OPA387DBVT [TI]

超高精度 (2uV)、零漂移 (0.003uV/°C)、低输入偏置电流运算放大器(单路) | DBV | 5 | -40 to 125;
OPA387DBVT
型号: OPA387DBVT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

超高精度 (2uV)、零漂移 (0.003uV/°C)、低输入偏置电流运算放大器(单路) | DBV | 5 | -40 to 125

放大器 运算放大器
文件: 总39页 (文件大小:3347K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
OPAx387 超高精度、零漂移、低输入偏置电流运算放大器  
1 特性  
3 说明  
• 超低失调电压±2µV最大值已测试)  
• 零漂移±0.003µV/°C  
• 低输入偏置电流150pA最大值已测试)  
• 低噪声1 kHz 8.5 nVHz  
1/f 噪声177nVPP0.1Hz 10Hz)  
• 共模输入范围超出电源±100mV  
• 增益带宽5.7 MHz  
OPA387OPA2387 OPA4387 (OPAx387) 精密放  
大器系列提供出色的性能。通过零漂移技术,  
OPAx387 的失调电压和失调漂移可提供出色的长期稳  
定性。仅需 570 µA 的静态电流OPAx387 就能实现  
5.7 MHz 带宽、8.5 nV/Hz 宽带噪声和 177  
nVPP 1/f 噪声。这些规格对于在 16 位至 24 位模数  
转换器 (ADC) 中实现超高精度和不降低线性度至关重  
要。OPAx387 在温度范围内具有平坦的偏置电流因  
高输入阻抗应用在温度范围内几乎不需校准。  
• 静态电流每个放大570µA  
• 单电源1.7V 5.5V  
• 双电源±0.85V ±2.75V  
• 输入已滤EMI RFI  
所有版本的额定工作温度范围均-40°C +125°C。  
器件信息  
封装(1)  
2 应用  
封装尺寸标称值)  
1.50mm × 1.50mm  
2.90mm × 1.60mm  
4.90mm × 3.90mm  
3.00mm × 3.00mm  
2.00mm × 2.00mm  
5.00mm × 4.40mm  
器件型号  
OPA387  
DFN (6)(2)  
电子温度计  
称重计  
温度变送器  
呼吸机  
数据采(DAQ)  
半导体测试  
实验室和现场仪表  
商用网络和服务PSU  
模拟输入模块  
压力变送器  
SOT-23 (5)  
SOIC (8)(2)  
VSSOP (8)  
WSON (8)  
TSSOP (14)  
OPA2387  
OPA4387  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
(2) 封装为预发布版。  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
ADC  
OPA387  
Object  
Radiation  
Detector  
OPA387 是一款超低失调、低噪ADC 驱动器  
0
-2  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
2
Input Offset Voltage (mV)  
c110  
超低输入失调电压  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS984  
 
 
 
 
 
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................17  
8 Application and Implementation..................................18  
8.1 Application Information............................................. 18  
8.2 Typical Applications.................................................. 18  
9 Power Supply Recommendations................................21  
10 Layout...........................................................................21  
10.1 Layout Guidelines................................................... 21  
10.2 Layout Example...................................................... 21  
11 Device and Documentation Support..........................22  
11.1 Device Support........................................................22  
11.2 Documentation Support.......................................... 22  
11.3 接收文档更新通知................................................... 22  
11.4 支持资源..................................................................22  
11.5 Trademarks............................................................. 22  
11.6 Electrostatic Discharge Caution..............................22  
11.7 术语表..................................................................... 23  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specifications.................................................................. 7  
6.1 Absolute Maximum Ratings........................................ 7  
6.2 ESD Ratings............................................................... 7  
6.3 Recommended Operating Conditions.........................7  
6.4 Thermal Information: OPA387.................................... 8  
6.5 Thermal Information: OPA2387.................................. 8  
Thermal Information: OPA4387........................................ 8  
6.6 Electrical Characteristics.............................................9  
6.7 Typical Characteristics.............................................. 11  
7 Detailed Description......................................................16  
7.1 Overview...................................................................16  
7.2 Functional Block Diagram.........................................16  
7.3 Feature Description...................................................17  
Information.................................................................... 23  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision E (December 2021) to Revision F (February 2022)  
Page  
• 添加OPA2387 DSG (WSON-8) 封装和相关内容............................................................................................1  
Changes from Revision D (October 2021) to Revision E (December 2021)  
Page  
OPA4387 器件状态从“预告信息预发布”更改为“量产数据正在供货....................................... 1  
Changes from Revision C (October 2021) to Revision D (October 2021)  
Page  
• 添加OPA4387 预告信息预发布器件和相关内容...................................................................................... 1  
• 将低输入偏置电流的“特性”要点135pA 更改150pA................................................................................1  
Deleted input offset voltage MAX values for over temperature and common-mode voltage test conditions for  
clarity.................................................................................................................................................................. 9  
Added input offset voltage over temperature TYP value to represent performance shown in typical  
characteristics ....................................................................................................................................................9  
Changed maximum input bias current for OPA387 and OPA2387 from 135 pA to 150 pA................................ 9  
Changed maximum input offset current for OPA387 and OPA2387 from 270 pA to 300 pA..............................9  
Changed maximum open-loop voltage gain for OPA387 and OPA2387 from 132 dB to 135 dB....................... 9  
Changed settling time to 0.01% from 2.5 µs to 5.5 µs........................................................................................9  
Changed high linearity output swing from rail for RL = 2 kΩfrom 75 mV to 150 mV ........................................9  
Changed short-circuit current for OPA387 at Vs = 1.7 V from ±25 mA to ±15 mA .......................................... 9  
Added open-loop output impedance at 1 MHz .................................................................................................. 9  
Changed Figure 6-13, PSRR and CMRR vs Frequency, to fit to CMRR and PSRR specifications in the  
Electrical Characteristic table ...........................................................................................................................11  
Changed Figure 6-24, Phase Margin vs Capacitive Load, to add test condition.............................................. 11  
Changes from Revision B (August 2021) to Revision C (October 2021)  
Page  
OPA387 从预告信息预发布更改为量产数据正在供货...................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA387 OPA2387 OPA4387  
 
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
Changes from Revision A (December 2020) to Revision B (August 2021)  
Page  
• 添加OPA387 预告信息预发布器件和相关内容........................................................................................ 1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA387 OPA2387 OPA4387  
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
OUT  
Vœ  
1
2
3
5
V+  
+IN  
4
œIN  
Not to scale  
5-1. OPA387: DBV (5-Pin SOT-23) Package, Top View  
5-1. Pin Functions: OPA387  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
4
Input  
Input  
Inverting input  
IN  
+IN  
NC  
3
Noninverting input  
No internal connection (can be left floating)  
Output  
OUT  
V–  
V+  
1
Output  
2
5
Power  
Power  
Negative (lowest) power supply  
Positive (highest) power supply  
OUT A  
1
2
3
4
8
7
6
5
V+  
OUT A  
œIN A  
+IN A  
Vœ  
V+  
1
2
3
4
8
7
6
5
œIN A  
+IN A  
Vœ  
OUT B  
œIN B  
+IN B  
OUT B  
Thermal  
Pad  
œIN B  
+IN B  
Not to scale  
Not to scale  
5-2. OPA2387: DGK (8-Pin VSSOP) Package, Top  
5-3. OPA2387: DSG (8-Pin WSON With Exposed  
View  
Thermal Pad) Package, Top View  
5-2. Pin Functions: OPA2387  
PIN  
NO.  
DGK (VSSOP) DSG (WSON)  
TYPE  
DESCRIPTION  
NAME  
IN A  
2
6
3
5
1
7
4
8
2
6
3
5
1
7
4
8
Input  
Input  
Inverting input, channel A  
Inverting input, channel B  
Noninverting input, channel A  
Noninverting input, channel B  
Output, channel A  
IN B  
+IN A  
+IN B  
OUT A  
OUT B  
V–  
Input  
Input  
Output  
Output  
Power  
Power  
Output, channel B  
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA387 OPA2387 OPA4387  
 
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
5-2. Pin Functions: OPA2387 (continued)  
PIN  
NO.  
TYPE  
DESCRIPTION  
NAME  
DGK (VSSOP) DSG (WSON)  
Thermal Pad  
Thermal pad  
Connect thermal pad to V–  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA387 OPA2387 OPA4387  
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
OUT A  
œIN A  
+IN A  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
œIN D  
+IN D  
Vœ  
+IN B  
œIN B  
OUT B  
+IN C  
œIN C  
OUT C  
8
Not to scale  
5-4. OPA4387: PW (14-Pin TSSOP) Package, Top View  
5-3. Pin Functions: OPA4387  
PIN  
TYPE  
DESCRIPTION  
NAME  
IN A  
NO.  
2
Input  
Input  
Inverting input, channel A  
Inverting input, channel B  
Inverting input, channel C  
Inverting input, channel D  
Noninverting input, channel A  
Noninverting input, channel B  
Noninverting input, channel C  
Noninverting input, channel D  
Output, channel A  
6
IN B  
IN C  
IN D  
+IN A  
+IN B  
+IN C  
+IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V–  
9
Input  
13  
3
Input  
Input  
5
Input  
10  
12  
1
Input  
Input  
Output  
Output  
Output  
Output  
Power  
Power  
7
Output, channel B  
8
Output, channel C  
14  
11  
4
Output, channel D  
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA387 OPA2387 OPA4387  
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Single-supply  
6
±3  
VS  
V
Supply voltage, VS = (V+) (V)  
Dual-supply  
Common-mode  
Differential  
(V+) + 0.5  
(V) 0.5  
Input voltage, all pins  
V
(V+) (V) + 0.2  
Input current, all pins  
Output short circuit(2)  
Operating temperature  
Junction temperature  
Storage temperature  
±10  
Continuous  
150  
mA  
Continuous  
55  
TA  
°C  
°C  
°C  
TJ  
150  
55  
Tstg  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±3000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.7  
NOM  
MAX  
5.5  
UNIT  
V
Single-supply  
Dual-supply  
VS  
TA  
Supply voltage, VS = (V+) (V)  
±0.85  
40  
±2.75  
125  
Specified temperature  
°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA387 OPA2387 OPA4387  
 
 
 
 
 
 
 
 
 
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
UNIT  
6.4 Thermal Information: OPA387  
OPA387  
DBV (SOT-23)  
5 PINS  
187.1  
THERMAL METRIC(1)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
107.4  
57.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
33.5  
ψJT  
57.1  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Thermal Information: OPA2387  
OPA2387  
THERMAL METRIC(1)  
DGK (VSSOP)  
DSG (WSON)  
8 PINS  
71.9  
UNIT  
8 PINS  
165  
53  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
88.8  
87  
39.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
4.9  
3.2  
ΨJT  
85  
39.2  
ΨJB  
RθJC(bot)  
N/A  
14.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Thermal Information: OPA4387  
OPA4387  
THERMAL METRIC(1)  
PW (TSSOP)  
14 PINS  
109.6  
27.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
56.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.5  
ΨJT  
54.9  
ΨJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA387 OPA2387 OPA4387  
 
 
 
 
 
 
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.6 Electrical Characteristics  
at TA = 25°C, RL = 10 kconnected to VS / 2, VS = 1.7 V to 5.5 V, VCM = VS / 2, VOUT = VS / 2, and min and max specification  
established from manufacturing final test (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VS = 5.5 V  
VS = 1.7 V  
±0.25  
±0.35  
±0.4  
±2  
±2.5  
VOS  
Input offset voltage  
µV  
TA = 40°C to +125°C(1)  
OPA387, OPA2387  
OPA4387  
±0.003  
±0.012  
±0.018  
±0.35  
±0.5  
TA = 40°C to +125°C(1)  
μV/°C  
μV/V  
dVOS/dT  
PSRR  
Input offset voltage drift  
OPA387, OPA2387  
OPA4387  
±0.05  
±30  
Power supply rejection  
ratio  
TA = 40°C to +125°C(1)  
±1  
INPUT BIAS CURRENT  
OPA387, OPA2387  
OPA4387  
±150  
±300  
±200  
±350  
±300  
±500  
±400  
±700  
IB  
Input bias current  
pA  
pA  
OPA387, OPA2387  
OPA4387  
TA = 40°C to +125°C(1)  
OPA387, OPA2387  
OPA4387  
±60  
IOS  
Input offset current  
Input voltage noise  
OPA387, OPA2387  
OPA4387  
TA = 40°C to +125°C(1)  
NOISE  
177  
27  
nVPP  
f = 0.1 Hz to 10 Hz  
nVRMS  
f = 1 Hz  
8.5  
8.5  
8.5  
8.5  
70  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
f = 1 kHz  
eN  
Input voltage noise density  
Input current noise  
nV/Hz  
fA/Hz  
V
iN  
INPUT VOLTAGE  
VS = 1.7 V  
VS = 5.5 V  
(V+)  
(V) 0.1  
(V) 0.2  
115  
Common-mode voltage  
range  
VCM  
(V+) + 0.1  
138  
150  
(V) 0.1 V < VCM < (V+), VS = 1.7 V  
OPA387, OPA2387  
OPA4387  
140  
(V) 0.2 V < VCM < (V+)  
+ 0.1 V, VS = 5.5 V  
130  
Common-mode rejection  
ratio  
CMRR  
dB  
(V) 0.1 V < VCM < (V+), TA = 40°C to +125°C(1)  
110  
132  
(V) 0.2 V < VCM < (V+) + 0.1, VS = 5.5 V,  
TA = 40°C to +125°C(1)  
130  
INPUT CAPACITANCE  
ZID  
Differential  
100 || 3  
60 || 3  
MΩ|| pF  
GΩ|| pF  
ZICM  
Common-mode  
OPEN-LOOP GAIN  
OPA387, OPA2387  
135  
120  
125  
132  
120  
125  
145  
145  
(V) + 100 mV < VOUT  
(V+) 100 mV  
<
<
OPA4387  
TA = 40°C to +125°C(1)  
OPA387, OPA2387  
OPA4387  
AOL  
Open-loop voltage gain  
dB  
(V) + 150 mV < VOUT  
(V+) 150 mV,  
RL = 2 k  
TA = 40°C to +125°C(1)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA387 OPA2387 OPA4387  
 
 
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.6 Electrical Characteristics (continued)  
at TA = 25°C, RL = 10 kconnected to VS / 2, VS = 1.7 V to 5.5 V, VCM = VS / 2, VOUT = VS / 2, and min and max specification  
established from manufacturing final test (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
5.7  
2.8  
1.5  
5.5  
500  
MHz  
Slew rate  
4-V step, G = +1  
V/μs  
To 0.1%, 1-V step , G = +1  
To 0.01%, 1-V step , G = +1  
VIN × G > VS  
tS  
Settling time  
μs  
Overload recovery time  
ns  
Chopping clock  
frequency(1)  
100  
150  
kHz  
Total harmonic distortion +  
noise  
THD+N  
VOUT = 1 VRMS, G = +1, f = 1 kHz  
0.002 %  
OUTPUT  
OPA387, OPA2387  
1
10  
20  
30  
60  
60  
30  
No load  
OPA4387  
5
Voltage output swing from  
rail  
mV  
OPA387, OPA2387  
OPA4387  
20  
RL = 2 kΩ  
TA = 40°C to +125°C(1)  
(V) +  
(V+) –  
0.075  
0.075  
High linearity output swing  
range(1)  
AOL > 120 dB  
V
(V) +  
0.150  
(V+) –  
0.150  
RL = 2 kΩ  
VS = 5.5 V  
VS = 1.7 V  
±55  
±25  
OPA2387DGK  
ISC  
Short-circuit current  
Phase margin  
mA  
OPA387, OPA2387DSG,  
OPA4387  
±15  
40  
CL = 100 pF, G = +1  
f = 1 MHz  
degrees  
Open-loop output  
impedance  
RO  
250  
POWER SUPPLY  
570  
25  
675  
700  
100  
Quiescent current per  
amplifier  
IQ  
IO = 0 mA  
μA  
μs  
TA = 40°C to 125°C(1)  
Turn-on time  
At VS = 5.5 V, VS ramp rate > 0.3 V/µs, settle to 1%  
(1) Specification established from device population bench system measurements across multiple lots.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA387 OPA2387 OPA4387  
 
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
at TA = 25°C, VS = ±2.75 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 50 pF (unless otherwise noted)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
-2  
0
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
2
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
Input Offset Voltage (mV)  
Input Offset Voltage (mV)  
c110  
c100  
VS = 5.5 V, TA = 25°C  
VS = 5.5 V, TA = 40°C  
6-1. Offset Voltage Distribution  
6-2. Offset Voltage Distribution  
40  
35  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
0
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
-0.02  
-0.01  
0
0.01  
0.02  
Input Offset Voltage (mV)  
Offset Voltage Drift (mV/èC)  
c101  
c103  
VS = 5.5 V, TA = 125°C  
VS = 5.5 V  
6-3. Offset Voltage Distribution  
6-4. Offset Voltage Drift Distribution  
3
2
3
2
1
1
VCM = -2.95 V  
VCM = 2.85 V  
0
0
-1  
-2  
-3  
-1  
-2  
-3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
-3  
-2  
-1  
0
Input Common Mode Voltage (V)  
1
2
3
c108  
c111  
6-5. Offset Voltage vs Temperature  
6-6. Offset Voltage vs Common-Mode Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA387 OPA2387 OPA4387  
 
 
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±2.75 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 50 pF (unless otherwise noted)  
1
0.75  
0.5  
160  
140  
120  
100  
80  
165  
150  
135  
120  
105  
90  
Gain  
Phase  
0.25  
0
60  
-0.25  
-0.5  
-0.75  
-1  
40  
75  
20  
60  
Vs = 1.7 V  
0
45  
-20  
30  
1.5  
2
3
Supply Voltage (V)  
4
5
5.5  
100m  
1
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
1M  
10M  
c112  
c114  
6-7. Offset Voltage vs Supply Voltage  
6-8. Open-Loop Gain and Phase vs Frequency  
0.5  
0.25  
0
60  
VS = ê0.85 V  
VS = ê2.75 V  
40  
20  
0
-20  
-40  
-60  
-0.25  
G = -1  
G = +1  
G = +10  
G = +100  
-0.5  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
Temperature(èC)  
C129  
c113  
6-9. Open-Loop Gain vs Temperature  
6-10. Closed-Loop Gain vs Frequency  
VS = ê2.75 V, (V-) - 0.2 V Ç VCM Ç (V+) + 0.1 V  
1000  
800  
600  
400  
200  
0
0.1  
IB-  
IB+  
IOS  
0.08  
0.06  
0.04  
0.02  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
VS = ê0.85 V, (V-) - 0.1 V Ç VCM Ç (V+)  
-200  
-400  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
-3 -2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
3
Temperature (èC)  
Input Common Mode Voltage (V)  
C121  
6-11. Input Bias Current vs Common-Mode Voltage  
6-12. CMRR vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA387 OPA2387 OPA4387  
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±2.75 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 50 pF (unless otherwise noted)  
160  
CMRR  
PSRR  
PSRR+  
140  
120  
100  
80  
60  
40  
20  
0
10m 100m  
1
10  
100  
1k  
10k 100k 1M 10M  
Frequency (Hz)  
Time (1 s/div)  
C130  
6-13. PSRR and CMRR vs Frequency  
6-14. 0.1-Hz to 10-Hz Noise  
20  
-40  
-60  
10  
7
-80  
-100  
-120  
-140  
-160  
-180  
-200  
5
4
3
2
1
100m  
1
10  
100  
Frequency (Hz)  
1k  
10k  
100k  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
c115  
C122  
6-15. Input Voltage Noise Spectral Density vs Frequency  
6-16. Channel-to-Channel Crosstalk  
0.1  
-60  
1
0.1  
-40  
-60  
-80  
G = -1, RL = 10 kW  
G = -1, RL = 2 kW  
G = -1, RL = 600 W  
G = +1, RL = 10 kW  
G = +1, RL = 2 kW  
G = +1, RL = 600 W  
G = -1, RL = 10 kW  
G = -1, RL = 2 kW  
G = -1, RL = 600 W  
G = +1, RL = 10 kW  
G = +1, RL = 2 kW  
G = +1, RL = 600 W  
0.01  
-80  
0.01  
0.001  
0.0001  
-100  
0.001  
-100  
-120  
0.0001  
-120  
20k  
10m  
100m  
Output Amplitude (VRMS  
1
20  
200  
2k  
)
Frequency (Hz)  
C136  
C137  
VS = 5.5 V, f = 1 kHz, BW = 80 kHz  
VS = 5.5 V, VOUT = 3 VRMS, BW = 80 kHz  
6-18. THD+N vs Output Amplitude  
6-17. THD+N Ratio vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA387 OPA2387 OPA4387  
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±2.75 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 50 pF (unless otherwise noted)  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
1
2
3
Supply Voltage (V)  
4
5
6
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
c107  
c102  
6-19. Quiescent Current vs Supply Voltage  
6-20. Quiescent Current vs Temperature  
1000  
100  
10  
80  
RISO = 0 W  
RISO = 25 W  
RISO = 50 W  
60  
40  
20  
0
1
0.1  
100  
Load Capacitance (pF)  
1k  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
C124  
C138  
G = 1, 10 mV step  
6-22. Small-Signal Overshoot vs Capacitive Load  
6-21. Open-Loop Output Impedance vs Frequency  
80  
60  
RISO = 0 W  
RISO = 25 W  
RISO = 50 W  
Riso = 0  
60  
40  
20  
0
45  
30  
15  
0
100  
Load Capacitance (pF)  
1k  
100  
1k  
C127  
Load Capacitance (pF)  
G = +1, 10 mV step  
G = +1  
6-23. Small-Signal Overshoot vs Capacitive Load  
6-24. Phase Margin vs Capacitive Load  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA387 OPA2387 OPA4387  
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±2.75 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 50 pF (unless otherwise noted)  
VIN  
VOUT  
VIN  
VOUT  
Time (100 µs/div)  
Time (500 ns/div)  
G = 1  
C125  
C133  
6-25. No Phase Reversal  
6-26. Overload Recovery  
VIN  
VOUT  
VIN  
VOUT  
Time (1 µs/div)  
G = +1  
Time (1 µs/div)  
4-V step  
C128  
c105  
6-27. Small-Signal Step Response  
6-28. Large-Signal Step Response  
Rising Edge  
Falling Edge  
Time (10 µs/div)  
C135  
0.01% settling = ±100 µV  
6-29. Settling Time  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA387 OPA2387 OPA4387  
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPAx387 family of zero-drift amplifiers is engineered with state-of-the-art, proprietary, precision zero-drift  
technology. These amplifiers offer ultra-low input offset voltage and drift, and achieve excellent input and output  
dynamic linearity. The OPAx387 operate from 1.7 V to 5.5 V, are unity-gain stable, and are designed for a wide  
range of general-purpose and precision applications. The OPAx387 strengths also include a 5.7-MHz bandwidth,  
8.5-nV/Hz noise spectral density, and no 1/f noise, making the OPAx387 an excellent choice for interfacing  
with sensor modules, and buffering high-fidelity, digital-to-analog converters (DACs).  
7.2 Functional Block Diagram  
GM_FF  
CCOMP  
CLK  
CLK  
+IN  
–IN  
OUT  
GM1  
GM2  
GM3  
CCOMP  
Ripple Reduction  
Technology  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA387 OPA2387 OPA4387  
 
 
 
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Input Bias Current  
During normal operation, the typical input bias current of the OPAx387 is 30 pA. The device exhibits low drift  
over the full temperature range of 40°C to +125°C. There are no antiparallel diodes between the input pins  
(+IN and IN); therefore, the differential input maximum voltage is limited only by diodes connected to the  
supply voltage pins. However, use caution in cases where the input differential voltage exceeds the nominal  
operating input differential voltage. When inputs are separated, the switching offset-cancellation path internal to  
the amplifier exceeds normal operating conditions, and can potentially create long settling behavior upon return  
to normal operation. The equivalent input circuit of OPAx387 is shown in 7-1.  
V+  
450  
+IN  
CORE  
450  
–IN  
+
V–  
7-1. Equivalent Input Circuit  
7.3.2 EMI Susceptibility and Input Filtering  
Operational amplifiers can exhibit sensitivity to electromagnetic interference (EMI). Typically, conducted EMI  
(that is, EMI that enters the device through conduction) is more commonly observed than radiated EMI (that is,  
EMI that enters the device through radiation). When conducted EMI enters the operational amplifier, the dc offset  
at the amplifier output can shift from the nominal value. This shift is a result of signal rectification associated with  
the internal semiconductor junctions. Although all operational amplifier pin functions can be affected by EMI, the  
input pins are likely to be the most susceptible. The OPAx387 operational amplifier family incorporates an  
internal input low-pass filter that reduces the amplifier response to EMI. Both common-mode and differential-  
mode filtering are provided by the input filter. The conducted EMI rejection of the OPAx387 is seen in 7-2.  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10M  
100M  
Frequency (Hz)  
1G  
5G  
c104  
7-2. EMI Rejection Ratio  
7.4 Device Functional Modes  
The OPAx387 have a single functional mode and are operational when the power-supply voltage is greater than  
1.7 V (±0.85 V). The maximum specified power-supply voltage for the OPAx387 is 5.5 V (±2.75 V).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA387 OPA2387 OPA4387  
 
 
 
 
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The OPAx387 are unity-gain stable, precision, operational amplifiers featuring state-of-the-art, zero-drift  
technology. The use of proprietary zero-drift circuitry gives the benefit of low input offset voltage over time and  
temperature, as well as lower 1/f noise component. As a result of the high PSRR, the devices work well in  
applications that run directly from battery power without regulation. The OPAx387 family is optimized for full rail-  
to-rail input, allowing for low-voltage, single-supply operation or split-supply use. These miniature, high-precision,  
low-noise amplifiers offer high-impedance inputs that have a common-mode range 100 mV beyond the supplies  
without input crossover distortion, and a rail-to-rail output that swings within 5 mV of the supplies under normal  
test conditions. The OPAx387 precision amplifiers are designed for upstream analog signal-chain applications in  
low or high gains, as well as downstream signal-chain functions, such as DAC buffering.  
8.1.1 Zero-Drift Clocking  
The OPAx387 use an advanced zero-drift architecture to achieve ultra-low offset and offset drift. This  
architecture uses a clock and switches internally to create a dc error-correction path. The clocking is filtered  
internally, and typically not observable for most configurations. Take the following precautions to minimize clock  
noise in the signal chain. The clocking creates a small charge-injection pulse at the input of the amplifier;  
therefore, do not use high-value resistors (> 100 kΩ) in series with the inputs to avoid higher clock voltage noise  
at the output. The charge injection pulses are minimized when the impedance to the input pins is matched. If  
higher value resistors are used, then use matching impedances on both amplifier input pins.  
8.2 Typical Applications  
8.2.1 Bidirectional Current Sensing  
This single-supply, low-side, bidirectional current-sensing design example detects load currents from 1 A to +1  
A. The single-ended output spans from 110 mV to 3.19 V. This design uses the OPAx387 because of the device  
low offset voltage and rail-to-rail input and output. One of the amplifiers is configured as a difference amplifier  
and the other amplifier provides the reference voltage. 8-1 shows the design example schematic.  
VCC  
VREF  
VCC  
R5  
+
U1B  
ILOAD  
R2  
R6  
+
R1  
R3  
+
VBUS  
+
VSHUNT  
RSHUNT  
VOUT  
U1A  
VCC  
R4  
RL  
8-1. Bidirectional Current-Sensing Schematic  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA387 OPA2387 OPA4387  
 
 
 
 
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.2.1.1 Design Requirements  
This solution has the following requirements:  
Supply voltage: 3.3 V  
Input: 1 A to +1 A  
Output: 1.65 V ±1.54 V (110 mV to 3.19 V)  
8.2.1.2 Detailed Design Procedure  
The load current, ILOAD, flows through the shunt resistor, RSHUNT, to develop the shunt voltage, VSHUNT. The  
shunt voltage is then amplified by the difference amplifier consisting of U1A and R1 through R4. The gain of the  
difference amplifier is set by the ratio of R4 to R3. To minimize errors, set R2 = R4 and R1 = R3. The reference  
voltage, VREF, is supplied by buffering a resistor divider using U1B. The transfer function is given by 方程1.  
VOUT = VSHUNT ´ GainDiff_Amp + VREF  
(1)  
where  
VSHUNT = ILOAD ´ RSHUNT  
R4  
GainDiff_Amp  
=
R3  
R6  
R5 + R6  
VREF = VCC  
´
There are two types of errors in this design: gain and offset. Gain errors are introduced by the tolerance of the  
shunt resistor and the ratios of R4 to R3 and, similarly, R2 to R1. Offset errors are introduced by the voltage  
divider (R5 and R6) and how closely the ratio of R4 / R3 matches R2 / R1. The latter value affects the CMRR of  
the difference amplifier, ultimately translating to an offset error.  
The value of VSHUNT is the ground potential for the system load because VSHUNT is a low-side measurement.  
Therefore, a maximum value must be placed on VSHUNT. In this design, the maximum value for VSHUNT is set to  
100 mV. 方程2 calculates the maximum value of the shunt resistor given a maximum shunt voltage of 100 mV  
and maximum load current of 1 A.  
VSHUNT(Max)  
100 mV  
= 100 mW  
RSHUNT(Max)  
=
=
ILOAD(Max)  
1 A  
(2)  
The tolerance of RSHUNT is directly proportional to cost. For this design, a shunt resistor with a tolerance of 0.5%  
is selected. If greater accuracy is required, select a 0.1% resistor or better.  
The load current is bidirectional; therefore, the shunt voltage range is 100 mV to +100 mV. This voltage is  
divided down by R1 and R2 before reaching the operational amplifier, U1A. Make sure that the voltage present at  
the noninverting node of U1A is within the common-mode range of the device. Use an operational amplifier, such  
as the OPAx387, that has a common-mode range that extends below the negative supply voltage. The offset  
error is minimal because the OPAx387 has a typical offset voltage of merely ±0.25 µV (±5 µV, maximum).  
Given a symmetric load current of 1 A to +1 A, the voltage divider resistors, R5 and R6, must be equal. To be  
consistent with the shunt resistor, a tolerance of 0.5% is selected. To minimize power consumption, 10kΩ  
resistors are used.  
To set the gain of the difference amplifier, the common-mode range and output swing of the OPAx387 must be  
considered. 程式 3 and 程式 4 depict the typical common-mode range and maximum output swing,  
respectively, of the OPAx387 given a 3.3V supply.  
100 mV < VCM < 3.4 V  
(3)  
(4)  
100 mV < VOUT < 3.2 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA387 OPA2387 OPA4387  
 
 
 
 
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
The gain of the difference amplifier can now be calculated as shown in 方程5.  
V
OUT_Max - VOUT_Min  
3.2 V - 100 mV  
100 mW ´ [1 A - (- 1A)]  
V
V
= 15.5  
=
GainDiff_Amp  
=
R
SHUNT ´ (IMAX - IMIN  
)
(5)  
The resistor value selected for R1 and R3 is 1 kΩ. 15.4 kΩis selected for R2 and R4 because this number is the  
nearest standard value. Therefore, the ideal gain of the difference amplifier is 15.4 V/V.  
The gain error of the circuit primarily depends on R1 through R4. As a result of this dependence, 0.1% resistors  
were selected. This configuration reduces the likelihood that the design requires a two-point calibration. A simple  
one-point calibration, if desired, removes the offset errors introduced by the 0.5% resistors.  
8.2.1.3 Application Curve  
3.30  
1.65  
0
-1.0  
-0.5  
0
0.5  
1.0  
Input Current (A)  
8-2. Bidirectional Current-Sensing Circuit Performance: Output Voltage vs Input Current  
8.2.2 Load Cell Measurement  
8-3 shows the OPAx387 in a high-CMRR dual-op amp instrumentation amplifier with a trim resistor and six-  
wire load cell for precision measurement.  
R3  
25 k  
R4  
100 kꢀ  
5 V  
REF5025  
RG  
R4  
R2  
100 kꢀ  
25 kꢀ  
5 V  
5 V  
5 V  
+SENSE  
œ
OPAx387  
œ
OPAx387  
VOUT  
+
+
R2  
GND  
GND  
10 kꢀ  
œSENSE  
200 kΩ  
Load Cell  
G = 5 +  
GND  
RG  
GND  
8-3. Load Cell Measurement Schematic  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA387 OPA2387 OPA4387  
 
 
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
9 Power Supply Recommendations  
The OPAx387 family of devices is specified for operation from 1.7 V to 5.5 V for single supplies, and ±0.85 V to  
±2.75 V for dual supplies. Key parameters that can exhibit significant variance with regard to operating voltage  
are presented in 6.7.  
CAUTION  
Supply voltages greater than 6 V can permanently damage the device (see 6.1).  
10 Layout  
10.1 Layout Guidelines  
Pay attention to good layout practice. Keep traces short and, when possible, use a printed-circuit board (PCB)  
ground plane with surface-mount components placed as close to the device pins as possible. Place a 0.1-µF  
capacitor close to the supply pins. These guidelines must be applied throughout the analog circuit to improve  
performance, and provide benefits such as reducing the electromagnetic interference (EMI) susceptibility.  
For lowest offset voltage and precision performance, optimize circuit layout and mechanical conditions. Avoid  
temperature gradients that create thermoelectric (Seebeck) effects in the thermocouple junctions formed from  
connecting dissimilar conductors. Cancel these thermally-generated potentials by making sure that the potentials  
are equal on both input pins. Other layout and design considerations include:  
Use low thermoelectric-coefficient conditions (avoid dissimilar metals).  
Thermally isolate components from power supplies or other heat sources.  
Shield operational amplifier and input circuitry from air currents, such as cooling fans.  
Follow these guidelines to reduce the likelihood of junctions being at different temperatures, which can cause  
thermoelectric voltage drift of 0.1 µV/°C or higher depending on materials used.  
10.2 Layout Example  
RIN  
VIN  
+
VOUT  
RG  
RF  
GND  
10-1. Schematic Representation  
VS  
Minimize  
parasitic  
inductance by  
CBYPASS  
VOUT  
placing bypass  
capacitor close  
to V+.  
OUT  
V+  
V–  
+IN –IN  
RG  
Keep high  
impedance  
input signal  
away from  
noisy traces.  
VIN  
RF  
Route trace under package for output to  
feedback resistor connection.  
10-2. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA387 OPA2387 OPA4387  
 
 
 
 
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 PSpice® for TI  
PSpice® for TI is a design and simulation environment that helps evaluate performance of analog circuits. Create  
subsystem designs and prototype solutions before committing to layout and fabrication, reducing development  
cost and time to market.  
11.1.1.2 TINA-TI™ Simulation Software (Free Download)  
TINA-TIsimulation software is a simple, powerful, and easy-to-use circuit simulation program based on a  
SPICE engine. TINA-TI simulation software is a free, fully-functional version of the TINAsoftware, preloaded  
with a library of macromodels, in addition to a range of both passive and active models. TINA-TI simulation  
software provides all the conventional dc, transient, and frequency domain analysis of SPICE, as well as  
additional design capabilities.  
Available as a free download from the Analog eLab Design Center, TINA-TI simulation software offers extensive  
post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the  
ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-  
start tool.  
备注  
These files require that either the TINA software or TINA-TI software be installed. Download the free  
TINA-TI simulation software from the TINA-TI™ software folder.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following: Texas Instruments, Circuit board layout techniques  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TINA-TIand TI E2Eare trademarks of Texas Instruments.  
TINAis a trademark of DesignSoft, Inc.  
PSpice® is a registered trademark of Cadence Design Systems, Inc.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA387 OPA2387 OPA4387  
 
 
 
 
 
 
 
OPA387, OPA2387, OPA4387  
ZHCSMQ4F NOVEMBER 2020 REVISED FEBRUARY 2022  
www.ti.com.cn  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA387 OPA2387 OPA4387  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2387DGKR  
OPA2387DGKT  
OPA2387DSGR  
OPA2387DSGT  
OPA387DBVR  
OPA387DBVT  
OPA4387PWR  
OPA4387PWT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
WSON  
WSON  
SOT-23  
SOT-23  
TSSOP  
TSSOP  
DGK  
DGK  
DSG  
DSG  
DBV  
DBV  
PW  
8
8
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2B2T  
2B2T  
2N3H  
2N3H  
2IMT  
2IMT  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
SN  
NIPDAU  
NIPDAU  
SN  
8
8
5
5
SN  
14  
14  
SN  
OPA4387  
OPA4387  
PW  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Apr-2023  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2387DGKR  
OPA2387DGKT  
OPA2387DSGR  
OPA2387DSGT  
OPA387DBVR  
OPA387DBVT  
OPA4387PWR  
OPA4387PWT  
VSSOP  
VSSOP  
WSON  
WSON  
SOT-23  
SOT-23  
TSSOP  
TSSOP  
DGK  
DGK  
DSG  
DSG  
DBV  
DBV  
PW  
8
8
2500  
250  
330.0  
330.0  
180.0  
180.0  
178.0  
178.0  
330.0  
180.0  
12.4  
12.4  
8.4  
5.3  
5.3  
2.3  
2.3  
3.3  
3.3  
6.9  
6.9  
3.4  
3.4  
2.3  
2.3  
3.2  
3.2  
5.6  
5.6  
1.4  
1.4  
8.0  
8.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q2  
Q2  
Q3  
Q3  
Q1  
Q1  
8
3000  
250  
1.15  
1.15  
1.4  
8
8.4  
8.0  
5
3000  
250  
9.0  
8.0  
5
9.0  
1.4  
8.0  
14  
14  
3000  
250  
12.4  
12.4  
1.6  
12.0  
12.0  
PW  
1.6  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2387DGKR  
OPA2387DGKT  
OPA2387DSGR  
OPA2387DSGT  
OPA387DBVR  
OPA387DBVT  
OPA4387PWR  
OPA4387PWT  
VSSOP  
VSSOP  
WSON  
WSON  
SOT-23  
SOT-23  
TSSOP  
TSSOP  
DGK  
DGK  
DSG  
DSG  
DBV  
DBV  
PW  
8
8
2500  
250  
366.0  
366.0  
210.0  
210.0  
190.0  
190.0  
356.0  
210.0  
364.0  
364.0  
185.0  
185.0  
190.0  
190.0  
356.0  
185.0  
50.0  
50.0  
35.0  
35.0  
30.0  
30.0  
35.0  
35.0  
8
3000  
250  
8
5
3000  
250  
5
14  
14  
3000  
250  
PW  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY