OPA3832 [TI]

250MHz 三路、低功耗、高速、固定增益运算放大器;
OPA3832
型号: OPA3832
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

250MHz 三路、低功耗、高速、固定增益运算放大器

放大器 运算放大器
文件: 总35页 (文件大小:777K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA3832  
®
www.ti.com ............................................................................................................................................ SBOS370ADECEMBER 2006REVISED AUGUST 2008  
Triple, Low-Power, High-Speed, Fixed-Gain Operational Amplifier  
Using complementary common-emitter outputs  
provides an output swing to within 30mV of ground  
and 60mV of the positive supply. The high output  
drive current and low differential gain and phase  
errors also make it ideal for single-supply consumer  
video products.  
1
FEATURES  
2
HIGH BANDWIDTH: 80MHz (G = +2)  
LOW SUPPLY CURRENT: 3.9mA/ch (VS = +5V)  
FLEXIBLE SUPPLY RANGE:  
±1.5V to ±5.5V Dual Supply  
+3V to +11V Single Supply  
Low distortion operation is ensured by high bandwidth  
(80MHz) and slew rate (350V/µs), making the  
OPA3832 an ideal input buffer stage to 3V and 5V  
CMOS converters. Unlike earlier low-power,  
single-supply amplifiers, distortion performance  
improves as the signal swing is decreased. A low  
9.3nV/Hz input voltage noise supports wide dynamic  
range operation.  
INPUT RANGE INCLUDES GROUND ON  
SINGLE SUPPLY  
4.9VPP OUTPUT SWING ON +5V SUPPLY  
HIGH SLEW RATE: 350V/µs  
LOW INPUT VOLTAGE NOISE: 9.3nV/Hz  
APPLICATIONS  
The OPA3832 is available in an industry-standard  
SO-14 package or a small TSSOP-14 package.  
SINGLE-SUPPLY VIDEO LINE DRIVERS  
CCD IMAGING CHANNELS  
LOW-POWER ULTRASOUND  
PORTABLE CONSUMER ELECTRONICS  
RELATED PRODUCTS  
DESCRIPTION  
SINGLES  
DUALS  
TRIPLES  
QUADS  
OPA4830  
Rail-to-Rail Output  
Rail-to-Rail Fixed-Gain  
OPA830 OPA2830  
OPA832 OPA2832  
DESCRIPTION  
General-Purpose  
(1800V/µs slew rate)  
OPA690 OPA2690 OPA3690  
OPA820 OPA2822  
The OPA3832 is a triple, low-power, high-speed,  
fixed-gain amplifier designed to operate on a single  
+3V to +11V supply. Operation on ±1.5V to ±5.5V  
supplies is also supported. The input range extends  
below ground and to within 1.7V of the positive  
supply.  
Low-Noise,  
High dc Precision  
OPA4820  
0.1mF  
V1  
100W  
100W  
100W  
4.99kW  
1/3  
OPA3832  
0.1mF  
4.99kW  
400W  
400W  
400W  
400W  
REFT  
+3.5V  
REFB  
+1.5V  
V2  
0.1mF  
1/3  
OPA3832  
+In  
ADS826  
10-Bit  
400W  
100pF  
60MSPS  
-In  
CM  
V3  
0.1mF  
1/3  
OPA3832  
400W  
Selection  
Logic  
Multiplexed Converter Driver  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2006–2008, Texas Instruments Incorporated  
OPA3832  
SBOS370ADECEMBER 2006REVISED AUGUST 2008 ............................................................................................................................................ www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
SPECIFIED  
PACKAGE  
DESIGNATOR  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
PACKAGE-LEAD  
OPA3832ID  
OPA3832IDR  
OPA3832IPW  
OPA3832IPWR  
Rails, 50  
OPA3832  
SO-14  
D
–40°C to +85°C  
–40°C to +85°C  
OPA3832  
OPA3832  
Tape and Reel, 2500  
Rails, 90  
OPA3832  
TSSOP-14  
PW  
Tape and Reel, 2000  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
Power Supply  
12VDC  
Internal Power Dissipation  
See Thermal  
Characteristics  
Differential Input Voltage(2)  
±1.2V  
–0.5V to ±VS + 0.3V  
–65°C to +125°C  
+300°C  
Input Voltage Range  
Storage Voltage Range: D, PW  
Lead Temperature (soldering, 10s)  
Maximum Junction Temperature (TJ)  
Maximum Junction Temperature: Continuous Operation, Long Term Reliability  
ESD Rating:  
+150°C  
+140°C  
Human Body Model (HBM)  
2000V  
1000V  
200V  
Charge Device Model (CDM)  
Machine Model (MM)  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not supported.  
(2) Noninverting input to internal inverting mode.  
PIN ASSIGNMENT  
D, PW PACKAGES  
SO-14, TSSOP-14  
(TOP VIEW)  
DIS A  
DIS B  
1
2
3
4
5
6
7
14 Output B  
13 -Input B  
12 +Input B  
11 -VS  
400W  
400W  
B
DIS C  
+VS  
+Input A  
-Input A  
Output A  
10 +Input C  
C
A
400W  
400W  
400W  
400W  
9
8
-Input C  
Output C  
2
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA3832  
 
 
OPA3832  
www.ti.com ............................................................................................................................................ SBOS370ADECEMBER 2006REVISED AUGUST 2008  
ELECTRICAL CHARACTERISTICS: VS = ±5V  
Boldface limits are tested at +25°C.  
At TA = +25°C, G = +2V/V, and RL = 150to GND, unless otherwise noted.  
OPA3832ID, IPW  
0°C to –40°C to  
MIN/  
MAX  
TEST  
PARAMETER  
CONDITIONS  
+25°C  
+25°C(1) +70°C(2) +85°C(2)  
UNITS  
LEVEL(3)  
AC PERFORMANCE  
Small-Signal Bandwidth  
G = +1, VO 0.5VPP  
G = +2, VO 0.5VPP  
G = –1, VO 0.5VPP  
VO 0.5VPP  
G = +2, 2V Step  
0.5V Step  
250  
80  
MHz  
MHz  
MHz  
dB  
typ  
min  
min  
typ  
C
B
B
C
B
B
B
B
55  
57  
54  
56  
54  
55  
110  
6
Peaking at a Gain of +1  
Slew Rate  
325  
5.0  
5.0  
45  
220  
5.8  
5.8  
63  
210  
6.0  
6.0  
65  
200  
6.0  
6.0  
66  
V/µs  
ns  
min  
max  
max  
max  
Rise Time  
Fall Time  
0.5V Step  
ns  
Settling Time to 0.1%  
Harmonic Distortion  
2nd-Harmonic  
G = +2, 1V Step  
VO = 2VPP, 5MHz  
RL = 150Ω  
ns  
–57  
–65  
–60  
–75  
9.2  
–54  
–62  
–50  
–64  
–52  
–61  
–49  
–60  
–50  
–60  
–48  
–57  
dBc  
dBc  
max  
max  
max  
max  
typ  
B
B
B
B
C
C
C
C
C
RL = 500Ω  
3rd-Harmonic  
RL = 150Ω  
dBc  
RL = 500Ω  
dBc  
Input Voltage Noise  
f > 1MHz  
nV/Hz  
pA/Hz  
%
Input Current Noise  
f > 1MHz  
2.2  
typ  
NTSC Differential Gain  
NTSC Differential Phase  
All Hostile Crosstalk, Input Referred  
RL = 150Ω  
0.10  
0.16  
–55  
typ  
RL = 150Ω  
typ  
2 Channels Driven at 5MHz, 1VPP  
3rd Channel Measured  
dBc  
typ  
DC PERFORMANCE(4)  
Gain Error  
G = +2  
G = –1  
±0.3  
±0.2  
±1.5  
±1.6  
±1.6  
±1.7  
±1.7  
%
%
min  
A
B
±1.5  
max  
Internal RF and RG  
Maximum  
400  
400  
455  
345  
460  
340  
±0.1  
±9.3  
±27  
+12  
±45  
±2  
462  
338  
±0.1  
±9.7  
±27  
+13  
±45  
±2.5  
±10  
max  
max  
max  
max  
max  
max  
max  
max  
max  
B
B
B
A
B
A
B
A
B
Minimum  
Average Drift  
%/°C  
mV  
Input Offset Voltage  
Average Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Offset Current  
Input Offset Current Drift  
INPUT  
±1.4  
±8.0  
+10  
±1.5  
µV/°C  
µA  
+5.5  
nA/°C  
µA  
±0.1  
±10  
nA/°C  
Negative Input Voltage Range  
Positive Input Voltage Range  
Input Impedance  
–5.4  
3.2  
–5.2  
3.1  
–5.0  
3.0  
–4.9  
2.9  
V
V
max  
min  
B
B
Differential Mode  
Common-Mode  
10 || 2.1  
k|| pF  
k|| pF  
typ  
typ  
C
C
400 || 1.2  
(1) Junction temperature = ambient for +25°C specifications.  
(2) Junction temperature = ambient at low temperature limits; junction temperature = ambient +13°C at high temperature limit for over  
temperature specifications.  
(3) Test levels: (A) 100% tested at +25°C. Over temperature limits by characterization and simulation. (B) Limits set by characterization and  
simulation. (C) Typical value only for information.  
(4) Current is considered positive out of node.  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): OPA3832  
OPA3832  
SBOS370ADECEMBER 2006REVISED AUGUST 2008 ............................................................................................................................................ www.ti.com  
ELECTRICAL CHARACTERISTICS: VS = ±5V (continued)  
Boldface limits are tested at +25°C.  
At TA = +25°C, G = +2V/V, and RL = 150to GND, unless otherwise noted.  
OPA3832ID, IPW  
0°C to –40°C to  
MIN/  
MAX  
TEST  
PARAMETER  
OUTPUT  
CONDITIONS  
+25°C  
+25°C(1) +70°C(2) +85°C(2)  
UNITS  
LEVEL(3)  
Output Voltage Swing  
RL = 1kto GND  
RL = 150to GND  
±4.9  
±4.6  
±82  
120  
0.2  
±4.8  
±4.5  
±63  
±4.75  
±4.45  
±58  
±4.75  
±4.4  
±53  
V
V
max  
max  
min  
typ  
A
A
A
C
C
Current Output, Sinking and Sourcing  
Short-Circuit Current  
mA  
mA  
Output Shorted to Either Supply  
Closed-Loop Output Impedance  
DISABLE (Disabled LOW)  
Power Down Supply Current (+VS)  
DIsable Time  
G = +2, f 100kHz  
typ  
VDIS = 0, All Channels  
VIN = 1VDC  
0.95  
40  
2.5  
2.6  
2.7  
mA  
µs  
ns  
dB  
pF  
mV  
mV  
V
max  
typ  
A
C
C
C
C
C
C
A
A
A
Enable Time  
VIN = 1VDC  
20  
typ  
Off Isolation  
G = +2V/V, 5MHz  
–75  
typ  
Output Capacitance in Disable  
Turn-On Glitch  
typ  
G = +2V/V, RL = 150, VIN = 0V  
G = +2V/V, RL = 150, VIN = 0V  
8
2
typ  
Turn-Off Glitch  
typ  
Enable Voltage  
4.5  
3.0  
4.5  
3.0  
4.5  
3.0  
min  
max  
max  
Disable Voltage  
V
Control Pin Input Bias Current (DIS)  
POWER SUPPLY  
VDIS = 0V, Each Channel  
125  
300  
350  
400  
µA  
Minimum Operating Voltage  
Maximum Operating Voltage  
Maximum Quiescent Current  
Minimum Quiescent Current  
±1.4  
V
V
min  
max  
max  
min  
B
A
A
A
±5.5  
14.4  
12  
±5.5  
16.1  
10.8  
±5.5  
17.9  
9.3  
All Channels, VS = ±5V  
All Channels, VS = ±5V  
12.75  
12.75  
mA  
mA  
Power-Supply Rejection Ratio  
(–PSRR)  
Input-Referred  
66  
61  
60  
59  
dB  
min  
A
THERMAL CHARACTERISTICS  
Specification: ID, IPW  
–40 to +85  
°C  
typ  
C
Thermal Resistance  
D
SO-14  
85  
°C/W  
°C/W  
typ  
typ  
C
C
PW  
TSSOP-14  
100  
4
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA3832  
OPA3832  
www.ti.com ............................................................................................................................................ SBOS370ADECEMBER 2006REVISED AUGUST 2008  
ELECTRICAL CHARACTERISTICS: VS = +5V  
Boldface limits are tested at +25°C.  
At TA = +25°C, G = +2V/V, and RL = 150to VCM = 2V, unless otherwise noted.  
OPA3832ID, IPW  
0°C to  
–40°C to  
MIN/  
MAX  
TEST  
PARAMETER  
CONDITIONS  
+25°C  
+25°C(1) +70°C(2) +85°C(2)  
UNITS  
LEVEL(3)  
AC PERFORMANCE  
Small-Signal Bandwidth  
G = +1, VO 0.5VPP  
G = +2, VO 0.5VPP  
G = –1, VO 0.5VPP  
VO 0.5VPP  
G = +2, 2V Step  
0.5V Step  
210  
80  
MHz  
MHz  
MHz  
dB  
typ  
min  
min  
typ  
C
B
B
C
B
B
B
B
56  
60  
55  
58  
55  
58  
105  
7
Peaking at a Gain of +1  
Slew Rate  
350  
5.2  
5.2  
46  
230  
5.8  
5.8  
64  
220  
5.8  
5.8  
66  
220  
5.9  
5.9  
67  
V/µs  
ns  
min  
max  
max  
max  
Rise Time  
Fall Time  
0.5V Step  
ns  
Settling Time to 0.1%  
Harmonic Distortion  
2nd-Harmonic  
G = +2, 1V Step  
VO = 2VPP, 5MHz  
RL = 150Ω  
ns  
–54  
–60  
–57  
–79  
9.3  
–51  
–57  
–50  
–65  
–50  
–55  
–49  
–62  
–49  
–54  
–47  
–58  
dBc  
dBc  
max  
max  
max  
max  
typ  
B
B
B
B
C
C
C
C
RL = 500Ω  
3rd-Harmonic  
RL = 150Ω  
dBc  
RL = 500Ω  
dBc  
Input Voltage Noise  
Input Current Noise  
NTSC Differential Gain  
NTSC Differential Phase  
DC PERFORMANCE(4)  
Gain Error  
f > 1MHz  
nV/Hz  
pA/Hz  
%
f > 1MHz  
2.3  
typ  
RL = 150Ω  
0.11  
0.14  
typ  
RL = 150Ω  
typ  
G = +2  
G = –1  
±0.3  
±0.2  
400  
400  
±1.5  
±1.5  
455  
345  
±1.6  
±1.6  
460  
340  
±0.1  
±7.5  
±25  
+12  
±45  
±2  
±1.7  
±1.7  
462  
338  
±0.1  
±8.0  
±25  
+13  
±45  
±2.5  
±10  
%
%
min  
max  
max  
max  
max  
max  
max  
max  
max  
max  
max  
A
B
A
A
B
A
B
A
B
A
B
Internal RF and RG, Maximum  
Minimum  
Average Drift  
%/°C  
mV  
Input Offset Voltage  
Average Offset Voltage Drift  
Input Bias Current  
±1.5  
±6.5  
+10  
±1.5  
µV/°C  
µA  
VCM = 2.0V  
VCM = 2.0V  
+5.5  
Input Bias Current Drift  
Input Offset Current  
Input Offset Current Drift  
INPUT  
nA/°C  
µA  
±0.1  
±10  
nA/°C  
Least Positive Input Voltage  
Most Positive Input Voltage  
Input Impedance, Differential Mode  
Common-Mode  
–0.5  
3.3  
–0.2  
3.2  
0
+0.1  
3.0  
V
max  
min  
typ  
B
B
C
C
3.1  
V
10 || 2.1  
400 || 1.2  
k|| pF  
k|| pF  
typ  
OUTPUT  
Least Positive Output Voltage  
RL = 1kto 2.0V  
RL = 150to 2.0V  
RL = 1kto 2.0V  
RL = 150to 2.0V  
0.03  
0.18  
4.94  
4.86  
±75  
100  
0.2  
0.16  
0.3  
0.18  
0.35  
4.6  
0.20  
0.40  
4.4  
V
V
max  
max  
min  
min  
min  
typ  
A
A
A
A
A
C
C
Most Positive Output Voltage  
4.8  
V
4.6  
4.5  
4.4  
V
Current Output, Sinking and Sourcing  
Short-Circuit Output Current  
±58  
±53  
±50  
mA  
mA  
Output Shorted to Either Supply  
Closed-Loop Output Impedance  
G = +2, f 100kHz  
typ  
(1) Junction temperature = ambient for +25°C specifications.  
(2) Junction temperature = ambient at low temperature limits; junction temperature = ambient +6°C at high temperature limit for over  
temperature specifications.  
(3) Test levels: (A) 100% tested at +25°C. Over temperature limits by characterization and simulation. (B) Limits set by characterization and  
simulation. (C) Typical value only for information.  
(4) Current is considered positive out of node.  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): OPA3832  
OPA3832  
SBOS370ADECEMBER 2006REVISED AUGUST 2008 ............................................................................................................................................ www.ti.com  
ELECTRICAL CHARACTERISTICS: VS = +5V (continued)  
Boldface limits are tested at +25°C.  
At TA = +25°C, G = +2V/V, and RL = 150to VCM = 2V, unless otherwise noted.  
OPA3832ID, IPW  
0°C to  
–40°C to  
MIN/  
MAX  
TEST  
PARAMETER  
CONDITIONS  
+25°C  
+25°C(1) +70°C(2) +85°C(2)  
UNITS  
LEVEL(3)  
DISABLE (Disabled LOW)  
Power Down Supply Current (+VS)  
DIsable Time  
VDIS = 0, All Channels  
VIN = 1VDC  
0.7  
40  
1.4  
1.5  
1.5  
mA  
µs  
ns  
dB  
pF  
mV  
mV  
V
max  
typ  
A
C
C
C
C
C
C
A
A
A
Enable Time  
VIN = 1VDC  
20  
typ  
Off Isolation  
G = +2V/V, 5MHz  
–75  
typ  
Output Capacitance in Disable  
Turn-On Glitch  
typ  
G = +2V/V, RL = 150, VIN = 0V  
G = +2V/V, RL = 150, VIN = 0V  
2
6
typ  
Turn-Off Glitch  
typ  
Enable Voltage  
4.5  
3.0  
4.5  
3.0  
4.5  
3.0  
min  
max  
max  
Disable Voltage  
V
Control Pin Input Bias Current (DIS)  
POWER SUPPLY  
VDIS = 0V, Each Channel  
125  
300  
350  
400  
µA  
Minimum Operating Voltage  
Maximum Operating Voltage  
Maximum Quiescent Current  
Minimum Quiescent Current  
Power-Supply Rejection Ratio (PSRR)  
THERMAL CHARACTERISTICS  
Specification: ID, IPW  
Thermal Resistance  
+2.8  
V
typ  
max  
max  
min  
min  
C
A
A
A
A
+11  
12.6  
11.1  
61  
+11  
14.7  
10.5  
60  
+11  
16.8  
9
V
All Channels, VS = +5V  
All Channels, VS = +5V  
Input-Referred  
11.7  
11.7  
66  
mA  
mA  
dB  
59  
–40 to +85  
°C  
typ  
C
D
SO-14  
85  
°C/W  
°C/W  
typ  
typ  
C
C
PW  
TSSOP-14  
100  
6
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA3832  
OPA3832  
www.ti.com ............................................................................................................................................ SBOS370ADECEMBER 2006REVISED AUGUST 2008  
ELECTRICAL CHARACTERISTICS: VS = +3.3V  
Boldface limits are tested at +25°C.  
At TA = +25°C, G = +2V/V, and RL = 150to VCM = 0.75V, unless otherwise noted.  
OPA3832ID, IPW  
0°C to  
MIN/  
MAX  
TEST  
PARAMETER  
CONDITIONS  
+25°C  
+25°C(1)  
+70°C(2)  
UNITS  
LEVEL(3)  
AC PERFORMANCE  
Small-Signal Bandwidth  
G = +1, VO 0.5VPP  
G = +2, VO 0.5VPP  
G = –1, VO 0.5VPP  
VO 0.5VPP  
1V Step  
180  
90  
MHz  
MHz  
MHz  
dB  
typ  
min  
min  
typ  
C
B
B
C
B
B
B
B
59  
63  
57  
61  
100  
8
Peaking at a Gain of +1  
Slew Rate  
150  
4.4  
4.4  
48  
110  
5.6  
5.6  
70  
100  
5.7  
5.7  
80  
V/µs  
ns  
min  
max  
max  
max  
Rise Time  
0.5V Step  
Fall Time  
0.5V Step  
ns  
Settling Time to 0.1%  
Harmonic Distortion  
2nd-Harmonic  
1V Step  
ns  
5MHz  
RL = 150Ω  
RL = 500Ω  
RL = 150Ω  
RL = 500Ω  
f > 1MHz  
–60  
–67  
–66  
–80  
9.4  
–54  
–63  
–60  
–66  
–51  
–57  
–55  
–62  
dBc  
dBc  
max  
max  
max  
max  
typ  
B
B
B
B
C
C
3rd-Harmonic  
dBc  
dBc  
Input Voltage Noise  
Input Current Noise  
DC PERFORMANCE(4)  
Gain Error  
nV/Hz  
pA/Hz  
f > 1MHz  
2.4  
typ  
G = +2  
G = –1  
±0.3  
±0.2  
±1.5  
±1.6  
±1.6  
%
%
min  
A
B
±1.5  
max  
Internal RF and RG  
Maximum  
400  
400  
455  
345  
460  
340  
±0.1  
±7.7  
±27  
+12  
±45  
±2  
max  
max  
max  
max  
max  
max  
max  
max  
max  
B
B
B
A
B
A
B
A
B
Minimum  
Average Drift  
%/°C  
mV  
Input Offset Voltage  
Average Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Offset Current  
Input Offset Current Drift  
INPUT  
±1.4  
±6.5  
+10  
±1.5  
µV/°C  
µA  
VCM = 0.75V  
VCM = 0.75V  
+5.5  
nA/°C  
µA  
±0.1  
±10  
nA/°C  
Least Positive Input Voltage  
Most Positive Input Voltage  
Input Impedance  
–0.5  
1.5  
–0.3  
1.4  
–0.2  
1.3  
V
V
max  
min  
B
B
Differential Mode  
Common-Mode  
10 || 2.1  
k|| pF  
k|| pF  
typ  
typ  
C
C
400 || 1.2  
OUTPUT  
Least Positive Output Voltage  
RL = 1kto 0.75V  
RL = 150to 0.75V  
RL = 1kto 0.75V  
RL = 150to 0.75V  
0.03  
0.1  
3
0.16  
0.3  
0.18  
0.35  
2.6  
V
V
max  
max  
min  
min  
min  
typ  
B
B
B
B
A
C
C
Most Positive Output Voltage  
2.8  
V
3
2.8  
2.6  
V
Current Output, Sinking and Sourcing  
Short-Circuit Output Current  
±35  
80  
±25  
±20  
mA  
mA  
Output Shorted to Either Supply  
See Figure 2, f < 100kHz  
Closed-Loop Output Impedance  
0.2  
typ  
(1) Junction temperature = ambient for +25°C specifications.  
(2) Junction temperature = ambient at low temperature limits; junction temperature = ambient +4°C at high temperature limit for over  
temperature specifications.  
(3) Test levels: (A) 100% tested at +25°C. Over temperature limits by characterization and simulation. (B) Limits set by characterization and  
simulation. (C) Typical value only for information.  
(4) Current is considered positive out of node.  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): OPA3832  
OPA3832  
SBOS370ADECEMBER 2006REVISED AUGUST 2008 ............................................................................................................................................ www.ti.com  
ELECTRICAL CHARACTERISTICS: VS = +3.3V (continued)  
Boldface limits are tested at +25°C.  
At TA = +25°C, G = +2V/V, and RL = 150to VCM = 0.75V, unless otherwise noted.  
OPA3832ID, IPW  
0°C to  
MIN/  
MAX  
TEST  
PARAMETER  
CONDITIONS  
+25°C  
+25°C(1)  
+70°C(2)  
UNITS  
LEVEL(3)  
DISABLE (Disabled LOW)  
Power-Down Supply Current (+VS)  
DIsable Time  
VDIS = 0, All Channels  
VIN = 1VDC  
0.4  
40  
0.8  
0.85  
mA  
µs  
ns  
dB  
pF  
mV  
mV  
V
max  
typ  
A
C
C
C
C
C
C
A
A
A
Enable Time  
VIN = 1VDC  
20  
typ  
Off Isolation  
G = +2V/V, 5MHz  
–75  
typ  
Output Capacitance in Disable  
Turn-On Glitch  
typ  
G = +2V/V, RL = 150, VIN = 0V  
G = +2V/V, RL = 150, VIN = 0V  
2
6
typ  
Turn-Off Glitch  
typ  
Enable Voltage  
2.8  
1.3  
130  
2.8  
1.3  
140  
min  
max  
max  
Disable Voltage  
V
Control Pin Input Bias Current (DIS)  
POWER SUPPLY  
VDIS = 0V, Each Channel  
73  
µA  
Minimum Operating Voltage  
Maximum Operating Voltage  
Maximum Quiescent Current  
Minimum Quiescent Current  
Power-Supply Rejection Ratio (PSRR)  
THERMAL CHARACTERISTICS  
Specification: ID, IPW  
Thermal Resistance  
+2.8  
V
typ  
max  
max  
min  
typ  
C
A
A
A
C
+11  
12.2  
10.2  
+11  
14.5  
9.5  
V
All Channels, VS = +3.3V  
All Channels, VS = +3.3V  
Input-Referred  
11.4  
11.4  
60  
mA  
mA  
dB  
–40 to +85  
°C  
typ  
C
D
SO-14  
85  
°C/W  
°C/W  
typ  
typ  
C
C
PW  
TSSOP-14  
100  
8
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA3832  
OPA3832  
www.ti.com ............................................................................................................................................ SBOS370ADECEMBER 2006REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS: VS = ±5V  
At TA = +25°C, G = +2V/V, and RL = 150to GND, unless otherwise noted.  
SMALL-SIGNAL FREQUENCY RESPONSE  
LARGE-SIGNAL FREQUENCY RESPONSE  
3
0
3
0
VO = 0.2VPP  
RL = 150W  
G = -1V/V  
VO = 0.5VPP  
-3  
-3  
G = +2V/V  
-6  
-6  
VO = 1VPP  
VO = 2VPP  
-9  
-9  
-12  
-15  
-12  
-15  
G = +2V/V  
VO = 4VPP  
100  
RL = 150W  
1
10  
100  
400  
1
10  
400  
Frequency (MHz)  
Frequency (MHz)  
Figure 2.  
Figure 1.  
NONINVERTING PULSE RESPONSE  
INVERTING PULSE RESPONSE  
0.4  
0.3  
2.0  
0.4  
0.3  
2.0  
G = +2V/V  
G = -1V/V  
RL = 150W  
1.5  
1.5  
RL = 150W  
Large-Signal Pulse Response 1V  
Right Scale  
0.2  
1.0  
0.2  
1.0  
0.1  
0.5  
0.1  
0.5  
Small-Signal Pulse  
Response 0.1V  
Left Scale  
Small-Signal Pulse  
Response 0.1V  
Left Scale  
0
0
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-1.0  
-1.5  
-2.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-1.0  
-1.5  
-2.0  
Large-Signal Pulse Response 1V  
Right Scale  
Time (10ns/div)  
Time (10ns/div)  
Figure 3.  
Figure 4.  
REQUIRED RS vs CAPACITIVE LOAD  
FREQUENCY RESPONSE vs CAPACITIVE LOAD  
40  
35  
30  
25  
20  
15  
10  
5
3
0
1dB Peaking Targeted  
CL = 10pF  
-3  
CL = 1000pF  
CL = 100pF  
-6  
-9  
RS  
VI  
1/3  
OPA3832  
1kW(1)  
CL  
-12  
-15  
NOTE: (1) 1kW is optional.  
0
10  
100  
1k  
1
10  
100  
400  
Capacitive Load (pF)  
Figure 5.  
Frequency (MHz)  
Figure 6.  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): OPA3832  
 
OPA3832  
SBOS370ADECEMBER 2006REVISED AUGUST 2008 ............................................................................................................................................ www.ti.com  
TYPICAL CHARACTERISTICS: VS = ±5V (continued)  
At TA = +25°C, G = +2V/V, and RL = 150to GND, unless otherwise noted.  
HARMONIC DISTORTION vs LOAD RESISTANCE  
HARMONIC DISTORTION vs OUTPUT VOLTAGE  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
G = +2V/V  
2nd-Harmonic  
RL = 500W  
f = 5MHz  
2nd-Harmonic  
3rd-Harmonic  
3rd-Harmonic  
G = +2V/V  
VO = 2VPP  
f = 5MHz  
100  
1k  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
6.5  
7.5  
8.5 9.0  
Load Resistance (W)  
Output Swing (VPP  
)
Figure 7.  
Figure 8.  
HARMONIC DISTORTION vs FREQUENCY  
2-TONE, 3RD-ORDER INTERMODULATION SPURIOUS  
-40  
-40  
-50  
G = +2V/V  
PI  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
1/3  
OPA3832  
PO  
RL = 500W  
50W  
20MHz  
500W  
VO = 2VPP  
400W  
2nd-Harmonic  
-60  
400W  
10MHz  
-70  
-80  
-90  
3rd-Harmonic  
5MHz  
-100  
-110  
0.1  
1
10  
20  
-26  
-22  
-18  
-14  
-10  
-6  
-2  
2
6
Frequency (MHz)  
Single-Tone Load Power (dBm)  
Figure 9.  
Figure 10.  
OUTPUT VOLTAGE AND CURRENT LIMITATIONS  
OUTPUT SWING vs LOAD RESISTANCE  
5
4
6
5
Output  
G = +2V/V  
Positive Output Voltage  
Current Limit  
VS  
= 5V  
4
3
3
RL = 500W  
2
2
RL = 50W  
RL = 100W  
1W Internal  
1
1
Power Limit  
0
0
One Channel Only  
-1  
-2  
-3  
-1  
-2  
-3  
-4  
-5  
1W Internal  
Power Limit  
One Channel Only  
-4 Output  
Negative Output Voltage  
Current Limit  
-5  
-6  
-160 -120 -80  
-40  
0
40  
80  
120  
160  
10  
100  
1k  
IO (mA)  
RL (W)  
Figure 11.  
Figure 12.  
10  
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA3832  
OPA3832  
www.ti.com ............................................................................................................................................ SBOS370ADECEMBER 2006REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS: VS = ±5V (continued)  
At TA = +25°C, G = +2V/V, and RL = 150to GND, unless otherwise noted.  
CHANNEL-TO-CHANNEL CROSSTALK REJECTION  
COMPOSITE VIDEO dG/dP  
ALL HOSTILE CROSSTALK REJECTION  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
+5V  
No Pull-Down  
With 1.3kW Pull-Down  
V
I
1/3  
Video  
Loads  
OPA3832  
75W  
Optional  
1.3kW  
400W  
Pull-Down  
400W  
All Hostile  
dP  
dP  
-5V  
Channel-to-Channel  
dG  
dG  
0.1  
1
10  
100  
1
2
3
4
Frequency (MHz)  
Number of 150W Loads  
Figure 13.  
Figure 14.  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): OPA3832  
OPA3832  
SBOS370ADECEMBER 2006REVISED AUGUST 2008 ............................................................................................................................................ www.ti.com  
TYPICAL CHARACTERISTICS: VS = +5V  
At TA = +25°C, Differential Gain = +2V/V, and RL = 150to VCM = 2V, unless otherwise noted.  
SMALL-SIGNAL FREQUENCY RESPONSE  
LARGE-SIGNAL FREQUENCY RESPONSE  
3
0
3
0
VO = 0.2VPP  
G = -1V/V  
RL = 500W  
VO = 1VPP  
-3  
-3  
G = +2V/V  
VO = 0.5VPP  
-6  
-6  
-9  
-9  
VO = 2VPP  
-12  
-15  
-12  
-15  
1
10  
100  
300  
1
10  
100  
300  
Frequency (MHz)  
Figure 15.  
Frequency (MHz)  
Figure 16.  
NONINVERTING PULSE RESPONSE  
INVERTING PULSE RESPONSE  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
G = -1V/V  
RL = 150W  
G = +2V/V  
Large-Signal Pulse Response 1V  
Right Scale  
RL = 150W  
Small-Signal Pulse  
Response 0.1V  
Left Scale  
Small-Signal Pulse  
Response 0.1V  
Left Scale  
Large-Signal Pulse Response 1V  
Right Scale  
Time (10ns/div)  
Time (10ns/div)  
Figure 17.  
Figure 18.  
COMPOSITE VIDEO dG/dP  
DISABLE FEEDTHROUGH vs FREQUENCY  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
Input Referred  
+5V  
VI  
1/3  
OPA3832  
Video  
Loads  
400W  
400W  
dP  
dG  
1
10  
100  
1
2
3
4
Frequency (MHz)  
Number of 150W Loads  
Figure 19.  
12  
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA3832  
OPA3832  
www.ti.com ............................................................................................................................................ SBOS370ADECEMBER 2006REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS: VS = +5V (continued)  
At TA = +25°C, Differential Gain = +2V/V, and RL = 150to VCM = 2V, unless otherwise noted.  
HARMONIC DISTORTION vs LOAD RESISTANCE  
5MHz HARMONIC DISTORTION vs SUPPLY VOLTAGE  
-30  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
G = +2V/V  
RL = 500W  
f = 5MHz  
2nd-Harmonic  
-40  
-50  
-60  
-70  
-80  
-90  
Input Limited  
3rd-Harmonic  
2nd-Harmonic  
G = +2V/V  
VO = 2VPP  
f = 5MHz  
3rd-Harmonic  
100  
1k  
3
4
5
6
7
8
9
10  
11  
Load Resistance (W)  
(+) Supply Voltage (V)  
Figure 20.  
Figure 21.  
G = +2V/V, HARMONIC DISTORTION vs FREQUENCY  
G = –1V/V, HARMONIC DISTORTION vs FREQUENCY  
-30  
-30  
G = +2V/V  
RL = 500W  
VO = 2VPP  
G = -1V/V  
RL = 500W  
f = 5MHz  
-40  
-50  
-40  
-50  
2nd-Harmonic  
2nd-Harmonic  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
3rd-Harmonic  
3rd-Harmonic  
-100  
-110  
-100  
-110  
0.1  
1
10  
20  
0.1  
1
10  
20  
Frequency (MHz)  
Frequency (MHz)  
Figure 22.  
Figure 23.  
HARMONIC DISTORTION vs OUTPUT VOLTAGE  
2-TONE, 3RD-ORDER INTERMODULATION SPURIOUS  
-40  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
G = +2V/V  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
PI  
1/3  
OPA3832  
PO  
RL = 500W  
50W  
500W  
f = 5MHz  
400W  
20MHz  
2nd-Harmonic  
400W  
10MHz  
3rd-Harmonic  
5MHz  
-24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
Single-Tone Load Power (2dBm/div)  
Output Voltage Swing (VPP  
)
Figure 24.  
Figure 25.  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): OPA3832  
OPA3832  
SBOS370ADECEMBER 2006REVISED AUGUST 2008 ............................................................................................................................................ www.ti.com  
TYPICAL CHARACTERISTICS: VS = +5V (continued)  
At TA = +25°C, Differential Gain = +2V/V, and RL = 150to VCM = 2V, unless otherwise noted.  
POWER-SUPPLY REJECTION RATIO AND  
COMMON-MODE REJECTION RATIO VS FREQUENCY  
INPUT VOLTAGE AND CURRENT NOISE  
100  
10  
1
80  
70  
60  
50  
40  
30  
20  
10  
0
CMRR  
+PSRR  
Voltage Noise (9.3nV/ÖHz)  
Current Noise (2.3pA/ÖHz)  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
Figure 26.  
Figure 27.  
OUTPUT SWING vs LOAD RESISTANCE  
CLOSED-LOOP OUTPUT IMPEDANCE vs FREQUENCY  
5.0  
100  
G = +2V/V  
VS = +5V  
400W  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Most Positive Output Voltage  
+5V  
400W  
10  
1
1/3  
OPA3832  
ZO  
200W  
Least Negative Output Voltage  
0.1  
10  
100  
1k  
1k  
10k  
100k  
1M  
10M  
100M  
RL (W)  
Frequency (Hz)  
Figure 28.  
Figure 29.  
VOLTAGE RANGES vs TEMPERATURE  
TYPICAL DC DRIFT OVER TEMPERATURE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
10  
8
Input Offset Voltage (VOS  
)
2.0  
1.5  
1.0  
0.5  
0
Most Positive Output Voltage  
Most Positive Input Voltage  
6
Bias Current (IB)  
4
RL = 150W  
2
Least Positive Output Voltage  
0
10 x Input Offset (IOS  
)
-0.5  
-1.0  
-2  
-4  
Least Positive Input Voltage  
-0.5  
-1.0  
-40 -20  
0
20  
40  
60  
80  
100 120 140  
-50  
0
50  
90  
Ambient Temperature (20°C/div)  
Ambient Temperature (10°C/div)  
Figure 30.  
Figure 31.  
14  
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA3832  
OPA3832  
www.ti.com ............................................................................................................................................ SBOS370ADECEMBER 2006REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS: VS = +5V (continued)  
At TA = +25°C, Differential Gain = +2V/V, and RL = 150to VCM = 2V, unless otherwise noted.  
SUPPLY AND OUTPUT CURRENT vs TEMPERATURE  
11  
LARGE-SIGNAL DISABLE/ENABLE RESPONSE  
100  
80  
60  
40  
20  
0
5
3
VDIS  
1
Output Current, Sinking  
Output Current, Sourcing  
10  
9
-1  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
8
Supply Current  
VIN = = 0.5VDC  
7
6
-40 -20  
0
20  
40  
60  
80  
100 120 140  
Time (10ms/div)  
Ambient Temperature (20°C/div)  
Figure 32.  
Figure 33.  
DISABLE/ENABLE GLITCH  
5
3
1
VDIS  
-1  
4
3
2
At Matched Load  
1
0
-1  
-2  
-3  
-4  
Time (10ms/div)  
Figure 34.  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): OPA3832  
OPA3832  
SBOS370ADECEMBER 2006REVISED AUGUST 2008 ............................................................................................................................................ www.ti.com  
TYPICAL CHARACTERISTICS: VS = +3.3V  
At TA = +25°C, G = +2V/V, and RL = 150to VCM = 0.75V, unless otherwise noted.  
SMALL-SIGNAL FREQUENCY RESPONSE  
LARGE-SIGNAL FREQUENCY RESPONSE  
3
0
3
0
VO = 0.2VPP  
G = -1V/V  
RL = 150W  
VO = 1VPP  
-3  
-3  
VO = 0.5VPP  
G = +2V/V  
-6  
-6  
-9  
-9  
VO = 1.5VPP  
-12  
-15  
-12  
-15  
G = +2V/V  
RL = 150W  
1
10  
100  
300  
1
10  
100  
300  
Frequency (MHz)  
Figure 35.  
Frequency (MHz)  
Figure 36.  
NONINVERTING PULSE RESPONSE  
INVERTING PULSE RESPONSE  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
G = +2V/V  
G = -1V/V  
RL = 150W  
Large-Signal Pulse Response 1V  
Right Scale  
RL = 150W  
Small-Signal Pulse  
Response 0.1V  
Left Scale  
Small-Signal Pulse  
Response 0.1V  
Left Scale  
Large-Signal Pulse Response 1V  
Right Scale  
Time (10ns/div)  
Time (10ns/div)  
Figure 37.  
Figure 38.  
REQUIRED RS vs CAPACITIVE LOAD  
FREQUENCY RESPONSE vs CAPACITIVE LOAD  
60  
50  
40  
30  
20  
10  
0
3
0
1dB Peaking Targeted  
CL = 10pF  
CL = 1000pF  
CL = 100pF  
-3  
-6  
VI  
1/3  
OPA3832  
-9  
(1)  
CL  
1kW  
400W  
-12  
-15  
400W  
NOTE: (1) 1kW is optional.  
1
10  
100  
1k  
1
10  
100  
300  
Capacitive Load (pF)  
Frequency (MHz)  
Figure 39.  
Figure 40.  
16  
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA3832  
OPA3832  
www.ti.com ............................................................................................................................................ SBOS370ADECEMBER 2006REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS: VS = +3.3V (continued)  
At TA = +25°C, G = +2V/V, and RL = 150to VCM = 0.75V, unless otherwise noted.  
HARMONIC DISTORTION vs LOAD RESISTANCE  
HARMONIC DISTORTION vs OUTPUT VOLTAGE  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-60  
-70  
2nd-Harmonic  
2nd-Harmonic  
-80  
3rd-Harmonic  
3rd-Harmonic  
-90  
G = +2V/V  
VO = 1VPP  
f = 5MHz  
G = +2V/V  
RL = 500W  
f = 5MHz  
-100  
100  
1k  
0.50  
0.75  
1.00  
1.25  
)
1.50  
Load Resistance (W)  
Output Voltage Swing (VPP  
Figure 41.  
Figure 42.  
TWO-TONE, 3RD-ORDER  
INTERMODULATION SPURIOUS  
HARMONIC DISTORTION vs FREQUENCY  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-40  
-50  
G = +2V/V  
RL = 500W  
VO = 1VPP  
PI  
1/3  
OPA3832  
PO  
50W  
20MHz  
500W  
400W  
-60  
400W  
2nd-Harmonic  
-70  
10MHz  
-80  
-90  
5MHz  
-100  
-110  
3rd-Harmonic  
0.1  
1
10  
20  
-26 -24 -22 -20 -18 -16 -14 -12 -10  
Single-Tone Load Power (dBm)  
Figure 44.  
-8  
Frequency (MHz)  
Figure 43.  
OUTPUT SWING vs LOAD RESISTANCE  
3.3  
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
G = +2V/V  
VS = +3.3V  
Most Positive Output Voltage  
Least Positive Output Voltage  
10  
100  
1k  
RL (W)  
Figure 45.  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): OPA3832  
OPA3832  
SBOS370ADECEMBER 2006REVISED AUGUST 2008 ............................................................................................................................................ www.ti.com  
APPLICATION INFORMATION  
effective load on the output at high frequencies is  
150|| 800. The 255and 1.13kresistors at the  
noninverting input provide the common-mode bias  
voltage. This parallel combination equals the dc  
resistance at the inverting input RF), reducing the dc  
output offset arising from input bias current.  
WIDEBAND VOLTAGE-FEEDBACK  
OPERATION  
The OPA3832 is a unity-gain stable, very high-speed  
voltage-feedback op amp designed for single-supply  
operation (+3V to +11V). The input stage supports  
input voltages below ground and to within 1.7V of the  
positive supply. The complementary common-emitter  
output stage provides an output swing to within 25mV  
of ground and the positive supply. The OPA3832 is  
compensated to provide stable operation with a wide  
range of resistive loads.  
VS = +3.3V  
6.8mF  
+
0.1mF  
1.13kW  
0.1mF  
66.5W  
+0.75V  
VIN  
Figure 46 shows the ac-coupled, gain of +2V/V  
configuration used for the +5V Specifications and  
Typical Characteristic Curves. For test purposes, the  
input impedance is set to 50with the 66.7resistor  
to ground in parallel with the 200bias network.  
1/3  
OPA3832  
255W  
VOUT  
RL  
150W  
400W  
400W  
+0.75  
Voltage  
swings  
reported  
in  
the  
Electrical  
0.75V  
Characteristics are taken directly at the input and  
output pins. For the circuit of Figure 46, the total  
effective load on the output at high frequencies is  
150|| 800. The 332and 505resistors at the  
noninverting input provide the common-mode bias  
voltage. This parallel combination equals the dc  
resistance at the inverting input RF), reducing the dc  
output offset resulting from input bias current.  
Figure 47. AC-Coupled, G = +2, +3.3V  
Single-Supply Specification and Test Circuit  
Figure 48 shows the dc-coupled, gain of +2, dual  
power-supply circuit configuration used as the basis  
of the ±5V Electrical Characteristics and Typical  
Characteristics. For test purposes, the input  
impedance is set to 50with a resistor to ground and  
the output impedance is set to 150with a series  
output resistor. Voltage swings reported in the  
specifications are taken directly at the input and  
output pins. For the circuit of Figure 48, the total  
effective load will be 150|| 800. Two optional  
components are included in Figure 48. An additional  
resistor (175) is included in series with the  
noninverting input. Combined with the 25dc source  
resistance looking back towards the signal generator,  
this configuration gives an input bias current  
cancelling resistance that matches the 200source  
resistance seen at the inverting input (see the DC  
Accuracy and Offset Control section). In addition to  
the usual power-supply decoupling capacitors to  
ground, a 0.01µF capacitor is included between the  
two power-supply pins. In practical printed circuit  
board (PCB) board layouts, this optional capacitor will  
typically improve the 2nd-harmonic distortion  
performance by 3dB to 6dB.  
VS = +5V  
6.8mF  
+
0.1mF  
505W  
0.1mF  
66.7W  
2V  
VIN  
1/3  
332W  
VOUT  
OPA3832  
RL  
150W  
400W  
400W  
+2V  
+2V  
Figure 46. AC-Coupled, G = +2, +5V Single-Supply  
Specification and Test Circuit  
Figure 47 shows the ac-coupled, gain of +2V/V  
configuration used for the +3.3V Specifications and  
Typical Characteristic Curves. For test purposes, the  
input impedance is set to 66.5with a resistor to  
ground. Voltage swings reported in the Electrical  
Characteristics are taken directly at the input and  
output pins. For the circuit of Figure 47, the total  
18  
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA3832  
 
 
OPA3832  
www.ti.com ............................................................................................................................................ SBOS370ADECEMBER 2006REVISED AUGUST 2008  
pole set to 3.2kHz for the component values shown).  
+5V  
As discussed for Figure 46, this configuration allows  
0.1mF  
6.8mF  
+
the midpoint bias formed by one 2kand one 3kΩ  
resistor to appear at both the input and output pins.  
The midband signal gain is set to +2 (6dB) in this  
case. The capacitor to ground on the noninverting  
input is intentionally set larger to dominate input  
parasitic terms. At a gain of +2, the OPA3832 on a  
single supply will show 80MHz small- and large-signal  
bandwidth. The resistor values have been slightly  
adjusted to account for this limited bandwidth in the  
amplifier stage. Tests of this circuit, shown in  
Figure 49, illustrate a precise 1MHz, –3dB point with  
50W Source  
175W  
VIN  
150W  
VO  
1/3  
OPA3832  
50W  
0.01mF  
400W  
a
maximally-flat passband (above the 3.2kHz  
ac-coupling corner), and a maximum stop band  
attenuation of 36dB.  
400W  
6.8mF  
0.1mF  
+
9
6
-5V  
3
Figure 48. DC-Coupled, G = +2, Bipolar Supply  
Specification and Test Circuit  
0
-3  
-6  
-9  
-12  
-15  
-18  
SINGLE-SUPPLY ACTIVE FILTER  
The OPA3832, while operating on a single +3.3V or  
+5V supply, lends itself well to high-frequency active  
filter designs. Again, the key additional requirement is  
to establish the dc operating point of the signal near  
the supply midpoint for highest dynamic range.  
Figure 50 shows an example design of a 1MHz  
low-pass Butterworth filter using the Sallen-Key  
topology.  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Figure 49. 1MHz, 2nd-Order, Butterworth  
Low-Pass Filter  
Both the input signal and the gain setting resistor are  
ac-coupled using 0.1µF blocking capacitors (actually  
giving bandpass response with the low-frequency  
+5V  
470pF  
3kW  
0.1mF  
205W  
866W  
VI  
1/3  
2VI  
OPA3832  
300pF  
2kW  
1MHz, 2nd-Order  
400W  
Butterworth Filter  
400W  
0.1mF  
Figure 50. Single-Supply, High-Frequency Active Filter  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): OPA3832  
 
 
 
OPA3832  
SBOS370ADECEMBER 2006REVISED AUGUST 2008 ............................................................................................................................................ www.ti.com  
HIGH-SPEED INSTRUMENTATION  
AMPLIFIER  
9
6
Figure 51 shows an instrumentation amplifier based  
3
on the OPA3832. The offset matching between inputs  
makes this an attractive input stage for this  
application. The differential-to-single-ended gain for  
0
-3  
this circuit is 2.0V/V. The inputs are high impedance,  
-6  
with only 1pF to ground at each input. The loads on  
-9  
the OPA3832 outputs are equal for the best harmonic  
distortion possible.  
-12  
-15  
-18  
VOUT  
20log  
|V1 - V2|  
1
10  
100  
400  
V1  
200W  
200W  
1/3  
Frequency (MHz)  
OPA3832  
400W  
400W  
400W  
Figure 52. High-Speed Instrumentation Amplifier  
Response  
1/3  
OPA3832  
400W  
VOUT  
400W  
400W  
1/3  
OPA3832  
V2  
Figure 51. High-Speed Instrumentation Amplifier  
As shown in Figure 52, the OPA3832 used as an  
instrumentation amplifier has  
a
55MHz, –3dB  
bandwidth. This data plots a 1VPP output signal using  
a low-impedance differential input source.  
20  
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA3832  
 
 
OPA3832  
www.ti.com ............................................................................................................................................ SBOS370ADECEMBER 2006REVISED AUGUST 2008  
MULTIPLEXED CONVERTER DRIVER  
The output resistors isolate the outputs from each  
other when switching between channels. The  
feedback network of the disabled channels forms part  
of the load seen by the enabled amplifier, attenuating  
the signal slightly.  
The converter driver in Figure 53 multiplexes among  
the three input signals. The OPA3832s enable and  
disable times support multiplexing among video  
signals. The make-before-break disable characteristic  
of the OPA3832 ensures that the output is always  
under control. To avoid large switching glitches,  
switch during the sync or retrace portions of the video  
signal—the two inputs should be almost equal at  
these times. The output is always under control, so  
the switching glitches for two 0V inputs are < 20mV.  
With standard video signals levels at the inputs, the  
maximum differential voltage across the disabled  
inputs will not exceed the ±1.2V maximum rating.  
0.1mF  
V1  
100W  
100W  
100W  
4.99kW  
1/3  
OPA3832  
0.1mF  
4.99kW  
400W  
400W  
400W  
400W  
REFT  
+3.5V  
REFB  
+1.5V  
V2  
0.1mF  
1/3  
OPA3832  
+In  
ADS826  
10-Bit  
400W  
100pF  
60MSPS  
-In  
CM  
V3  
0.1mF  
1/3  
OPA3832  
400W  
Selection  
Logic  
Multiplexed Converter Driver  
Figure 53. Multiplexed Converter Driver  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): OPA3832  
 
OPA3832  
SBOS370ADECEMBER 2006REVISED AUGUST 2008 ............................................................................................................................................ www.ti.com  
LOW-PASS FILTER  
The circuit in Figure 54 realizes  
a 7th-order  
Butterworth low-pass filter with a –3dB bandwidth of  
2MHz. This filter is based on the KRC active filter  
topology that uses an amplifier with the fixed gain ≥  
1. The OPA3832 makes a good amplifier for this type  
of filter. The component values have been adjusted to  
compensate of the parasitic effects of the op amp.  
1.2pF  
560pF  
49.9W  
47.5W  
110W  
VIN  
2.2pF  
255W  
124W  
820pF  
1/3  
1/3  
OPA3832  
220pF  
OPA3832  
400W  
400W  
400W  
400W  
1.8pF  
48.7W  
7TH-ORDER BUTTERWORTH  
FILTER RESPONSE  
10  
95.3W  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
1/3  
OPA3832  
680pF  
VOUT  
400W  
400W  
0
1
10  
100  
Frequency (MHz)  
Figure 54. 7th-Order Butterworth Filter  
22  
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA3832  
 
OPA3832  
www.ti.com ............................................................................................................................................ SBOS370ADECEMBER 2006REVISED AUGUST 2008  
DESIGN-IN TOOLS  
the available output voltage and current will always  
be greater than that shown in the over-temperature  
specifications, because the output stage junction  
temperatures will be higher than the minimum  
specified operating ambient.  
DEMONSTRATION FIXTURES  
Two printed circuit boards (PCBs) are available to  
assist in the initial evaluation of circuit performance  
using the OPA3832 in its two package options. Both  
of these are offered free of charge as unpopulated  
PCBs, delivered with a user's guide. The summary  
information for these fixtures is shown in Table 1.  
To maintain maximum output stage linearity, no  
output short-circuit protection is provided. This  
configuration will not normally be a problem, since  
most applications include a series matching resistor  
at the output that will limit the internal power  
dissipation if the output side of this resistor is shorted  
to ground. However, shorting the output pin directly to  
the adjacent positive power-supply pin (8-pin  
packages) will, in most cases, destroy the amplifier. If  
additional short-circuit protection is required, consider  
a small series resistor in the power-supply leads. This  
resistor will reduce the available output voltage swing  
under heavy output loads.  
Table 1. Demonstration Fixtures by Package  
ORDERING  
NUMBER  
LITERATURE  
NUMBER  
PRODUCT  
OPA3832ID  
OPA3832IPW  
PACKAGE  
SO-14  
DEM-OPA-SO-3B  
SBOU018  
SBOU019  
TSSOP-14  
DEM-OPA-SSOP-3B  
The demonstration fixtures can be requested at the  
Texas Instruments web site (www.ti.com) through the  
OPA3832 product folder.  
DRIVING CAPACITIVE LOADS  
MACROMODEL AND APPLICATIONS  
SUPPORT  
One of the most demanding and yet very common  
load conditions for an op amp is capacitive loading.  
Often, the capacitive load is the input of an  
Computer simulation of circuit performance using  
Analog-to-Digital  
additional external capacitance which may be  
recommended to improve ADC linearity.  
Converter  
(ADC)—including  
SPICE is often  
a quick way to analyze the  
performance of the OPA3832 and its circuit designs.  
This is particularly true for video and RF amplifier  
circuits where parasitic capacitance and inductance  
can play a major role on circuit performance. A  
SPICE model for the OPA3832 is available through  
the TI web page (www.ti.com). The applications  
department is also available for design assistance.  
These models predict typical small signal ac,  
transient steps, dc performance, and noise under a  
wide variety of operating conditions. The models  
include the noise terms found in the electrical  
specifications of the data sheet. These models do not  
attempt to distinguish between the package types in  
their small-signal ac performance.  
A
high-speed, high open-loop gain amplifier like the  
OPA3832 can be very susceptible to decreased  
stability and closed-loop response peaking when a  
capacitive load is placed directly on the output pin.  
When the primary considerations are frequency  
response flatness, pulse response fidelity, and/or  
distortion, the simplest and most effective solution is  
to isolate the capacitive load from the feedback loop  
by inserting a series isolation resistor between the  
amplifier output and the capacitive load.  
The Typical Characteristic curves show the  
recommended RS versus capacitive load and the  
resulting frequency response at the load. Parasitic  
capacitive loads greater than 2pF can begin to  
degrade the performance of the OPA3832. Long PCB  
traces, unmatched cables, and connections to  
multiple devices can easily exceed this value. Always  
consider this effect carefully, and add the  
recommended series resistor as close as possible to  
the output pin (see the Board Layout Guidelines  
section).  
OPERATING SUGGESTIONS  
OUTPUT CURRENT AND VOLTAGES  
The OPA3832 provides outstanding output voltage  
capability. For the +5V supply, under no-load  
conditions at +25°C, the output voltage typically  
swings closer than 90mV to either supply rail.  
The minimum specified output voltage and current  
specifications over temperature are set by worst-case  
simulations at the cold temperature extreme. Only at  
cold startup will the output current and voltage  
decrease to the numbers shown in the ensured  
tables. As the output transistors deliver power, the  
junction temperatures will increase, decreasing the  
VBEs (increasing the available output voltage swing)  
and increasing the current gains (increasing the  
available output current). In steady-state operation,  
The criterion for setting this RS resistor is a maximum  
bandwidth, flat frequency response at the load. For a  
gain of +2, the frequency response at the output pin  
is already slightly peaked without the capacitive load,  
requiring relatively high values of RS to flatten the  
response at the load. Increasing the noise gain will  
also reduce the peaking.  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): OPA3832  
 
OPA3832  
SBOS370ADECEMBER 2006REVISED AUGUST 2008 ............................................................................................................................................ www.ti.com  
DISTORTION PERFORMANCE  
The total output spot noise voltage can be computed  
as the square root of the sum of all squared output  
noise voltage contributors. Equation 1 shows the  
general form for the output noise voltage using the  
terms shown in Figure 55:  
The OPA3832 provides good distortion performance  
into a 150load. Relative to alternative solutions, it  
provides exceptional performance into lighter loads  
and/or operating on a single +3.3V supply. Generally,  
until the fundamental signal reaches very high  
frequency or power levels, the 2nd-harmonic will  
dominate the distortion with a negligible 3rd-harmonic  
component. Focusing then on the 2nd-harmonic,  
increasing the load impedance improves distortion  
directly. Remember that the total load includes the  
feedback network; in the noninverting configuration  
(see Figure 47) this is the sum of RF + RG, while in  
the inverting configuration, only RF needs to be  
included in parallel with the actual load.  
2
2
2
2
E
E
I
R
4kTR NG  
I
R
4kTR NG  
F
O
NI  
BN  
S
S
BI  
F
(1)  
Dividing this expression by the noise gain  
(NG = (1 + RF/RG)) gives the equivalent input-referred  
spot noise voltage at the noninverting input, as shown  
in Figure 55:  
2
2
IBIRF  
NG  
4kTRF  
NG  
2
EN  
ENI  
IBNRS  
4kTRS  
(2)  
Evaluating these two equations for the circuit and  
component values shown in Figure 46 gives a total  
output spot noise voltage of 18.8nV/Hz and a total  
equivalent input spot noise voltage of 9.42nV/Hz.  
This total includes the noise added by the resistors.  
This total input-referred spot noise voltage is not  
much higher than the 9.2nV/Hz specification for the  
op amp voltage noise alone.  
NOISE PERFORMANCE  
High slew rate, unity-gain stable, voltage-feedback op  
amps usually achieve their slew rate at the expense  
of a higher input noise voltage. The 9.2nV/Hz input  
voltage noise for the OPA3832, however, is much  
lower than comparable amplifiers. The input-referred  
voltage noise and the two input-referred current noise  
terms (2.2pA/Hz) combine to give low output noise  
under  
a
wide variety of operating conditions.  
DC ACCURACY AND OFFSET CONTROL  
Figure 55 shows the op amp noise analysis model  
with all the noise terms included. In this model, all  
noise terms are taken to be noise voltage or current  
density terms in either nV/Hz or pA/Hz.  
The balanced input stage of  
a
wideband  
voltage-feedback op amp allows good output dc  
accuracy in a wide variety of applications. The  
power-supply current trim for the OPA3832 gives  
even tighter control than comparable products.  
Although the high-speed input stage does require  
relatively high input bias current (typically 5µA out of  
each input terminal), the close matching between  
them may be used to reduce the output dc error  
caused by this current. This configuration matches  
the dc source resistances appearing at the two  
inputs. Evaluating the configuration of Figure 48  
(which has matched dc input resistances), using  
worst-case +25°C input offset voltage and current  
ENI  
1/3  
EO  
OPA3832  
RS  
IBN  
ERS  
RF  
Ö4kTRS  
Ö4kTRF  
specifications, gives  
voltage equal to:  
a worst-case output offset  
IBI  
RG  
4kT  
RG  
4kT = 1.6E - 20J  
at 290°K  
(NG = noninverting signal gain at dc)  
±(NG × VOS(MAX)) + RF × IOS(MAX)  
= ±(2 × 80mV) + (400× 1.5µA)  
)
Figure 55. Noise Analysis Model  
= –15.4mV to +16.6mV  
24  
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA3832  
 
 
OPA3832  
www.ti.com ............................................................................................................................................ SBOS370ADECEMBER 2006REVISED AUGUST 2008  
A fine-scale output offset null, or dc operating point  
adjustment, is often required. Numerous techniques  
are available for introducing dc offset control into an  
op amp circuit. Most of these techniques are based  
on adding a dc current through the feedback resistor.  
In selecting an offset trim method, one key  
consideration is the impact on the desired signal path  
frequency response. If the signal path is intended to  
be noninverting, the offset control is best applied as  
an inverting summing signal to avoid interaction with  
the signal source. If the signal path is intended to be  
inverting, applying the offset control to the  
noninverting input may be considered. Bring the dc  
offsetting current into the inverting input node through  
resistor values that are much larger than the signal  
path resistors. This configuration ensures that the  
adjustment circuit has minimal effect on the loop gain  
and thus the frequency response.  
dissipation will occur if the load requires current to be  
forced into the output at high output voltages or  
sourced from the output at low output voltages. This  
condition puts a high current through a large internal  
voltage drop in the output transistors.  
BOARD LAYOUT GUIDELINES  
Achieving  
optimum  
performance  
with  
a
high-frequency amplifier such as the OPA3832  
requires careful attention to board layout parasitics  
and external component types. Recommendations  
that will optimize performance include:  
a) Minimize parasitic capacitance to any ac ground  
for all of the signal I/O pins. Parasitic capacitance on  
the output and inverting input pins can cause  
instability; on the noninverting input, it can react with  
the source impedance to cause unintentional  
bandlimiting. To reduce unwanted capacitance, a  
window around the signal I/O pins should be opened  
in all of the ground and power planes around those  
pins. Otherwise, ground and power planes should be  
unbroken elsewhere on the board.  
THERMAL ANALYSIS  
Maximum desired junction temperature sets the  
maximum allowed internal power dissipation, as  
described below. In no case should the maximum  
junction temperature be allowed to exceed +150°C.  
b) Minimize the distance ( < 0.25") from the  
power-supply  
pins  
to  
high-frequency  
0.1µF  
Operating junction temperature (TJ) is given by  
TA + PD × θJA. The total internal power dissipation  
(PD) is the sum of quiescent power (PDQ) and  
decoupling capacitors. At the device pins, the ground  
and power-plane layout should not be in close  
proximity to the signal I/O pins. Avoid narrow power  
and ground traces to minimize inductance between  
the pins and the decoupling capacitors. Each  
additional power dissipated in the output stage (PDL  
)
to deliver load power. Quiescent power is simply the  
specified no-load supply current times the total supply  
voltage across the part. PDL depends on the required  
output signal and load, though for resistive loads  
connected to midsupply (VS/2), PDL is at a maximum  
when the output is fixed at a voltage equal to VS/4 or  
power-supply  
connection  
should  
always  
be  
decoupled with one of these capacitors. An optional  
supply decoupling capacitor (0.1µF) across the two  
power supplies (for bipolar operation) will improve  
2nd-harmonic distortion performance. Larger (2.2µF  
to 6.8µF) decoupling capacitors, effective at lower  
frequency, should also be used on the main supply  
pins. These may be placed somewhat farther from  
the device and may be shared among several  
devices in the same area of the PCB.  
2
3VS/4. Under this condition, PDL = VS /(4 × RL), where  
RL includes feedback network loading.  
Note that it is the power in the output stage, and not  
into the load, that determines internal power  
dissipation.  
As a worst-case example, compute the maximum TJ  
using an OPA3832 (TSSOP-14 package) in the circuit  
of Figure 48 operating at the maximum specified  
ambient temperature of +85°C and driving both  
channels at a 150load at mid-supply.  
c) Careful selection and placement of external  
components will preserve the high-frequency  
performance. Resistors should be  
a very low  
reactance type. Surface-mount resistors work best  
and allow a tighter overall layout. Metal film or carbon  
composition axially-leaded resistors can also provide  
good high-frequency performance. Again, keep the  
leads and PCB traces as short as possible. Never  
use wire-wound type resistors in a high-frequency  
application. Since the output pin and inverting input  
pin are the most sensitive to parasitic capacitance,  
always position the series output resistor, if any, as  
close as possible to the output pin. Other network  
components, such as noninverting input termination  
resistors, should also be placed close to the package.  
3
52  
150W 800W  
PD  
10V 12.75mA  
276mV  
4
Maximum TJ  
85°C  
0.276W 100°C W  
113°C  
Although this value is still well below the specified  
maximum junction temperature, system reliability  
considerations may require lower ensured junction  
temperatures. The highest possible internal  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): OPA3832  
OPA3832  
SBOS370ADECEMBER 2006REVISED AUGUST 2008 ............................................................................................................................................ www.ti.com  
d) Connections to other wideband devices on the  
board may be made with short direct traces or  
through onboard transmission lines. For short  
connections, consider the trace and the input to the  
next device as a lumped capacitive load. Relatively  
wide traces (50mils to 100mils) should be used,  
preferably with ground and power planes opened up  
around them. Estimate the total capacitive load and  
set RS from the typical characteristic curve, Figure 5.  
Low parasitic capacitive loads (< 5pF) may not need  
an RS since the OPA3832 is nominally compensated  
to operate with a 2pF parasitic load. Higher parasitic  
capacitive loads without an RS are allowed as the  
signal gain increases (increasing the unloaded phase  
margin). If a long trace is required, and the 6dB  
e) Socketing  
a
high-speed part is not  
recommended. The additional lead length and  
pin-to-pin capacitance introduced by the socket can  
create an extremely troublesome parasitic network  
that can make it almost impossible to achieve a  
smooth, stable frequency response. Best results are  
obtained by soldering the OPA3832 directly onto the  
board.  
INPUT AND ESD PROTECTION  
The OPA3832 is built using a very high-speed,  
complementary bipolar process. The internal junction  
breakdown voltages are relatively low for these very  
small geometry devices. These breakdowns are  
reflected in the Absolute Maximum Ratings table. All  
device pins are protected with internal ESD protection  
diodes to the power supplies, as shown in Figure 56.  
signal loss intrinsic to  
a
doubly-terminated  
transmission line is acceptable, implement a matched  
impedance transmission line using microstrip or  
stripline techniques (consult an ECL design handbook  
for microstrip and stripline layout techniques). A 50Ω  
environment is normally not necessary onboard, and  
in fact, a higher impedance environment will improve  
distortion as shown in the distortion versus load plots.  
With a characteristic board trace impedance defined  
(based on board material and trace dimensions), a  
matching series resistor into the trace from the output  
of the OPA3832 is used as well as a terminating  
shunt resistor at the input of the destination device.  
Remember also that the terminating impedance is the  
parallel combination of the shunt resistor and the  
input impedance of the destination device; this total  
effective impedance should be set to match the trace  
+VCC  
External  
Pin  
Internal  
Circuitry  
-VCC  
Figure 56. Internal ESD Protection  
These diodes provide moderate protection to input  
overdrive voltages above the supplies as well. The  
protection diodes can typically support 30mA  
continuous current. Where higher currents are  
possible (that is, in systems with ±15V supply parts  
driving into the OPA3832), current-limiting series  
resistors should be added into the two inputs. Keep  
these resistor values as low as possible, since high  
values degrade both noise performance and  
frequency response.  
impedance. If the 6dB attenuation of  
a
doubly-terminated transmission line is unacceptable,  
a long trace can be series-terminated at the source  
end only. Treat the trace as a capacitive load in this  
case and set the series resistor value as shown in the  
typical characteristic curve, Figure 5. This  
configuration will not preserve signal integrity as well  
as a doubly-terminated line. If the input impedance of  
the destination device is low, there will be some  
signal attenuation as a result of the voltage divider  
formed by the series output into the terminating  
impedance.  
26  
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA3832  
 
OPA3832  
www.ti.com ............................................................................................................................................ SBOS370ADECEMBER 2006REVISED AUGUST 2008  
Revision History  
Changes from Original (December 2006) to Revision A ................................................................................................ Page  
Deleted grey from rows labelled as D in the package designator rows in the Ordering Information table............................ 2  
Deleted footnote (2) from the Ordering Information table...................................................................................................... 2  
Changed storage voltage range row in Absolute Maximum Ratings table to storage temperature range with a rating  
of –65°C to +125°C................................................................................................................................................................ 2  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): OPA3832  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA3832ID  
ACTIVE  
ACTIVE  
SOIC  
D
14  
14  
50  
90  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
OPA3832  
OPA3832  
OPA3832IPW  
TSSOP  
PW  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
OPA3832ID  
D
SOIC  
14  
14  
50  
90  
506.6  
530  
8
3940  
3600  
4.32  
3.5  
OPA3832IPW  
PW  
TSSOP  
10.2  
Pack Materials-Page 1  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY