OPA2837 [TI]

双路、低功耗、精密、轨到轨输出、105MHz 电压反馈放大器;
OPA2837
型号: OPA2837
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双路、低功耗、精密、轨到轨输出、105MHz 电压反馈放大器

放大器
文件: 总63页 (文件大小:2884K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
OPAx837 低功耗 105MHz 电压反馈精密运算放大器  
1 特性  
3 说明  
1
带宽:105MHz (AV = 1V/V)  
OPA837 OPA2837 是单通道和双通道单位增益稳  
定电压反馈放大器,与其他精密运算放大器相比能够提  
供较高的 MHz/mW 带宽。这两款 3.0mW 器件每通道  
仅消耗 600µA(通过单个 5V 电源),能够以 1V/V 的  
增益提供 105MHz 带宽。±130µV(最大值)的极低修  
整失调电压可提供典型值 (±1σ) ±0.4µV/°C 的温  
漂。  
极低(修整后)的电源电流:600µA  
增益带宽积:50MHz  
压摆率:105V/µs  
负轨输入,轨至轨输出  
单电源工作电压范围:2.7V 5.4V  
25°C 下的输入偏移电压:±130µV(最大值)  
输入偏移电压漂移(DCK 封装):  
< ±1.6µV/°C(最大值)  
OPAx837 理论上非常适合单端逐次逼近型寄存器  
(SAR) 模数转换器 (ADC) 驱动 应用,能够针对 3mW  
静态功率提供一种较低的输入点噪声级别 (4.7nV/  
Hz)。极高的 50MHz 增益带宽积可针对高频率提供低  
输出阻抗,这是在 SAR ADC 驱动器应用中提供快速  
充电电流 所必需的。该低动态输出阻抗还适用于采用  
精密 ADC 的 基准 缓冲器应用。单通道 OPA837 采用  
6 引脚 SOT-23 封装(包括电源关断特性)和 5 引脚  
SC70 封装,而双通道 OPA2837 则采用 8 引脚  
VSSOP 封装和 10 引脚 WQFN 封装。  
输入电压噪声:4.7nV/Hz (> 100Hz)  
HD2-120dBc2VPP100kHz 时)  
HD3-145dBc2VPP100kHz 时)  
稳定时间:35ns0.5V 阶跃到 0.1%  
5-µA 关断电流,并且能够从关断快速恢复  
(针对功率调节 应用)  
2 应用  
12 位至 16 位低功耗 SAR 驱动器  
精密 ADC 基准缓冲器  
极低功耗有源滤波器  
低功耗跨阻放大器  
传感器信号调节  
可穿戴设备  
OPAx837 具有 –40°C +125°C 的宽额定运行温度范  
围。  
器件信息(1)  
器件型号  
OPA837  
封装  
SOT-23 (6)  
封装尺寸(标称值)  
2.90mm × 1.60mm  
2.00mm × 1.25mm  
3.00mm × 3.00mm  
2.00mm × 2.00mm  
低侧电流检测  
SC70 (5)  
VSSOP (8)  
WQFN (10)  
具有真正接地输入和输出范围的低功耗、低噪声、精密  
单端 SAR ADC 驱动器  
OPA2837  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
+ 5.0 V  
4.096 V  
REF5040  
GND  
4.0 V  
3.3 V  
+VCC  
0 V  
0 V  
3.8 V  
PD  
OPA837  
+
22  
Gain = 1.05  
V/V  
œ
ADS8860  
16-Bit SAR  
1 MSPS  
œVCC  
2.2 nF  
499 Ω  
22 Ω  
10.0 kΩ  
GND  
GND  
GND  
œ 0.23 V  
LM7705  
+ 3.3 V  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS673  
 
 
 
 
 
 
 
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
目录  
7.2 Functional Block Diagrams ..................................... 22  
7.3 Feature Description................................................. 23  
7.4 Device Functional Modes........................................ 26  
Application and Implementation ........................ 30  
8.1 Application Information............................................ 30  
8.2 Typical Applications ................................................ 39  
Power Supply Recommendations...................... 43  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information: OPA837 .................................. 6  
6.5 Thermal Information: OPA2837 ................................ 6  
6.6 Electrical Characteristics: VS = 5 V........................... 7  
6.7 Electrical Characteristics: VS = 3 V........................... 9  
6.8 Typical Characteristics: VS = 5.0 V......................... 11  
6.9 Typical Characteristics: VS = 3.0 V......................... 14  
8
9
10 Layout................................................................... 43  
10.1 Layout Guidelines ................................................. 43  
10.2 Layout Example .................................................... 44  
11 器件和文档支持 ..................................................... 45  
11.1 文档支持................................................................ 45  
11.2 相关链接................................................................ 45  
11.3 接收文档更新通知 ................................................. 45  
11.4 社区资源................................................................ 45  
11.5 ....................................................................... 45  
11.6 静电放电警告......................................................... 45  
11.7 术语表 ................................................................... 45  
12 机械、封装和可订购信息....................................... 46  
6.10 Typical Characteristics: ±2.5-V to ±1.5-V Split  
Supply ...................................................................... 17  
7
Detailed Description ............................................ 22  
7.1 Overview ................................................................. 22  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (August 2018) to Revision D  
Page  
已添加 在说明 部分添加了 WQFN (RUN) 封装 ...................................................................................................................... 1  
Added OPA2837 RUN package thermal information to document. ....................................................................................... 6  
Changed values of maximum and minimum input-referred offset voltage at 25and across temperature in 5 V and  
3 V Electrical Characteristics tables. ...................................................................................................................................... 7  
Changed value of maximum input offset current drift for OPA2837 in 5 V and 3 V Electrical Characteristics tables. ......... 8  
Changed minimum value of CMRR in 5 V Electrical Characteristics table ............................................................................ 8  
已添加 reference to TIDA-01565 reference design in Power-Down Operation section ....................................................... 24  
已添加 reference to TIDA-01565 reference design in1-Bit PGA Operation section............................................................. 42  
Changes from Revision B (July 2018) to Revision C  
Page  
已添加 向文档添加了 OPA2837 RUN 封装............................................................................................................................. 1  
Changes from Revision A (April 2018) to Revision B  
Page  
Changed input common-mode impedance in 5V and 3V electrical characteristics tables..................................................... 8  
Changes from Original (September 2017) to Revision A  
Page  
已添加 文档中添加了 OPA2837.............................................................................................................................................. 1  
已添加 单电源工作电压范围 特性 要................................................................................................................................... 1  
已更改 将首页框图中的 1 SPS 更改为 1 MSPS ..................................................................................................................... 1  
Added footnote to Pin Functions table .................................................................................................................................. 4  
Changed footnote describing method of computation of slew rate in Electrical Characteristics: VS = 5 V table ................... 7  
Changed default test condition in Electrical Characteristics: VS = 3 V table ......................................................................... 9  
2
版权 © 2017–2018, Texas Instruments Incorporated  
 
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
Changed footnote describing method of computation of slew rate in Electrical Characteristics: VS = 3 V table .................. 9  
Changed values for common-mode input range, high in Electrical Characteristics: VS = 3 V table .................................... 10  
Changed values for VOH in Electrical Characteristics: VS = 3 V table .................................................................................. 10  
已更改 VO = 20 mVPP to VOUT = 200 mVPP in conditions of Noninverting Response Flatness vs Gain and Inverting  
Response Flatness vs Gain figures...................................................................................................................................... 11  
已更改 gain –1 V/V to gain –2 V/V, swapped legend colors in Inverting Overdrive Recovery figure .................................. 12  
已更改 VOUT = 2 VPP to VOUT = 1 VPP in conditions of Typical Characteristics: VS = 3.0 V section....................................... 14  
已更改 VO = 20 mVPP to VOUT = 200 mVPP in Noninverting Response Flatness vs Gain and Inverting Response  
Flatness vs Gain figure conditions........................................................................................................................................ 14  
已更改 VIN to VIN × –1 gain, swapped legend colors in Inverting Overdrive Recovery figure .............................................. 15  
已更改 VO = 2 VPP to VOUT = 1 VPP in Harmonic Distortion vs RLOAD figure conditions ........................................................ 16  
已更改 VOUT = 2 VPP to VOUT = 1 VPP in Harmonic Distortion vs Gain Magnitude figure conditions..................................... 16  
已更改 y-axis caption in Turn-On Time to Sinusoidal Input and Turn-Off Time to Sinusoidal Input figures ........................ 19  
已添加 OPA838 row to Device Family Comparison table .................................................................................................... 23  
已更改 EVM link in Split-Supply Operation section from OPA837DBV to OPA835DBV...................................................... 26  
已更改 V2 value from 2.5 to –2.5 V in Characterization Test Circuit for Network, Spectrum Analyzer figure ..................... 30  
已更改 VEE value from 2.5 V to –2.5 V in Inverting Characterization Circuit for Network Analyzer figure ........................... 32  
已更改 1 SPS to 1 MSPS in OPA837 and ADS8860 Example Circuit figure....................................................................... 38  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
5 Pin Configuration and Functions  
OPA837 DBV Package  
6-Pin SOT-23  
OPA837 DCK Package  
5-Pin SC70  
Top View  
Top View  
VOUT  
VS-  
VS+  
VOUT  
VS-  
1
2
3
6
5
4
VS+  
PD  
VIN-  
1
2
3
5
4
VIN+  
VIN-  
+IN  
OPA2837 DGK Package  
8-Pin VSSOP  
OPA2837 RUN Package  
10-Pin WQFN  
Top View  
Top View  
VS+  
10  
VOUT1  
VIN1-  
VIN1+  
VS-  
VS+  
1
2
3
4
8
7
6
5
VOUT1  
1
9
VOUT2  
VIN2-  
VIN2+  
PD2  
VOUT2  
A
VIN1-  
2
3
4
8
VIN2-  
VIN2+  
B
A
B
VIN1+  
7
6
PD1  
5
VS-  
Pin Functions  
PIN  
OPA837  
OPA2837  
FUNCTION(1)  
DESCRIPTION  
NAME  
SOT-23  
SC-70  
VSSOP  
WQFN  
Amplifier power down.  
PD  
5
I
I
I
Low = disabled, high = normal operation (pin must be  
driven).  
Amplifier 1 power down.  
Low = disabled, high = normal operation (pin must be  
driven).  
PD1  
PD2  
4
6
Amplifier 2 power down.  
Low = disabled, high = normal operation (pin must be  
driven).  
VIN–  
4
3
4
3
2
2
I
I
Inverting input pin  
VIN+  
Noninverting input pin  
VIN1–  
VIN1+  
VIN2–  
VIN2+  
VOUT  
VOUT1  
VOUT2  
VS–  
1
1
I
Amplifier 1 inverting input pin  
Amplifier 1 noninverting input pin  
Amplifier 2 inverting input pin  
Amplifier 2 noninverting input pin  
Output pin  
3
3
I
6
8
I
5
7
I
1
1
O
O
O
P
P
2
2
Amplifier 1 output pin  
7
9
Amplifier 2 output pin  
4
5
Negative power-supply pin  
Positive power-supply input  
VS+  
6
5
8
10  
(1) I = input, O = output, and P = power.  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
5.5  
UNIT  
V
Supply voltage  
VS– to VS+  
Supply turn-on/off maximum dV/dT(2)  
1
V/µs  
V
VI  
VID  
II  
Input voltage  
VS– – 0.5  
VS+ + 0.5  
±1  
Differential input voltage  
Continuous input current  
Continuous output current(3)  
V
±10  
mA  
mA  
IO  
±20  
See Thermal Information:  
Continuous power dissipation  
OPA837  
TJ  
Maximum junction temperature  
Operating free-air temperature  
Storage temperature  
150  
°C  
°C  
°C  
TA  
–40  
–65  
125  
150  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Staying below this ± supply turn-on edge rate prevents the edge-triggered ESD absorption device across the supply pins from turning  
on.  
(3) Long-term continuous output current for electromigration limits.  
6.2 ESD Ratings  
VALUE  
±1500  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
5
MAX  
5.4  
UNIT  
VS+  
TA  
Single-supply voltage  
Ambient temperature  
V
–40  
25  
125  
°C  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
6.4 Thermal Information: OPA837  
OPA837  
DBV  
(SOT23-6)  
DCK  
(SC70)  
THERMAL METRIC(1)  
UNIT  
6 PINS  
194  
129  
39  
5 PINS  
203  
152  
76  
RθJA  
RθJCtop  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
26  
58  
ψJB  
39  
76  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Thermal Information: OPA2837  
OPA2837  
RUN  
(WQFN-10)  
DGK  
(VSSOP-8)  
THERMAL METRIC(1)  
UNIT  
10 PINS  
124.9  
72.0  
8 PINS  
182  
RθJA  
RθJCtop  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
63.5  
63.2  
103.6  
7.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
4.3  
ψJB  
63.0  
101.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
6.6 Electrical Characteristics: VS = 5 V  
at VS+ = 5 V, VS– = 0 V, RF = 0 Ω, RL = 2 kΩ, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless  
otherwise noted)  
TEST  
PARAMETER  
AC PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(1)  
VOUT = 20 mVPP, G = 1  
90  
105  
45  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SSBW  
Small-signal bandwidth  
VOUT = 20 mVPP, G = 2  
MHz  
VOUT = 20 mVPP, G = 10  
5
GBP  
Gain-bandwidth product  
Large-signal bandwidth  
Bandwidth for 0.1-dB flatness  
Slew rate  
VOUT = 20 mVPP, G = 10  
45  
50  
MHz  
MHz  
MHz  
V/µs  
ns  
LSBW  
VOUT = 2 VPP, G = 2  
26  
VOUT = 200 mVPP, G = 2  
From LSBW(2)  
6
SR  
105  
10  
tR, tF  
Rise, fall time  
VOUT = 0.5-V step, G = 2, input tR = 10 ns  
VOUT = 2-V step, G = 2, input tR = 40 ns  
VOUT = 2.0-V step, G = 1, input tR = 4 ns  
VOUT = 2.0-V step, G = 1, input tR = 4 ns  
11  
Overshoot  
7.0%  
25  
Settling time to 0.1%  
Settling time to 0.01%  
ns  
ns  
40  
HD2  
HD3  
Second-order harmonic distortion f = 100 kHz, VO = 2 VPP, G = 1 (see Figure 73)  
–120  
–145  
4.7  
35  
dBc  
dBc  
nV/Hz  
Hz  
Third-order harmonic distortion  
Input voltage noise  
f = 100 kHz, VO = 2 VPP, G = 1 (see Figure 73)  
f = 500 Hz  
Voltage noise 1/f corner frequency See Figure 39  
Input current noise f = 20 kHz  
Current noise 1/f corner frequency See Figure 39  
0.4  
5
pA/Hz  
kHz  
ns  
Overdrive recovery time  
G = 2, 2x output overdrive (see Figure 30)  
75  
Closed-loop output impedance  
f = 1 MHz, G = 1 (see Figure 38)  
f = 10 kHz  
0.14  
Ω
Channel-to-channel crosstalk  
(OPA2837)  
-126  
dBc  
dB  
C
DC PERFORMANCE  
AOL Open-loop voltage gain  
VO = ±2 V, RL = 2 kΩ  
120  
–165  
–205  
–269  
–269  
–1.6  
135  
±30  
±30  
±30  
±30  
±0.4  
±0.4  
±0.67  
340  
340  
340  
340  
1.5  
A
A
B
B
B
B
B
B
A
B
B
B
B
A
B
B
B
A
TA 25°C  
165  
235  
261  
325  
1.6  
TA = 0°C to +70°C (DCK package)  
Input-referred offset voltage  
Input offset voltage drift(3)  
µV  
TA = –40°C to +85°C (DCK package)  
TA = –40°C to +125°C (DCK package)  
DCK package, TA = –40°C to +125°C  
DBV, RUN package, TA = –40°C to +125°C  
DGK package, TA = –40°C to +125°C  
–2.0  
2.0  
µV/°C  
TA 25°C  
150  
50  
520  
664  
718  
850  
3.3  
40  
TA = 0°C to +70°C  
Input bias current(4)  
nA  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
50  
50  
Input bias current drift(3)  
0.8  
–40  
–46  
–56  
–56  
-60  
nA/°C  
TA 25°C (OPA837)  
±6  
TA = 0°C to +70°C  
±6  
52  
Input offset current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
±6  
55  
nA  
±6  
65  
TA 25°C (OPA2837)  
±8  
60  
(1) Test levels (all values set by characterization and simulation): (A) 100% tested at 25°C, overtemperature limits by characterization and  
simulation; (B) Not tested in production, limits set by characterization and simulation; (C) Typical value only for information.  
(2) This slew rate is the average of the rising and falling time estimated from the large-signal bandwidth as: (0.8 × VPEAK / 2) × 2π × f–3dB  
where this f–3dB is the typical measured 2-VPP bandwidth at gains of 1 V/V.  
(3) Input offset voltage drift, input bias current drift, and input offset current drift are average values calculated by taking data at the end  
points, computing the difference, and dividing by the temperature range. Typical drift specifications are ±1sigma. Maximum drift  
specifications are set by min/max sample packaged test data using a wafer-level screened drift. Min/Max drift is not specified by final  
automated test equipment (ATE) nor by QA sample testing.  
(4) Current is considered positive out of the pin.  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
 
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Electrical Characteristics: VS = 5 V (continued)  
at VS+ = 5 V, VS– = 0 V, RF = 0 Ω, RL = 2 kΩ, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless  
otherwise noted)  
TEST  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
pA/°C  
µV  
LEVEL(1)  
TA = –40°C to +125°C  
TA = –40°C to +125°C (OPA2837)  
–250  
–270  
±40  
±80  
250  
330  
B
B
Input offset current drift(3)  
Input-referred offset voltage  
mismatch  
T
A 25°C (OPA2837)  
-220  
50  
220  
A
INPUT  
T
A 25°C, < 3-dB degradation in CMRR limit  
–0.2  
–0.2  
3.8  
0
0
A
B
A
B
Common-mode input range, low  
Common-mode input range, high  
V
V
TA = –40°C to +125°C, < 3-dB degradation in  
CMRR limit  
TA 25°C, < 3-dB degradation in CMRR limit  
3.7  
3.7  
91  
TA = –40°C to +125°C, < 3-dB degradation in  
CMRR limit  
3.8  
CMRR  
Common-mode rejection ratio  
Input impedance common-mode  
Input impedance differential mode  
110  
175 || 1.5  
180 || 0.5  
dB  
A
C
C
MΩ || pF  
kΩ || pF  
OUTPUT  
T
A 25°C, G = 2  
TA = –40°C to +125°C, G = 5  
A 25°C, G = 2  
TA = –40°C to +125°C, G = 5  
0.05  
0.05  
4.95  
4.9  
0.1  
0.1  
A
B
A
B
VOL  
Output voltage, low  
Output voltage, high  
V
V
T
4.9  
4.8  
VOH  
Maximum current into a resistive  
load  
T
A 25°C, ±1.6 V into 27 Ω, VIO < 2 mV  
A 25°C, ±1.7 V into 37.4 Ω, AOL > 80 dB  
±58  
±45  
±35  
±70  
±50  
±45  
0.6  
mA  
mA  
mA  
mΩ  
A
A
C
C
Linear current into a resistive load  
T
Linear current into a resistive load TA = –40°C to +125°C, ±1.31 V into 37.4 Ω,  
overtemperature  
AOL > 80 dB  
Closed-loop output impedance  
Gain of 1 V/V, ±30-mA DC  
POWER SUPPLY  
Specified operating voltage  
2.7  
564  
408  
5.4  
625  
865  
V
B
A
B
T
A 25°C(5)  
592  
592  
Quiescent operating current per  
amplifier (5-V supply)  
µA  
TA = –40°C to +125°C  
Supply current temperature  
coefficient per amplifier  
TA = –40°C to +125°C (see Figure 57)  
1.1  
95  
92  
1.9  
110  
108  
2.4  
µA/°C  
dB  
B
A
A
Positive power-supply rejection  
ratio  
+PSRR  
–PSRR  
Negative power-supply rejection  
ratio  
dB  
POWER DOWN (Pin Must be Driven)  
Enable voltage threshold  
Specified on above VS– + 1.5 V  
Specified off below VS– + 0.55 V  
PD = 0 V to VS+  
1.5  
V
V
A
A
A
A
Disable voltage threshold  
0.55  
–50  
4
Power-down pin bias current  
Power-down quiescent current  
50  
10  
nA  
µA  
PD 0.55 V  
5
Power-down quiescent current  
over temperature  
PD 0.55 V, TA = –40°C to +125°C  
10  
µA  
ns  
ns  
B
C
C
Time from PD = high to VOUT = 90% of final  
value  
Turnon time delay  
Turnoff time delay  
300  
100  
Time from PD = low to VOUT = 10% of original  
value  
(5) The typical specification is at 25°C TJ. The min, max limits are expanded for the automated test equipment (ATE) to account for an  
ambient range from 22°C to 32°C with a 2-µA/°C temperature coefficient on the supply current.  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
6.7 Electrical Characteristics: VS = 3 V  
at VS+ = 3 V, VS– = 0 V, RF = 0 Ω, RL = 2 kΩ, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless  
otherwise noted)  
TEST  
PARAMETER  
AC PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(1)  
VOUT = 20 mVPP, G = 1  
85  
105  
45  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SSBW  
Small-signal bandwidth  
VOUT = 20 mVPP, G = 2  
MHz  
VOUT = 20 mVPP, G = 10  
5
GBP  
Gain-bandwidth product  
Large-signal bandwidth  
Bandwidth for 0.1-dB flatness  
Slew rate  
VOUT = 20 mVPP, G = 10  
40  
50  
MHz  
MHz  
MHz  
V/µs  
ns  
LSBW  
VOUT = 1 VPP, G = 2  
30  
VOUT = 200 mVPP, G = 2  
From LSBW(2)  
6
SR  
65  
tR, tF  
Rise, fall time  
VOUT = 0.5-V step, G = 2, input tR = 10 ns  
VOUT = 2-V step, G = 2, input tR = 40 ns  
VOUT = 0.5-V step, G = 1, input tR = 4 ns  
VOUT = 0.5-V step, G = 1, input tR = 4 ns  
10  
11  
Overshoot  
7%  
35  
Settling time to 0.1%  
Settling time to 0.01%  
ns  
ns  
50  
HD2  
HD3  
Second-order harmonic distortion f = 100 kHz, VO = 1 VPP, G = 1 (see Figure 73)  
–125  
–138  
4.9  
35  
dBc  
dBc  
nV/Hz  
Hz  
Third-order harmonic distortion  
Input voltage noise  
f = 100 kHz, VO = 1 VPP, G = 1 (see Figure 73)  
f = 500 Hz  
Voltage noise 1/f corner frequency See Figure 39  
Input current noise f = 10 kHz  
Current noise 1/f corner frequency See Figure 39  
0.4  
5
pA/Hz  
kHz  
ns  
Overdrive recovery time  
G = 2, 2x output overdrive (see Figure 29)  
65  
Closed-loop output impedance  
f = 1 MHz, G = 1 (see Figure 38)  
f = 10 kHz  
0.14  
Ω
Channel-to-channel crosstalk  
(OPA2837)  
-126  
dBc  
dB  
C
DC PERFORMANCE  
VO = ±1 V, RL = 2 kΩ  
120  
110  
133  
133  
±30  
±30  
±30  
±30  
±0.4  
±0.4  
±0.67  
320  
320  
320  
320  
1.5  
A
A
A
B
B
B
B
B
B
A
B
B
B
B
A
B
B
B
A
AOL Open-loop voltage gain  
VO = ±1 V, RL = 2 kΩ (OPA2837)  
TA 25°C  
–165  
–205  
–269  
–269  
–1.6  
–2.0  
165  
235  
261  
325  
1.6  
TA = 0°C to +70°C  
Input-referred offset voltage  
Input offset voltage drift(3)  
µV  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
DCK package, TA = –40°C to +125°C  
DBV, RUN package, TA = –40°C to +125°C  
DGK package, TA = –40°C to +125°C  
2.0  
µV/°C  
TA 25°C  
145  
50  
510  
659  
708  
840  
3.3  
40  
TA = 0°C to +70°C  
Input bias current(4)  
nA  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
50  
50  
Input bias current drift(3)  
0.8  
–40  
–46  
–56  
–56  
–60  
nA/°C  
TA 25°C (OPA837)  
±6  
TA = 0°C to +70°C  
±6  
52  
Input offset current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
±6  
55  
nA  
±6  
65  
TA 25°C (OPA2837)  
±8  
60  
(1) Test levels (all values set by characterization and simulation): (A) 100% tested at 25°C, overtemperature limits by characterization and  
simulation; (B) Not tested in production, limits set by characterization and simulation; (C) Typical value only for information.  
(2) This slew rate is the average of the rising and falling time estimated from the large-signal bandwidth as: (0.8 x VPEAK / 2) × 2π × f–3dB  
where this f-3dB is the typical measured 2-Vpp bandwidth at gains of 1V/V.  
(3) Input offset voltage drift, input bias current drift, and input offset current drift are average values calculated by taking data at the end  
points, computing the difference, and dividing by the temperature range. Typical drift specifications are ±1sigma. Maximum drift  
specifications are set by min/max sample packaged test data using a wafer-level screened drift. Min/Max drift is not specified by final  
automated test equipment (ATE) nor by QA sample testing.  
(4) Current is considered positive out of the pin.  
Copyright © 2017–2018, Texas Instruments Incorporated  
9
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Electrical Characteristics: VS = 3 V (continued)  
at VS+ = 3 V, VS– = 0 V, RF = 0 Ω, RL = 2 kΩ, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless  
otherwise noted)  
TEST  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
pA/°C  
µV  
LEVEL(1)  
TA = –40°C to +125°C  
TA = –40°C to +125°C (OPA2837)  
–250  
–250  
±40  
±80  
250  
330  
B
B
Input offset current drift(3)  
Input-referred offset voltage  
mismatch  
T
A 25°C (OPA2837)  
-220  
50  
220  
A
INPUT  
T
A 25°C, < 3-dB degradation in CMRR limit  
–0.2  
–0.2  
1.8  
0
0
A
B
A
B
Common-mode input range, low  
Common-mode input range, high  
V
V
TA = –40°C to +125°C, < 3-dB degradation in  
CMRR limit  
TA 25°C, < 3-dB degradation in CMRR limit  
1.7  
1.7  
90  
TA = –40°C to +125°C, < 3-dB degradation in  
CMRR limit  
1.8  
CMRR  
Common-mode rejection ratio  
Input impedance common-mode  
Input impedance differential mode  
105  
300 || 1.5  
180 || 0.5  
dB  
A
C
C
MΩ || pF  
kΩ || pF  
OUTPUT  
T
A 25°C, G = 2  
TA = –40°C to +125°C, G = 2  
A 25°C, G = 2  
TA = –40°C to +125°C, G = 2  
0.05  
0.10  
2.95  
2.9  
0.1  
0.2  
A
B
A
B
VOL  
Output voltage, low  
Output voltage, high  
V
V
T
2.9  
2.8  
VOH  
Maximum current into a resistive  
load  
T
A 25°C, ±0.8 V into 17.5 Ω, VIO < 2 mV  
A 25°C, ±0.9 V into 21.5 Ω, AOL > 80 dB  
±45  
±40  
±32  
±55  
±45  
±40  
mA  
mA  
mA  
A
A
C
Linear current into a resistive load  
T
Linear current into a resistive load TA = –40°C to 125°C, ±0.7 V into 21.5 Ω, AOL  
overtemperature > 80 dB  
POWER SUPPLY  
Specified operating voltage  
2.7  
547  
404  
5.4  
607  
817  
V
B
A
B
T
A 25°C(5)  
TA = –40°C to +125°C  
A 25°C(5)  
570  
570  
Quiescent operating current per  
amplifier (OPA837, 3-V supply)  
µA  
Quiescent operating current per  
amplifier (OPA2837, 3-V supply)  
T
540  
0.8  
90  
570  
1.7  
607  
2.2  
µA  
µA/°C  
dB  
A
B
A
A
Supply current temperature  
coefficient per amplifier  
TA = –40°C to +125°C (see Figure 57)  
Positive power-supply rejection  
ratio  
+PSRR  
–PSRR  
110  
105  
Negative power-supply rejection  
ratio  
88  
dB  
POWER DOWN (Pin Must be Driven)  
Enable voltage threshold  
Specified on above VS– + 1.5 V  
Specified off below VS– + 0.55 V  
PD = 0 V to VS+  
1.5  
V
V
A
A
A
A
Disable voltage threshold  
0.55  
–50  
1
Power-down pin bias current  
Power-down quiescent current  
50  
8
nA  
µA  
PD 0.55 V  
3
Power-down quiescent current  
over temperature  
PD 0.55 V, TA = –40°C to +125°C  
8
µA  
ns  
ns  
B
C
C
Time from PD = high to VOUT = 90% of final  
value  
Turnon time delay  
Turnoff time delay  
300  
100  
Time from PD = low to VOUT = 10% of original  
value  
(5) The typical spec is at 25oC Tj. The min, max limits are expanded for ATE to account for ambient range from 22oC to 32oC with a +4-  
uA/oC temperature coefficient on the supply current.  
10  
Copyright © 2017–2018, Texas Instruments Incorporated  
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
6.8 Typical Characteristics: VS = 5.0 V  
at VS+ = 5.0 V, VS– = 0 V, VOUT = 2 VPP, RF = 0 Ω, RL = 2 kΩ, G = 1 V/V, input and output referenced to mid-supply, and TA ≈  
25°C (unless otherwise noted)  
3
0
3
0
-3  
-3  
-6  
-6  
-9  
-9  
Gain = -1 V/V  
Gain = -2 V/V  
Gain = -5 V/V  
Gain = -10 V/V  
Gain = 1 V/V  
Gain = 2 V/V  
Gain = 5 V/V  
Gain = 10 V/V  
-12  
-12  
-15  
0.1  
-15  
0.1  
1
10  
100  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
D002  
D001  
See 75 and 3, VOUT = 20 mVPP, RLOAD = 2 kΩ  
See 74 and 2, VOUT = 20 mVPP, RLOAD = 2 kΩ  
2. Inverting Small-Signal Frequency Response  
1. Noninverting Small-Signal Frequency Response  
vs Gain  
vs Gain  
9
6
3
0
3
-3  
0
-6  
-3  
-6  
-9  
-9  
VO = 200 mVPP  
VO = 500 mVPP  
VO = 1 VPP  
VO = 200 mVPP  
VO = 500 mVPP  
VO = 1 VPP  
-12  
-15  
VO 2 VPP  
VO = 2 VPP  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
D003  
D004  
Gain = 2 V/V, RLOAD = 2 kΩ  
Gain = –1 V/V, RLOAD = 2 kΩ  
3. Noninverting Large-Signal Bandwidth vs VOPP  
4. Inverting Large-Signal Bandwidth vs VOPP  
1
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Gain = 1 V/V  
Gain = 2 V/V  
Gain = 5 V/V  
Gain = 10 V/V  
Gain = -1 V/V  
Gain = -2 V/V  
Gain = -5 V/V  
Gain = -10 V/V  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
D005  
D006  
See 74 and 2, VOUT = 200 mVPP, RLOAD = 2 kΩ  
5. Noninverting Response Flatness vs Gain  
See 75 and 3, VOUT = 200 mVPP, RLOAD = 2 kΩ  
6. Inverting Response Flatness vs Gain  
版权 © 2017–2018, Texas Instruments Incorporated  
11  
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics: VS = 5.0 V (接下页)  
at VS+ = 5.0 V, VS– = 0 V, VOUT = 2 VPP, RF = 0 Ω, RL = 2 kΩ, G = 1 V/V, input and output referenced to mid-supply, and TA ≈  
25°C (unless otherwise noted)  
1.2  
1
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
VO = ±0.125 V  
VO = ±0.25 V  
VO = ±0.5 V  
VO = ±1 V  
VO = ±0.125 V  
VO = ±0.25 V  
VO = ±0.5 V  
VO = ±1 V  
-1.2  
-1.2  
0
100 200 300 400 500 600 700 800 900 1000  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ns)  
Time (ns)  
D007  
D008  
See 74, gain = 2 V/V,  
See 75, gain = –1 V/V,  
input edge rate set to stay below slew limiting  
input edge rate set to stay below slew limiting  
7. Noninverting Step Response vs Time and VOPP  
8. Inverting Step Response vs Time and VOPP  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.08  
0.06  
0.04  
0.02  
0
AV = -1 , 500-mV Step, TR = 10 ns  
AV = -1 , 2-V Step, TR = 40 ns  
AV = -2 , 500-mV Step, TR = 10 ns  
AV = -2, 2-V Step, TR = 40 ns  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
AV = 1, 500-mV Step, TR = 10 ns  
AV = 1, 2-V Step, TR = 40 ns  
AV = 2, 500-mV Step, TR = 10 ns  
AV = 2, 2-V Step, TR = 40 ns  
0
25  
50  
75 100 125 150 175 200 225 250  
Time (ns)  
0
25  
50  
75 100 125 150 175 200 225 250  
Time (ns)  
D009  
D010  
See 74 and 2  
See 75 and 3  
9. Simulated Noninverting Settling Time  
10. Simulated Inverting Settling Time  
5
4
5
4
VIN x 2 gain  
VOUT (AV = 2)  
VIN x -2 gain  
VOUT (AV = -2)  
3
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
50  
250  
450  
650  
850  
1050  
1250  
1450  
50  
250  
450  
650  
850  
1050  
1250  
1450  
Time (ns)  
Time (ns)  
D011  
D012  
See 74 and 2, gain = 2 V/V  
11. Noninverting Overdrive Recovery  
See 75 and 3, gain –2 V/V  
12. Inverting Overdrive Recovery  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
Typical Characteristics: VS = 5.0 V (接下页)  
at VS+ = 5.0 V, VS– = 0 V, VOUT = 2 VPP, RF = 0 Ω, RL = 2 kΩ, G = 1 V/V, input and output referenced to mid-supply, and TA ≈  
25°C (unless otherwise noted)  
-80  
-90  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
HD2, Gain = 1 V/V  
HD3, Gain = 1 V/V  
HD2, Gain = -1 V/V  
HD3, Gain = -1 V/V  
-100  
-110  
-120  
-130  
-140  
-150  
HD2, Gain = 1 V/V  
HD3, Gain = 1 V/V  
HD2, Gain = -1 V/V  
HD3, Gain = -1 V/V  
10k  
100k  
Frequency (Hz)  
1M  
100  
1k  
RLOAD (W)  
D013  
D014  
See 74, 75, 2, and 3, VOUT = 2 VPP  
See 74, 75, 2, and 3, VOUT = 2 VPP,  
f = 100 kHz  
14. Harmonic Distortion vs RLOAD  
13. Harmonic Distortion vs Frequency  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
HD2, Gain = 2 V/V  
HD3, Gain = 2 V/V  
HD2, Gain = -1 V/V  
HD3, Gain = -1 V/V  
HD2, +Gain  
HD3, +Gain  
HD2, -Gain  
HD3, -Gain  
0.4  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
4
1
10  
Output Voltage (V)  
Gain Magnitude (V/V)  
D015  
D016  
See 74, 75, 2, and 3, VOUT = 2 VPP  
,
See 74, 75, 2, and 3, VOUT = 2 VPP  
,
f = 100 kHz  
f = 100 kHz  
15. Harmonic Distortion vs Output Voltage  
16. Harmonic Distortion vs Gain Magnitude  
-80  
-85  
-80  
-85  
HD2 (PGA 1)  
HD3 (PGA 1)  
HD2 (PGA 2)  
HD3 (PGA 2)  
-90  
-90  
-95  
-95  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
HD2  
HD3  
10k  
100k  
1M  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
D017  
D018  
See 87, VOUT = 2 VPP, f = 100 kHz  
See 87, gain of 1 V/V or 2 V/V, VOUT = 2 VPP,  
f = 100 kHz  
18. Harmonic Distortion as 1-Bit PGA  
17. Harmonic Distortion as Active Mux  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
 
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
6.9 Typical Characteristics: VS = 3.0 V  
at VS+ = 3.0 V, VS– = 0 V, VOUT = 1 VPP, RF = 0 Ω, RL = 2 kΩ, G = 1 V/V, input and output referenced to mid-supply, and TA ≈  
25°C (unless otherwise noted)  
3
0
3
0
-3  
-3  
-6  
-6  
-9  
-9  
-12  
-15  
-18  
-21  
-12  
-15  
-18  
-21  
Gain = 1 V/V  
Gain = 2 V/V  
Gain = 5 V/V  
Gain = 10 V/V  
Gain = -1 V/V  
Gain = -2 V/V  
Gain = -5 V/V  
Gain = -10 V/V  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
D019  
D020  
See 74 and 2, VOUT = 20 mVPP, RLOAD = 2 kΩ  
See 75 and 3, VOUT = 20 mVPP, RLOAD = 2 kΩ  
20. Inverting Small-Signal Response vs Gain  
19. Noninverting Small-Signal Response vs Gain  
3
0
3
0
-3  
-3  
-6  
-6  
-9  
-9  
-12  
-15  
-18  
-21  
-12  
-15  
-18  
-21  
VO = 200 mVPP  
VO = 500 mVPP  
VO = 1 VPP  
VO = 200 mVPP  
VO = 500 mVPP  
VO = 1 VPP  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
D021  
D022  
See 74, gain = 2 V/V  
See 75, gain = –1 V/V  
21. Noninverting Large-Signal Bandwidth vs VOPP  
22. Inverting Large-Signal Bandwidth vs VOPP  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Gain = -1 V/V  
Gain = -2 V/V  
Gain = -5 V/V  
Gain = -10 V/V  
Gain = 1 V/V  
Gain = 2 V/V  
Gain = 5 V/V  
Gain = 10 V/V  
-1.2  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
D024  
D023  
See 75 and 3, VOUT = 200 mVPP, RLOAD = 2 kΩ  
24. Inverting Response Flatness vs Gain  
See 74 and 2, VOUT = 200 mVPP, RLOAD = 2 kΩ  
23. Noninverting Response Flatness vs Gain  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
Typical Characteristics: VS = 3.0 V (接下页)  
at VS+ = 3.0 V, VS– = 0 V, VOUT = 1 VPP, RF = 0 Ω, RL = 2 kΩ, G = 1 V/V, input and output referenced to mid-supply, and TA ≈  
25°C (unless otherwise noted)  
0.6  
0.4  
0.2  
0
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
VO = ±0.125 V  
VO = ±0.25 V  
VO = ±0.5 V  
VO = ±1 V  
VO = ±0.125 V  
VO = ±0.25 V  
VO = ±0.5 V  
-1.2  
0
100 200 300 400 500 600 700 800 900 1000  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ns)  
Time (ns)  
D025  
D026  
See 74 and 2, gain = 2 V/V,  
See 75 and 3, gain = –1 V/V,  
input edge rate set to stay below slew limiting  
input edge rate set to stay below slew limiting  
25. Noninverting Step Response vs VOPP  
26. Inverting Step Response vs VOPP  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.08  
0.06  
0.04  
0.02  
0
AV = -1, 500-mV Step, TR = 10 ns  
AV = -1 , 2-V Step, TR = 40 ns  
AV = -2 , 500-mV Step, TR = 10 ns  
AV = -2 , 1-V Step, TR = 40 ns  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
AV = 1, 500-mV Step, TR = 10 ns  
AV = 2 , 1-V Step, TR = 20 ns  
AV = 2 , 500-mV Step, TR = 10 ns  
0
25  
50  
75  
100  
125  
150  
175  
200  
0
25 50 75 100 125 150 175 200 225 250 275  
Time (ns)  
Time (ns)  
D027  
D028  
See 74 and 2  
See 75 and 3  
27. Simulated Noninverting Settling Time  
28. Simulated Inverting Settling Time  
3
2
3
2
VIN x 2 gain  
VOUT (AV = 2)  
VIN x -1 gain  
VOUT (AV = -1)  
1
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
50  
250  
450  
650  
850  
1050  
1250  
1450  
50  
250  
450  
650  
850  
1050  
1250  
1450  
Time (ns)  
Time (ns)  
D029  
D030  
See 74 and 2, gain = 2 V/V  
29. Noninverting Overdrive Recovery  
See 75 and 3, gain = –1 V/V  
30. Inverting Overdrive Recovery  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics: VS = 3.0 V (接下页)  
at VS+ = 3.0 V, VS– = 0 V, VOUT = 1 VPP, RF = 0 Ω, RL = 2 kΩ, G = 1 V/V, input and output referenced to mid-supply, and TA ≈  
25°C (unless otherwise noted)  
-80  
-90  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
HD2, Gain = 1 V/V  
HD3, Gain = 1 V/V  
HD2, Gain = -1 V/V  
HD3, Gain = -1 V/V  
-100  
-110  
-120  
-130  
-140  
-150  
HD2, Gain = 1 V/V  
HD3, Gain = 1 V/V  
HD2, Gain = -1 V/V  
HD3, Gain = -1 V/V  
10k  
100k  
Frequency (Hz)  
1M  
100  
1k  
Load (W)  
D031  
D032  
See 74, 75, 2, and 3, VOUT = 1 VPP, RLOAD = 2 kΩ  
See 74, 75, 2, and 3, VOUT = 1 VPP  
,
f = 100 kHz, RLOAD = 2 kΩ  
31. Harmonic Distortion vs Frequency  
32. Harmonic Distortion vs RLOAD  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-116  
-118  
-120  
HD2, +Gain  
HD3, +Gain  
HD2, -Gain  
HD3, -Gain  
HD2, Gain = 2 V/V  
-122  
HD3, Gain = 2 V/V  
HD2, Gain = -1 V/V  
HD3, Gain = -1 V/V  
-124  
-126  
-128  
-130  
-132  
-134  
-136  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
1.1  
1
10  
VOPP (V)  
Gain Magnitude (V/V)  
D033  
D034  
See 74, 75, 2, and 3, RLOAD = 2 kΩ,  
See 74, 75, 2, and 3, RLOAD = 2 kΩ,  
f = 100 kHz  
f = 100 kHz, VOUT = 1 VPP  
33. Harmonic Distortion vs Output Swing  
34. Harmonic Distortion vs Gain Magnitude  
-90  
-95  
-80  
-90  
HD2  
HD3  
HD2 (PGA 1)  
HD3 (PGA 1)  
HD2 (PGA 2)  
HD3 (PGA 2)  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
-100  
-110  
-120  
-130  
-140  
-150  
10k  
100k  
1M  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
D035  
D036  
See 87, gain = 1 V/V, VOUT = 1 VPP, RLOAD = 2 kΩ  
35. Harmonic Distortion as Active Mux  
See 88, gain of 1 V/V and 2 V/V, VOUT = 1 VPP  
,
RLOAD = 2 kΩ  
36. Harmonic Distortion as 1-Bit PGA  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
 
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
6.10 Typical Characteristics: ±2.5-V to ±1.5-V Split Supply  
with PD = VCC and TA 25°C (unless otherwise noted)  
20  
10  
150  
130  
110  
90  
0
G = 1, 3-V supply  
G = 1, 5-V supply  
G = 2, 3-V supply  
G = 2, 5-V supply  
G = 5, 3-V supply  
G = 5, 5-V supply  
5-V AOL (dB)  
3-V AOL (dB)  
5-V AOL phase (è)  
3-V AOL phase (è)  
-30  
-60  
1
0.1  
-90  
70  
-120  
-150  
-180  
-210  
-240  
50  
30  
0.01  
0.001  
10  
-10  
1
10  
100  
1k  
10k 100k 1M 10M 100M  
Frequency (Hz)  
10k  
100k  
1M  
10M  
Frequency (Hz)  
D037  
D038  
No load simulation  
74 and 2 (simulation)  
37. Open-Loop Gain and Phase vs Frequency  
38. Closed-Loop Output Impedance vs Frequency  
10  
250  
200  
150  
100  
50  
5-V supply  
3-V supply  
+5-V En  
+5-V In  
+3-V En  
+3-V In  
1
0
-50  
-100  
-150  
-200  
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M  
0
1
2
3
4
5
6
7
8
9
10  
Frequency (Hz)  
Time (s)  
D039  
D040  
Measured then fit to ideal 1/f model  
Input-referred voltage noise RS = 0 Ω  
40. Low-Frequency Voltage Noise vs Time  
39. Input Spot Noise Density vs Frequency  
-70  
-75  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
-80  
-85  
-90  
-95  
-100  
-105  
-110  
-115  
-120  
CMRR 5 V  
CMRR 3 V  
PSRR VCC 5 V  
PSRR VEE 5 V  
PSRR VCC 3 V  
PSRR VEE 3 V  
5-V 200-mVPP (Output)  
5-V 2-VPP (Output)  
3-V 200-mVPP (Output)  
3-V 2-VPP (Output)  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
D042  
D041  
Simulated curves  
42. Disabled Isolation Noninverting Input to Output vs  
41. CMRR and PSRR vs Frequency  
Frequency  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics: ±2.5-V to ±1.5-V Split Supply (接下页)  
with PD = VCC and TA 25°C (unless otherwise noted)  
250  
225  
200  
175  
150  
125  
100  
75  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
5-V Supply  
3-V Supply  
5-V Supply  
3-V Supply  
50  
25  
0
0
-130-110 -90 -70 -50 -30 -10 10 30 50 70 90 110 130  
-40-35-30-25-20-15-10 -5  
0
5 10 15 20 25 30 35 40  
Input Offset Voltage (mV)  
Input Offset Current (nA)  
D043  
D044  
830 units at each supply voltage  
830 units at each supply voltage  
43. Input Offset Voltage Distribution  
44. Input Offset Current Distribution  
200  
150  
100  
50  
30  
25  
20  
15  
10  
5
0
0
-5  
-50  
-10  
-15  
-20  
-25  
-30  
-100  
-150  
-200  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D045  
D046  
50 units at 5-V and 3-V supply  
50 units at 5-V and 3-V supply  
45. Input Offset Voltage vs Ambient Temperature  
46. Input Offset Current vs Ambient Temperature  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
5-V Supply  
3-V Supply  
5-V Supply  
3-V Supply  
4
3
2
1
0
0
2
1
-
0
2
4
6
8
1
2
4
6
8
2
0
5
0
5
0
5
0
5
0
5
0
5
0
5
7
-
5
2
0
7
5
2
0
7
5 2  
-
2
5
0. 0. 0. 0.  
1. 1. 1. 1.  
-
-
2
2
2
1
1
1 1  
100125 150175200225250  
-1.8-1.6-1.4-1.2  
-0.8-0.6-0.4-0.2  
-
-
-
-
-
-
-
D047  
D048  
Input Offset Voltage Drift (mV/èC)  
–40°C to +125°C fit, 82 units, DBV package  
Input Offset Current Drift (pA/èC)  
–40°C to +125°C fit, 82 units, DBV package  
47. Input Offset Voltage Drift Distribution  
48. Input Offset Current Drift Distribution  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
Typical Characteristics: ±2.5-V to ±1.5-V Split Supply (接下页)  
with PD = VCC and TA 25°C (unless otherwise noted)  
140  
130  
120  
110  
100  
90  
21  
18  
15  
12  
9
AV = 1 V/V  
AV = 2 V/V  
AV = 5 V/V  
AV = 10 V/V  
Gain 1, 100 pF  
Gain 1, 1000 pF  
Gain 2, 100 pF  
Gain 2, 1000 pF  
Gain 5, 100 pF  
Gain 5, 1000 pF  
Gain 10, 100 pF  
Gain 10, 1000 pF  
80  
70  
6
60  
50  
3
40  
0
30  
20  
-3  
-6  
10  
0
1M  
10M  
Frequency (Hz)  
100M  
1G  
1
10  
100  
CLOAD (pF)  
1k  
10k  
D050  
D049  
See 66 and 2, small signal,  
targeting 30° phase margin  
50. Small-Signal Frequency Response vs CLOAD  
49. Output Resistor vs CLOAD  
With Recommended ROUT  
3
2
3
2
1
0
Power-Down Voltage (5 V)  
Output Voltage (5 V)  
Power-Down Voltage (3 V)  
Output Voltage (3 V)  
1
0
-1  
-2  
-3  
-1  
Power-Down Voltage (5 V)  
Output Voltage (5 V)  
Power-Down Voltage (3 V)  
Output Voltage (3 V)  
-2  
-3  
1
1.1  
1.2  
Time (ms}  
1.3  
1.4  
1.5  
0.8  
0.9  
1
1.1  
Time (ms)  
1.2  
1.3  
D051  
D052  
51. Turn-On Time to Sinusoidal Input  
52. Turn-Off Time to Sinusoidal Input  
5.5  
0.006  
5.5  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
5-V Disable  
5-V VOUT  
5-V %Err  
3-V Disable  
3-V VOUT  
3-V %Err  
5-V Disable  
5-V VOUT  
5-V %Err  
3-V Disable  
3-V VOUT  
3-V %Err  
5
4.5  
4
0.005  
0.004  
0.003  
0.002  
0.001  
0
5
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
-0.001  
-0.002  
-0.003  
-0.004  
-0.005  
-0.001  
-0.002  
-0.003  
-0.004  
-0.005  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
0.1  
0.2  
0.3  
0.4  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Time From Turn-On (ms)  
Time from Turn-On (ms)  
D053  
D054  
53. Gain of 1 Turn-On Time to Final DC Value at Midscale  
54. Gain of 2 Turn-On Time to Final DC Value at Midscale  
(Simulated)  
(Simulated)  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
 
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics: ±2.5-V to ±1.5-V Split Supply (接下页)  
with PD = VCC and TA 25°C (unless otherwise noted)  
3
2
3
2.5  
2
1.5  
1
1
VOUT +5 V  
VOUT +3 V  
VOUT -5 V  
VOUT -3 V  
VOUT +5 V  
VOUT +3 V  
VOUT -5 V  
VOUT -3 V  
0.5  
0
0
-0.5  
-1  
-1  
-2  
-1.5  
-2  
-2.5  
-3  
-3  
100  
1k  
100.1m  
1
10  
RLOAD (W)  
IOUT (mA)  
D055  
D056  
55. Output Voltage Swing vs Load Resistor  
56. Output Saturation Voltage vs Load Current  
800  
700  
600  
500  
400  
300  
200  
100  
0
840  
800  
760  
720  
680  
640  
600  
560  
520  
480  
440  
IQ 5 V  
IQ 3 V  
0.5 0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3 1.4 1.5  
PD-VS- (V)  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
D058  
Ambient Temperature (èC)  
D057  
50 units at 5-V and 3-V supply  
57. Supply Current vs Ambient Temperature  
58. Supply Current vs Power-Down Voltage  
(Turn-On Higher Than Turn-Off)  
150  
120  
90  
800  
20  
15  
10  
5
5-V IB-  
5-V IB+  
5-V IOS  
3-V IB-  
3-V IB+  
3-V IOS  
700  
600  
500  
400  
300  
200  
100  
0
60  
30  
0
0
-30  
-60  
-90  
-120  
-150  
-5  
-10  
-15  
-20  
-0.4 0.1  
0.6  
1.1  
1.6  
2.1  
2.6  
3.1  
3.6  
4.1  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
Input Common-Mode Voltage (Single Supply, V)  
Input Common-Mode Voltage (V)  
D059  
D060  
12 units, 5-V and 3-V supplies  
Measured single device, 5-V and 3-V supplies  
60. Input Bias and Offset Current vs VICM  
59. Input Offset Voltage vs  
Input Common-Mode Voltage  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
Typical Characteristics: ±2.5-V to ±1.5-V Split Supply (接下页)  
with PD = VCC and TA 25°C (unless otherwise noted)  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
-110  
-115  
-120  
-125  
Ch-A to Ch-B  
Ch-B to Ch-A  
-130  
-135  
10k  
100k  
1M  
10M 100M  
Frequency (Hz)  
D061  
Crosstalk for the OPA2837 only  
61. Crosstalk vs Frequency  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPA837 and OPA2837 are single- and dual-channel, power efficient, unity-gain stable, voltage-feedback  
amplifiers (VFAs). Combining a negative rail input stage and a rail-to-rail output (RRO) stage, the OPAx837  
provides a flexible solution where exceptional precision and wide bandwidth at low power are required. This  
50-MHz gain bandwidth product (GBP) amplifier requires less than 0.65 mA of supply current per channel over a  
2.7-V to 5.4-V total supply operating range. A shutdown feature on the OPA837 6-pin package version provides  
power savings where the system requires less than 10 µA when shut down. Offering a unity-gain bandwidth  
greater than 100 MHz, the OPAx837 provides less than –118-dBc THD at 100 kHz and a 2-VPP output.  
7.2 Functional Block Diagrams  
The OPAx837 is a standard voltage-feedback op amp with two high-impedance inputs and a low-impedance  
output. 62 and 63 show the supported standard applications circuits. These application circuits are shown  
with a DC VREF on the inputs that set the DC operating points for single-supply designs. The VREF is often  
ground, especially for split-supply applications.  
VSIG  
VS+  
VREF  
VIN  
VOUT  
OPA837  
RG  
GVSIG  
VREF  
VREF  
VS-  
RF  
62. Noninverting Amplifier  
VS+  
VREF  
VSIG  
VREF  
VOUT  
OPA837  
RG  
GVSIG  
V
IN  
VREF  
VS-  
RF  
63. Inverting Amplifier  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
7.3 Feature Description  
7.3.1 OPA837 Comparison  
1 lists several members of the device family that includes the OPA837.  
1. Device Family Comparison(1)  
INPUT NOISE  
VOLTAGE  
(nV/Hz)  
Av = +1  
BANDWIDTH (MHz)  
5-V IQ  
(mA, Max 25°C)  
2-VPP THD  
(dBc, 100 kHz)  
RAIL-TO-RAIL  
INPUT/OUTPUT  
PART NUMBER  
DUALS  
OPA837  
OPA838  
LMV118  
LMH6647  
OPA835  
OPA625  
OPA836  
105  
0.63  
0.99  
0.9  
4.7  
1.9  
40  
–118  
–110  
VS–, output  
VS–, output  
VS–, output  
Input, output  
VS–, output  
VS–, output  
VS–, output  
OPA2837  
45  
55  
1.6  
17  
–75  
LMH6646  
OPA2835  
OPA2625  
OPA2836  
56  
0.35  
2.2  
9.4  
2.5  
4.6  
–104  
–120  
–118  
120  
205  
1.0  
(1) For a complete selection of TI high speed amplifiers, visit www.ti.com.  
7.3.2 Input Common-Mode Voltage Range  
When the primary design goal is a linear amplifier with high CMRR, the design must remain within the input  
common-mode voltage range (VICR) of an op amp. These ranges are referenced off of each supply as an input  
headroom requirement. Ensured operation at 25°C is maintained to the negative supply voltage and to within  
1.3 V of the positive supply voltage. The common-mode input range specifications in the Electrical  
Characteristics table use CMRR to set the limit. The limits are selected to ensure CMRR does not degrade more  
than 3 dB below the minimum CMRR value if the input voltage is within the specified range.  
Assuming the op amp is in linear operation, the voltage difference between the input pins is small (ideally 0 V);  
and the input common-mode voltage is analyzed at either input pin with the other input pin assumed to be at the  
same potential. The voltage at VIN+ is simple to evaluate. In the noninverting configuration of 62, the input  
signal, VIN, must not violate the VICR. In the inverting configuration of 63, the reference voltage, VREF, must be  
within the VICR  
.
The input voltage limits have fixed headroom to the power rails and track the power-supply voltages. For one 5-V  
supply, the typical linear input voltage ranges from –0.2 V to 3.8 V and –0.2 V to 1.5 V for a 2.7-V supply. The  
delta headroom from each power-supply rail is the same in either case: –0.2 V and 1.2 V, respectively.  
7.3.3 Output Voltage Range  
The OPAx837 is a rail-to-rail output op amp. Rail-to-rail output typically means that the output voltage swings to  
within 100 mV of the supply rails. There are two different ways to specify this feature: one is with the output still  
in linear operation and another is with the output saturated. Saturated output voltages are closer to the power-  
supply rails than the linear outputs, but the signal is not a linear representation of the input. Saturation and linear  
operation limits are affected by the output current, where higher currents lead to more voltage loss in the output  
transistors; see 55.  
The Electrical Characteristics tables list saturated output voltage specifications with a 2-kΩ load. 55 illustrates  
the saturated voltage-swing limits versus output load resistance, and 56 illustrates the output saturation  
voltage versus load current. Given a light load, the output voltage limits have nearly constant headroom to the  
power rails and track the power-supply voltages. For example, with  
a 2-kΩ load and a single  
5-V supply, the linear output voltage ranges from 0.10 V to 4.9 V and ranges from 0.1 V to 2.6 V for a 2.7-V  
supply. The delta from each power-supply rail is the same in either case: 0.1 V.  
With devices like the OPA837 and OPA2837 where the input range is lower than the output range, typically the  
input limits the available signal swing only in a noninverting gain of 1 V/V. Signal swing in noninverting  
configurations in gains greater than +1 V/V and inverting configurations in any gain are typically limited by the  
output voltage limits of the op amp.  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
 
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7.3.4 Power-Down Operation  
The OPA837 includes a power-down mode in the 6-pin SOT23-6 package. Under logic control, the amplifier can  
switch from normal operation to a standby current of less than 10 µA. When the PD pin is connected high, the  
amplifier is active. Connecting the PD pin low disables the amplifier and places the output in a high-impedance  
state. When the amplifier is configured as a unity-gain buffer, the output stage is in a high DC-impedance state.  
A new feature in the OPA837 is a switch from the external inverting input pin to the internal active transistors.  
This switch operates with the disable pin function to open up the connection to the internal devices when  
powered down. Operating in unity gain provides a high-impedance voltage into both the output and inverting  
input pins. This feature allows direct active multiplexer operation to be implemented; see 87. The TIDA-01565  
Wired OR MUX and PGA Reference Design demonstrates the use of the OPAx837 in wired-OR multiplexer and  
programmable gain amplifier applications. When disabled, the internal input devices on the inverting input  
approximately follow the noninverting input on the other side of the open switch through the back-to-back  
protection diodes across the inputs. When powered up, these diodes (two in each direction) act to limit overdrive  
currents into the active transistors.  
The PD pin must be actively driven high or low and must not be left floating. If the power-down mode is not used,  
PD must be tied to the positive supply rail.  
PD logic states are referenced relatively low to the negative supply rail, VS–. When the op amp is powered from a  
single-supply and ground, and the disable line is driven from logic devices with similar VDD voltages to the op  
amp, the disable operation does not require any special consideration. The OPA837 is specified to be off with PD  
driven to within 0.55 V of the negative supply and specified to be on when driven more than 1.5 V above the  
negative supply. Slight hysteresis is provided around a nominal 1-V switch point; see 58. When the op amp is  
powered from a split supply with VS– below ground, a level shift logic swing below ground is required to operate  
the disable function.  
7.3.5 Low-Power Applications and the Effects of Resistor Values on Bandwidth  
The OPAx837 can use a direct short in the feedback for a gain of 1 V/V. 2 gives a list of recommended values  
over gain for an increasing noninverting gain target. This table was produced by increasing the R values until  
they added 50% of the total output noise power. Higher values can be used to reduce power at the cost of higher  
noise. Lower values can be used to reduce the total output noise at the cost of more load power in the feedback  
network. Stability is also impaired going to very high values because of the pole introduced into the feedback  
path with the inverting input capacitance (1.5-pF common-mode). In low-power applications, reducing the current  
in the feedback path is preferable by increasing the resistor values. Using larger value resistors has two primary  
side effects (other than lower power) because of the interactions with the inverting input parasitic capacitance.  
Using large value resistors lowers the bandwidth and lowers the phase margin. When the phase margin is  
lowered, peaking in the frequency response and overshoot and ringing in the pulse response results.  
64 shows the gain = 2 V/V (6 dB) small-signal frequency response with RF and RG equal to 1 kΩ, 2 kΩ, 5 kΩ,  
10 kΩ, and 20 kΩ. This test was done with RL = 2 kΩ. Lower RL values can reduce the peaking because of RL  
loading effects, but higher values do not have a significant effect.  
18  
Rf = 1 kOhm  
Rf = 2 kOhm  
Rf = 5 kOhm  
Rf = 10 kOhm  
Rf = 20 kOhm  
15  
12  
9
Rf = 20 kOhm || 1.5 pF  
6
3
0
10k  
100k  
1M  
Frequency (Hz)  
10M  
100M  
D063  
64. Frequency Response With Various RF = RG Resistor Values  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
 
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
As expected, larger value resistors cause lower bandwidth and peaking in the response (peaking in frequency  
response is synonymous with overshoot and ringing in pulse response). Adding a 1.5-pF capacitor in parallel with  
RF (equal to the input common-mode capacitance) helps compensate the phase margin loss and restores flat  
frequency response. 65 shows the test circuit.  
VIN  
VOUT  
RG  
OPA837  
2 kW  
RF  
Optional CF  
65. G = 2 Test Circuit for Various Gain-Setting Resistor Values  
7.3.6 Driving Capacitive Loads  
The OPAx837 can drive a parasitic load capacitance up through 4 pF on the output with no special  
considerations. When driving capacitive loads greater than 4 pF, TI recommends using a small resistor (RO) in  
series with the output as close to the device as possible. Without RO, output capacitance interacts with the output  
impedance of the amplifier causing phase shift in the loop gain of the amplifier that reduces the phase margin.  
This reduction causes peaking in the frequency response and overshoot and ringing in the pulse response.  
Inserting RO isolates the phase shift from the loop-gain path and restores the phase margin; however RO can  
also limit bandwidth to the capacitive load.  
66 shows the test and 49 illustrates the recommended values of RO versus capacitive loads, CL using a 30°  
phase margin target for the op amp. See 50 for the frequency responses with various values of CL and ROUT  
parametric on gain.  
RO  
VIN  
VOUT  
OPA837  
2 kΩ  
CL  
66. ROUT versus CL Test Circuit  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
 
 
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Split-Supply Operation (±1.35 V to ±2.7 V)  
To facilitate testing with common lab equipment, the OPA837EVM (see the OPA835DBV and OPA836DBV EVM  
User's Guide) allows split-supply operation. This configuration eases lab testing because the mid-point between  
the power rails is ground, and most signal generators, network analyzers, oscilloscopes, spectrum analyzers, and  
other lab equipment have inputs and outputs that prefer a ground reference for DC-coupled testing.  
67 shows a simple noninverting configuration analogous to 62 with a ±2.5-V supply and VREF equal to  
ground. The input and output swing symmetrically around ground. For ease of use, split supplies are preferred in  
systems where signals swing around ground. In this example, an optional bias current cancellation resistor is  
used in series with the noninverting input. For DC-coupled applications, set this resistor to be equal to the  
parallel combination of RF and RG. This resistor increases the noise contribution at the input because of that  
resistor noise (see the Output Noise Calculations section).  
+2.5 V  
RF // RG  
VOUT  
RG  
OPA837  
VSIG  
Load  
-2.5 V  
RF  
67. Split-Supply Operation  
68 shows the step response for this gain of 2-V/V circuit with a ±1-V input to a ±2-V output. For a 4-V output  
step, the input edge rate is set to 40 ns to avoid slew limiting.  
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
Input  
-2  
Output  
-2.5  
0
200  
400  
600  
800  
1000  
1200  
Time (ns)  
D064  
68. VIN and VOUT vs Time  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
Device Functional Modes (接下页)  
7.4.2 Single-Supply Operation (2.7 V to 5.4 V)  
Most newer systems use a single power supply to improve efficiency and to simplify power-supply design. The  
OPAx837 can be used with single-supply power (ground for the negative supply) with no change in performance  
from split supply, as long as the input and output pins are biased within the linear operating region of the device.  
The outputs nominally swing rail-to-rail with approximately a 100-mV headroom required for linear operation. The  
inputs can typically swing 0.2 V below the negative rail (typically ground) and to within 1.2 V of the positive  
supply. For DC-coupled single-supply operation, the input swing is below the available output swing range for  
noninverting gains greater than 1.30 V/V. Typically, the 1.2-V input headroom required to the positive supply only  
limits output swing range for a unity-gain buffer.  
To change the circuit from split supply to single-supply, level shift all voltages by half the difference between the  
power-supply rails. For example, 69 depicts changing from a ±2.5-V split supply to a 5-V single-supply. The  
load is shown as mid-supply referenced but can be grounded as well.  
5 V  
VOUT  
RG  
OPA837  
VSIG  
Load  
RF  
2.5 V  
69. Single-Supply Concept  
A practical circuit has an amplifier or other circuit providing the bias voltage for the input, and the output of this  
amplifier stage provides the bias for the next stage.  
70 shows a typical noninverting amplifier circuit. With 5-V single-supply, a mid-supply reference generator is  
needed to bias the negative side through RG. To cancel the voltage offset that is otherwise caused by the input  
bias currents, R1 is selected to be equal to RF in parallel with RG. For example, if a gain of 2 V/V is required and  
RF = 2 kΩ, select RG = 2 kΩ to set the gain, and R1 = 1 kΩ for bias current cancellation which reduces the output  
DC error to IOS × RF. The value for C is dependent on the reference, and TI recommends a value of at least  
0.1 µF to limit noise. The frequency response flatness is impacted by the AC impedance, including the reference  
and capacitor added to the RG element.  
Signal and bias  
from previous stage  
VSIG  
2.5 V  
5 V  
R1  
RO  
VOUT  
OPA837  
GVSIG  
RG  
2.5 V  
REF  
2.5 V  
5 V  
C
Signal and bias to  
next stage  
RF  
70. Noninverting Single-Supply Operation With Reference  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
 
 
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Device Functional Modes (接下页)  
71 shows a similar noninverting single-supply scenario with the reference generator replaced by the Thevenin  
equivalent using resistors and the positive supply. RG’ and RG” form a resistor divider from the 5-V supply and  
are used to bias the negative side with the parallel sum equal to the equivalent RG to set the gain. To cancel the  
voltage offset that is otherwise caused by the input bias currents, R1 is selected to be equal to RF in parallel with  
RG’ in parallel with RG” (R1= RF || RG’ || RG”). For example, if a gain of 2 V/V is required and RF = 2 kΩ, selecting  
RG’ = RG” = 4 kΩ gives an quivalent parallel sum of 2 kΩ, sets the gain to 2, and references the input to mid-  
supply (2.5 V). R1 is set to 1 kΩ for bias current cancellation. The resistor divider costs less than the 2.5-V  
reference in 70 but increases the current from the 5-V supply. Any noise or variation on the 5-V supply now  
also comes into the circuit as an input through the biasing path.  
Signal and bias  
from previous stage  
VSIG  
2.5 V  
5 V  
R1  
RO  
VOUT  
RG’  
OPA837  
GVSIG  
5 V  
2.5 V  
RG”  
Signal and bias to  
next stage  
RF  
71. Noninverting Single-Supply Operation With Resistor Mid-Supply Biasing  
72 shows a typical inverting amplifier circuit. With a 5-V single supply, a mid-supply reference generator is  
needed to bias the positive side through R1. To cancel the voltage offset that is otherwise caused by the input  
bias currents, R1 is selected to be equal to RF in parallel with RG. For example, if a gain of –2 V/V is required and  
RF = 2 kΩ, select RG = 1 kΩ to set the gain and R1 = 667 Ω for bias current cancellation. The value for C is  
dependent on the reference, but TI recommends a value of at least 0.1 µF to limit noise into the op amp.  
5 V  
R1  
2.5 V  
REF  
RO  
5 V  
V
OPA837  
OUT  
C
GVSIG  
2.5 V  
RG  
VSIG  
Signal and bias to  
next stage  
RF  
2.5 V  
Signal and bias  
from previous stage  
72. Inverting Single-Supply Operation With Reference  
28  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
Device Functional Modes (接下页)  
73 shows a similar inverting single-supply scenario with the reference generator replaced by the Thevenin  
equivalent using resistors and the positive supply. R1 and R2 form a resistor divider from the 5-V supply and are  
used to bias the positive side. To cancel the voltage offset that is otherwise caused by the input bias currents,  
set the parallel value of R1 and R2 equal to the parallel value of RF and RG. C must be added to limit coupling of  
noise into the positive input. For example, if gain of –2 V/V is required and RF = 2 kΩ, select RG = 1 kΩ to set the  
gain. R1 = R2 = 2 × 667 Ω = 1.33 kΩ for the mid-supply voltage bias and for op-amp input-bias current  
cancellation. A good value for C is 0.1 µF. The resistor divider costs less than the 2.5-V reference in 72 but  
increases the current from the 5-V supply. Any noise or variation in the 5-V supply also comes into the circuit  
through this bias setup but be band-limited by the pole formed with R1 || R2 and C.  
5 V  
5 V  
R1  
RO  
VOUT  
OPA837  
R2  
C
GVSIG  
2.5 V  
RG  
RF  
Signal and bias to  
next stage  
VSIG  
2.5 V  
Signal and bias  
from previous stage  
73. Inverting Single-Supply Operation With Resistor Midsupply Biasing  
These examples are only a few of the ways to implement a single-supply design. Many other designs exist that  
can often be simpler if AC-coupled inputs are allowed. A good compilation of options can be found in the Single-  
Supply Op Amp Design Techniques application report.  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
 
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Noninverting Amplifier  
The OPAx837 can be used as a noninverting amplifier with a signal input to the noninverting input, VIN+. A basic  
block diagram of the circuit is illustrated in 62. VREF is often ground when split supplies are used.  
Calculate the amplifier output according to 公式 1 if VIN = VREF + VSIG  
.
æ
ö
÷
ø
RF  
V
OUT  
= VSIG 1 +  
+ VREF  
ç
RG  
è
(1)  
The signal gain of the circuit is set by 公式 2, and VREF provides a reference around which the input and output  
signals swing. Output signals are in-phase with the input signals within the flat portion of the frequency response.  
For a high-speed, low-noise device such as the OPAx837, the values selected for RF (and RG for the desired  
gain) can strongly influence the operation of the circuit. For the characteristic curves, the noninverting circuit of 图  
74 shows the test configuration set for a gain of 2 V/V. 2 lists the recommended resistor values over gain.  
RF  
G = 1 +  
RG  
(2)  
RG 2 kΩ  
RF 2 kΩ  
50-Ω  
source  
VEE  
Network  
Analyzer  
50-Ω  
Cable  
U1 OPA837  
œ
R3 1.96 kΩ  
2-kload  
50-Ω  
Cable  
RS 50 Ω  
+
+
PD  
VM1  
V
Network  
Analyzer  
VCC  
VCC  
VEE  
+
+
V1 2.5  
V2 -2.5 V  
74. Characterization Test Circuit for Network, Spectrum Analyzer  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
Application Information (接下页)  
2 lists the recommended resistor values from target gains of 1 V/V to 10 V/V where standard E96 values are  
shown. This table controls the RF and RG values to set the resistor noise contribution at approximately 50% of  
the total output noise power. These values increase the spot noise at the output over what the op amp voltage  
noise produces by 41%. Lower values reduce the output noise of any design at the cost of more power in the  
feedback circuit. Using the TINA model and simulation tool shows the impact of different resistor value choices  
on response shape and noise.  
2. Noninverting Recommended Resistor Values  
TARGET GAIN (V/V)  
RF (Ω)  
0
RG (Ω)  
Open  
2370  
2000  
1130  
787  
ACTUAL GAIN (V/V)  
GAIN (dB)  
0.00  
1
1.5  
2
1.00  
1.50  
2.00  
3.00  
4.01  
5.02  
5.99  
7.04  
7.97  
9.04  
10.08  
1190  
2000  
2260  
2370  
2490  
2550  
2610  
2670  
2670  
2670  
3.53  
6.02  
3
9.54  
4
12.07  
14.02  
15.55  
16.95  
18.03  
19.13  
20.07  
5
619  
6
511  
7
432  
8
383  
9
332  
10  
294  
8.1.2 Inverting Amplifier  
The OPAx837 can be used as an inverting amplifier with a signal input to the inverting input, VIN–, through the  
gain-setting resistor RG. A basic block diagram of the circuit is illustrated in 63.  
The output of the amplifier can be calculated according to 公式 3 if VIN = VREF + VSIG and the noninverting input  
is biased to VREF  
.
æ
ö
÷
ø
-RF  
V
= V  
SIG ç  
+ V  
REF  
OUT  
RG  
è
(3)  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
 
 
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
The signal gain of the circuit is set by 公式 4 and VREF provides a reference point around which the input and  
output signals swing. For bipolar-supply operation, VREF is often ground. The output signal is 180˚ out-of-phase  
with the input signal in the pass band of the application. 75 shows the 50-Ω input matched configuration used  
for the inverting characterization plots set up for a gain of –1 V/V. In this case, an added termination resistor, RT,  
is placed in parallel with the input RG resistor to provide an impedance match to 50-Ω test equipment. The output  
network appears as a 2-kΩ load but with a 50-Ω source to the network analyzer. This output interface network  
does add a 37.9-dB insertion loss that is normalized out in the characterization curves. 3 lists the suggested  
values for RF, RG, and RT for inverting gains from –0.5 V/V to –10 V/V. If a 50-Ω input match is not required,  
eliminate the RT element.  
-RF  
G =  
RG  
(4)  
Network  
Analyzer  
Gain of -1 V/V  
50-Ω  
RS 50 Ω  
RG 2 kΩ  
RF 2 kΩ  
Cable  
+
50-source  
VEE  
Network  
Analyzer  
50-Ω  
Cable  
œ
R1 1.96 kΩ  
+
+
PD  
2-kload ‰  
VCC  
+
VEE  
V
+
VCC  
-2.5 V  
2.5 V  
75. Inverting Characterization Circuit for Network Analyzer  
3. Inverting Recommended Resistor Values  
INVERTING GAIN  
(V/V)  
STANDARD RT  
RF (Ω)  
RG (Ω)  
INPUT ZI (Ω)  
ACTUAL (V/V)  
GAIN (dB)  
(Ω)  
51.1  
51.1  
52.3  
53.6  
54.9  
54.9  
56.2  
57.6  
59  
–0.5  
–1  
1190  
2000  
2260  
2370  
2490  
2550  
2610  
2670  
2670  
2670  
2670  
2370  
2000  
1130  
787  
619  
511  
432  
383  
332  
294  
267  
50.02  
49.83  
49.99  
50.18  
50.43  
49.57  
49.73  
50.07  
50.10  
50.11  
50.25  
–0.50  
–1.00  
–2.00  
–3.01  
–4.02  
–4.99  
–6.04  
–6.97  
–8.04  
–9.08  
–10.00  
–5.98  
0.00  
–2  
6.02  
–3  
9.58  
–4  
12.09  
13.96  
15.62  
16.87  
18.11  
19.16  
20.00  
–5  
–6  
–7  
–8  
–9  
60.4  
61.9  
–10  
32  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
8.1.3 Output DC Error Calculations  
The OPAx837 can provide excellent DC signal accuracy because of its high open-loop gain, high common-mode  
rejection, high power-supply rejection, and low input offset voltage and bias current offset errors. To take full  
advantage of this low input offset voltage, pay careful attention to input bias current cancellation. The low-noise  
input stage for the OPAx837 has a relatively high input bias current (0.34 µA typical out the pins) but with a close  
match between the two input currents. The OPAx837 is a negative rail input device using PNP input devices  
where the base current flows out of the device pins. A large resistor to ground on the V+ input shifts the pin  
voltage positively because of the input bias current. The mismatch between the two input bias currents is very  
low, typically only ±10 nA of input offset current. Match the DC source impedances out of the two inputs to  
reduce the total output offset voltage. 67 illustrates an example of resistor matching for bias current  
cancellation. Analyzing the simple circuit of 67 (using a gain of 2-V/V target with RF = RG = 2 kΩ) illustrates  
that the noise gain for the input offset voltage drift is 1 + 2 kΩ / 2 kΩ = 2 V/V. This value results in an output drift  
term of ±1.6 µV/°C × 2 = ±3.2 µV/°C (DCK package). Because the two impedances out of the inputs are  
matched, the residual error from the maximum ±250 pA/°C offset current drift is this maximum IOS drift times the  
2-kΩ feedback resistor value, or ±50 µV/°C. The total output DC error drift band is ±53.2 µV/°C. If the output DC  
drift is more important than reduced feedback currents, lower the resistor values to reduce the dominant drift  
term resulting from the IOS term.  
8.1.4 Output Noise Calculations  
The unity-gain stable, voltage-feedback OPAx837 op amp offers among the lowest input voltage and current  
noise terms for any device with a supply current less than 0.7 mA. 76 shows the op amp noise analysis model  
that includes all noise terms. In this model, all noise terms are shown as noise voltage or current density terms in  
nV/Hz or pA/Hz.  
E
NI  
+
OPA837  
E
O
R
S
I
BN  
E
RS  
R
F
4kTRS  
4kTRF  
R
G
I
BI  
4kT  
RG  
4kT = 1.6E œ 20J  
at 290°K  
76. Op Amp Noise Analysis Model  
The total output spot noise voltage is computed as the square root of the squared contributing terms to the  
output noise voltage. This computation is adding all the contributing noise powers at the output by superposition,  
then taking the square root to return to a spot noise voltage. The last term includes the noise for both the RG and  
RF resistors. 公式 5 shows the general form for this output noise voltage using the terms presented in 76.  
ENI + I R + 4kTR NG + I R 2 + 4kTRFNG  
» ÿ  
BN S S BI F  
2
2
EO  
=
(
)
(
)
(5)  
Dividing this expression by the noise gain (NG = 1 + RF / RG), as shown in 公式 6, gives the equivalent input  
referred spot noise voltage at the noninverting input.  
2
I R  
4kTRF  
NG  
2
EN = EN2I + IBNRS + 4kTRS +  
+
BI  
F
(
)
«
÷
NG  
(6)  
33  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Using the resistor values listed in 2 with RS = 0 Ω results in a constant input-referred voltage noise of  
< 7 nV/Hz. Reducing the resistor values can reduce this noise value towards the 4.7 nV/Hz intrinsic to the  
OPA837. As shown in 公式 5, adding the RS for bias current cancellation in noninverting mode adds the noise  
from the RS to the total output noise. In inverting mode, bypass the RS bias current cancellation resistor with a  
capacitor for the best noise performance. For more details on op amp noise analysis, see the Noise Analysis for  
High-Speed Op Amps application report.  
8.1.5 Instrumentation Amplifier  
77 is an instrumentation amplifier that combines the high input impedance of the differential-to-differential  
amplifier circuit and the common-mode rejection of the differential-to-single-ended amplifier circuit. This circuit is  
often used in applications where high input impedance is required (such as taps from a differential line) or in  
cases where the signal source is a high impedance.  
VIN-  
½OPA837  
VSIG-  
RF2  
VCM  
RG2  
RG2  
RF1  
RG1  
VOUT  
OPA837  
RF1  
G[(VSIG+)-(VSIG-)]  
VSIG+  
RF2  
VREF  
VCM  
½OPA837  
VREF  
VIN+  
77. Instrumentation Amplifier (INA)  
The output of the amplifier can be calculated according to 公式 7 if VIN+ = VCM + VSIG+ and VIN– = VCM + VSIG–  
.
æ
ö æ  
ö
÷
ø
2R  
RF2  
RG2  
F1 ÷ ç  
V
=
V
IN+ - V  
´ 1 +  
+ V  
REF  
(
)
ç
IN-  
OUT  
RG1  
è
ø è  
(7)  
公式 8 shows the signal gain of the circuit. The input VCM is rejected, and VREF provides a reference voltage or  
level shift around which the output signal swings. The single-ended output signal is in-phase to the lower input  
signal polarity.  
æ
ö æ  
ö
÷
ø
2R  
RF2  
F1 ÷ ç  
RG1  
G = 1 +  
ç
RG2  
è
ø è  
(8)  
Integrated INA solutions are available, but the OPAx837 device provides a high-frequency solution at relatively  
low power (< 1.8 mA for the three op-amp solution). For best CMRR performance, resistors must be matched. A  
good rule of thumb is CMRR the resistor tolerance; so a 0.1% tolerance provides approximately 60-dB CMRR.  
For higher gain INA implementations with higher bandwidths, apply the OPA838 to the circuit of 77.  
8.1.6 Attenuators  
The noninverting circuit of 62 has a minimum gain of 1. To implement attenuation, a resistor divider can be  
placed in series with the positive input, and the amplifier set for a gain of 1 V/V by shorting VOUT to VIN– and  
removing RG. Because the op amp input is high impedance, the resistor divider sets the attenuation.  
The inverting circuit of 63 is used as an attenuator by making RG larger than RF. The attenuation is the  
resistor ratio. For example, a 10:1 attenuator can be implemented with RF = 2 kΩ and RG = 20 kΩ.  
34  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
8.1.7 Differential to Single-Ended Amplifier  
78 shows a differential amplifier that converts differential signals to single-ended in a single stage and  
provides gain (or attenuation) and level shifting. This circuit can be used in applications such as a line receiver  
for converting a differential signal from a Cat5 cable to a single-ended output signal.  
VSIG-  
RF  
VCM  
RG  
VIN-  
VOUT  
RG  
OPA837  
VIN+  
VSIG+  
G[(VSIG+)-(VSIG-)]  
VREF  
RF  
VCM  
VREF  
78. Differential to Single-Ended Amplifier  
The output of the amplifier can be calculated according to 公式 9 if VIN+ = VCM + VSIG+ and VIN– = VCM + VSIG–  
.
æ
ç
è
ö
÷
ø
RF  
VOUT  
=
V
- V  
´
+ VREF  
(
)
IN+  
IN-  
RG  
(9)  
The signal gain of the circuit is shown in 公式 10, VCM is rejected, and VREF provides a level shift or reference  
voltage around which the output signal swings. The single-ended output signal is in-phase with the noninverting  
input signal. VREF is often ground when split supplies are used on the op amp.  
RF  
G =  
RG  
(10)  
Line termination can be accomplished by adding a shunt resistor across the VIN+ and VIN– inputs. The differential  
impedance is the shunt resistance in parallel with the input impedance of the amplifier circuit, which is usually  
much higher. For low gain and low line impedance, the resistor value to add is approximately the impedance of  
the line. For example, if a 100-Ω Cat5 cable is used with a gain of 1 V/V amplifier and RF = RG = 2 kΩ, adding a  
100-Ω shunt across the input gives a differential impedance of 99 Ω, which is an adequate match for most  
applications.  
For best CMRR performance, resistors must be matched. Assuming CMRR the resistor tolerance, a 0.1%  
tolerance provides approximately 60-dB CMRR.  
版权 © 2017–2018, Texas Instruments Incorporated  
35  
 
 
 
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
8.1.8 Differential-to-Differential Amplifier  
79 shows a differential amplifier that is used to amplify differential signals to a differential output. This circuit  
has high input impedance and is used in differential line driver applications where the signal source is a high-  
impedance driver (for example, a differential DAC) that must drive a line.  
VIN-  
VOUT-  
GVSIG-  
½
OPA837  
VSIG-  
VCM  
VCM  
RF  
RF  
RG  
GVSIG+  
VSIG+  
VCM  
VCM  
VOUT+  
½
OPA837  
VIN+  
79. Differential-to-Differential Amplifier  
The output of the amplifier can be calculated according to 公式 11 if VIN± is set to VCM + VSIG±  
.
æ
ö
÷
ø
2RF  
RG  
V
= V  
´ 1 +  
+ VCM  
ç
IN±  
OUT ±  
è
(11)  
The signal gain of the circuit is shown in 公式 12, and VCM passes with unity gain. The amplifier combines two  
noninverting amplifiers into one differential amplifier that shares the RG resistor, which makes RG effectively half  
its value when calculating the gain. The output signals are in-phase with the input signals.  
2RF  
G = 1 +  
RG  
(12)  
36  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
8.1.9 Pulse Application With Single-Supply Circuit  
For pulsed applications where the signal is at ground and pulses to a positive or negative voltage, the circuit  
bias-voltage considerations differ from those in an application with a signal that swings symmetrically around a  
reference point. 80 shows a circuit where the signal is at ground (0 V) and pulses to a positive value. The  
waveforms are shown slightly above ground because the output stage requires approximately 100 mV headroom  
to the supplies. To operate with the I/O swing truly to ground on a single-supply setup, consider using the fixed  
–0.23-V output LM7705.  
Signal and bias  
from previous stage  
VSIG  
0 V  
5 V  
R1  
RO  
VOUT  
OPA837  
GVSIG  
0 V  
RG  
Signal and bias to  
next stage  
R
F
80. Noninverting Single-Supply Circuit With Pulse  
As shown in 81, an inverting amplifier is more appropriate if the input signal pulses negative from ground. A  
key consideration in noninverting and inverting cases is that the input and output voltages are kept within the  
limits of the amplifier. Because the VICR of the OPA837 includes the negative supply rail, the OPA837 op amp is  
well-suited for this application.  
5 V  
R1  
RO  
VOUT  
OPA837  
GVSIG  
RG  
0 V  
Signal and bias  
from previous stage  
Signal and bias to  
0 V  
RF  
next stage  
VSIG  
81. Inverting Single-Supply Circuit With Pulse  
版权 © 2017–2018, Texas Instruments Incorporated  
37  
 
 
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
8.1.10 ADC Driver Performance  
The OPAx837 provides excellent performance when driving high-performance delta-sigma (ΔΣ) or successive-  
approximation-register (SAR) ADCs in low-power audio and industrial applications.  
82 repeats the front page diagram. Many designs prefer to work with a true 0-V input range to 0-V output at  
the ADC. The 100-mV output headroom requirement for the OPAx837 then requires a small negative supply to  
hold the output linearity to ground. This supply is provided in this example using the low-cost LM7705 fixed  
negative, –0.23-V output regulator. On a 5-V supply, the input headroom requires at least a 1.2-V headroom to  
that supply. As shown in 82, this requirement limits the maximum input to 3.8 V. The SAR operates with a  
precision 4.096-V reference provided by the REF5040, where the gain of 1.05 V/V takes the 3.8-V maximum  
input to a 4.0-V maximum output. The RC values have been set to limit the overshoot at the OPAx837 output pin  
to reduce clipping on fast (50 ns) transitions.  
+ 5.0 V  
4.096 V  
REF5040  
GND  
4.0 V  
3.3 V  
+VCC  
0 V  
0 V  
3.8 V  
PD  
OPA837  
+
22  
Gain = 1.05  
V/V  
œ
ADS8860  
16-Bit SAR  
1 MSPS  
œVCC  
2.2 nF  
499 Ω  
22 Ω  
10.0 kΩ  
GND  
GND  
GND  
œ 0.23 V  
LM7705  
+ 3.3 V  
82. OPA837 and ADS8860 Example Circuit  
38  
版权 © 2017–2018, Texas Instruments Incorporated  
 
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
8.2 Typical Applications  
8.2.1 Active Filters  
The OPAx837 is a good choice for active filters. 83 and 84 show MFB and Sallen-Key circuits designed  
implementing second-order, low-pass Butterworth filter circuits. 85 illustrates the frequency response.  
The main difference is that the MFB active filter provides an inverting amplifier in the pass band and the Sallen-  
Key active filter is noninverting. The primary advantage for each active filter is that the Sallen-Key filter in unity  
gain has no resistor gain error term or feedback resistor noise contribution. The MFB active filter has better  
attenuation properties beyond the bandwidth of the op amp. The example circuits are assuming a split-supply  
operation but single-supply operation is possible with midscale biasing.  
1.4 kW  
430 pF  
1.4 kW  
1.91 kW  
OPA837  
2.2 nF  
83. MFB Active Filter, 100-kHz, Second-Order, Low-Pass Butterworth Filter Circuit  
12 nF  
255 W  
147 W  
OPA837  
5.6 nF  
84. Sallen-Key Active Filter, 100-kHz, Second-Order, Low-Pass Butterworth Filter Circuit  
8.2.1.1 Design Requirements  
For both designs, target the following filter shape characteristic:  
Gain of 1 V/V  
100-kHz Butterworth response  
Q = 0.707 gives a flat Butterworth design  
Scale the resistors down to reduce their noise contribution. In the MFB design, the input resistor is the in-band  
load to the prior stage. Use values slightly below the gain of –1 V/V in 3. The Sallen-Key filter shows a high  
impedance input in-band, so scale those resistors down further to improve noise.  
The output DC error and drift can be improved by adding bias current cancellation resistors. For the MFB filter  
that is a resistor (and a noise filter capacitor) on the noninverting input to ground equal to the resistor inside the  
loop times the noise gain. For the Sallen-Key design, add a feedback resistor equal to the sum of the two input  
resistors.  
8.2.1.2 Detailed Design Procedure  
The filter designs shown in this section used an improved design flow that reduces the resistor noise and noise  
gain peaking. For the MFB filter, the design was based on the information in the Design Methodology for MFB  
Filters in ADC Interface Applications application note.  
For the Sallen-Key design, the solution is based on the information in the Component Pre-Distortion for Sallen  
Key Filters application note.  
版权 © 2017–2018, Texas Instruments Incorporated  
39  
 
 
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Applications (接下页)  
8.2.1.3 Application Curves  
85 shows the comparative response curves for each of the filter design examples. Both filters hit the desired  
response shape exactly. However, notice the loss of stop-band rejection in the Sallen-Key design. This loss  
results from the op amp output impedance increasing at higher frequencies and allowing the signal to feed  
through the feedback capacitor to the output.  
86 shows a comparison of the output spot noise for the two designs. The Sallen-Key is much lower because  
of the lower resistor values used. Also, the MFB shows a noise gain of 2 V/V versus the Sallen-Key gain of 1  
V/V. This difference immediately increases the MFB output noise by at least twice the input voltage noise from  
the op amp. The higher resistor values also increase the total output noise for the MFB.  
3
-3  
20  
18  
16  
14  
12  
10  
8
MFB  
SKF  
MFB  
SKF  
-9  
-15  
-21  
-27  
-33  
-39  
-45  
-51  
6
4
2
0
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
D083  
D084  
85. MFB and Sallen-Key Active Filters, Second-Order,  
86. Output Spot Noise Comparison  
Low-Pass Butterworth Filter Response  
8.2.2 Implementing a 2:1 Active Multiplexer  
The OPA837 includes a unique feature that enables a much improved wired-or mux operation. When disabled,  
an internal switch opens from the inverting input to the active transistors isolating those nonlinear loads from the  
signal being driven back into the inverting input through the active channel. 87 illustrates a simple example of  
this multiplexer. In this figure, one of two signals are selected to be passed on to a shared output. The logic  
control turns both amplifiers off (logic low) prior to turning one of them on. This control eliminates both outputs  
being active at the same time. If both amplifiers must be on, as in the simple switch illustrated in 87, adding  
100-Ω isolating resistors inside the loop at the outputs limits the current flow when both amplifiers are turned on.  
This solution offers a very high input impedance to both inputs, very low buffered output drive, and nearly perfect  
channel-to-channel isolation. The example of 87 also includes a –0.23-V supply generator to allow true swing  
to ground on the output pins. This negative supply generator is optional if the outputs are more than 0.1 V above  
ground or intended to be AC-coupled. Testing with a single channel active and an off channel attached to the  
output showed no degradation in harmonic distortion; see 17 and 35. This approach can be expanded to  
more than two channels or to operate with gain in the channels. Adding more than two select channels in parallel  
should add 100-Ω feedback resistors to isolate the inverting input capacitance from the active output channel.  
40  
版权 © 2017–2018, Texas Instruments Incorporated  
 
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
Typical Applications (接下页)  
PD  
R6 100 k  
+VS  
Å
+
This line is  
actually  
a logic  
line  
U1 OPA837  
+
+
VIN  
1
2X1 Active  
Mux  
VOUT  
ÅVS  
+VS  
+
+
LM7705 œ 230 mV  
VS1  
5
PD  
+VS  
R7 100 kꢀ  
Å
+
U2 OPA837  
+
+
VIN  
2
87. 2:1 Active Multiplexer  
8.2.2.1 Design Requirements  
To implement a 2:1 active mux, connect the outputs of two OPA837 devices together with separate input signals.  
If termination is required for the input signals, add this termination as a resistor to ground on the noninverting  
inputs. The inputs accept an input range from 0 V to 3.8 V by using a negative 0.23-V supply generator, such as  
the LM7705.  
8.2.2.2 Detailed Design Procedure  
Aside from simply connecting the two outputs together as shown in 87, there are several other considerations  
as well:  
If the source impedance is not 0 Ω, consider adding a resistor in the feedback networks equal to that source  
impedance to reduce the output DC error resulting from bias currents  
If the logic control can place both channels on at the same time, place 100-Ω resistors inside the feedback  
loop to limit supply currents when both outputs are active  
If a matched gain is desired for the two inputs, configure the op amps for that gain instead of gain of 1 V/V  
If the load is capacitive, add the required ROUT before the summing point on each op amp output  
版权 © 2017–2018, Texas Instruments Incorporated  
41  
 
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Applications (接下页)  
8.2.3 1-Bit PGA Operation  
Using the internal inverting input switch that operates along with the power disable function can also allow a  
simple gain selection on a single input signal. 88 shows an example gain select of either 1 V/V or 2 V/V from  
a single input to a single output. The logic disables both channels before turning one of them on to avoid high  
currents in both outputs to be active at the same time. If this approach is not possible, as in the simple switch  
shown in 88, insert 100-Ω resistors inside the loop of each op amp output. A bipolar supply is shown in 88,  
but any of the single-supply options are also possible. Any combination of gains can be implemented, but wide  
gain ranges show a larger change in signal bandwidth. This approach can be expanded to more than two gain  
settings. Testing with the circuit of 88 showed no change in harmonic distortion; see 18 and 36.  
R5 2 k  
R4 2 kꢀ  
Gain of 2 or  
Gain of 1  
ÅVS  
1-Bit PGA  
OPA837  
+
VOUT  
PD  
R1 100 kꢀ  
+VS  
+
VIN  
+VS  
ÅVS  
ÅVS  
This line is  
actually  
a logic  
line  
+VS  
ÅVS  
+
+
+
+
PD  
R2 100 kꢀ  
VS1 2.5  
VS1 Å2.5  
OPA837  
+VS  
+VS  
88. 1-Bit PGA  
8.2.3.1 Design Requirements  
Configure two OPA837 device outputs in different gains when driving the noninverting input with the same input  
signal. Select one the two channels using the disable control. Set one channel to a gain of 1 V/V and the second  
channel to a gain of 2 V/V using the recommended 2-kΩ values from 2.  
8.2.3.2 Detailed Design Procedure  
The simple design of 88 has several options and details to consider, which include:  
For split-supply operation, the disable control line must operate to within 0.55 V of the negative supply to  
disable a channel. A logic level shift is required.  
Any combination of gains can be implemented. However, the signal bandwidths may vary widely through the  
gain bandwidth product effect between the two channels if the gains are widely separated. If a more constant  
bandwidth between gains is desired, consider adding a fixed RC filter after the combined outputs at a lower  
cutoff frequency than the slowest gain setting.  
The TIDA-01565 Wired OR MUX and PGA Reference Design demonstrates the use of the OPAx837 in wired-OR  
multiplexer and programmable gain amplifier applications.  
42  
版权 © 2017–2018, Texas Instruments Incorporated  
 
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
9 Power Supply Recommendations  
The OPAx837 is intended to work in a nominal supply range of 3.0 V to 5 V. Supply-voltage tolerances are  
supported with the specified operating range of 2.7 V (–10% on a 3-V supply) and 5.4 V (+8% on a 5-V supply).  
Good power-supply bypassing is required. Minimize the distance (< 0.1 inch) from the power-supply pins to high-  
frequency, 0.1-µF decoupling capacitors. A larger capacitor (2.2 µF is typical) is used along with a high-  
frequency, 0.1-µF supply-decoupling capacitor at the device supply pins. For single-supply operation, only the  
positive supply has these capacitors. When a split supply is used, use these capacitors for each supply to  
ground. If necessary, place the larger capacitors further from the device and share these capacitors among  
several devices in the same area of the printed circuit board (PCB). Avoid narrow power and ground traces to  
minimize inductance between the pins and the decoupling capacitors. An optional supply decoupling capacitor  
across the two power supplies (for bipolar operation) reduces second harmonic distortion.  
The OPA837 has a positive supply current temperature coefficient; see 57. This coefficient helps improve the  
input offset voltage drift. Supply current requirements in the system design must account for this effect using the  
maximum intended ambient and 57 to size the supply required. The very low power dissipation for the  
OPA837 typically does not require any special thermal design considerations. For the extreme case of 125°C  
operating ambient, use the approximate maximum 200°C/W for the two packages, and a maximum internal  
power of 5.4-V supply × 0.8-mA 125°C supply current from 57 gives a maximum internal power of 4.3 mW.  
This power only gives a 0.86°C rise from ambient to junction temperature, which is well below the maximum  
150°C junction temperature. Load power adds to this value, but also increases the junction temperature only  
slightly over ambient temperature.  
10 Layout  
10.1 Layout Guidelines  
The OPA837EVM can be used as a reference when designing the circuit board. TI recommends following the  
EVM layout of the external components near to the amplifier, ground plane construction, and power routing as  
closely as possible. General guidelines are listed below:  
1. Signal routing must be direct and as short as possible into and out of the op amp.  
2. The feedback path must be short and direct avoiding vias if possible, especially with G = 1 V/V.  
3. Ground or power planes must be removed from directly under the negative input and output pins of the  
amplifier.  
4. TI recommends placing a series output resistor as close to the output pin as possible. See 49 for  
recommended values for the expected capacitive load. These values are derived targeting a 30° phase  
margin to the output of the op amp.  
5. A 2.2-µF power-supply decoupling capacitor must be placed within two inches of the device and can be  
shared with other op amps. For split supply, a capacitor is required for both supplies.  
6. A 0.1-µF power-supply decoupling capacitor must be placed as close to the supply pins as possible,  
preferably within 0.1 inch. For split supply, a capacitor is required for both supplies.  
7. The PD pin uses low logic swing levels. If the pin is not used, PD must be tied to the positive supply to  
enable the amplifier. If the pin is used, PD must be actively driven. A bypass capacitor is not necessary, but  
can be used for robustness in noisy environments.  
版权 © 2017–2018, Texas Instruments Incorporated  
43  
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
10.2 Layout Example  
Ground and power plane exist on  
inner layers  
Ground and power plane removed  
from inner layers  
Place output resistors close  
to output pins to minimize  
parasitic capacitance  
1
2
3
6
5
4
Place bypass capacitors  
close to power pins  
Place bypass capacitors  
close to power pins  
Power control (disable) pin  
Must be driven  
Place input resistor close to pin 4  
to minimize stray capacitance  
Non-inverting input  
terminated in 50 Ω  
Place feedback resistor on the bottom  
of PCB between pins 4 and 6  
Remove GND and Power plane  
under pins 1 and 4 to minimize  
stray PCB capacitance  
89. EVM Layout Example  
44  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA837, OPA2837  
www.ti.com.cn  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)ADS8860 16 位、1 MSPS、串行接口、微功耗、微型、单端输入、SAR 模数转换器》数据表  
德州仪器 (TI)LM7705 低噪声负偏置发生器》数据表  
德州仪器 (TI)OPA838 1mA300MHz 增益带宽、电压反馈运算放大器》数据表  
德州仪器 (TI)REF50xx 低噪声、极低漂移、精密电压基准》数据表  
德州仪器 (TI)OPA837DBVOPA836DBV EVM用户指南  
德州仪器 (TI)《单电源运算放大器设计技术》应用报告  
德州仪器 (TI)《高速运算放大器噪声分析》应用报告  
德州仪器 (TI)ADC 接口应用中 MFB 滤波器的 设计方法》应用手册  
德州仪器 (TI)Sallen Key 滤波器组件预失真》应用手册  
德州仪器 (TI)TIDA-01565 有线 OR 多路复用器以及 PGA 参考设计》设计指南  
德州仪器 (TI)TINA 模型与仿真工具  
11.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
4. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
OPA837  
OPA2837  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2017–2018, Texas Instruments Incorporated  
45  
OPA837, OPA2837  
ZHCSGP3D SEPTEMBER 2017REVISED DECEMBER 2018  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
46  
版权 © 2017–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2837IDGKR  
OPA2837IDGKT  
OPA2837IRUNR  
OPA2837IRUNT  
OPA837IDBVR  
OPA837IDBVR2  
OPA837IDBVT  
OPA837IDCKR  
OPA837IDCKT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
QFN  
DGK  
DGK  
RUN  
RUN  
DBV  
DBV  
DBV  
DCK  
DCK  
8
8
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2837  
2837  
2837  
2837  
19FF  
19FF  
19FF  
16K  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAUAG  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
10  
10  
6
QFN  
SOT-23  
SOT-23  
SOT-23  
SC70  
3000 RoHS & Green  
3000 RoHS & Green  
6
6
250  
3000 RoHS & Green  
250 RoHS & Green  
RoHS & Green  
5
SC70  
5
16K  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Jun-2023  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2837IDGKR  
OPA2837IDGKT  
OPA2837IRUNR  
OPA2837IRUNT  
OPA837IDBVR  
OPA837IDBVR2  
OPA837IDBVT  
OPA837IDCKR  
OPA837IDCKT  
VSSOP  
VSSOP  
QFN  
DGK  
DGK  
RUN  
RUN  
DBV  
DBV  
DBV  
DCK  
DCK  
8
8
2500  
250  
330.0  
330.0  
180.0  
180.0  
178.0  
178.0  
178.0  
178.0  
178.0  
12.4  
12.4  
8.4  
8.4  
9.0  
9.0  
9.0  
9.0  
9.0  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
12.0  
12.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q2  
Q2  
Q3  
Q2  
Q3  
Q3  
Q3  
10  
10  
6
3000  
250  
2.3  
2.3  
1.15  
1.15  
1.37  
1.37  
1.37  
1.2  
QFN  
2.3  
2.3  
SOT-23  
SOT-23  
SOT-23  
SC70  
3000  
3000  
250  
3.23  
3.23  
3.23  
2.4  
3.17  
3.17  
3.17  
2.5  
6
6
5
3000  
250  
SC70  
5
2.4  
2.5  
1.2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2837IDGKR  
OPA2837IDGKT  
OPA2837IRUNR  
OPA2837IRUNT  
OPA837IDBVR  
OPA837IDBVR2  
OPA837IDBVT  
OPA837IDCKR  
OPA837IDCKT  
VSSOP  
VSSOP  
QFN  
DGK  
DGK  
RUN  
RUN  
DBV  
DBV  
DBV  
DCK  
DCK  
8
8
2500  
250  
366.0  
366.0  
210.0  
210.0  
180.0  
180.0  
180.0  
180.0  
180.0  
364.0  
364.0  
185.0  
185.0  
180.0  
180.0  
180.0  
180.0  
180.0  
50.0  
50.0  
35.0  
35.0  
18.0  
18.0  
18.0  
18.0  
18.0  
10  
10  
6
3000  
250  
QFN  
SOT-23  
SOT-23  
SOT-23  
SC70  
3000  
3000  
250  
6
6
5
3000  
250  
SC70  
5
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
RUN 10  
2 X 2, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4228249/A  
www.ti.com  
PACKAGE OUTLINE  
RUN0010A  
WQFN - 0.8 mm max height  
S
C
A
L
E
5
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
2.1  
1.9  
B
A
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
SYMM  
5
(0.2) TYP  
4
6
SYMM  
2X 1.5  
6X 0.5  
9
1
0.3  
0.2  
10X  
10  
PIN 1 ID  
0.1  
C A B  
0.6  
10X  
0.05  
0.4  
4220470/A 05/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RUN0010A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
10  
SEE SOLDER MASK  
DETAIL  
10X (0.7)  
1
10X (0.25)  
9
SYMM  
(1.7)  
6X (0.5)  
(R0.05) TYP  
6
4
5
(1.7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220470/A 05/2020  
NOTES: (continued)  
3. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RUN0010A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
10X (0.7)  
10  
1
10X (0.25)  
9
SYMM  
(1.7)  
6X (0.5)  
(R0.05) TYP  
6
4
5
SYMM  
(1.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
4220470/A 05/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA2837IDGKR

双路、低功耗、精密、轨到轨输出、105MHz 电压反馈放大器 | DGK | 8 | -40 to 125
TI

OPA2837IDGKT

双路、低功耗、精密、轨到轨输出、105MHz 电压反馈放大器 | DGK | 8 | -40 to 125
TI

OPA2837IRUNR

双路、低功耗、精密、轨到轨输出、105MHz 电压反馈放大器 | RUN | 10 | -40 to 125
TI

OPA2837IRUNT

双路、低功耗、精密、轨到轨输出、105MHz 电压反馈放大器 | RUN | 10 | -40 to 125
TI

OPA2846

Quad, Differential I/O, 2X1 Multiplexed High Gain Preamp
TI

OPA2846ID

Dual, Wideband, Low-Noise, Voltage-Feedback Operational Amplifier
TI

OPA2846IDR

Dual, Wideband, Low-Noise, Voltage-Feedback Operational Amplifier
TI

OPA2846IDRG4

Dual, Wideband, Low-Noise, Voltage-Feedback Operational Amplifier 8-SOIC -40 to 85
TI

OPA2846_14

Dual, Wideband, Low-Noise, Voltage-Feedback Operational Amplifier
TI

OPA2863

双路低功耗 110MHz 12V 轨至轨输入和输出 (RRIO) 电压反馈放大器
TI

OPA2863-Q1

汽车类双路低功耗 110MHz 12V RRIO 电压反馈放大器
TI

OPA2863A

双路、高精度、低功耗、105MHz、12V RRIO 电压反馈放大器
TI