OPA2834 [TI]

超低功耗、50MHz 轨到轨输出、负电源轨输入、电压反馈运算放大器;
OPA2834
型号: OPA2834
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

超低功耗、50MHz 轨到轨输出、负电源轨输入、电压反馈运算放大器

放大器 运算放大器
文件: 总34页 (文件大小:1949K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA2834  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
OPA2834 50MHz170µA、负电源轨输入、轨至轨输出、电压反馈放大器  
1 特性  
3 说明  
1
超低功耗:  
OPA2834 是一款双通道超低功耗、轨至轨输出、负电  
源轨输入、电压反馈 (VFB) 运算放大器,设计的工作  
电源电压范围为 2.7V 5.4V(单电源)或 ±1.35V 至  
±2.7V(双电源)。这款放大器每通道仅消耗 170µA  
的电流,单位增益带宽为 50MHz,性能/功耗比处于轨  
至轨放大器的行业领先水平。  
电源电压:2.7V 5.4V  
静态电流 (IQ)170µA/ch(典型值)  
带宽:50MHz (G = 1V/V)  
压摆率:26V/µs  
稳定时间 (0.1%)88ns (2VSTEP  
)
HD2HD310kHz (2VPP) 时分别为 –131dBc 和  
–146dBc  
对于 要求 低功耗的电池供电和便携式应用,OPA2834  
可提供出色的带宽 IQ 比。OPA2834 可提供极低的失  
真,非常适用于数据采集系统和麦克风前置放大器。  
输入电压噪声:12nV/Hz (f = 10kHz)  
输入失调电压:350µV(最大值为 ±1.9mV)  
负电源轨输入,轨至轨输出 (RRO)  
请参见器件比较表,了解如何选择德州仪器 (TI) 提供  
的低功耗、低噪声 5V 放大器,以及 20MHz 至  
300MHz 的增益带宽产品。  
输入电压范围:–0.2V 3.9V  
5V 电源)  
工作温度范围:  
–40°C +125°C  
器件信息(1)  
器件型号  
OPA2834  
封装  
VSSOP (8)  
封装尺寸(标称值)  
3.00mm × 3.00mm  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
电源电流检测  
低功耗信号调节  
电池供电 应用  
便携式录音机  
低功耗 SAR Δ-Σ ADC 驱动器  
便携式器件  
1kHz FFT 图  
低侧电流分流监控  
VOUT = 1VRMSRL = 100kΩG = 1)  
40  
LOAD  
RF‘  
VS  
20  
0
VS  
œ
RG  
REXT  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
œ
+
RG  
RSH  
OPA2834-2  
CEXT  
+
OPA2834-1  
RF‘  
Short-  
Circuit Fault  
Detection  
VTH  
+
TLV3201  
œ
Interrupt  
VREF  
VS  
0
2k  
4k  
6k  
8k 10k 12k 14k 16k 18k 20k  
Frequency (Hz)  
µC  
FFT_  
ADS7056  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS973  
 
 
 
 
OPA2834  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
目录  
8.2 Functional Block Diagrams ..................................... 15  
8.3 Feature Description................................................. 15  
8.4 Device Functional Modes........................................ 17  
Application and Implementation ........................ 20  
9.1 Application Information............................................ 21  
9.2 Typical Applications ................................................ 21  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics: 3V to 5V........................... 5  
7.6 Typical Characteristics: Vs = 5 V .............................. 6  
7.7 Typical Characteristics: VS = 3.0 V........................... 9  
9
10 Power Supply Recommendations ..................... 25  
11 Layout................................................................... 26  
11.1 Layout Guidelines ................................................. 26  
11.2 Layout Examples................................................... 26  
12 器件和文档支持 ..................................................... 27  
12.1 文档支持................................................................ 27  
12.2 接收文档更新通知 ................................................. 27  
12.3 社区资源................................................................ 27  
12.4 ....................................................................... 27  
12.5 静电放电警告......................................................... 27  
12.6 Glossary................................................................ 27  
13 机械、封装和可订购信息....................................... 27  
7.8 Typical Characteristics: ±2.5-V to ±1.5-V Split  
Supply ...................................................................... 12  
8
Detailed Description ............................................ 15  
8.1 Overview ................................................................. 15  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (June 2019) to Revision A  
Page  
已更改 将文档状态从 APL 更改为生产数据 ............................................................................................................................ 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
OPA2834  
www.ti.com.cn  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
5 Device Comparison Table  
INPUT NOISE  
VOLTAGE  
(nV/Hz)  
Av = +1 BANDWIDTH  
5-V IQ  
(mA, Typ 25°C)  
2-VPP THD  
(dBc, 100 kHz) INPUT/OUTPUT  
RAIL-TO-RAIL  
PART NUMBER CHANNELS  
Single Channel  
(MHz)  
OPA2834  
OPA2835  
OPA2836  
OPA2837  
OPA838  
2
2
2
2
1
50  
56  
0.17  
0.25  
1.0  
12  
9.4  
4.6  
4.7  
1.9  
VS–, output  
–104  
–118  
–118  
–110  
VS–, output  
VS–, output  
VS–, output  
VS–, output  
OPA835  
OPA836  
OPA837  
205  
105  
0.6  
0.96  
6 Pin Configuration and Functions  
DGK Package  
8-Pin VSSOP  
Top View  
VOUT1  
VIN1-  
VIN1+  
VS-  
VS+  
1
2
3
4
8
7
6
5
VOUT2  
A
VIN2-  
VIN2+  
B
Pin Functions  
PIN  
FUNCTION(1)  
DESCRIPTION  
NO.  
1
NAME  
VOUT1  
VIN1–  
VIN1+  
VS–  
O
I
Amplifier 1 output pin  
2
Amplifier 1 inverting input pin  
Amplifier 1 noninverting input pin  
Negative power-supply pin  
Amplifier 2 noninverting input pin  
Amplifier 2 inverting input pin  
Amplifier 2 output pin  
3
I
4
P
I
5
VIN2+  
VIN2–  
VOUT2  
VS+  
6
I
7
O
P
8
Positive power-supply input  
(1) I = input, O = output, and P = power.  
Copyright © 2019, Texas Instruments Incorporated  
3
 
OPA2834  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
5.5  
UNIT  
V
Supply voltage (total bipolar supplies)(2)  
VS– to VS+  
Supply turnon/off maximum dV/dT(3)  
1
V/µs  
V
VI  
VID  
II  
Input voltage  
VS– – 0.5  
VS+ + 0.5  
±1  
Differential input voltage  
Continuous input current(4)  
Continuous output current(5)  
Continuous power dissipation  
Maximum junction temperature  
Operating free-air temperature  
Storage temperature  
V
±10  
mA  
mA  
IO  
±20  
See Thermal Information  
TJ  
150  
°C  
°C  
°C  
TA  
–40  
–65  
125  
150  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) VS is the total supply voltage given by VS = VS+ – VS–  
.
(3) Staying below this ± supply turnon edge rate prevents the edge-triggered ESD absorption device across the supply pins from turning on.  
(4) Continuous input current limit for both the ESD diodes to supply pins and amplifier differential input clamp diodes. The differential input  
clamp diodes limit the voltage across them to 1 V with this continuous input current flowing through them.  
(5) Long-term continuous current for electromigration limits.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification  
JESD22(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
5
MAX  
5.4  
UNIT  
V
VS+  
TA  
Single-supply positive voltage  
Ambient temperature  
–40  
25  
125  
°C  
7.4 Thermal Information  
OPA2834  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
192.6  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
79.3  
114.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
15.7  
YJB  
112.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2019, Texas Instruments Incorporated  
 
OPA2834  
www.ti.com.cn  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
7.5 Electrical Characteristics: 3V to 5V  
VS = 3 V to 5 V, RF = 0 Ω, CL = 4 pF, RL = 5 kΩ referenced to mid-supply, G = 1 V/V, input and output VCM = mid-supply, and  
TA 25°C (unless otherwise noted)  
PARAMETER  
AC PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VO = 20 mVPP, G = 1, < 1 dB peaking  
50  
20  
SSBW  
GBWP  
LSBW  
Small-signal bandwidth  
Gain-bandwidth product  
Large-signal bandwidth  
Bandwidth for 0.1-dB flatness  
Slew rate  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
VO = 20 mVPP, G = 2, RF = 3.65 kΩ  
20  
VO = 2 VPP,VS = 5 V  
6
VO = 1 VPP, VS = 3 V  
9
VO = 200 mVPP, G = 2, RF = 3.65 kΩ  
VS= 5V, VO = 2–V step, 20% to 80%  
VS= 3V, VO = 1–V step, 20% to 80%  
VO = 200–mV step, input tR = 1 ns  
VO = 2–V step, input tR = 50 ns  
VO = 2–V step, input tR = 50 ns  
VO = 2–V step, input tR = 50 ns  
G = 2, 2x output overdrive  
9
26  
SR  
17  
tR, tF  
Rise, fall time  
16  
Settling time to 0.1%  
Settling time to 0.01%  
Over/Under Shoot  
Overdrive recovery time  
88  
ns  
110  
0.6  
240  
–131  
–143  
12  
%
ns  
HD2  
HD3  
eN  
Second-order harmonic distortion f = 10 kHz, VO = 2 VPP  
dBc  
Third-order harmonic distortion  
Input voltage noise  
f = 10 kHz, VO = 2 VPP  
f > 10 kHz , 1/f corner at 150 Hz  
f > 10 kHz , 1/f corner at 900 Hz  
f = 100 kHz, VO = 2 VPP  
nV/Hz  
pA/Hz  
dBc  
iN  
Input current noise  
0.2  
–130  
Channel-to-channel crosstalk  
DC PERFORMANCE  
AOL  
Open-loop voltage gain  
VO = ±1 V  
102  
124  
0.35  
0.5  
1.2  
50  
dB  
mV  
1.9  
2.1  
5
VOS  
Input-referred offset voltage  
Input offset voltage drift  
Input bias current  
TA = –40°C to +125°C(1)  
TA = –40°C to +125°C(1)  
µV/°C  
nA  
90  
TA = –40°C to +125°C(1)  
70  
115  
30  
Input offset current  
5
nA  
INPUT  
VICR  
VS–– 0.2  
VS–– 0.1  
86  
VS+–1.1  
VS+–1.1  
Common-mode input range  
V
dB  
TA = –40°C to +125°C(1)  
CMRR  
Common-mode rejection ratio  
Common-mode input impedance  
Differential input impedance  
VCM = VS- – 0.2V to VS+ – 1.1 V  
104  
1050 || 1.1  
1 || 0.2  
MΩ||pF  
OUTPUT  
VOL  
Output voltage, low  
Output voltage, high  
Vs–+0.02  
Vs––0.05  
28  
Vs–+0.05  
V
VOH  
Vs+– 0.1  
16  
VO = ±1 V, ΔVOS < 1 mV , VS = 5 V  
VO = ±1 V, ΔVOS < 1 mV , VS = 3 V  
G = 1, IOUT = ±5 mA DC  
Linear output drive  
(sourcing/sinking)  
mA  
11  
13.5  
ZO  
Closed-loop output impedance  
1.1  
mΩ  
POWER SUPPLY  
VS  
Specified operating voltage  
2.7  
86  
5.4  
210  
290  
V
170  
220  
103  
IQ  
Quiescent current per amplifier  
Power-supply rejection ratio  
µA  
dB  
TA = –40°C to +125°C(1)  
PSRR  
ΔVS = 0.3 V  
(1) Based on electrical characterization of 32 devices. Minimum and maximum values are not specified by final automated test equipment  
(ATE) nor by QA sample testing. Typical specifications are ±1 sigma.  
Copyright © 2019, Texas Instruments Incorporated  
5
 
OPA2834  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.6 Typical Characteristics: Vs = 5 V  
VS+ = 5 V, VS– = 0 V, RF = 0 Ω, RL = 5 kΩ, CL = 4 pF, input and output referenced to mid-supply, and TA 25°C (unless  
otherwise noted)  
3
0
3
0
-3  
-6  
-9  
-3  
-6  
-9  
Gain = 1 V/V  
Gain = 2 V/V  
Gain = 5 V/V  
Gain = 10 V/V  
Gain = -1 V/V  
Gain = -2 V/V  
Gain = -5 V/V  
Gain = -10 V/V  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
D101  
D102  
VO = 20 mVPP  
VO = 20 mVPP  
1. Noninverting Small-Signal Frequency Response  
2. Inverting Small-Signal Frequency Response  
9
6
3
0
3
0
-3  
-6  
-9  
-3  
-6  
-9  
VO = 200 mVPP  
VO = 500 mVPP  
VO = 1 VPP  
VO = 200 mVPP  
VO = 500 mVPP  
VO = 1 VPP  
VO = 2 VPP  
VO = 2 VPP  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
D103  
D104  
Gain = 2 V/V  
Gain = –1 V/V  
3. Noninverting Large-Signal Frequency Response  
4. Inverting Large-Signal Frequency Response  
0.5  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VO = 200 mVPP  
VO = 500 mVPP  
VO = 1 VPP  
VO = 200 mVPP  
VO = 500 mVPP  
VO = 1 VPP  
0.4  
0.3  
0.2  
0.1  
0
VO = 2 VPP  
VO = 2 VPP  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
D206  
D205  
Gain = 2 V/V  
Gain = –1 V/V  
5. Noninverting Large-Signal Response Flatness  
6. Inverting Large-Signal Response Flatness  
6
版权 © 2019, Texas Instruments Incorporated  
OPA2834  
www.ti.com.cn  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
Typical Characteristics: Vs = 5 V (接下页)  
VS+ = 5 V, VS– = 0 V, RF = 0 Ω, RL = 5 kΩ, CL = 4 pF, input and output referenced to mid-supply, and TA 25°C (unless  
otherwise noted)  
1.2  
1.2  
1
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
VO = ê 0.125 V  
VO = ê 0.25 V  
VO = ê 0.5 V  
VO = ê 1 V  
VO = ê 0.125 V  
VO = ê 0.25 V  
VO = ê 0.5 V  
VO = ê 1 V  
-1.2  
-1.2  
Time (100 ns/div)  
Time (100 ns/div)  
D303  
D304  
Gain = 2 V/V  
Gain = –1 V/V  
7. Noninverting Step Response  
8. Inverting Step Response  
5
4
5
4
VIN ì 2 Gain  
VOUT (AV = 2)  
VIN ì -2 Gain  
VOUT (Av = -2)  
3
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
Time (500 ns/div)  
Time (500 ns/div)  
D305  
D306  
Gain = 2 V/V  
Gain = –2 V/V  
9. Noninverting Overdrive Recovery  
10. Inverting Overdrive Recovery  
-40  
-50  
-60  
-70  
HD2 Gain = 1 V/V  
HD3 Gain = 1 V/V  
HD2 Gain = -1 V/V  
HD3 Gain = -1 V/V  
HD2, Gain = 1 V/V  
HD3, Gain = 1 V/V  
HD2, Gain = -1 V/V  
HD3, Gain = -1 V/V  
-60  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-100  
-110  
-120  
-130  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
100  
1k  
RLOAD (W)  
10k  
D110  
D307  
VO = 2 VPP  
VO = 2 VPP, f = 100 kHz  
11. Harmonic Distortion vs Frequency  
12. Harmonic Distortion vs RLOAD  
版权 © 2019, Texas Instruments Incorporated  
7
OPA2834  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics: Vs = 5 V (接下页)  
VS+ = 5 V, VS– = 0 V, RF = 0 Ω, RL = 5 kΩ, CL = 4 pF, input and output referenced to mid-supply, and TA 25°C (unless  
otherwise noted)  
-90  
-80  
-85  
-95  
-90  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-95  
-100  
-105  
-110  
-115  
-120  
-125  
HD2, Gain = 2V/V  
HD3, Gain = 2V/V  
HD2, Gain = -1V/V  
HD3, Gain = -1V/V  
HD2, +Gain  
HD3, +Gain  
HD2, -Gain  
HD3, -Gain  
0.4  
0.8  
1.2  
1.6  
2
Output Voltage (Vpp)  
2.4  
2.8  
3.2  
3.6  
4
1
2
3
4
5
Gain (V/V)  
6
7
8
9
10  
D111  
D201  
f = 100 kHz  
VO = 2 VPP, f = 100 kHz  
13. Harmonic Distortion vs Output Voltage  
14. Harmonic Distortion vs Gain Magnitude  
8
版权 © 2019, Texas Instruments Incorporated  
OPA2834  
www.ti.com.cn  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
7.7 Typical Characteristics: VS = 3.0 V  
VS+ = 3 V, VS– = 0 V, RF = 0 Ω, RL = 5 kΩ, CL = 4 pF, input and output referenced to mid-supply, and TA 25°C (unless  
otherwise noted)  
3
0
3
0
-3  
-6  
-9  
-3  
-6  
-9  
Gain = -1 V/V  
Gain = -2 V/V  
Gain = -5 V/V  
Gain = -10 V/V  
Gain = 1 V/V  
Gain = 2 V/V  
Gain = 5 V/V  
Gain = 10 V/V  
0.1  
1
10  
100  
Frequency (MHz)  
0.1  
1
10  
100  
D115  
Frequency (MHz)  
D114  
VO = 20 mVPP  
VO = 20 mVPP  
16. Inverting Small-Signal Frequency Response  
15. Noninverting Small-Signal Frequency Response  
3
3
0
0
-3  
-6  
-3  
-6  
-9  
VO = 200 mVPP  
VO = 500 mVPP  
VO = 1 VPP  
VO = 200 mVPP  
VO = 500 mVPP  
VO = 1 VPP  
-9  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
D116  
D117  
Gain = 2 V/V  
Gain = –1 V/V  
18. Inverting Large-Signal Bandwidth  
17. Noninverting Large-Signal Bandwidth  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
VO = 200 mVPP  
VO = 500 mVPP  
VO = 1 VPP  
VO = 200 mVPP  
VO = 500 mVPP  
VO = 1 VPP  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
D207  
D208  
Gain = 2 V/V  
Gain = –1 V/V  
19. Noninverting Large-Signal Frequency Response  
20. Inverting Large-Signal Frequency Response Flatness  
Flatness  
版权 © 2019, Texas Instruments Incorporated  
9
OPA2834  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics: VS = 3.0 V (接下页)  
VS+ = 3 V, VS– = 0 V, RF = 0 Ω, RL = 5 kΩ, CL = 4 pF, input and output referenced to mid-supply, and TA 25°C (unless  
otherwise noted)  
1.2  
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
VO = ê 0.125 V  
VO = ê 0.25 V  
VO = ê 0.5 V  
VO = ê 0.125 V  
VO = ê 0.25 V  
VO = ê 0.5 V  
-1.2  
Time (100 ns/div)  
Time (100 ns/div)  
D308  
D309  
Gain = 2 V/V  
Gain = –1 V/V  
21. Noninverting Step Response  
22. Inverting Step Response  
3
2
3
2
VIN ì 2 Gain  
VOUT (Av = 2)  
VIN ì -1 Gain  
VOUT (Av = -1)  
1
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
Time (500 ns/div)  
Time (500 ns/div)  
D310  
D311  
Gain = –1 V/V  
Gain = 2 V/V  
24. Inverting Overdrive Recovery  
23. Noninverting Overdrive Recovery  
-60  
-70  
-60  
-70  
HD2 Gain1= 1 V/V  
HD3 Gain1= 1 V/V  
HD2 Gain1= -1 V/V  
HD3 Gain1= -1 V/V  
HD2, Gain = 1 V/V  
HD3, Gain = 1 V/V  
HD2, Gain = -1 V/V  
HD3, Gain = -1 V/V  
-80  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-90  
-100  
-110  
-120  
-130  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
100  
1k  
RLOAD(W)  
10k  
D122  
D312  
VO = 1 VPP  
VO = 1 VPP, f = 100 kHz  
25. Harmonic Distortion vs Frequency  
26. Harmonic Distortion vs RLOAD  
10  
版权 © 2019, Texas Instruments Incorporated  
OPA2834  
www.ti.com.cn  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
Typical Characteristics: VS = 3.0 V (接下页)  
VS+ = 3 V, VS– = 0 V, RF = 0 Ω, RL = 5 kΩ, CL = 4 pF, input and output referenced to mid-supply, and TA 25°C (unless  
otherwise noted)  
-90  
-80  
-90  
-95  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-100  
-110  
-120  
-130  
-140  
HD2, Gain = 2V/V  
HD3, Gain = 2V/V  
HD2, Gain = -1V/V  
HD3, Gain = -1V/V  
HD2, +Gain  
HD3, +Gain  
HD2, -Gain  
HD3, -Gain  
1
2
3
4
5 6  
Gain (V/V)  
7
8
9
10  
0.4  
0.6  
0.8  
Output Voltage (Vpp)  
1
1.2  
D204  
D123  
f = 100 kHz, VO = 1 VPP  
f = 100 kHz  
28. Harmonic Distortion vs Gain Magnitude  
27. Harmonic Distortion vs Output Voltage  
版权 © 2019, Texas Instruments Incorporated  
11  
OPA2834  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.8 Typical Characteristics: ±2.5-V to ±1.5-V Split Supply  
with PD = VCC and TA 25°C , gain mentioned in V/V (unless otherwise noted)  
100  
10  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-10  
-20  
60  
45  
30  
15  
Gain = 1V/V  
Gain = 2V/V  
Gain = 5V/V  
Gain (dB)  
Phase (è)  
0
-15  
-30  
-45  
-60  
-75  
-90  
-105  
-120  
-135  
-150  
-165  
-180  
1
0.1  
10m  
1m  
0.1m  
1
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M 100M  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D313  
D314  
29. Open-Loop Gain and Phase vs Frequency  
30. Closed-Loop Output Impedance vs Frequency  
100  
10  
1
120  
Voltage Noise  
Current Noise  
CMRR 5V  
CMRR 3V  
PSRR 5V  
PSRR 3V  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
D100  
D315  
Measured then fit to ideal 1/f model  
31. Input Noise Density vs Frequency  
32. CMRR and PSRR vs Frequency  
14k  
300  
200  
100  
0
5V  
3V  
12k  
10k  
8k  
6k  
-100  
-200  
-300  
4k  
2k  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (èC)  
D151  
D141  
Input Offset Voltage (mV)  
32 units at 5-V and 3-V supply, Input offset voltage calibrated to  
0V at 25°C  
54000 units at each supply voltage  
33. Input Offset Voltage Distribution  
34. Input Offset Voltage vs Ambient Temperature  
12  
版权 © 2019, Texas Instruments Incorporated  
OPA2834  
www.ti.com.cn  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
Typical Characteristics: ±2.5-V to ±1.5-V Split Supply (接下页)  
with PD = VCC and TA 25°C , gain mentioned in V/V (unless otherwise noted)  
20  
10  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
-20  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D154  
D153  
32 units at 5-V and 3-V supply  
32 units at 5-V and 3-V supply  
36. Input Bias Current vs Ambient Temperature  
35. Input Offset Current vs Ambient Temperature  
240  
220  
200  
180  
160  
140  
120  
40  
35  
30  
25  
20  
15  
10  
5
0
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (èC)  
D150  
Input Offset Voltage Drift mV/èC  
D142  
32 units at 5-V and 3-V supply  
136 units, –40°C to +125°C  
38. Supply Current vs Ambient Temperature  
37. Input Offset Voltage Drift Distribution  
200  
180  
160  
140  
120  
100  
80  
9
6
Gain=1V/V  
Gain=2V/V  
Gain=5V/V  
Gain=10V/V  
3
0
-3  
-6  
G=1 CL=1nF RO=70W  
G=1 CL=0.1nF RO=170W  
G=2 CL=1nF RO=55W  
G=2 CL=0.1nF RO=110W  
G=5 CL=1nF RO=25W  
G=5 CL=0.1nF RO=0W  
G=10 CL=1nF RO=0W  
G=10 CL=0.1nF RO=0W  
-9  
60  
-12  
-15  
-18  
-21  
40  
20  
0
1
10  
100  
CL (pF)  
1000  
10000  
0.01  
0.1  
1
Frequency (MHz)  
10  
100  
D301  
D302  
See 49,  
See 49  
Recommended value of RO for targeting 30° phase margin  
39. Output Resistor (RO) vs CL  
40. Small-Signal Frequency Response vs CL  
With Recommended RO  
版权 © 2019, Texas Instruments Incorporated  
13  
 
OPA2834  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics: ±2.5-V to ±1.5-V Split Supply (接下页)  
with PD = VCC and TA 25°C , gain mentioned in V/V (unless otherwise noted)  
3
2.5  
1.5  
2
1
0.5  
0
1.5  
1
0.5  
0
ê 2.5 VOH  
ê 2.5 VOL  
ê 1.5 VOH  
ê 1.5 VOL  
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-1.5  
-2  
100  
1k  
RLOAD (W)  
10k  
-3 -2.4 -1.8 -1.2 -0.6  
0
Input Common-mode Voltage (V)  
0.6 1.2 1.8 2.4  
3
D316  
D317  
32 units at 5-V and 3-V supplies  
41. Output Voltage Swing vs Load Resistor  
42. Input Offset Voltage vs Input Common-Mode Voltage  
5k  
-40  
Ch A to Ch B  
Ch B to Ch A  
-50  
-60  
4k  
3k  
2k  
1k  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
0.1  
1
10  
100  
D300  
Frequency (MHz)  
D107  
Input offset mismatch between channels (mV)  
43. Crosstalk vs Frequency  
44. Input Offset Mismatch (Between Channel A and  
Channel B) Distribution  
14  
版权 © 2019, Texas Instruments Incorporated  
 
OPA2834  
www.ti.com.cn  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
8 Detailed Description  
8.1 Overview  
The OPA2834 bipolar input operational amplifier offers an unity-gain bandwidth of 50 MHz with ultra-low HD2  
and HD3 as shown in the Electrical Characteristics: 3V to 5V. The device can swing to within 100 mV of the  
supply rails while driving a 5-kΩ load. The input common-mode voltage of the amplifier can swing to 200 mV  
below the negative supply rail. This level of performance is achieved at 170 µA of quiescent current per amplifier  
channel.  
8.2 Functional Block Diagrams  
VSIG  
VREF  
VS+  
½ OPA2834  
VOUT  
VIN  
+
RG  
œ
VS-  
RF  
Gain × VSIG  
VREF  
VREF  
45. Noninverting Amplifier  
VS+  
VREF  
VREF  
VIN  
-
Gain ×  
VSIG  
VS-  
RF  
VREF  
46. Inverting Amplifier  
8.3 Feature Description  
8.3.1 Input Common-Mode Voltage Range  
When the primary design goal is a linear amplifier circuit with high CMRR, it is important to not violate the input  
common-mode voltage range (VICR) of the op amp. The typical specifications for this device are 0.2 V below the  
negative rail and 1.1 V below the positive rail.  
Assuming the op amp is in linear operation, the voltage difference between the input pins is small (ideally 0 V);  
and the input common-mode voltage is analyzed at either input pin with the other input pin assumed to be at the  
same potential. The voltage at VIN+ is simple to evaluate. In a noninverting configuration, as shown in 45, the  
input signal, VIN, must not violate the VICR for this operation. In an inverting configuration, as shown in 46, the  
reference voltage, VREF, must be within the VICR. Assuming VREF is within VICR, the amplifier is always in the  
linear operation range irrespective of the amplitude of the input signal VIN.  
The input voltage limits have fixed headroom to the power rails and track the power-supply voltages. For a 5-V  
supply, the linear input voltage ranges from –0.2 V to 3.9 V and –0.2 V to 1.6 V for a 2.7-V supply. The delta  
headroom from each power-supply rail is the same in either case: –0.2 V and 1.1 V.  
版权 © 2019, Texas Instruments Incorporated  
15  
 
 
OPA2834  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
8.3.2 Output Voltage Range  
The OPA2834 is a rail-to-rail output (RRO) op amp. Rail-to-rail output typically means that the output voltage  
swings within a couple hundred millivolts of the supply rails. There are different ways to specify this parameter,  
one is with the output still in linear operation and another is with the output saturated. Saturated output voltages  
are closer to the power-supply rails than linear outputs, but the signal is not a linear representation of the input.  
Linear output is a better representation of how well a device performs when used as a linear amplifier. Saturation  
and linear operation limits are affected by the output current, where higher currents lead to lower headroom from  
either of the output rails.  
The Electrical Characteristics: 3V to 5V list the saturated output voltage specifications with a 5-kΩ load. Given a  
light load, the output voltage limits have nearly constant headroom to the power rails and track the power-supply  
voltages. For example, with a 5-kΩ load and a single 5-V supply, the saturation output voltage ranges from 0.1 V  
to 4.95 V and ranges from 0.1 V to 2.65 V for a 2.7-V supply.41 illustrates the saturated voltage-swing limits  
versus output load resistance.  
With a device such as the OPA2834, where the input range is lower than the output range, typically the input  
limits the available signal swing only in a noninverting gain of 1. Signal swing in noninverting configurations in  
gains greater than +1 and inverting configurations in any gain is typically limited by the output voltage limits of  
the op amp.  
8.3.3 Low-Power Applications and the Effects of Resistor Values on Bandwidth  
Choosing the right value of feedback resistor (RF) gives the lowest operating current, maximum bandwidth,  
lowest DC error, and the best pulse response. In this section for simplicity, the main focus of the signal chain  
design is assumed to be the total operating current. The feedback resistor used to set the gain value invariably  
loads the amplifier. For example, in a gain of 2 with RF = RG = 3.6 kΩ (see 48) and VOUT = 4 V (assumed),  
555 µA of current flows through the feedback path to ground. However, using a 3.6-kΩ resistor may not be  
practical in low-power applications.  
In low-power applications, there is a tendency to reduce the current consumed by the amplifier by increasing the  
gain-setting resistor values in the feedback path. Using larger value gain resistors has two primary side effects  
(other than lower power), because of the interaction of the resistors with parasitic circuit capacitance. These  
large-value resistors:  
Lower the bandwidth as a result of the interaction with the parasitic capacitor  
Lower the phase margin by causing  
Peaking in the frequency response  
Overshoot and ringing in the pulse response  
47 shows the small-signal frequency response for a noninverting gain of 2 with RF and RG equal to 2 kΩ, 5  
kΩ, 10 kΩ, and 100 kΩ. The test was done with RL = 5 kΩ. Peaking reduces with lower values of RL.  
15  
12  
9
6
3
0
-3  
-6  
-9  
RF = 2 kW  
-12  
RF = 5 kW  
RF = 10 kW  
RF = 100 kW  
-15  
-18  
100k  
1M  
10M  
Frequency (Hz)  
100M  
D401  
47. Frequency Response With Various Gain-Setting Resistor Values  
As expected, larger value gain resistors result in gain peaking in the frequency response plots (peaking in the  
frequency response is synonymous with the reduced phase margin).  
16  
版权 © 2019, Texas Instruments Incorporated  
 
OPA2834  
www.ti.com.cn  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
Feature Description (接下页)  
However, there is a simple way to get the best of both worlds. An ideal application requires a high value of RF for  
a particular gain to reduce the operating current but be limited by the reduced phase margin from the interaction  
of RF and CIN. The trick is simple: adding a capacitor in parallel with RF helps compensate the phase margin and  
restores the flat frequency response (avoids gain peaking). The value of C chosen must be such that RF × CF =  
CIN × RG. CIN for the OPA2834 is 1.1 pF. This value of CIN is listed in the Electrical Characteristics: 3V to 5V  
table as common-mode input impedance. For the case discussed here with a Gain = 2, RF = RG = 3.6 kΩ, , CIN  
=
1.1 pF, using a CF equal to 1 pF is sufficient to reduce the gain peaking. Using a CF equal to 1 pF enables users  
to increase the values of RF and RG to much higher values beyond 3.6 kΩ to reduce the operational current  
consumed by the amplifier.  
48 shows the test circuit.  
½ OPA2834  
VIN  
RG  
+
VOUT  
5 k  
œ
RF  
CF  
48. G = 2 Test Circuit for Various Gain-Setting Resistor Values  
8.3.4 Driving Capacitive Loads  
The OPA2834 drives up to a nominal capacitive load of 10 pF on the output with no special consideration and  
without the need of RO. When driving capacitive loads greater than 10 pF, TI recommends using a small resistor  
(RO) in series with the output as close to the device as possible. Without RO, output capacitance interacts with  
the output impedance (ZO) of the amplifier causing phase shift in the feedback loop of the amplifier reducing the  
phase margin. This reduction in the phase margin causes peaking in the frequency response and overshoot and  
ringing in the pulse response. Interaction with other parasitic elements can lead to further instability or ringing.  
Inserting RO isolates the phase shift from the loop gain path and restores the phase margin; however RO can  
limit the bandwidth slightly. 49 shows a diagram of driving capacitive loads.  
39 shows the test circuit and shows the recommended values of RO versus capacitive loads, CL. See 40 for  
the frequency responses with various optimized values of RO with CL.  
½ OPA2834  
RO  
VIN  
+
VOUT  
5 k  
œ
CL  
49. Driving Capacitive Loads With the OPA2834  
8.4 Device Functional Modes  
8.4.1 Split-Supply Operation (±1.35 V to ±2.7 V)  
To facilitate testing with common lab equipment, the OPA2834EVM (see the OPA2837DGK Evaluation Module  
user guide) is built to allow split-supply operation. This configuration eases lab testing because the mid-point  
between the power rails is ground, and most signal generators, network analyzers, oscilloscopes, spectrum  
analyzers, and other lab equipment have inputs and outputs with a ground reference.  
版权 © 2019, Texas Instruments Incorporated  
17  
 
 
OPA2834  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Device Functional Modes (接下页)  
50 shows a simple noninverting configuration analogous to 45 with a ±2.5-V supply and the reference  
voltage (VREF) equal to ground. The input and output swing symmetrically around ground. For ease of use, split  
supplies are preferred in systems where signals swing around ground.  
+2.5 V  
½ OPA2834  
+
RG  
VOUT  
œ
VSIG  
Load  
-2.5 V  
RF  
50. Split-Supply Operation  
8.4.2 Single-Supply Operation (2.7 V to 5.4 V)  
Often, newer systems use a single power supply to improve efficiency and reduce the cost of the power supply.  
The OPA2834 is designed for use with single-supply power operation and can be used with single-supply power  
with no change in performance from split supply, as long as the input and output are biased within the linear  
operation of the device.  
To change the circuit from split-supply to single-supply, level shift all voltages by half the difference between the  
power-supply rails. For example, 51 shows changing from a ±2.5-V split supply to a 5-V single supply.  
5 V  
½ OPA2834  
+
RG  
VOUT  
œ
VSIG  
Load  
RF  
+
2.5 V  
51. Single-Supply Concept  
A practical circuit has an amplifier or some other circuit providing the bias voltage for the input, and the output of  
this amplifier stage provides the bias for the next stage.  
52 shows a typical noninverting amplifier circuit. With a 5-V single-supply, a mid-supply reference generator is  
needed to bias the negative side through RG. To cancel the voltage offset that is otherwise caused by the input  
bias currents, R1 is selected to be equal to RF in parallel with RG. For example, if a gain of 2 is required and RF =  
3.6 kΩ, select RG = 3.6 kΩ to set the gain, and R1 = 1.8 kΩ for bias current cancellation. The value for C is  
dependent on the reference, and TI recommends a value of at least 0.1 µF to limit noise.  
18  
版权 © 2019, Texas Instruments Incorporated  
 
 
OPA2834  
www.ti.com.cn  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
Device Functional Modes (接下页)  
Signal and bias from  
previous stage  
VSIG  
2.5 V  
5 V  
½ OPA2834  
R1  
RO  
+
VOUT  
œ
RG  
Gain × VSIG  
2.5 V  
REF  
5 V  
2.5 V  
C
Signal and bias to  
next stage  
RF  
52. Noninverting Single-Supply Operation With Reference  
53 illustrates a similar noninverting single-supply scenario with the reference generator replaced by the  
Thevenin equivalent using resistors and the positive supply. RG’ and RG” form a resistor divider from the 5-V  
supply and are used to bias the negative side with the parallel sum equal to the equivalent RG to set the gain. To  
cancel the voltage offset that is otherwise caused by the input bias currents, R1 is selected to be equal to RF in  
parallel with RG’ in parallel with RG” (R1= RF || RG’ || RG”). For example, if a gain of 2 is required and RF = 3.6 kΩ,  
selecting RG’ = RG” = 7.2 kΩ gives an equivalent parallel sum of 3.6 kΩ, sets the gain to 2, and references the  
input to mid supply (2.5 V). R1 is set to 1.8 kΩ for bias current cancellation. The resistor divider costs less than  
the 2.5-V reference in 53 but can increase the current from the 5-V supply.  
Signal and bias from  
previous stage  
VSIG  
2.5 V  
5 V  
½ OPA2834  
R1  
RO  
+
RG  
VOUT  
Gain × VSIG  
œ
5 V  
RG“  
2.5 V  
Signal and bias to  
next stage  
RF  
53. Noninverting Single-Supply Operation With Resistors  
54 shows a typical inverting-amplifier circuit. With a 5-V single-supply, a mid-supply reference generator is  
needed to bias the positive side through R1. To cancel the voltage offset that is otherwise caused by the input  
bias currents, R1 is selected to be equal to RF in parallel with RG. For example, if a gain of –2 is required and RF  
= 3.6 kΩ, select RG = 1.8 kΩ to set the gain and R1 = 1.2 kΩ for bias current cancellation. The value for C is  
dependent on the reference, but TI recommends a value of at least 0.1 µF to limit noise into the op amp.  
版权 © 2019, Texas Instruments Incorporated  
19  
 
OPA2834  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Device Functional Modes (接下页)  
5 V  
½ OPA2834  
R1  
C
2.5 V  
REF  
RO  
+
5 V  
VOUT  
œ
Gain × VSIG  
2.5 V  
RG  
VSIG  
RF  
Signal and bias to  
next stage  
2.5 V  
Signal and bias from  
previous stage  
54. Inverting Single-Supply Operation With Reference  
55 illustrates a similar inverting single-supply scenario with the reference generator replaced by the Thevenin  
equivalent using resistors and the positive supply. R1 and R2 form a resistor divider from the 5-V supply and are  
used to bias the positive side. To cancel the voltage offset that is otherwise caused by the input bias currents,  
set the parallel sum of R1 and R2 equal to the parallel sum of RF and RG. C must be added to limit the coupling of  
noise into the positive input. For example, if a gain of –2 is required and RF = 3.6 kΩ, select RG = 1.8 kΩ to set  
the gain. R1 = R2 = 2.4 kΩ for the mid-supply voltage bias and for op-amp input-bias current cancellation. A good  
value for C is 0.1 µF. The resistor divider costs less than the 2.5-V reference in 55 but can increase the  
current from the 5-V supply.  
5 V  
5 V  
½ OPA2834  
R1  
RO  
+
VOUT  
C
R2  
œ
Gain × VSIG  
2.5 V  
RG  
RF  
Signal and bias to  
next stage  
VSIG  
2.5 V  
Signal and bias from  
previous stage  
55. Inverting Single-Supply Operation With Resistors  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
20  
版权 © 2019, Texas Instruments Incorporated  
 
OPA2834  
www.ti.com.cn  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
9.1 Application Information  
9.1.1 Noninverting Amplifier  
The OPA2834 can be used as a noninverting amplifier with a signal input to the noninverting input, VIN+. 45  
illustrates a basic block diagram of the circuit.  
The amplifier output can be calculated according to 公式 1 if VIN = VREF + VSIG  
.
æ
ö
÷
ø
RF  
V
OUT  
= VSIG 1 +  
+ VREF  
ç
RG  
è
(1)  
RF  
G = 1 +  
RG  
The signal gain of the circuit is set by  
, and VREF provides a reference around which the input and  
output signals swing. Output signals are in-phase with the input signals.  
The OPA2834 is designed for the nominal value of RF to be 3.6 kΩ in gains other than +1. This value gives  
excellent distortion performance, maximum bandwidth, best flatness, and best pulse response. RF = 3.6 kΩ must  
be used as a default unless other design goals require changing to other values. All test circuits used to collect  
data for this document have RF = 3.6 kΩ for all gains other than +1. A gain of +1 is a special case where RF is  
shorted and RG is left open.  
9.1.2 Inverting Amplifier  
The OPA2834 can be used as an inverting amplifier with a signal input to the inverting input, VIN–, through the  
gain-setting resistor RG. 46 illustrates a basic block diagram of the circuit.  
The output of the amplifier can be calculated according to 公式 2 if VIN = VREF + VSIG  
.
æ
SIG ç  
è
ö
÷
ø
-RF  
V
= V  
+ V  
REF  
OUT  
RG  
(2)  
-RF  
G =  
RG  
The signal gain of the circuit is given by  
and VREF provides a reference point around which the input  
and output signals swing. Output signals are 180˚ out-of-phase with the input signals. The nominal value of RF  
must be 3.6 kΩ for inverting gains.  
9.2 Typical Applications  
9.2.1 Low-Side Current Sensing  
Power stages use current feedback for phase current control and regulation. One of the commonly used methods  
for this current measurement is low-side current shunt monitoring. 56 shows a representative schematic of  
such a system. The use of the OPA2834 is described in this section for a low-side, current-shunt monitoring  
application.  
Short-  
Circuit Fault  
Detection  
+
VTH  
LOAD  
œ
10 kΩ  
3.3V  
5 V  
œ
5 V  
500 Ω  
500 Ω  
OPA2834-2  
œ
ADS7056  
15 APP  
470 pF  
OPA2834-1  
+
+
90 Ω  
10 mΩ  
10 kΩ  
VREF =1.24V  
56. Low-Side Current Sensing  
版权 © 2019, Texas Instruments Incorporated  
21  
 
 
 
OPA2834  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Applications (接下页)  
9.2.1.1 Design Requirements  
The OPA2834 is used in a gain of 20 V/V followed by an OPA2834 used in a gain of 1 V/V for driving the input of  
the ADS7056 which is sampling at 1 MSPS. A comparator is connected to the ADC input for short-circuit fault  
detection. This design example is illustrated for the following specifications:  
Switching frequency: 50 kHz  
Shunt resistance: 10 mΩ  
Load current: 15 APP  
Output voltage: 3.0 VPP  
Amplifier supply voltage: 5 V  
Data Acquisition: 1 MSPS with 0.1% accuracy  
Input spikes due to inductive kickbacks from the power plane: 10 V  
9.2.1.2 Detailed Design Procedure  
One of the channels of the OPA2834 is connected to the shunt resistor in 56 in a 20-V/V difference amplifier  
configuration. 公式 3 gives the gain of this circuit. A well-known way to start the design of this signal chain is to  
start from fixating the value of RG.  
«
÷
RF  
RG  
VOUT  
=
V -V  
(
)
2
1
where  
RF and RG are the feedback and gain resistors for channel A of the OPA2834  
(3)  
The values of RF and RG depend on multiple factors. Using small resistors in the feedback network helps reduce  
output noise and improves measurement accuracy. Small feedback resistors result in larger power dissipation in  
the amplifier output stage. In order to reduce this power dissipation, large-value resistors reduce the phase  
margin and cause gain peaking; see 47. Select the values of RF and RG from the recommended range of  
values for this device. As given in 公式 4, care must be taken to use a gain-resistor value large enough to limit  
the current through the input ESD diodes to within 10 mA for a 10-V input transient (as per the design targets)  
with the amplifier powered off a 5-V supply.  
VIN -VD -VS  
ID,Max  
RG =  
where  
VIN is the input transient voltage  
VD is the ESD diode forward voltage drop  
ID is the current resulting from this input transient flowing through the ESD diode  
(4)  
A total gain of 20 V/V is required from the amplifier signal chain. We have chosen RG = 500 Ω in this design, thus  
RF = 10 kΩ. A SAR ADC features a sampling capacitor at the input pin. At the end of every conversion cycle, the  
circuit driving this SAR ADC needs to replenish this capacitor. Using the analog calculator, the required  
bandwidth for the amplifier to drive the ADS7056 ( sampling rate of 1MSPS and a clock frequency of 40 MHz )  
comes out to be at least 5 MHz. Because of this requirement, the two amplifier channels are configured in gains  
of 20 V/V and 1 V/V, respectively. The effective bandwidth of the amplifier set in a gain on 20 V/V comes out to  
be 20MHz/20 = 1MHz. The bandwidth of the second amplifier set in a gain of 1V/V , equals 50MHz. Thus the  
rise time and the settling time of the entire signal chain is decided by the first amplifier. Using an amplifier in the  
first stage of any lower bandwidth will result in a penalty in the settling time on the ADC. The 1.24-V reference  
voltage to the noninverting input of channel 1 sets the output common-mode voltage to 1.24 V. The two channels  
of the OPA2834 together provide a signal gain of 20 V/V. The first Amplifier's bandwidth is dedicated to gaining  
up the signal with a very low rise time whereas the function of the second amplifier is to utilize its bandwidth to  
drive the SAR ADC to achieve the required settling.  
22  
版权 © 2019, Texas Instruments Incorporated  
 
 
OPA2834  
www.ti.com.cn  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
Typical Applications (接下页)  
The ADS7056 samples at 1 MSPS with a 40-MHz clock which translates to an acquisition time of 550 nsec. This  
provides the dual amplifier 550 nsec to settle to the required accuracy. In this application, we target an accuracy  
of 0.1%. As the ADC is powered from a 3.3 V supply we have assumed the full scale to be 3 V.  
An accuracy of 0.1% of 3 V = 3 mV. Thus the second OPA2834 should settle to ±3 mV of its final intended value  
within 550 nsec. 57 shows the TINA simulation plots for the OPA2834 driving the ADS7056. Input voltage  
(red) is the signal swing across the shunt resistance, the error signal is the % error in the voltage across the  
sampling capacitor from its steady-state value (instantaneous value - final value). The input signal sharply  
transits from its lowermost point to the uppermost point at 600 nsec instant. This can be considered as a short  
circuit event or step increase due to a mosfet switching in real-world circuits. This acquisition window of the ADC  
as discussed earlier is 550 nsec. The details on how this time is decided by the ADC can be found from the  
ADS7056 datasheet. Thus the % error signal (blue) must settle down to less than 0.1 % before the end of this  
550 nsec window. The output signal (black) is divided by 20 V/V so as to be shown beside its corresponding  
input signal. As per 57 the error signal comfortably settles to the final value with an error % of -0.05% which is  
well within the 0.1% accuracy. Hence the dual OPA2834 settles to 0.1% accuracy within 550 ns with a worst-  
case, 0 to 3-V full-scale transient output that too in a gain configuration of 20 V/V as shown in the 57.  
OPA2834 enables single sample settling for ADS7056 running at 40 MHz clock with 1 MSPS.  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Input  
% error  
Output/20  
Time ( 600 nsec/div)  
sett  
57. OPA2834 Settling Performance With the ADS7056  
Another way to look at the signal chain is using the SNR and THD numbers. A 2 kHz tone is input to the first  
OPA2834 shown in 56. This signal is gained up by 20 V/V and fed to the ADS7056. The results are compared  
to the specifications given in the ADS7056 datasheet.  
1. OPA2834 based signal-chain comparison  
Parameter  
ENOB  
OPA2834 + ADS7056  
Ideal Opamp + ADS7056  
11.2  
69.3  
12.16  
75.15  
-90.13  
SNR (dB)  
THD (dB)  
-87.89  
版权 © 2019, Texas Instruments Incorporated  
23  
 
OPA2834  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Using a slower clock with the ADC and the same sampling rate causes the ENOB to reduce as the amplifier has  
reduced time available to settle. This reduction in ENOB is restored with a lower sampling frequency or use of  
wider bandwidth amplifiers from the OPA83x family of products.  
9.2.2 Field Transmitter Sensor Interface  
XTR117  
VREG  
5V  
Regulator  
OPA2834-1  
Sensor  
µ C  
OPA2834-2  
IRET  
58. Field Transmitter Sensor Interface Block Diagram  
9.2.3 Ultrasonic Flow Meters  
59. Ultrasonic Flow Meters Gain Stage  
9.2.4 Microphone Pre-Amplifier  
5 V  
3.3V  
0.1 F  
Electret  
Microphone  
C1  
R3  
OPA2834  
0.1 F  
100 ꢀ  
+
Output  
Microphone  
Cable  
œ
R1  
5.9 kꢀ  
R2  
100 kꢀ  
C2  
10 nF  
0.1 F  
-1.8 V  
R4 100 kꢀ  
R5 1.1 kꢀ  
C3  
1 F  
R6 100 ꢀ  
C4 6.8 nF  
60. Low-Power Microphone Pre-Amplifier  
24  
版权 © 2019, Texas Instruments Incorporated  
 
OPA2834  
www.ti.com.cn  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
60 shows an example circuit of the audio pre-amplifier application using OPA2834. The excellent distortion  
performance and the ultra-low quiescent current, make OPA2834 a very attractive solution for the portable and  
handheld audio instruments. 60 circuit is a bandpass filter with frequency cutoff at 5 Hz and 180 kHz. The  
OPA2834 is connected to a positive 3.3 V and a negative 1.8 V supply. the primary reason for the skew in the  
power supply is to enable the maximum dynamic range possible to the user. The VICR of OPA2834 mentioned in  
Electrical Characteristics: 3V to 5V is 1.1 V from the positive rail. Thus having a skewed power supply like in 图  
60 gives a common-mode input range from -2 V up to 2.2 V.  
40  
30  
20  
10  
0
180  
120  
60  
Gain  
Phase  
0
-60  
-120  
-180  
-10  
-20  
100m  
1
10  
100  
1k  
Frequency (Hz)  
10k 100k 1M 10M 100M  
freq  
61. Frequency Response of Microphone Pre-Amplifier  
10 Power Supply Recommendations  
The OPA2834 is intended to work in a nominal supply range of 3.0 V to 5.0 V. Supply-voltage tolerances are  
supported with the specified operating range of 2.7 V (–10% on a 3-V supply) and 5.4 V (8% on a 5-V supply).  
Good power-supply bypassing is required. Minimize the distance (< 0.1 inch) from the power-supply pins to high-  
frequency, 0.1-µF decoupling capacitors. A larger capacitor (2.2 µF is typical) is used along with a high-  
frequency, 0.1-µF, supply-decoupling capacitor at the device supply pins. For single-supply operation, only the  
positive supply has these capacitors. When a split supply is used, use these capacitors for each supply to  
ground. If necessary, place the larger capacitors further from the device and share these capacitors among  
several devices in the same area of the printed circuit board (PCB). Avoid narrow power and ground traces to  
minimize inductance between the pins and the decoupling capacitors. An optional supply decoupling capacitor  
across the two power supplies (for bipolar operation) reduces second-order harmonic distortion.  
版权 © 2019, Texas Instruments Incorporated  
25  
OPA2834  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The OPA2837EVM can be used as a reference when designing the circuit board. TI recommends following the  
EVM layout of the external components near to the amplifier, ground plane construction, and power routing as  
closely as possible. Follow these general guidelines:  
1. Signal routing must be direct and as short as possible into and out of the op amp.  
2. The feedback path must be short and direct avoiding vias if possible, especially with G = 1 V/V.  
3. Ground or power planes must be removed from directly under the negative input and output pins of the  
amplifier.  
4. TI recommends placing a series output resistor as close to the output pin as possible.  
5. See 40 for recommended values for the expected capacitive load. These values are derived targeting a  
30° phase margin to the output of the op amp.  
6. A 2.2-µF power-supply decoupling capacitor must be placed within two inches of the device and can be  
shared with other op amps. For split supply, a capacitor is required for both supplies.  
7. A 0.1-µF power-supply decoupling capacitor must be placed as close to the supply pins as possible,  
preferably within 0.1 inch. For split supply, a capacitor is required for both supplies.  
11.2 Layout Examples  
C6 and C8 bypass capacitors  
placed close to the device  
supply pins.  
62. EVM Layout Top Layer  
GND and power planes removed  
under the device pins in order to  
minimize parasitic capacitance on  
the sensitive input and output nodes.  
63. EVM Layout Bottom Layer  
26  
版权 © 2019, Texas Instruments Incorporated  
OPA2834  
www.ti.com.cn  
ZHCSJY2A JUNE 2019REVISED SEPTEMBER 2019  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)OPA2837DGK 评估模块》 用户指南  
德州仪器 (TI)ADS7046 12 位、3MSPS、单端输入、小尺寸、低功耗 SAR ADC数据表  
德州仪器 (TI)《单电源运算放大器设计技术》应用报告  
德州仪器 (TI)《高速运算放大器噪声分析》应用报告  
德州仪器 (TI)TIDA-01565 有线 OR 多路复用器以及 PGA 参考设计》设计指南  
德州仪器 (TI)TINA 模型与仿真工具  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Nov-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2834IDGKR  
OPA2834IDGKT  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
2834  
2834  
Samples  
Samples  
NIPDAUAG | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Nov-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Nov-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2834IDGKR  
OPA2834IDGKR  
OPA2834IDGKT  
OPA2834IDGKT  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DGK  
DGK  
DGK  
DGK  
8
8
8
8
2500  
2500  
250  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
3.4  
3.4  
3.4  
3.4  
1.4  
1.4  
1.4  
1.4  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Nov-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2834IDGKR  
OPA2834IDGKR  
OPA2834IDGKT  
OPA2834IDGKT  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DGK  
DGK  
DGK  
DGK  
8
8
8
8
2500  
2500  
250  
366.0  
366.0  
366.0  
366.0  
364.0  
364.0  
364.0  
364.0  
50.0  
50.0  
50.0  
50.0  
250  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

OPA2834IDGKR

超低功耗、50MHz 轨到轨输出、负电源轨输入、电压反馈运算放大器 | DGK | 8 | -40 to 125
TI

OPA2834IDGKT

超低功耗、50MHz 轨到轨输出、负电源轨输入、电压反馈运算放大器 | DGK | 8 | -40 to 125
TI

OPA2835

Ultra Low-Power, Rail-to-Rail Out, Negative Rail In, VFB Op Amp
TI

OPA2835

Ultra Low-Power, Rail-to-Rail Out, Negative Rail In, VFB Op Amp
NSC

OPA2835-DIE

OPA2835-DIE 超低功耗、轨到轨输出、负电源轨输入、VFB 运算放大器
TI

OPA2835ID

Ultra Low-Power, Rail-to-Rail Out, Negative Rail In, VFB Op Amp
TI

OPA2835ID

Ultra Low-Power, Rail-to-Rail Out, Negative Rail In, VFB Op Amp
NSC

OPA2835IDGS

Ultra Low-Power, Rail-to-Rail Out, Negative Rail In, VFB Op Amp
TI

OPA2835IDGS

Ultra Low-Power, Rail-to-Rail Out, Negative Rail In, VFB Op Amp
NSC

OPA2835IDGSR

Ultra Low-Power, Rail-to-Rail Out, Negative Rail In, VFB Op Amp
TI

OPA2835IDGSR

Ultra Low-Power, Rail-to-Rail Out, Negative Rail In, VFB Op Amp
NSC

OPA2835IDR

Ultra Low-Power, Rail-to-Rail Out, Negative Rail In, VFB Op Amp
TI