) + 0.5  
V
Low-power (LP) mode  
threshold  
VIH  
IIL  
(V–) + 1.2  
(V+)  
V
Low-level input current  
TA = –40°C to +125°C, VMODE (V–) + 0.5 V  
0.01  
20  
1
30  
1
µA  
TA = –40°C to +125°C, VMODE (V–) + 1.2 V  
IIH  
High-level input current  
µA  
OPA2625 only, TA = –40°C to +125°C, VMODE (V–) + 1.2 V  
POWER SUPPLY  
Quiescent current per  
2
2.2  
3.1  
IO = 0 mA,  
MODE connected to ground  
IQ  
mA  
amplifier  
TA = –40°C to +125°C  
6
Copyright © 2015, Texas Instruments Incorporated  
OPA625, OPA2625  
www.ti.com.cn  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
6.6 Electrical Characteristics Low-Power Mode  
at TA = 25°C, V+ = 5 V, V– = 0 V, VMODE = 5 V, VCOM = VO = 2.5 V, gain (G) = 1, RF = 1 kΩ, CF = 2.7 pF, CLOAD = 20 pF, and  
RLOAD = 2 kΩ connected to 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
GBW  
Gain-bandwidth product G = 100, VO = 10 mVPP  
Phase margin  
1
72  
MHz  
φm  
Degrees  
VO = 1-V step  
Slew rate  
4.3  
4.1  
SR  
Zo  
V/µs  
VO = 4-V step, G = 2  
Open-loop output  
f = 1 MHz  
12  
Ω
impedance  
DC PERFORMANCE  
0.6  
0.7  
3
VOS  
Input offset voltage  
mV  
dB  
TA = –40°C to +125°C  
3.7  
74  
70  
Power-supply rejection  
ratio  
PSRR  
2.7 V (V+) 5 V  
TA = –40°C to +125°C  
100  
140  
150  
200  
250  
20  
IB  
Input bias current  
TA = –40°C to +125°C  
nA  
nA  
OPA2625 only, TA = –40°C to +125°C  
IOS  
Input offset current  
TA = –40°C to +125°C  
25  
OPEN LOOP GAIN  
(V–) + 0.2 V < VO < (V+) – 0.2 V,  
RLOAD = 600 Ω  
70  
90  
100  
100  
AOL  
Open-loop gain  
TA = –40°C to +125°C  
dB  
(V–) + 0.15 V < VO < (V+) – 0.15 V,  
RLOAD = 10 kΩ  
INPUT VOLTAGE  
Common-mode voltage  
range  
(V+) –  
1.15  
VCM  
TA = –40°C to +125°C  
(V–)  
V
66  
60  
114  
114  
Common-mode rejection  
ratio  
CMRR  
(V–) < VCOM < (V+) – 1.15 V  
dB  
TA = –40°C to +125°C  
OUTPUT  
RLOAD = 600 Ω  
RLOAD = 10 kΩ  
110  
40  
Output voltage swing to  
the rail  
TA = –40°C to +125°C  
mV  
mA  
Isc  
Short-circuit current  
100  
270  
POWER SUPPLY  
320  
450  
Quiescent current per  
amplifier  
IO = 0 mA,  
MODE connected to V+  
IQ  
µA  
TA = –40°C to +125°C  
Copyright © 2015, Texas Instruments Incorporated  
7
OPA625, OPA2625  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
www.ti.com.cn  
6.7 Electrical Characteristics High-Drive Mode  
at TA = +25°C, V+ = 2.7 V, V– = 0 V, VMODE = 0 V, VCOM = VO = 1.35 V, gain (G) = 1, RF = 1 kΩ, CF = 2.7 pF, CLOAD = 20 pF,  
and RLOAD = 1 kΩ connected to 1.35 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
Unity gain frequency  
Phase margin  
VO = 10 mVPP  
76  
45  
MHz  
Degrees  
MHz  
φm  
GBW  
SR  
Gain-bandwidth product G = 100, VO = 10 mVPP  
120  
45  
Slew rate  
VO = 1-V step, G = 2  
V/µs  
to 0.1%  
80  
tsettle  
Settling time  
VO = 1-V step, G = 2  
to 0.01%  
170  
250  
6%  
5%  
136  
118  
80  
ns  
to 0.000763% (17-bit accuracy)  
Overshoot  
VO = 1-V step, G = 2  
VO = 1-V step, G = 2  
Undershoot  
f = 10 kHz  
(V+) = 3.3 V, (V–) = 0 V,  
VCOM = 1.1 V,  
VO = 2 VPP  
Second order harmonic  
Distortion  
HD2  
HD3  
f = 100 kHz  
dBc  
dBc  
f = 1 MHz  
f = 10 kHz  
143  
143  
130  
125  
85  
OPA2625 only, f = 10 kHz  
f = 100 kHz  
(V+) = 3.3 V, (V–) = 0 V,  
VCOM = 1.1 V,  
VO = 2 VPP  
Third order harmonic  
Distortion  
OPA2625 only, f = 100 kHz  
f = 1 MHz  
OPA2625 only, f = 1 MHz  
74  
Second order inter-  
modulation distortion  
(V+) = 3.3 V, (V–) = 0 V, VCOM = 1.1 V, VO = 2 VPP  
f = 1 MHz, 200-kHz tone spacing  
,
95  
dBc  
dBc  
Third order inter-  
modulation distortion  
(V+) = 3.3 V, (V–) = 0 V, VCOM = 1.1V, VO = 1 VPP  
,
104  
f = 1 MHz, 200-kHz tone spacing  
f = 0.1 Hz to 10 Hz peak to peak  
f = 0.1 Hz to 10 Hz rms  
0.8  
µVPP  
VN  
Vn  
Input noise voltage  
120  
nVRMS  
Input voltage noise  
density  
f = 10 kHz  
2.5  
nV/Hz  
Input current noise  
density  
In  
f = 10 kHz  
G = 5  
2.8  
35  
pA/Hz  
tOR  
Zo  
Overload recovery time  
ns  
Open-loop output  
impedance  
f = 1 MHz  
1.3  
Ω
DC  
150  
127  
Crosstalk  
dB  
f = 1 MHz  
DC PERFORMANCE  
15  
±100  
±300  
±3.1  
±4  
VOS  
Input offset voltage  
µV  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
0.5  
0.6  
2
dVOS/dT  
Input offset voltage drift  
µV/°C  
OPA2625 only, TA = –40°C to +125°C  
4
IB  
Input bias current  
TA = –40°C to +125°C  
5.7  
µA  
nA/°C  
nA  
OPA2625 only, TA = –40°C to +125°  
TA = –40°C to +125°C  
6.5  
dIB/dT  
IOS  
Input bias current drift  
Input offset current  
Input offset current drift  
15  
20  
120  
150  
200  
TA = –40°C to +125°C  
OPA2625 only, TA = –40°C to +125°  
TA = –40°C to +125°C  
dIOS/dT  
80  
pA/°C  
OPEN-LOOP GAIN  
8
Copyright © 2015, Texas Instruments Incorporated  
OPA625, OPA2625  
www.ti.com.cn  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
Electrical Characteristics High-Drive Mode (continued)  
at TA = +25°C, V+ = 2.7 V, V– = 0 V, VMODE = 0 V, VCOM = VO = 1.35 V, gain (G) = 1, RF = 1 kΩ, CF = 2.7 pF, CLOAD = 20 pF,  
and RLOAD = 1 kΩ connected to 1.35 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
(V–) + 0.2 V < VO < (V+) – 0.2 V,  
RLOAD = 600 Ω  
110  
(V–) + 0.15 V < VO < (V+) – 0.15 V,  
RLOAD = 10 kΩ  
114  
106  
110  
AOL  
Open-loop gain  
dB  
(V–) + 0.2 V < VO < (V+) – 0.2 V,  
128  
132  
RLOAD = 600 Ω  
TA = –40°C to +125°C  
(V–) + 0.15 V < VO < (V+) – 0.15 V,  
RLOAD = 10 kΩ  
INPUT VOLTAGE  
Common-mode voltage  
range  
(V+) –  
1.15  
VCM  
TA = –40°C to +125°C  
(V–)  
V
100  
90  
117  
115  
Common-mode rejection  
ratio  
CMRR  
(V–) < VCOM < (V+) – 1.15 V  
dB  
TA = –40°C to +125°C  
INPUT IMPEDANCE  
Differential input  
impedance  
ZID  
27 || 0.8  
47 || 1.2  
KΩ || pF  
MΩ || pF  
Common-mode input  
impedance  
ZIC  
OUTPUT  
60  
20  
80  
80  
100  
35  
R LOAD = 600 Ω  
R LOAD = 10 kΩ  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
Output voltage swing to  
the rail  
mV  
mA  
40  
ISC  
Short-circuit current  
Capacitive load drive  
CLOAD  
MODE  
See Typical Characteristics  
High-drive (HD) mode  
threshold  
VIL  
VIH  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
(V–)  
(V–) + 0.5  
V
V
Low-power (LP) mode  
threshold  
(V–) + 1.2  
(V+)  
POWER SUPPLY  
2
2.1  
2.8  
Quiescent current per  
amplifier  
IO = 0 mA  
MODE connected to ground  
IQ  
mA  
TA = –40°C to +125°C  
Copyright © 2015, Texas Instruments Incorporated  
9
OPA625, OPA2625  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
www.ti.com.cn  
6.8 Electrical Characteristics Low-Power Mode  
at TA = +25°C, V+ = 2.7 V, V– = 0 V, VMODE = 2.7 V, VCOM = VO = 1.35V, gain (G) = 1, RF = 1 kΩ, CF = 2.7 pF, CLOAD = 20 pF,  
and RLOAD = 1 kΩ connected to 1.35 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
GBW  
φm  
Gain-bandwidth product G = 100, VIN = 10 mVPP  
Phase margin  
0.8  
72  
MHz  
Degrees  
V/µs  
SR  
Slew rate  
VO = 1 V-step, G = 2  
f = 1 MHz  
3.7  
Open-loop output  
impedance  
Zo  
13  
Ω
DC PERFORMANCE  
VOS Input offset voltage  
0.6  
0.7  
3
±3.6  
150  
220  
250  
20  
mV  
nA  
nA  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
IB  
Input bias current  
140  
OPA2625 only, TA = –40°C to +125°  
IOS  
Input offset current  
TA = –40°C to +125°C  
25  
OPEN LOOP GAIN  
(V–) + 0.2 V < VO < (V+) – 0.2 V,  
RLOAD = 600 Ω  
74  
84  
100  
100  
AOL  
Open-loop gain  
TA = –40°C to +125°C  
dB  
(V–) + 0.15 V < VO < (V+) – 0.15 V,  
RLOAD = 10 kΩ  
INPUT VOLTAGE  
Common-mode voltage  
range  
(V+) –  
1.15  
VCM  
TA = –40°C to +125°C  
(V–)  
V
66  
60  
114  
114  
Common-mode rejection  
ratio  
CMRR  
(V–) < VCOM < (V+) – 1.15 V  
dB  
TA = –40°C to +125°C  
OUTPUT  
RLOAD = 600 Ω  
RLOAD = 10 kΩ  
110  
40  
Output voltage swing to  
rail  
TA = –40°C to +125°C  
mV  
mA  
Isc  
Short-circuit current  
50  
POWER SUPPLY  
250  
270  
400  
Quiescent current per  
amplifier  
IO = 0 mA,  
MODE connected to V+  
IQ  
µA  
TA = –40°C to +125°C  
10  
版权 © 2015, Texas Instruments Incorporated  
OPA625, OPA2625  
www.ti.com.cn  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
6.9 Switching Characteristics  
at TA = 25°C, V+ = 5 V, V– = 0 V, MODE pin connected to V– pin, gain (G) = 1 , VCOM = VO = 2.5 V, CLOAD = 20 pF, and RLOAD  
= 1 kΩ connected to 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Settling time to within 50 µV of final value,  
MODE pin = high to low (LP to HD), VO = 3.8 V  
180  
ns  
Delay time, MODE pin falling  
(low-power mode to high-drive mode)  
tLP-HD is defined as the time taken for the  
quiescent current to increase from 110% of its  
value in LP mode to 90% of its value in HD  
mode.  
tLP-HD  
170  
300  
ns  
ns  
tHD-LP is defined as the time taken for the  
quiescent current to decrease from 90% of its  
value in HD mode to 110% of its value in LP  
mode.  
Delay time, MODE pin rising  
(high-drive mode to low-power mode)  
tHD-LP  
tHD-LP  
MODE  
tLP-HD  
OPAx625  
STATE  
Low-Power mode  
High-Drive mode  
1. Switching Characteristics Timing Diagram  
版权 © 2015, Texas Instruments Incorporated  
11  
OPA625, OPA2625  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
www.ti.com.cn  
6.10 Typical Characteristics  
At TA = 25°C, V+ = 5 V, V– = 0 V, MODE = V–, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and  
RLOAD = 2 kΩ connected to 2.5 V (unless otherwise noted)  
25  
20  
25  
20  
15  
15  
10  
10  
5
5
0
0
Gain = 1  
Gain = -1  
Gain = 2  
Gain = 5  
Gain = 10  
œ5  
œ5  
Gain = 1  
Gain = -1  
Gain = 2  
Gain = 5  
Gain = 10  
œ10  
œ15  
œ20  
œ25  
œ10  
œ15  
œ20  
œ25  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
C004  
C005  
VO = 10 mVPP  
VO = 2 VPP  
2. Small-Signal Frequency Response for Various Gains  
3. Large-Signal Frequency Response for Various Gains  
2.5  
10  
8
5.5 V  
2.0  
2.7 V  
6
1.5  
1.0  
4
2
0
0.5  
œ2  
œ4  
0 pF  
8.2 pF  
22 pF  
33 pF  
47 pF  
0.0  
œ6  
-0.5  
œ8  
-1.0  
œ10  
100k  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
1G  
Frequency (Hz)  
C006  
C007  
VO = 10 mVPP, G = 1  
VO = 10 mVPP , G = 1  
4. Small-Signal Frequency Response for Various Power  
5. Small-Signal Frequency Response for Various  
Supply Voltages  
Capacitive Loads  
2
1
2.5  
2 k  
1 kꢀ  
600 ꢀ  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
0
œ1  
œ2  
œ3  
œ4  
œ5  
œ6  
œ7  
œ8  
0 pF  
8.2 pF  
22 pF  
33 pF  
47 pF  
10k  
100k  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
C007  
C007  
VO = 2 VPP, G = 1  
VO = 10 mVPP , G = 1  
6. Large-Signal Frequency Response for Various  
7. Small-Signal Frequency Response for Various  
Capacitive Loads  
Resistive Loads  
12  
版权 © 2015, Texas Instruments Incorporated  
 
OPA625, OPA2625  
www.ti.com.cn  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
Typical Characteristics (接下页)  
At TA = 25°C, V+ = 5 V, V– = 0 V, MODE = V–, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and  
RLOAD = 2 kΩ connected to 2.5 V (unless otherwise noted)  
160  
120  
80  
40  
0
225  
180  
135  
90  
1000  
100  
10  
45  
Gain  
Phase  
0
-40  
0.01 0.1  
1
10 100 1k 10k 100k 1M 10M 100M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
C024  
Frequency (Hz)  
VO = 10 mVPP  
8. High-Drive Mode Open-Loop Gain and Phase vs  
9. High-Drive Mode Open-Loop Output Impedance vs  
Frequency  
Frequency  
1000  
120  
100  
80  
60  
40  
20  
0
210  
180  
150  
120  
90  
100  
10  
1
60  
Gain  
30  
Phase  
0
-20  
10M  
1M
10k 100k
0.01 0.1  
1
10  
100  
1k  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
C024  
Frequency (Hz)  
VO = 10 mVPP , VMODE = 5 V  
10. Low-Power Mode Open-Loop Gain and Phase vs  
11. Low-Power Mode Open-Loop Output Impedance vs  
Frequency  
Frequency  
140  
120  
140  
120  
100  
80  
OPA625  
OPA2625  
100  
80  
60  
40  
20  
0
60  
40  
PSRR+  
20  
PSRR-  
0
1
10  
100  
1k  
10k 100k 1M  
10M 100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
C025  
Frequency (Hz)  
13. Power-Supply Rejection Ratio vs Frequency  
12. Common-Mode Rejection Ratio vs Frequency  
版权 © 2015, Texas Instruments Incorporated  
13  
OPA625, OPA2625  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TA = 25°C, V+ = 5 V, V– = 0 V, MODE = V–, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and  
RLOAD = 2 kΩ connected to 2.5 V (unless otherwise noted)  
5
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
Riso = 0 , 5.5 V  
Riso = 25 , 5.5 V  
Riso = 0 , 2.7 V  
Riso = 25 , 2.7 V  
Riso = 10 , 5.5 V  
Riso = 50 , 5.5 V  
Riso = 10 , 2.7 V  
Riso = 50 , 2.7 V  
0
œ5  
Riso = 10  
Riso = 25 ꢀ  
Riso = 50 ꢀ  
œ10  
œ15  
100k  
1M  
10M  
100M  
10  
100  
1000  
10000  
Frequency (Hz)  
Load Capacitance (pF)  
C024  
C027  
G = 1, CLOAD = 1.2 nF  
G = 1, VO = 10 mVPP  
14. Series Resistance for Capacitive Load Stability  
15. Overshoot vs Capacitive Load, G = 1  
50  
0
œ20  
Riso = 0 , 5.5 V  
Riso = 25 , 5.5 V  
Riso = 0 , 2.7 V  
Riso = 25 , 2.7 V  
Riso = 10 , 5.5 V  
Riso = 50 , 5.5 V  
Riso = 10 , 2.7 V  
Riso = 50 , 2.7 V  
HD2, Gain = 1  
HD3, Gain = 1  
HD2, Gain = 2  
HD3, Gain = 2  
45  
40  
35  
30  
25  
20  
15  
10  
5
œ40  
œ60  
œ80  
œ100  
œ120  
œ140  
œ160  
œ180  
0
10  
100  
1000  
10000  
1k  
10k  
100k  
1M  
Load Capacitance (pF)  
Input Frequency (Hz)  
C027  
C010  
G = –1, VO = 10 mVPP  
VS = 5.5 V, VO = 2 VPP, RLOAD = 600 Ω  
16. Overshoot vs Capacitive Load, G = –1  
17. Distortion vs Frequency for Various Gains  
0
œ20  
0
œ20  
HD2, Vs = 5.5 V  
HD3, Vs = 5.5 V  
HD2, Vs = 3.3 V  
HD3, Vs = 3.3 V  
HD2, Vs = 5.5 V  
HD3, Vs = 5.5 V  
HD2, Vs = 3.3 V  
HD3, Vs = 3.3 V  
œ40  
œ40  
œ60  
œ60  
œ80  
œ80  
œ100  
œ120  
œ140  
œ160  
œ180  
œ100  
œ120  
œ140  
œ160  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
Input Frequency (Hz)  
Input Frequency (Hz)  
C010  
C010  
G = 1, VO = 2 VPP, RLOAD = 600 Ω  
G = 2, VO = 2 VPP, RLOAD = 600 Ω  
18. Distortion vs Frequency for Various Power Supplies  
19. Distortion vs Frequency for Various Power Supplies  
版权 © 2015, Texas Instruments Incorporated  
14  
 
 
OPA625, OPA2625  
www.ti.com.cn  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
Typical Characteristics (接下页)  
At TA = 25°C, V+ = 5 V, V– = 0 V, MODE = V–, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and  
RLOAD = 2 kΩ connected to 2.5 V (unless otherwise noted)  
0
0
f = 1 kHz  
2 k  
1 kꢀ  
600 ꢀ  
œ20  
œ20  
f = 10 kHz  
f = 100 kHz  
f = 1 MHz  
œ40  
œ40  
œ60  
œ60  
œ80  
œ80  
œ100  
œ120  
œ140  
œ160  
œ100  
œ120  
œ140  
œ160  
1
2
3
4
1k  
10k  
100k  
1M  
Output Voltage (VPP  
)
Input Frequency (Hz)  
C013  
C010  
G = 1, RLOAD = 600 Ω  
G = 1, VO = 2 VPP , RLOAD = 600 Ω  
20. Total Harmonic Distortion vs Output Voltage for  
21. Total Harmonic Distortion vs Frequency for Various  
Various Frequencies  
Loads  
1000  
1000  
100  
10  
100  
10  
1
1
0.1  
1
10  
100  
1k  
10k  
100k  
0.1  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
C015  
C015  
22. Voltage Noise Density vs Frequency  
23. Current Noise Density vs Frequency  
-80  
-100  
-120  
-140  
-160  
-180  
Time (1 s/div)  
10  
100  
1k  
10k  
100k  
1M  
10M  
C020  
Frequency (Hz)  
25. 0.1-Hz to 10-Hz Voltage Noise  
24. Crosstalk vs Frequency  
版权 © 2015, Texas Instruments Incorporated  
15  
OPA625, OPA2625  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TA = 25°C, V+ = 5 V, V– = 0 V, MODE = V–, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and  
RLOAD = 2 kΩ connected to 2.5 V (unless otherwise noted)  
180  
160  
140  
120  
100  
80  
6
5
4
3
2
1
0
VS = 5 V  
VS = 3.3 V  
Rising, Gain = 1  
Falling, Gain = 1  
Rising, Gain = 2  
Falling, Gain = 2  
60  
40  
20  
0
0
1
2
3
4
1k  
10k  
100k  
1M  
10M  
100M  
1G  
Output Voltage Step (V)  
C018  
Frequency (Hz)  
26. Slew Rate vs Output Step Size  
27. Maximum Output Voltage vs Frequency  
Time (200 ns/div)  
Time (200 ns/div)  
C020  
C019  
G = 1, VO = 4-V step  
G = –1, VO = 4-V step  
28. Large-Signal Pulse Response  
29. Large-Signal Pulse Response  
Time (200 ns/div)  
Time (200 ns/div)  
C029  
C029  
G = 1, VO = 10-mV step  
G = –1, VO = 10-mV step  
30. Small-Signal Pulse Response  
31. Small-Signal Pulse Response  
16  
版权 © 2015, Texas Instruments Incorporated  
OPA625, OPA2625  
www.ti.com.cn  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
Typical Characteristics (接下页)  
At TA = 25°C, V+ = 5 V, V– = 0 V, MODE = V–, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and  
RLOAD = 2 kΩ connected to 2.5 V (unless otherwise noted)  
200  
150  
100  
50  
200  
150  
100  
50  
16-bit settling  
16-bit settling  
0
0
œ50  
œ100  
œ150  
œ200  
œ50  
œ100  
œ150  
œ200  
16-bit settling  
800  
16-bit settling  
800  
0
200  
400  
600  
1000  
0
200  
400  
600  
1000  
Time (ns)  
Time (ns)  
C032  
C032  
VO = 3.6-V step at t = 0 s  
VO = 3.6-V step at t = 0 s  
32. 16-Bit Negative Settling Time  
33. 16-Bit Positive Settling Time  
4
3
0.8  
4
3
2
1
0
0.6  
0.4  
0.2  
0.0  
-0.2  
2
1
0
œ1  
œ2  
œ3  
œ4  
Input  
Input  
Output  
Output  
-1  
Time (200 µs/div)  
Time (100 ns/div)  
C031  
C021  
VS = ±2.75 V, G = 1  
VS = ±2.75 V, G = 5  
34. No Phase Reversal  
35. Positive Overload Recovery  
20  
15  
10  
5
0.2  
1
Input  
Output  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
0
-1  
-2  
-3  
0
-4  
Time (100 ns/div)  
C021  
Offset Voltage (µV)  
C013  
VS = ±2.75 V, G = 5  
Distribution taken from 3139 amplifiers  
37. Input Offset Voltage Distribution  
36. Negative Overload Recovery  
版权 © 2015, Texas Instruments Incorporated  
17  
OPA625, OPA2625  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TA = 25°C, V+ = 5 V, V– = 0 V, MODE = V–, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and  
RLOAD = 2 kΩ connected to 2.5 V (unless otherwise noted)  
20  
15  
10  
5
20  
15  
10  
5
0
0
Offset Voltage (µV)  
Offset Voltage (µV)  
C013  
C013  
Distribution taken from 80 amplifiers, TA = 125°C  
Distribution taken from 80 amplifiers, TA = 85°C  
38. Input Offset Voltage Distribution  
39. Input Offset Voltage Distribution  
400  
20  
300  
200  
15  
10  
5
100  
0
œ100  
œ200  
œ300  
œ400  
0
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
C001  
Offset Voltage (µV)  
C013  
7 typical units shown  
Distribution taken from 80 amplifiers, TA = –40°C  
40. Input Offset Voltage Distribution  
41. Input Offset Voltage vs Temperature  
30  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
Input Bias Current (µA)  
Offset Voltage Drift (µV/°C)  
C013  
C013  
Distribution taken from 83 amplifiers, TA = –40°C to +125°C  
Distribution taken from 3139 amplifiers  
42. Input Offset Voltage Drift Distribution  
43. Input Bias Current Distribution  
18  
版权 © 2015, Texas Instruments Incorporated  
OPA625, OPA2625  
www.ti.com.cn  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
Typical Characteristics (接下页)  
At TA = 25°C, V+ = 5 V, V– = 0 V, MODE = V–, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and  
RLOAD = 2 kΩ connected to 2.5 V (unless otherwise noted)  
5
4
3
2
1
0
30  
25  
20  
15  
10  
5
IB -  
IB+  
0
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
C001  
Input Offset Current (nA)  
C013  
Distribution taken from 3139 amplifiers  
45. Input Offset Current Distribution  
44. Input Bias Current vs Temperature  
1000  
100  
10  
30  
20  
VS = ±2.75 V, (Vœ) ≤ VCM ≤ (V+) œ 1.15  
VS = ±1.35 V, (Vœ) ≤ VCM ≤ (V+) œ 1.15 V  
10  
0
œ10  
œ20  
œ30  
1
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
Temperature (°C)  
C001  
C001  
46. Input Offset Current vs Temperature  
47. Common-Mode Rejection Ratio vs Temperature  
30  
20  
10  
0
3.0  
2.0  
VS = ±1.35 V  
VS = ±2.5 V  
1.0  
0.0  
-10  
-20  
-30  
œ1.0  
œ2.0  
œ3.0  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
Temperature (°C)  
C001  
C001  
2.7 V VS 5.5 V  
RLOAD = 10 kΩ  
48. Power-Supply Rejection Ratio vs Temperature  
49. Open-Loop Gain vs Temperature with 10-kΩ Load  
版权 © 2015, Texas Instruments Incorporated  
19  
OPA625, OPA2625  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TA = 25°C, V+ = 5 V, V– = 0 V, MODE = V–, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and  
RLOAD = 2 kΩ connected to 2.5 V (unless otherwise noted)  
5.0  
1
4.0  
0
3.0  
2.0  
œ1  
œ2  
œ3  
œ4  
œ5  
VS = ±1.35 V  
1.0  
0.0  
œ1.0  
œ2.0  
œ3.0  
œ4.0  
œ5.0  
VS = ±2.5 V  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ4  
œ2  
0
2
4
Temperature (°C)  
VCM (V)  
C001  
C001  
RLOAD = 600 Ω  
High-drive mode, VS = ±2.5 V  
50. Open-Loop Gain vs Temperature with 600-Ω Load  
51. Input Bias Current vs Input Common-Mode Voltage  
50  
40  
50  
30  
25  
20  
10  
VCM = œ2.5 V  
0
0
VCM = 1.35 V  
œ10  
œ20  
œ25  
œ30  
œ40  
œ50  
VS = ±2.75 V  
VS = ±1.35 V  
œ50  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
œ3  
œ2  
œ1  
0
1
2
VSUPPLY (V)  
VCM (V)  
C001  
C001  
6 typical units shown, VS = ±1.35 V to ±2.75 V  
6 typical units shown, VS = ±2.5 V  
52. Input Offset Voltage vs Power-Supply Voltage  
53. Input Offset Voltage vs Common-Mode Voltage  
3
200  
180  
25°C  
2
œ40°C  
ISC, Sink  
160  
1
125°C  
140  
0
ISC, Source  
120  
-1  
125°C  
100  
80  
-2  
œ40°C  
25°C  
60  
-3  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
0
20  
40  
60  
80 100 120 140 160 180 200  
Temperature (°C)  
IO (mA)  
C001  
C001  
55. Short-Circuit Current vs Temperature  
版权 © 2015, Texas Instruments Incorporated  
54. Output Voltage vs Output Current  
20  
OPA625, OPA2625  
www.ti.com.cn  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
Typical Characteristics (接下页)  
At TA = 25°C, V+ = 5 V, V– = 0 V, MODE = V–, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and  
RLOAD = 2 kΩ connected to 2.5 V (unless otherwise noted)  
3
2.5  
2
3
2.5  
2
VS = ±2.5 V  
VS = ±1.35 V  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Supply Voltage (V)  
Temperature (°C)  
C001  
C001  
High-drive mode  
56. High-Drive Mode Quiescent Current vs Power-Supply  
57. High-Drive Mode Quiescent Current vs Temperature  
Voltage  
450  
400  
400  
350  
300  
250  
200  
150  
100  
50  
350  
VS = ±2.5 V  
300  
VS = ±1.35 V  
250  
200  
150  
100  
50  
0
0
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Temperature (°C)  
Supply Voltage (V)  
C001  
C001  
MODE pin connected to V+  
58. Low-Power Mode Quiescent Current vs Temperature  
Low-drive mode, MODE pin connected to V+  
59. Low-Power Mode Quiescent Current vs Power-Supply  
Voltage  
4
2
4
3
2
1
0
4
2
4
3
2
1
0
MODE Pin Voltage  
IQ  
MODE Pin Voltage  
0
0
IQ  
œ2  
œ4  
œ2  
œ4  
Time (200 ns/div)  
Time (200 ns/div)  
C035  
C035  
VS = ±2.75 V  
VS = ±2.75 V  
60. Quiescent Current When MODE transitions From High  
61. Quiescent Current When MODE Transitions From Low  
To Low  
To High  
版权 © 2015, Texas Instruments Incorporated  
21  
OPA625, OPA2625  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TA = 25°C, V+ = 5 V, V– = 0 V, MODE = V–, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and  
RLOAD = 2 kΩ connected to 2.5 V (unless otherwise noted)  
3
200  
150  
100  
50  
4
2.5  
2
MODE Pin  
3
16-bit settling  
2
1.5  
1
1
0.5  
0
0
0
-0.5  
-1  
œ50  
œ100  
œ150  
œ200  
-1  
-2  
-3  
-4  
16-bit settling  
800  
-1.5  
-2  
-2.5  
-3  
œ200  
0
200  
400  
600  
1000  
0
0.2  
0.4  
0.6  
Time (s)  
0.8  
1
1.2  
C032  
Time (ns)  
D001  
VO = 3.8 VDC  
OPA625 powered on in high-drive mode at t = 0 s, PCB  
dimensions: 4 in2, 2 layer, FR4  
62. Output Voltage When MODE Transitions From High  
63. Warm-Up Time  
To Low  
22  
版权 © 2015, Texas Instruments Incorporated  
OPA625, OPA2625  
www.ti.com.cn  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
7 Parameter Measurement Information  
7.1 DC Parameter Measurements  
The circuit shown in 64 is used to measure the dc input offset related parameters of the OPAx625. Input offset  
voltage, power supply rejection ratio, common mode rejection ratio and open loop gain can be measured with  
this circuit. The basic test procedure requires setting the inputs (the power-supply voltage, VS, and the common-  
mode voltage, VCM), to the desired values. VO is set to the desired value by adjusting the loop-drive voltage while  
measuring VO. After all inputs are configured, measure the input offset at the VX measurement point. Calculate  
the input offset voltage by dividing the measured result by 101. Changing the voltages on the various inputs  
changes the input offset voltage. The input parameters can be measured according to the relationships illustrated  
in 公式 1 through 公式 5.  
RCOMP = 1 k  
CCOMP = 0.1 mF  
RB = 1.26 kꢀ  
+
Loop  
Drive  
30 V  
œ
V+  
OPA551  
+
VX  
VOS  
OPA625  
+
RA = 12.6 ꢀ  
RIN = 12.6 ꢀ  
-30 V  
VO  
RLOAD  
V-  
+
VCM  
œ
64. DC-Parameters Measurement Circuit  
VX  
VOS  
=
101  
(1)  
(2)  
(3)  
(4)  
(5)  
DVOS  
DTemperature  
DVOS  
DVSUPPLY  
DVOS  
DVCM  
VOSDrift  
=
PSRR =  
CMRR =  
DVO  
DVOS  
AOL =  
版权 © 2015, Texas Instruments Incorporated  
23  
 
 
 
OPA625, OPA2625  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
www.ti.com.cn  
7.2 Transient Parameter Measurements  
The circuit shown in 65 is used to measure the transient response of the OPAx625. Configure V+, V–, RISO  
,
RLOAD, and CLOAD as desired. Monitor the input and output voltages on an oscilloscope or other signal analyzer.  
Use this circuit to measure large-signal and small-signal transient response, slew rate, overshoot, and capacitive-  
load stability.  
V+  
RISO  
OPA625  
+
O-Scope  
CLOAD  
V-  
RLOAD  
+
Input  
œ
65. Pulse-Response Measurement Circuit  
7.3 AC Parameter Measurements  
The circuit shown in 66 is used to measure the ac parameters of the OPAx625. Configure V+, V–, and CLOAD  
as desired. The THS4271 are used to buffer the input and output of the OPAx625 to prevent loading by the gain  
phase analyzer. Monitor the input and output voltages on a gain phase analyzer. Use this circuit to measure the  
gain bandwidth product, and open-loop gain versus frequency versus capacitive load.  
249  
249 ꢀ  
50 ꢀ  
+
Gain/Phase  
Analyzer  
THS4271  
249 ꢀ  
249 ꢀ  
50 ꢀ  
1 kꢀ  
1 kꢀ  
+
THS4271  
OPA625  
+
CLOAD  
66. AC-Parameters Measurement Circuit  
24  
版权 © 2015, Texas Instruments Incorporated  
 
 
OPA625, OPA2625  
www.ti.com.cn  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
7.4 Noise Parameter Measurements  
The circuit shown in 67 is used to measure the voltage noise of the OPAx625. Configure V+, V–, and CLOAD  
as desired.  
10  
1 kꢀ  
Spectrum  
Analyzer  
OPA625  
+
CLOAD  
67. Voltage Noise Measurement Circuit  
The circuit shown in 68 is used to measure the current noise of the OPAx625. Configure V+, V– and CLOAD as  
desired.  
Spectrum  
Analyzer  
OPA625  
+
CLOAD  
100 k  
68. Current Noise Measurement Circuit  
The circuit shown in 69 is used to measure the OPAx625 0.1-Hz to 10-Hz voltage noise. Configure V+, V–,  
and CLOAD as desired.  
0.1 Hz to 10 Hz  
Active Bandpass Filter  
10  
1 kꢀ  
O-Scope  
OPA625  
+
40 db/dec  
-80 db/dec  
CLOAD  
69. 0.1-Hz to 10-Hz Voltage-Noise Measurement Circuit  
版权 © 2015, Texas Instruments Incorporated  
25  
 
 
 
OPA625, OPA2625  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The OPAx625 is a fast-settling, high slew rate, high-bandwidth, voltage-feedback operational amplifier. Low  
offset and low offset drift combine with the superior dynamic performance and very low output impedance,  
resulting in an amplifier suited for driving 16-bit SAR ADCs, and buffering precision voltage references in  
industrial applications. The OPAx625 is comprised of a low-noise input stage, a slew boost stage, and a rail-to-  
rail output stage. A mode bias select feature allows the OPAx625 to be configured in a high-drive mode and a  
low-power mode. High-drive mode is used when driving SAR ADCs during the ADC signal acquisition period.  
The OPAx625 is also configurable in low-power mode while the SAR ADC is converting the acquired signal, thus  
saving overall system power. To facilitate a fast transition from low-power mode to high-drive mode, the  
OPAx625 does not completely shut down while in low-power mode; rather, the device remains as an active  
amplifier with a lower bandwidth (1 MHz) and relaxed dc specifications.  
8.2 Functional Block Diagram  
MODE  
V+  
Mode Select / Bias  
+IN  
-IN  
Common  
Mode  
Feedback  
Low Noise Input  
Stage  
Slew  
Boost  
Rail-to-Rail  
Output Stage  
OUT  
Frequency  
Compensation  
Network  
V-  
26  
版权 © 2015, Texas Instruments Incorporated  
OPA625, OPA2625  
www.ti.com.cn  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
8.3 Feature Description  
8.3.1 SAR ADC Driver  
The OPAx625 is designed to drive precision (16-bit and 18-bit) SAR ADCs at sample rates up to 1 MSPS. The  
combination of low output impedance, low THD, low noise, and fast settling time make the OPAx625 the ideal  
choice for driving both the SAR ADC inputs, as well as the reference input to the ADC. Internal slew boost  
circuitry increases the slew rate as a function of the input signal magnitude, resulting in settling from a 4-V step  
input to 16-bit levels within 280 ns. Low output impedance (1 Ω at 1 MHz) ensures capacitive load stability with  
minimal overshoot.  
8.3.2 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress  
(EOS). These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the  
output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly. Having a good understanding of this basic ESD  
circuitry and its relevance to an electrical overstress event is helpful. See 70 for an illustration of the ESD  
circuits contained in the OPAx625. The ESD protection circuitry involves several current-steering diodes  
connected from the input and output pins and routed back to the internal power-supply lines, where the diodes  
meet at an absorption device or the power-supply ESD cell, internal to the operational amplifier. This protection  
circuitry is intended to remain inactive during normal circuit operation.  
V+  
Power Supply  
ESD Cell  
MODE  
30  
+IN  
+
30 ꢀ  
œ
OUT  
œ IN  
Vœ  
70. Simplified ESD Circuit  
版权 © 2015, Texas Instruments Incorporated  
27  
 
OPA625, OPA2625  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
www.ti.com.cn  
8.4 Device Functional Modes  
The OPAx625 has two functional modes: high-drive and low-power. In low-power mode, the quiescent current of  
the OPAx625 is reduced to 270 µA (typ), and results in significantly lower bandwidth, higher noise, and lower  
output current drive. The OPAx625 transitions from low-power mode to high-drive mode in 170 ns.  
tCONV-MAX  
tCONV-MIN  
tCONV-MAX  
tCONV-MIN  
ADC State  
MODE  
Acquisition  
Conversion  
Conversion  
tsettle + tLP-HD  
tmargin  
tHD-LP  
tLP-HD  
tHD-LP  
OPAx625  
State  
Low-Power Mode  
High-Drive Mode  
71. Simplified Timing Diagram: Power-Scaling Precision Signal Chain  
8.4.1 High-Drive Mode  
Place the OPAx625 into high-drive mode by applying a logic level low to the MODE pin. The MODE pin can be  
driven by a general-purpose input/output (GPIO) from the system controller, from discrete logic gates, or can be  
connected directly to the V– pin. Do not leave the MODE pin floating. When driving the MODE pin from a  
microcontroller GPIO, make sure that the GPIO is not placed into a high-impedance state. Placing the GPIO into  
a high impedance state results in the MODE pin essentially floating, and is not recommended. Do not drive the  
MODE pin voltage below the voltage at the V– pin; see the Absolute Maximum Ratings for the allowable voltage  
to drive the MODE pin. Use the MODE pin to force the OPAx625 in either the high-drive mode or the low-power  
mode. The OPAx625 has 120-MHz gain bandwidth, 2.5-nV/Hz input-referred noise, and consumes just 2 mA of  
quiescent current in high-drive mode. In addition, the OPAx625 also has an offset voltage of 100 µV (max) and  
offset voltage drift of 1 µV/°C (typ). This combination of high precision, high speed, and low noise makes this  
device suitable for use as an input driver for high-precision, high-throughput SAR ADCs such as ADS88xx family  
of SAR ADC, as shown in 73.  
In high-drive mode, the OPAx625 is fully specified as a wideband, low-noise, low-distortion precision amplifier.  
High-drive mode is the primary mode of operation of the OPAx625 when driving the inputs of a SAR ADC during  
the signal acquisition period just before the start of the conversion period. Placing the OPAx625 into the high-  
drive mode before the acquisition period is complete, and before the start of the conversion period, allows the  
OPAx625 to settle to the final value just prior to the conversion. When the ADC is converting the input signal,  
and therefore no longer acquiring the signal, place the OPAx625 into the low-power mode to reduce system  
power. Using low-power mode allows the OPAx625 power consumption to scale directly with the sample rate.  
The OPAx625 is unique in that the switching between the modes occurs in 170 ns (typ). This fast switching is  
achieved by the architecture of the OPAx625 during low-power mode; see the Low-Power Mode section for more  
information.  
28  
版权 © 2015, Texas Instruments Incorporated  
OPA625, OPA2625  
www.ti.com.cn  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
Device Functional Modes (接下页)  
8.4.2 Low-Power Mode  
Place the OPAx625 low-power mode by applying a logic level high to the MODE pin. The MODE pin can be  
driven by a GPIO from the system controller, from discrete logic gates, or can be connected to directly to the V+  
pin. Do not leave the MODE pin floating. When driving the MODE pin from a microcontroller GPIO, make sure  
that the GPIO is not placed into a high-impedance state. Placing the GPIO into a high-impedance state results in  
the MODE pin essentially floating, and is not recommended. Do not allow the MODE pin voltage to exceed the  
voltage at the V+ pin; see the Absolute Maximum Ratings for the allowable voltage to drive the MODE pin.  
In low-power mode, the OPAx625 is fully specified as a general-purpose operational amplifier. The MODE signal  
can be controlled so that the OPAx625 is placed in high-drive mode just before the ADC enters the acquisition  
phase. This configuration makes sure that the voltage on the antialiasing filter capacitor settles to the required  
precision before the acquisition period is complete. The power consumed by the OPAx625 scales with the  
throughput of the system when operated in this manner. This feature is extremely useful in power-critical  
applications and variable-throughput data acquisition systems.  
The OPAx625 is unique in that the switching between the modes occurs in 170 ns (typ). This fast switching is  
achieved by the architecture of the OPAx625 during low-power mode. Most amplifiers in power-down or shut-  
down mode consume very minimal power, but are also not operating in a linear fashion. For example, the output  
of a typical amplifier, when disabled, can be placed into a high-impedance state, and thus unable to drive any  
load whatsoever. Switching from a shut-down state to a linear state requires charging internal capacitances and  
bias points to a level within the linear operating range. Typically, this switch can take several microseconds or  
longer. This problem is solved with the OPAx625. The OPAx625 operates as a linear operational amplifier in low-  
power mode, and the output tracks the input signal, but with a lower bandwidth and slightly higher offset and  
noise. Switching from low-power mode to high-drive mode and settling to 16-bit levels occurs in 170 ns (typ) as a  
result of maintaining operation in a linear fashion throughout the duration of each mode. This configuration allows  
for dynamic power scaling, while still maintaining high throughput rates.  
200  
150  
100  
50  
4
MODE Pin  
3
16-bit settling  
2
1
0
0
œ50  
œ100  
œ150  
œ200  
-1  
-2  
-3  
-4  
16-bit settling  
800  
œ200  
0
200  
400  
600  
1000  
C032  
Time (ns)  
72. Output Voltage when Mode Pin Changes High to Low  
版权 © 2015, Texas Instruments Incorporated  
29  
OPA625, OPA2625  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The OPAx625 is a precision, high-speed, voltage-feedback operational amplifier. Fast settling to 16-bit levels, low  
THD, and low noise make the OPAx625 suitable for driving SAR ADC inputs and buffering precision voltage  
references. With a wide power-supply voltage range from 2.7 V to 5.5 V, and operating from –40°C to +125°C,  
the OPAx625 is suitable for a variety of high-speed, industrial applications. The following sections show  
application information for the OPAx625. For simplicity, power-supply decoupling capacitors are not shown in  
these diagrams.  
9.2 Typical Applications  
9.2.1 Single-Supply, 16-Bit, 1-MSPS SAR ADC Driver  
1 k  
1 kꢀ  
Mode  
Control  
5 V  
Input  
Voltage  
RFLT  
4.7 ꢀ  
VREF  
REF  
3.3 V  
OPA625  
+
VREF / 4  
AVDD  
10 nF  
CFLT  
ADS8860  
GND  
4.7 ꢀ  
RFLT  
73. Single-Supply, 16-Bit, 1-MSPS SAR ADC Driver  
9.2.1.1 Design Requirements  
SAR ADCs, such as the ADS8860, use sampling capacitors on the data converter input. During the signal  
acquisition phase, these sampling capacitors are connected to the ADC analog input terminals, AINP and AINN,  
through a set of switches. After the acquisition period has elapsed, the internal sampling capacitors are  
disconnected from the input terminals and connected to the input of the ADC through a second set of switches,  
during this period the ADC is performing the analog-to-digital conversion. 74 illustrates this architecture.  
SAR ADC  
RSW  
!Lbt  
CS/H  
RSW  
CS/H  
!Lbb  
74. Simplified SAR ADC Input  
30  
版权 © 2015, Texas Instruments Incorporated  
 
 
OPA625, OPA2625  
www.ti.com.cn  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
Typical Applications (接下页)  
The SAR ADC inputs and sampling capacitors must be driven by the OPA625 to 16-bit levels within the  
acquisition time of the ADC. For the example illustrated in 73, the OPA625 is used to drive the ADS8860 at a  
sample rate of 1 MSPS.  
9.2.1.2 Detailed Design Procedure  
The circuit illustrated in 73 consists of the SAR ADC driver, a low-pass filter and the SAR ADC. The SAR ADC  
driver circuit consists of an OPA625 configured in an inverting gain of 1. The filter consists of RFLT and CFLT  
,
connected between the output of the OPA625 and input of the ADS8860. Selecting the proper values for each of  
these passive components is critical to obtain the best performance from the ADC. Capacitor CFLT serves as a  
charge reservoir, providing the necessary charge to the ADC sampling capacitors. The dynamic load presented  
by the ADC creates a glitch on the filter capacitor, CFLT. To minimize the magnitude of this glitch, choose a value  
for CFLT large enough to maintain a glitch amplitude of less than 100 mV. Maintaining such a low glitch amplitude  
at the amplifier output makes sure that the amplifier remains in the linear operating region, and results in a  
minimum settling time. Using 公式 6, a 10-nF capacitor is selected for CFLT  
.
CFLT í 15ìCSH  
(6)  
Connecting a 10-nF capacitor directly to the output of the OPA625 degrades the OPA625 phase margin and  
results in stability and settling-time problems. To properly drive the 10-nF capacitor, use a series resistor (RFLT  
)
to isolate the capacitor, CFLT, from the OPA625. RFLT must be sized based upon several constraints. To  
determination a suitable value for RFLT, consider the impact upon the THD due to the voltage divider effect from  
RFLT reacting with the switch resistance (RSW) of the ADC input circuit, as well as the impact of the output  
impedance upon amplifier stability. In this example, 4.7-Ω resistors are selected. In this design example, 16  
can be used to estimate a suitable value for RISO. RISO represents the total resistance in series with CFLT, and in  
this example is equivalent to 2 × RFLT  
.
For step-by-step design procedure, circuit schematics, bill of materials, printed circuit board (PCB) files,  
simulation results, and test results, refer to TI Precision Design, TIDU014, "Power-optimized 16-bit 1MSPS  
Data Acquisition Block for Lowest Distortion and Noise Reference Design".  
9.2.1.3 Application Curves  
75 illustrates the performance of the circuit shown in 73.  
0
THD = -110.8 dBc  
SNR = 91.88 dB  
SINAD = 91.86 dB  
ENOB = 14.97  
-25  
-50  
-75  
-115.91 dBc (Third Harmonic)  
-100  
-125  
-150  
-175  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (kHz)  
4096-point FFT at 1 MSPS, fIN = 10 kHz , VIN = 1.5 VRMS  
75. ADC Output FFT for 73  
版权 © 2015, Texas Instruments Incorporated  
31  
 
 
OPA625, OPA2625  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
www.ti.com.cn  
9.2.2 Single-Supply, 16-Bit, 1-MSPS, Multiplexed, SAR ADC Driver  
In order to operate a high-resolution, 16-bit ADC at its maximum throughput, the full-scale voltage step must  
settle to better than 16-bit accuracy at the ADC inputs within the minimum specified acquisition time (tACQ). This  
settling imposes very stringent requirements on the driver amplifier in terms of large-signal bandwidth, slew rate,  
and settling time. 76 illustrates a typical multiplexed ADC driver application using the OPA625.  
1.5 pF  
8 k  
2 kꢀ  
Mode  
Control  
5 V  
VREF  
4.5 V  
5 V  
RFLT  
12.4 ꢀ  
3.3 V  
Mux  
10 ꢀ  
10 ꢀ  
OPA625  
+
OPA320  
+
REF  
AVDD  
1 nF  
CFLT  
TS5A3159  
ADS8860  
GND  
100 pF  
22 µF  
Input  
Voltage  
12.4 ꢀ  
RFLT  
76. Single-Supply, 16-Bit, 1-MSPS, Multiplexed, SAR ADC Driver  
9.2.2.1 Design Requirements  
To optimize this circuit for performance, this design does not allow any large signal input transients at the inputs  
of the driver circuit for a small quiet-time period (tQT) towards the end of the previous conversion. The input step  
voltage can appear anytime from the beginning of conversion (CONVST rising edge) until the elapse of a half  
cycle time (0.5 × tCYC). This timing constraint on the input step allows a minimum settling time of (tQT + tACQ) for  
the ADC input to settle within the required accuracy, in the worst-case scenario. This provides more time for the  
amplifier's output to slew and settle within the required accuracy before the next conversion starts. 77  
illustrates this timing sequence.  
Transients Allowed  
No Transients Allowed  
CONVST  
0.5 x tCYC_MIN = 500 ns  
tQT  
tACQ  
Slewing  
Settling  
VIN  
tCYC_MIN = 1 µs  
Conversion  
Sampling  
77. Timing Diagram for Input Signals  
32  
版权 © 2015, Texas Instruments Incorporated  
 
 
OPA625, OPA2625  
www.ti.com.cn  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
9.2.2.2 Detailed Design Procedure  
An ADC input driver circuit mainly consists of two parts: a driving amplifier and a fly-wheel RC filter. The amplifier  
is used for signal conditioning of the input voltage and its low output impedance provides a buffer between the  
signal source and the ADC input. The RC filter helps attenuate the sampling charge-injection from the switched-  
capacitor input stage of the ADC as well as acts as an anti-aliasing filter to band-limit the wideband noise  
contributed by the front-end circuit. The design of the ADC input driver involves optimizing the bandwidth of the  
circuit, driven primarily by the following requirements:  
The RFLTCFLT filter bandwidth should be low to band-limit the noise fed into the input of the ADC thereby  
increasing the signal-to-noise ratio (SNR) of the system.  
The overall system bandwidth should be large enough to accommodate optimal settling of the input signal at  
the ADC input before the start of conversion.  
CFLT is chosen based upon 公式 7 . CFLT is chosen to be 1 nF.  
CFLT í 15ìCSH  
(7)  
Connecting a 1-nF capacitor directly to the output of the OPA625 would degrade the OPA625 phase margin and  
result in stability and settling time problems. To properly drive the 1-nF capacitor, a series resistor, RFLT, is used  
to isolate the capacitor, CFLT, from the OPA625. RFLT must be sized based upon several constraints. To  
determination a suitable value for RFLT, the system designer must consider the impact upon the THD due to the  
voltage divider effect from RFLT reacting with the switch resistance, RSW, of the ADC input circuit as well as the  
impact of the output impedance upon amplifier stability. In this example 12.4-Ω resistors are selected. In this  
design example, 15 can be used to estimate a suitable value for RISO. RISO represents the total resistance in  
series with CFLT, which in this example is equivalent to 2 × RFLT  
.
For step-by-step design procedure, circuit schematics, bill of materials, printed circuit board (PCB) files,  
simulation results, and test results, refer to TI Precision Design, TIDU012, "Power-optimized 16-bit 1MSPS  
Data Acquisition Block for Lowest Distortion and Noise Reference Design".  
9.2.2.3 Application Curves  
78 illustrates the performance of the circuit shown in 76.  
2
1.5  
1
2
1.5  
1
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
0
500  
1000  
1500  
2000  
0
500  
1000  
1500  
2000  
Time (ns)  
Time (ns)  
78. Positive Transient Response for 76  
79. Negative Transient Response for 76  
版权 © 2015, Texas Instruments Incorporated  
33  
 
 
OPA625, OPA2625  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
www.ti.com.cn  
10 Power Supply Recommendations  
The OPAx625 is specified for operation from 2.7 V to 5.5 V (±1.35 V to ±2.75 V); many specifications apply from  
–40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in the Typical Characteristics. Place bypass capacitors close to the power-supply pins  
to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on  
bypass capacitor placement, see the Layout section.  
CAUTION  
Supply voltages larger than 6 V can cause permanent damage to the device. See to  
the Absolute Maximum Ratings section.  
11 Layout  
11.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Use bypass capacitors to reduce the noise coupled from the power supply. Connect low ESR, ceramic,  
bypass capacitors between the power supply pins (V+ and V–) and the ground plane. Place the bypass  
capacitors as close to the device as possible with the 100-nF capacitor closest to the device, as indicated in  
80. For single-supply applications, bypass capacitors on the V– pin are not required.  
Separate grounding for analog and digital portions of the circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds paying attention to the flow of the ground current. For more detailed information refer to  
SLOA089, Circuit Board Layout Techniques.  
In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular  
as opposed to in parallel with the noisy trace.  
Minimize parasitic coupling between +IN and OUT for best ac performance.  
Place the external components as close to the device as possible. As shown in 80, keeping RF, CF, and  
RG close to the inverting input will minimize parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Cleaning the PCB following board assembly is recommended for best performance.  
Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic  
package. Following any aqueous PCB cleaning process, bake the PCB assembly to remove moisture  
introduced into the device packaging during the cleaning process. A low-temperature, post-cleaning bake at  
85°C for 30 minutes is sufficient for most circumstances.  
34  
版权 © 2015, Texas Instruments Incorporated  
 
OPA625, OPA2625  
www.ti.com.cn  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
11.2 Layout Example  
Power Supply  
100 nF  
1 µF  
RIN  
RG  
+
Input  
Output  
RF  
CF  
(Schematic Representation)  
Positive Power Supply  
1 µF  
Ground  
Use Low-ESR, ceramic bypass  
capacitors.  
Place 100 nF capacitor close to the  
device  
100 nF  
1
2
3
OUT  
V-  
V+  
MODE  
-IN  
6
5
4
Output  
Ground  
Input  
Ground  
MODE pin can be connected to a GPIO on the system  
controller for applications requiring the lowest power or  
it can be connected to ground for active mode only  
+IN  
Ground  
RG  
RIN  
Place close to the device to  
reduce parasitic capacitance  
RF  
CF  
Place close to the device to  
reduce parasitic capacitance  
80. PCB Layout Example  
版权 © 2015, Texas Instruments Incorporated  
35  
OPA625, OPA2625  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
12.1.1.1 TINA-TI™(免费软件下载)  
TINA™是一款简单、功能强大且易于使用的电路仿真程序,此程序基于 SPICE 引擎。TINA-TI TINA 软件的一  
款免费全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。TINA-TI 提供所有传  
统的 SPICE 直流、瞬态和频域分析,以及其他设计功能。  
TINA-TI 可从 Analog eLab Design Center(模拟电子实验室设计中心)免费下载,它提供全面的后续处理能力,  
使得用户能够以多种方式形成结果。虚拟仪器提供选择输入波形和探测电路节点、电压和波形的功能,从而创建一  
个动态的快速入门工具。  
12.1.1.2 TI 高精度设计  
欲获取 TI 高精度设计,请访问 http://www.ti.com.cn/ww/analog/precision-designs/TI 高精度设计是由 TI 公司高  
精度模拟 应用 专家创建的模拟解决方案,提供了许多实用电路的工作原理、组件选择、仿真、完整印刷电路板  
(PCB) 电路原理图和布局布线、物料清单以及性能测量结果。  
12.2 文档支持  
12.2.1 相关文档  
16 位、1MSPS 多路复用数据采集参考设计指南》,TIDUAD9  
12.3 相关链接  
1  
接。  
列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买链  
1. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
OPA625  
OPA2625  
12.4 Community Resources  
The following links connect to TI community resources. Linked contents are provided AS IS by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
36  
版权 © 2015, Texas Instruments Incorporated  
 
OPA625, OPA2625  
www.ti.com.cn  
ZHCSDL0A APRIL 2015REVISED OCTOBER 2015  
12.5 商标  
E2E is a trademark of Texas Instruments.  
TINA-TI is a trademark of Texas Instruments, Inc and DesignSoft, Inc.  
TINA is a trademark of DesignSoft, Inc.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
37  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2625IDGSR  
OPA2625IDGST  
OPA625IDBVR  
OPA625IDBVT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
SOT-23  
SOT-23  
DGS  
DGS  
DBV  
DBV  
10  
10  
6
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2625  
2625  
O625  
O625  
NIPDAUAG  
NIPDAU  
6
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2625IDGSR  
OPA2625IDGST  
OPA625IDBVR  
OPA625IDBVT  
VSSOP  
VSSOP  
SOT-23  
SOT-23  
DGS  
DGS  
DBV  
DBV  
10  
10  
6
2500  
250  
330.0  
330.0  
178.0  
178.0  
12.4  
12.4  
9.0  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
4.0  
4.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q3  
Q3  
3000  
250  
3.23  
3.23  
3.17  
3.17  
1.37  
1.37  
6
9.0  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2625IDGSR  
OPA2625IDGST  
OPA625IDBVR  
OPA625IDBVT  
VSSOP  
VSSOP  
SOT-23  
SOT-23  
DGS  
DGS  
DBV  
DBV  
10  
10  
6
2500  
250  
366.0  
366.0  
180.0  
180.0  
364.0  
364.0  
180.0  
180.0  
50.0  
50.0  
18.0  
18.0  
3000  
250  
6
Pack Materials-Page 2  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY