OPA388-Q1 [TI]

符合汽车标准的宽带宽、零温漂、零交叉、精密放大器;
OPA388-Q1
型号: OPA388-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

符合汽车标准的宽带宽、零温漂、零交叉、精密放大器

放大器
文件: 总34页 (文件大小:3276K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
OPAx388-Q1 自动、精密、零漂移、零交叉、  
真正的轨至轨输入/输出运算放大器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准:  
– 温度等140°C +125°CTA  
提供功能安全  
OPA388-Q1 OPA2388-Q1 (OPAx388-Q1) 是自动低  
噪声、快速稳定、零漂移高精度运算放大器可实现轨  
到轨输入和输出运行。优异交流性能与仅为 0.25μV  
的失调电压以及 0.005µV/°C 的温度漂移相结合使  
OPAx388-Q1 为驱动高精度高分辨率模数转换器  
(ADC) 的理想选择。零交叉技术更大程度地减小了共  
模范围内的失调电压变化。低漂移和超低 1/f 噪声相结  
使 OPAx388-Q1 能够监视和检测故障情况而不  
会影响信号完整性。  
可帮助进行功能安全系统设计的文(OPA388-  
Q1)  
可帮助进行功能安全系统设计的文档  
(OPA2388-Q1: VSSOP)  
• 零漂移±0.005µV/°C  
• 零交叉140dB CMRR RRIO  
• 低噪声1 kHz 7.0 nVHz  
1/f 噪声140nVPP0.1Hz 10Hz)  
• 快速稳定2µs1V0.01%)  
• 增益带宽10MHz  
这些器件的额定工业温度范围均-40°C +125°C。  
器件信息  
封装(1)  
封装尺寸标称值)  
2.90mm × 1.60mm  
4.90mm × 3.90mm  
3.00mm × 3.00mm  
器件型号  
OPA388-Q1  
SOT-23 (5)  
• 单电源2.5V 5.5V  
• 双电源±1.25V ±2.75V  
• 真正的轨至轨输入  
SOIC (8) - 预发布  
OPA2388-Q1  
VSSOP (8)  
• 输入已滤EMI RFI  
• 行业标准封装VSSOP-8SOT-23-5  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
2 应用  
混合动力汽车/电动汽车逆变器和电机控制  
电池管理系(BMS)  
直流/直流转换器  
车载充电(OBC) 和无线充电器  
VCC  
5
4
VREF  
VCC  
R5  
3
2
+
U1B  
1
ILOAD  
R6  
0
R2  
+
œ1  
œ2  
R1  
+
VBUS  
+
œ
VSHUNT  
RSHUNT  
VOUT  
œ3  
U1A  
VCC  
R4  
VCM = œ2.85 V  
R3  
œ
RL  
VCM = 2.85 V  
œ4  
œ5  
0
1
2
3
œ3  
œ2  
œ1  
Input Common-mode Voltage (V)  
双向电流分流监控器中OPA388-Q1  
C003  
OPA388-Q1 在整个共模范围内采用超低失调电压  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS989  
 
 
 
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
Table of Contents  
8 Application and Implementation..................................19  
8.1 Application Information............................................. 19  
8.2 Typical Application ................................................ 19  
9 Power Supply Recommendations................................22  
10 Layout...........................................................................22  
10.1 Layout Guidelines................................................... 22  
10.2 Layout Example...................................................... 22  
11 Device and Documentation Support..........................23  
11.1 Device Support........................................................23  
11.2 Documentation Support.......................................... 23  
11.3 接收文档更新通知................................................... 23  
11.4 支持资源..................................................................23  
11.5 Trademarks............................................................. 23  
11.6 Electrostatic Discharge Caution..............................24  
11.7 术语表..................................................................... 24  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information: OPA388-Q1.............................. 5  
6.5 Thermal Information: OPA2388-Q1............................ 5  
6.6 Electrical Characteristics.............................................6  
6.7 Typical Characteristics................................................8  
7 Detailed Description......................................................16  
7.1 Overview...................................................................16  
7.2 Functional Block Diagram.........................................16  
7.3 Feature Description...................................................17  
7.4 Device Functional Modes..........................................18  
Information.................................................................... 24  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (August 2020) to Revision A (November 2021)  
Page  
• 添加OPA2388-Q1 量产数据正在供货器件和相关内容.............................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
OUT  
Vœ  
1
2
3
5
V+  
+IN  
4
œIN  
Not to scale  
5-1. OPA388-Q1 DBV (5-Pin SOT-23) Package, Top View  
Pin Functions: OPA388-Q1  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
4
Input  
Input  
Inverting input  
IN  
+IN  
NC  
3
Noninverting input  
No internal connection (can be left floating)  
Output  
OUT  
V–  
V+  
1
Output  
2
5
Power  
Power  
Negative (lowest) power supply  
Positive (highest) power supply  
OUT A  
œIN A  
+IN A  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT B  
œIN B  
+IN B  
Not to scale  
5-2. OPA2388-Q1 D (8-Pin SOIC, Preview) and DGK (8-Pin VSSOP) Packages, Top View  
Pin Functions: OPA2388-Q1  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
2
Input  
Input  
Inverting input, channel A  
Inverting input, channel B  
Noninverting input, channel A  
Noninverting input, channel B  
Output, channel A  
IN A  
IN B  
+IN A  
+IN B  
6
3
Input  
5
Input  
OUT A  
OUT B  
V–  
1
Output  
Output  
Power  
Power  
7
Output, channel B  
4
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
8
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Single-supply  
6
±3  
VS  
V
Supply voltage, VS = (V+) (V)  
Dual-supply  
Common-mode  
Differential  
(V+) + 0.5  
(V) 0.5  
Signal input pins voltage  
V
(V+) (V) + 0.2  
Signal input pins current  
Output short circuit(2)  
Operating temperature  
Junction temperature  
Storage temperature  
±10  
Continuous  
150  
mA  
Continuous  
TA  
°C  
°C  
°C  
55  
TJ  
150  
Tstg  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD classification level 2  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC Q100-011  
CDM ESD classification level C5  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
NOM  
MAX  
5.5  
UNIT  
V
Single-supply  
Dual-supply  
VS  
TA  
Supply voltage, VS = (V+) (V)  
±1.25  
40  
±2.75  
125  
Specified temperature  
°C  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
 
 
 
 
 
 
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.4 Thermal Information: OPA388-Q1  
OPA388-Q1  
THERMAL METRIC(1)  
DBV (SOT-23)  
5 PINS  
145.7  
94.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
43.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
24.7  
ΨJT  
43.1  
ΨJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Thermal Information: OPA2388-Q1  
OPA2388-Q1  
THERMAL METRIC(1)  
DGK (VSSOP)  
UNIT  
8 PINS  
165  
53  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
87  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
4.9  
ΨJT  
85  
ΨJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
 
 
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.6 Electrical Characteristics  
at TA = 25°C, VCM = VOUT = VS / 2, VS = ±1.25 V to ±2.75 V (2.5 V to 5.5 V), and RLOAD = 10 kΩconnected to VS / 2 (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
OPA388-Q1  
±0.25  
±1.5  
±5  
±5  
OPA2388-Q1  
VOS  
Input offset voltage  
µV  
±7.5  
±0.05  
±1  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
dVOS/dT Input offset voltage drift  
PSRR Power-supply rejection ratio  
INPUT BIAS CURRENT  
±0.005  
±0.1  
µV/°C  
µV/V  
±30  
±350  
±400  
±700  
±700  
±800  
±800  
TA = 0°C to +85°C  
IB  
Input bias current  
pA  
pA  
RIN = 100 k  
RIN = 100 kΩ  
TA = 40°C to +125°C  
TA = 0°C to +85°C  
IOS  
Input offset current  
TA = 40°C to +125°C  
NOISE  
EN  
Input voltage noise  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
0.14  
7
µVPP  
f = 100 Hz  
7
eN  
Input voltage noise density  
nV/Hz  
f = 1 kHz  
7
f = 10 kHz  
7
IN  
Input current noise density f = 1 kHz  
100  
fA/Hz  
INPUT VOLTAGE  
Common-mode voltage  
range  
(V) –  
VCM  
(V+) + 0.1  
V
0.1  
VS = ±1.25 V  
VS = ±2.75 V  
124  
124  
138  
140  
(V) 0.1 V < VCM < (V+) + 0.1 V  
Common-mode rejection  
ratio  
(V) < VCM < (V+) + 0.1 V,  
TA = 40°C to +125°C  
CMRR  
dB  
VS = ±1.25 V  
VS = ±2.75 V  
114  
124  
134  
140  
(V) 0.05 V < VCM < (V+) + 0.1 V,  
TA = 40°C to +125°C  
INPUT IMPEDANCE  
Differential input  
impedance  
zid  
zic  
100 || 2  
60 || 4.5  
MΩ|| pF  
TΩ|| pF  
Common-mode input  
impedance  
OPEN-LOOP GAIN  
126  
120  
148  
126  
(V) + 0.15 V < VO < (V+) 0.15 V  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
(V) + 0.25 V < VO < (V+) 0.25 V,  
RLOAD = 2 kΩ  
AOL  
Open-loop voltage gain  
dB  
126  
120  
148  
148  
(V) + 0.30 V < VO < (V+) 0.30 V,  
RLOAD = 2 kΩ  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.6 Electrical Characteristics (continued)  
at TA = 25°C, VCM = VOUT = VS / 2, VS = ±1.25 V to ±2.75 V (2.5 V to 5.5 V), and RLOAD = 10 kΩconnected to VS / 2 (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY RESPONSE  
GBW  
SR  
Unity-gain bandwidth  
10  
5
MHz  
V/µs  
Slew rate  
G = 1, 4-V step  
Total harmonic distortion +  
noise  
THD+N  
tS  
G = 1, f = 1 kHz, VO = 1 VRMS  
0.0005%  
To 0.1%  
0.75  
2
VS = ±2.5 V, G = 1,  
1-V step  
Settling time  
µs  
µs  
To 0.01%  
tOR  
Overload recovery time  
VIN × G = VS  
Positive rail  
Negative rail  
10  
OUTPUT  
No load  
1
15  
20  
50  
15  
20  
60  
25  
5
20  
RLOAD = 2 kΩ  
Voltage output swing from  
rail  
No load  
5
VO  
mV  
10  
40  
10  
RLOAD = 2 kΩ  
TA = 40°C to +125°C, both rails, RLOAD = 10 kΩ  
VS = 5.5 V  
VS = 2.5 V  
±60  
ISC  
CLOAD  
ZO  
Short-circuit current  
Capacitive load drive  
mA  
±30  
See 6-25  
Open-loop output  
impedance  
100  
f = 1 MHz, IO = 0 A, see 6-24  
Ω
POWER SUPPLY  
1.7  
1.7  
1.9  
1.9  
2.4  
2.4  
2.6  
2.6  
VS = ±1.25 V (VS = 2.5 V), IO = 0 A  
TA = 40°C to +125°C  
Quiescent current per  
amplifier  
IQ  
mA  
VS = ±2.75 V (VS = 5.5 V), IO = 0 A  
TA = 40°C to +125°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA388-Q1 OPA2388-Q1  
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics  
at TA = 25°C, VS = ±2.5 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 100 pF (unless otherwise noted)  
6-1. Table of Graphs  
DESCRIPTION  
Offset Voltage Production Distribution  
FIGURE  
6-1  
Offset Voltage Drift Distribution From 40°C to +125°C  
Offset Voltage vs Temperature  
6-2  
6-3  
Offset Voltage vs Common-Mode Voltage  
Offset Voltage vs Power Supply  
6-4  
6-5  
Offset Voltage Long Term Drift  
6-6  
Open-Loop Gain and Phase vs Frequency  
Closed-Loop Gain and Phase vs Frequency  
Input Bias Current vs Common-Mode Voltage  
Input Bias Current vs Temperature  
Output Voltage Swing vs Output Current (Maximum Supply)  
CMRR and PSRR vs Frequency  
CMRR vs Temperature  
6-7  
6-8  
6-9  
6-10  
6-11  
6-12  
6-13  
PSRR vs Temperature  
6-14  
0.1-Hz to 10-Hz Noise  
6-15  
Input Voltage Noise Spectral Density vs Frequency  
THD+N Ratio vs Frequency  
6-16  
6-17  
THD+N vs Output Amplitude  
6-18  
Spectral Content  
6-19, 6-20  
6-21  
Quiescent Current vs Supply Voltage  
Quiescent Current vs Temperature  
Open-Loop Gain vs Temperature  
Open-Loop Output Impedance vs Frequency  
Small-Signal Overshoot vs Capacitive Load (10-mV Step)  
No Phase Reversal  
6-22  
6-23  
6-24  
6-25  
6-26  
Positive Overload Recovery  
6-27  
Negative Overload Recovery  
6-28  
Small-Signal Step Response (10-mV Step)  
Large-Signal Step Response (4-V Step)  
Settling Time  
6-29, 6-30  
6-31 , 6-32  
6-33, 6-34  
6-35  
Short-Circuit Current vs Temperature  
Maximum Output Voltage vs Frequency  
EMIRR vs Frequency  
6-36  
6-37  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±2.5 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 100 pF (unless otherwise noted)  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
Input Offset Voltage (µV)  
Input Offset Voltage Drift (µV/°C)  
TA = 40°C to +125°C  
C002  
C001  
6-1. Offset Voltage Production Distribution  
6-2. Offset Voltage Drift Distribution  
5
4
3
2
1
0
5
4
3
2
1
0
œ1  
œ1  
œ2  
œ3  
œ4  
œ5  
œ2  
œ3  
œ4  
œ5  
VCM = œ2.85 V  
VCM = 2.85 V  
0
25  
50  
75  
100 125 150  
0
1
2
3
œ75 œ50 œ25  
œ3  
œ2  
œ1  
Temperature (°C)  
Input Common-mode Voltage (V)  
C001  
C003  
6-3. Offset Voltage vs Temperature  
6-4. Offset Voltage vs Common-Mode Voltage  
20  
5
4
3
2
1
0
15  
10  
5
0
œ1  
-5  
œ2  
œ3  
œ4  
œ5  
-10  
-15  
-20  
VS  
=
1.25 V  
VS  
=
2.75 V  
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
0
20  
40  
60  
80  
Days  
100  
120  
140  
160  
Supply Voltage (V)  
C001  
C309  
3 typical units  
6-6. Offset Voltage Long Term Drift  
6-5. Offset Voltage vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
 
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±2.5 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 100 pF (unless otherwise noted)  
160  
140  
1±0  
100  
80  
180  
135  
90  
60  
40  
20  
0
Open-Loop Gain  
G = +1  
G= +10  
G= +100  
Open-Loop Phase  
60  
40  
45  
±0  
0
0
±±0  
±40  
-20  
-45  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k 10k 100k 1M 10M  
Frequency (Hz)  
Frequency (Hz)  
C004  
C0±1  
6-8. Closed-Loop Gain and Phase vs Frequency  
6-7. Open-Loop Gain and Phase vs Frequency  
1500  
1.5  
1.3  
1.0  
0.8  
0.5  
0.3  
1000  
500  
0
ios  
œ500  
0.0  
0
1
2
3
0
25  
50  
75  
100 125 150  
œ3  
œ2  
œ1  
œ75 œ50 œ25  
Input Common-mode Voltage (V)  
Temperature (°C)  
C001  
C001  
6-9. Input Bias Current vs Common-Mode Voltage  
6-10. Input Bias Current vs Temperature  
3
2.5  
2
160  
140  
120  
100  
80  
1.5  
25°C  
1
0.5  
0
-0.5  
-1  
125°C  
60  
œ40°C  
CMRR  
+PSRR  
œPSRR  
-1.5  
-2  
40  
20  
-2.5  
-3  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Output Current (mA)  
Frequency (Hz)  
C001  
C004  
6-12. CMRR and PSRR vs Frequency  
6-11. Output Voltage Swing vs Output Current (Maximum  
Supply)  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
 
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±2.5 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 100 pF (unless otherwise noted)  
180  
160  
140  
120  
100  
0.001  
0.01  
0.1  
1
180  
160  
140  
120  
100  
0.001  
0.01  
0.1  
1
10  
10  
0
25  
50  
75 100 125 150  
œ75 œ50 œ25  
0
25  
50  
75 100 125 150  
œ75 œ50 œ25  
Temperature (°C)  
Temperature (°C)  
C001  
C001  
6-14. PSRR vs Temperature  
6-13. CMRR vs Temperature  
1000  
100  
10  
1
Time (1 s/div)  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
C017  
C002  
6-15. 0.1-Hz to 10-Hz Noise  
6-16. Input Voltage Noise Spectral Density vs Frequency  
0.01  
-80  
0.1  
-60  
G = -1, 10k-Load  
G = -1, 2k-Load  
G = -1, 600-Load  
G = +1, 10k-Load  
G = +1, 2k-Load  
G = +1, 600-Load  
0.01  
-80  
0.001  
-100  
G = -1, 600-Load  
G = -1, 2k-Load  
G = -1, 10k-Load  
G = +1, 600-Load  
G = +1, 2k-Load  
G = +1, 10k-Load  
0.001  
0.0001  
-100  
-120  
0.0001  
-120  
20k  
20  
200  
2k  
0.001  
0.01  
0.1  
1
Frequency (Hz)  
Output Amplitude (VRMS  
)
C004  
C004  
6-17. THD+N Ratio vs Frequency  
6-18. THD+N vs Output Amplitude  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
 
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±2.5 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 100 pF (unless otherwise noted)  
0
œ20  
0
œ20  
œ40  
œ40  
œ60  
œ60  
œ80  
œ80  
œ100  
œ120  
œ140  
œ160  
œ180  
œ100  
œ120  
œ140  
œ160  
œ180  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
C004  
C004  
G = +1, f = 1 kHz, VO = 4.5 VPP, RL = 10 kΩ, BW = 90 kHz  
G = +1, f = 1 kHz, VO = 4.5 VPP, RL = 2 kΩ, BW = 90 kHz  
6-19. Spectral Content (With 10-kΩLoad)  
6-20. Spectral Content (With 2-kΩLoad)  
2.5  
2.5  
2
1.5  
1
2
1.5  
1
0.5  
0
0.5  
0
0
0.5  
1
1.5  
2
2.5  
3
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
Supply Voltage (V)  
Temperature (°C)  
C001  
C001  
6-21. Quiescent Current vs Supply Voltage  
6-22. Quiescent Current vs Temperature  
180  
160  
140  
120  
100  
0.001  
1k  
100  
10  
VS  
=
2.75 V  
0.01  
0.1  
1
VS  
=
1.1 V  
1
100m  
10m  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
25  
50  
75 100 125 150  
œ75 œ50 œ25  
Frequency (Hz)  
Temperature (°C)  
C003  
C001  
6-24. Open-Loop Output Impedance vs Frequency  
6-23. Open-Loop Gain vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
 
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±2.5 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 100 pF (unless otherwise noted)  
100  
VIN  
90  
G = -1  
80  
70  
60  
50  
VOUT  
40  
30  
G = +1  
20  
10  
Time (45 ms/div)  
10  
100  
1000  
Capacitive Load (pF)  
C004  
C017  
10-mV step  
6-25. Small-Signal Overshoot vs Capacitive Load  
6-26. No Phase Reversal  
VIN  
VOUT  
VIN  
VOUT  
Time (200 ns/div)  
Time (200 ns/div)  
C017  
C017  
6-27. Positive Overload Recovery  
6-28. Negative Overload Recovery  
VOUT  
VIN  
VOUT  
VIN  
Time (2.5 µs/div)  
Time (2.5 µs/div)  
C017  
C017  
G = +1, 10-mV step  
G = 1, 10-mV step  
6-29. Small-Signal Step Response  
6-30. Small-Signal Step Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
 
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±2.5 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 100 pF (unless otherwise noted)  
VOUT  
VIN  
VOUT  
VIN  
Time (500 ns/div)  
Time (500 ns/div)  
C017  
C017  
Falling output, 4-V Step  
Rising output, 4-V step  
6-31. Large-Signal Step Response  
6-32. Large-Signal Step Response  
0.01% Settling = ±200µV  
0.01% Settling = ±100µV  
Time (500 ns/div)  
Time (500 ns/div)  
C017  
C017  
0.01% settling = ±100 µV, 1-V positive step  
0.01% settling = ±200 µV, 1-V negative step  
6-33. Settling Time  
6-34. Settling Time  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
7
6
5
4
3
2
1
0
Maximum output voltage without  
slew-rate induced distortion.  
ISC, Sink  
VS  
=
2.5V  
0.9V  
ISC, Source  
VS  
=
100  
1k  
10k  
100k  
1M  
10M  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
Frequency (Hz)  
Temperature (°C)  
C001  
C001  
6-35. Short-Circuit Current vs Temperature  
6-36. Maximum Output Voltage vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
 
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VS = ±2.5 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 100 pF (unless otherwise noted)  
160  
140  
120  
100  
80  
60  
40  
20  
0
10M  
100M  
Frequency (Hz)  
1000M  
C004  
PRF = 10 dBm  
6-37. EMIRR vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPAx388-Q1 zero-drift amplifiers are engineered with the unique combination of a proprietary precision  
auto-calibration technique and a low-noise, low-ripple, input charge pump. These amplifiers offer ultra-low input  
offset voltage and drift and achieve excellent input and output dynamic linearity. The OPAx388-Q1 operate from  
2.5 V to 5.5 V, are unity-gain stable, and are designed for a wide range of general-purpose and precision  
applications. The integrated, low-noise charge pump allows true rail-to-rail input common-mode operation  
without distortion associated with complementary rail-to-rail input topologies (input crossover distortion). The  
OPAx388-Q1 strengths also include 10-MHz bandwidth, 7-nV/Hz noise spectral density, and no 1/f noise,  
making these devices an excellent choice for interfacing with sensor modules and buffering high-fidelity digital-  
to-analog converters (DACs).  
7.2 Functional Block Diagram  
Low-noise  
Charge-pump  
GM_FF  
CCOMP  
CLK  
CLK  
+IN  
OUT  
œIN  
GM1  
GM2  
GM3  
CCOMP  
Ripple Reduction  
Technology  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
 
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Input Voltage and Zero-Crossover Functionality  
The OPAx388-Q1 input common-mode voltage range extends 0.1 V beyond the supply rails. This amplifier  
family is designed to cover the full range without the troublesome transition region found in some other rail-to-rail  
amplifiers. Operating a complementary rail-to-rail input amplifier with signals traversing the transition region  
results in unwanted non-linear behavior and polluted spectral content. 7-1 and 7-2 contrast the  
performance of a traditional complementary rail-to-rail input stage amplifier with the performance of the zero-  
crossover OPAx388-Q1. Significant harmonic content and distortion is generated during the differential pair  
transition (such a transition does not exist in the OPAx388-Q1). Crossover distortion is eliminated through the  
use of a single differential pair coupled with an internal low-noise charge pump. The OPAx388-Q1 maintain  
noise, bandwidth, and offset performance throughout the input common-mode range, thus reducing printed  
circuit board (PCB) and bill of materials (BOM) complexity through the reduction of power-supply rails.  
20  
15  
0
œ20  
Complementary Input Stage  
OPA388 Zero-Crossover Input Stage  
10  
œ40  
5
œ60  
Traditional Rail-to-Rail  
Input Stage  
0
œ80  
œ5  
œ100  
œ120  
œ140  
œ10  
œ15  
œ20  
VCM = œ2.85 V  
VCM = 2.85 V  
OPA388 Zero-Crossover Input Stage  
0
1
2
3
10  
100  
1k  
10k  
œ3  
œ2  
œ1  
Input Common-mode Voltage (V)  
Frequency (Hz)  
C003  
C004  
7-1. Input Crossover Distortion  
7-2. Input Crossover Distortion Spectral Content  
Nonlinearity  
Typically, input bias current is approximately ±30 pA. Input voltages exceeding the power supplies, however, can  
cause excessive current to flow into or out of the input pins. Momentary voltages greater than the power supply  
can be tolerated if the input current is limited to 10 mA. This limitation is easily accomplished with an input  
resistor, as shown in 7-3.  
Current-limiting resistor  
required if input voltage  
exceeds supply rails by  
> 0.3V.  
+5V  
IOVERLOAD  
10 mA max  
VOUT  
VIN  
5 kΩ  
Copyright © 2016, Texas Instruments Incorporated  
7-3. Input Current Protection  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
 
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
7.3.2 Input Differential Voltage  
The typical input bias current of the OPAx388-Q1 during normal operation is approximately 30 pA. In overdriven  
conditions, the bias current can increase significantly. The most common cause of an overdriven condition  
occurs when an operational amplifier is outside of the linear range of operation. When the output of the  
operational amplifier is driven to one of the supply rails, the feedback loop requirements cannot be satisfied and  
a differential input voltage develops across the input pins. This differential input voltage results in activation of  
parasitic diodes inside the front-end input chopping switches that combine with 10-kΩ electromagnetic  
interference (EMI) filter resistors to create the equivalent circuit shown in 7-4. Notice that the input bias  
current remains within specification in the linear region.  
100 W  
Clamp  
+In  
-In  
CORE  
100 W  
Copyright © 2016, Texas Instruments Incorporated  
7-4. Equivalent Input Circuit  
7.3.3 Internal Offset Correction  
The OPAx388-Q1 operational amplifiers use an auto-calibration technique with a time-continuous, 200-kHz  
operational amplifier in the signal path. These amplifiers are zero-corrected every 5 µs using a proprietary  
technique. At power up, the amplifiers require approximately 1 ms to achieve the specified VOS accuracy. This  
design has no aliasing or flicker noise.  
7.3.4 EMI Susceptibility and Input Filtering  
Operational amplifiers vary in susceptibility to EMI. If conducted EMI enters the operational amplifier, the dc  
offset at the amplifier output can shift from its nominal value when EMI is present. This shift is a result of signal  
rectification associated with the internal semiconductor junctions. Although all operational amplifier pin functions  
can be affected by EMI, the input pins are likely to be the most susceptible. The OPAx388-Q1 operational  
amplifier family incorporates an internal input low-pass filter that reduces the amplifier response to EMI. Both  
common-mode and differential-mode filtering are provided by the input filter. The filter is designed for a cutoff  
frequency of approximately 20 MHz (3 dB), with a rolloff of 20 dB per decade.  
7.4 Device Functional Modes  
The OPAx388-Q1 have a single functional mode and are operational when the power-supply voltage is greater  
than 2.5 V (±1.25 V). The maximum specified power-supply voltage for the OPAx388-Q1 is 5.5 V (±2.75 V).  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The OPAx388-Q1 are unity-gain stable, precision operational amplifiers free from unexpected output and phase  
reversal. The use of proprietary zero-drift circuitry gives the benefit of low input offset voltage over time and  
temperature, as well as lowering the 1/f noise component. As a result of the high PSRR, these devices work well  
in applications that run directly from battery power without regulation. The OPAx388-Q1 are optimized for full rail-  
to-rail input, allowing for low-voltage, single-supply operation or split-supply use. These miniature, high-precision,  
low-noise amplifiers offer high-impedance inputs that have a common-mode range 100 mV beyond the supplies  
without input crossover distortion and a rail-to-rail output that swings within 5 mV of the supplies under normal  
test conditions. The OPAx388-Q1 precision amplifiers are designed for upstream analog signal chain  
applications in low or high gains, as well as downstream signal chain functions such as DAC buffering.  
8.2 Typical Application  
This single-supply, low-side, bidirectional current-sensing design example detects load currents from 1 A to +1  
A. The single-ended output spans from 110 mV to 3.19 V. This design uses the OPA388-Q1 because of the low  
offset voltage and rail-to-rail input and output. One of the amplifiers is configured as a difference amplifier and  
the other amplifier provides the reference voltage.  
8-1 shows the circuit drawing.  
VCC  
VREF  
VCC  
R5  
+
U1B  
ILOAD  
R6  
R2  
+
R1  
+
VBUS  
+
œ
VSHUNT  
RSHUNT  
VOUT  
U1A  
VCC  
R4  
R3  
œ
RL  
8-1. Bidirectional Current-Sensing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
 
 
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
8.2.1 Design Requirements  
This solution has the following requirements:  
Supply voltage: 3.3 V  
Input: 1 A to 1 A  
Output: 1.65 V ±1.54 V (110 mV to 3.19 V)  
8.2.2 Detailed Design Procedure  
The load current, ILOAD, flows through the shunt resistor (RSHUNT) to develop the shunt voltage, VSHUNT. The  
shunt voltage is then amplified by the difference amplifier consisting of U1A and R1 through R4. The gain of the  
difference amplifier is set by the ratio of R4 to R3. To minimize errors, set R2 = R4 and R1 = R3. The reference  
voltage, VREF, is supplied by buffering a resistor divider using U1B. The transfer function is given by 方程1.  
VOUT = VSHUNT ´ GainDiff_Amp + VREF  
(1)  
where  
VSHUNT = ILOAD ´ RSHUNT  
R4  
GainDiff_Amp  
=
R3  
R6  
R5 + R6  
VREF = VCC  
´
There are two types of errors in this design: offset and gain. Gain errors are introduced by the tolerance of the  
shunt resistor and the ratios of R4 to R3 and, similarly, R2 to R1. Offset errors are introduced by the voltage  
divider (R5 and R6) and how closely the ratio of R4 / R3 matches R2 / R1. The latter value affects the CMRR of  
the difference amplifier, ultimately translating to an offset error.  
The value of VSHUNT is the ground potential for the system load because VSHUNT is a low-side measurement.  
Therefore, a maximum value must be placed on VSHUNT. In this design, the maximum value for VSHUNT is set to  
100 mV. Equation 2 calculates the maximum value of the shunt resistor given a maximum shunt voltage of  
100 mV and maximum load current of 1 A.  
VSHUNT(Max)  
100 mV  
= 100 mW  
RSHUNT(Max)  
=
=
ILOAD(Max)  
1 A  
(2)  
The tolerance of RSHUNT is directly proportional to cost. For this design, a shunt resistor with a tolerance of 0.5%  
was selected. If greater accuracy is required, select a 0.1% resistor or better.  
The load current is bidirectional; therefore, the shunt voltage range is 100 mV to 100 mV. This voltage is  
divided down by R1 and R2 before reaching the operational amplifier, U1A. Make sure that the voltage present at  
the noninverting node of U1A is within the common-mode range of the device. Therefore, use an operational  
amplifier, such as the OPA388-Q1, that has a common-mode range that extends below the negative supply  
voltage. Finally, to minimize offset error, the OPA388-Q1 has a typical offset voltage of merely ±0.25 µV (±5 µV  
maximum).  
Given a symmetric load current of 1 A to +1 A, the voltage divider resistors (R5 and R6) must be equal. To be  
consistent with the shunt resistor, a tolerance of 0.5% was selected. To minimize power consumption, 10-kΩ  
resistors are used.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
To set the gain of the difference amplifier, the common-mode range and output swing of the OPA388-Q1 must be  
considered. Equation 3 and Equation 4 depict the typical common-mode range and maximum output swing,  
respectively, of the OPA388-Q1 given a 3.3-V supply.  
100 mV < VCM < 3.4 V  
(3)  
(4)  
100 mV < VOUT < 3.2 V  
The gain of the difference amplifier can now be calculated as shown in Equation 5.  
V
OUT_Max - VOUT_Min  
3.2 V - 100 mV  
100 mW ´ [1 A - (- 1A)]  
V
V
= 15.5  
=
GainDiff_Amp  
=
R
SHUNT ´ (IMAX - IMIN  
)
(5)  
The resistor value selected for R1 and R3 was 1 kΩ. 15.4 kΩ was selected for R2 and R4 because this number  
is the nearest standard value. Therefore, the ideal gain of the difference amplifier is 15.4 V/V.  
The gain error of the circuit primarily depends on R1 through R4. As a result of this dependence, 0.1% resistors  
were selected. This configuration reduces the likelihood that the design requires a two-point calibration. A simple  
one-point calibration, if desired, removes the offset errors introduced by the 0.5% resistors.  
8.2.3 Application Curve  
3.30  
1.65  
0
-1.0  
-0.5  
0
0.5  
1.0  
Input Current (A)  
8-2. Bidirectional Current-Sensing Circuit Performance: Output Voltage vs Input Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
 
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
The OPAx388-Q1 family of operational amplifiers can be used with single or dual supplies from an operating  
range of VS = 2.5 V (±1.25 V) up to 5.5 V (±2.75 V). Key parameters that vary over the supply voltage or  
temperature range are shown in 6.7.  
CAUTION  
Supply voltages greater than 7 V can permanently damage the device (see 6.1).  
10 Layout  
10.1 Layout Guidelines  
Pay attention to good layout practice. Keep traces short and, if possible, use a printed-circuit board (PCB)  
ground plane with surface-mount components placed as close as possible to the device pins. Place a 0.1-µF  
capacitor closely across the supply pins. Apply these guidelines throughout the analog circuit to improve  
performance and provide benefits, such as reducing the electromagnetic interference (EMI) susceptibility.  
For lowest offset voltage and precision performance, optimize the circuit layout and mechanical conditions. Avoid  
temperature gradients that create thermoelectric (Seebeck) effects in the thermocouple junctions formed from  
connecting dissimilar conductors. These thermally-generated potentials can be made to cancel by making sure  
these potentials are equal on both input terminals. Other layout and design considerations include:  
Use low thermoelectric-coefficient conditions (avoid dissimilar metals).  
Thermally isolate components from power supplies or other heat sources.  
Shield operational amplifier and input circuitry from air currents, such as cooling fans.  
Follow these guidelines to reduce the likelihood of junctions being at different temperatures, which can cause  
thermoelectric voltage drift of 0.1 µV/°C or greater, depending on the materials used.  
10.2 Layout Example  
VIN  
+
VOUT  
RG  
RF  
10-1. Schematic Representation  
Place components close  
to device and to each  
other to reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
RF  
VS+  
N/C  
N/C  
RG  
GND  
œIN  
+IN  
Vœ  
V+  
OUTPUT  
N/C  
VIN  
GND  
GND  
VOUT  
Ground (GND) plane on another layer  
Use low-ESR,  
ceramic bypass  
capacitors  
10-2. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
 
 
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 TINA-TI™ Simulation Software (Free Download)  
TINA-TIsimulation software is a simple, powerful, and easy-to-use circuit simulation program based on a  
SPICE engine. TINA-TI simulation software is a free, fully-functional version of the TINAsoftware, preloaded  
with a library of macromodels, in addition to a range of both passive and active models. TINA-TI simulation  
software provides all the conventional dc, transient, and frequency domain analysis of SPICE, as well as  
additional design capabilities.  
Available as a free download from the Analog eLab Design Center, TINA-TI simulation software offers extensive  
post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the  
ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-  
start tool.  
备注  
These files require that either the TINA software or TINA-TI software be installed. Download the free  
TINA-TI simulation software from the TINA-TI™ software folder.  
11.1.1.2 PSpice® for TI  
PSpice® for TI is a design and simulation environment that helps evaluate performance of analog circuits. Create  
subsystem designs and prototype solutions before committing to layout and fabrication, reducing development  
cost and time to market.  
11.1.1.3 TI Precision Designs  
The OPAx388-Q1 family is featured on TI Precision Designs, available online at www.ti.com/ww/en/analog/  
precision-designs/. TI Precision Designs are analog solutions created by TIs precision analog applications  
experts and offer the theory of operation, component selection, simulation, complete PCB schematic and layout,  
bill of materials, and measured performance of many useful circuits.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following: Texas Instruments, Circuit board layout techniques  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TINA-TIand TI E2Eare trademarks of Texas Instruments.  
TINAis a trademark of DesignSoft, Inc.  
PSpice® is a registered trademark of Cadence Design Systems, Inc.  
所有商标均为其各自所有者的财产。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
 
 
 
 
 
OPA388-Q1, OPA2388-Q1  
ZHCSP72A AUGUST 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA388-Q1 OPA2388-Q1  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2388QDGKRQ1  
OPA388QDBVRQ1  
ACTIVE  
ACTIVE  
VSSOP  
SOT-23  
DGK  
DBV  
8
5
2500 RoHS & Green  
3000 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
O28Q  
388Q  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Dec-2021  
OTHER QUALIFIED VERSIONS OF OPA2388-Q1, OPA388-Q1 :  
Catalog : OPA2388, OPA388  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Dec-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2388QDGKRQ1  
OPA388QDBVRQ1  
VSSOP  
SOT-23  
DGK  
DBV  
8
5
2500  
3000  
330.0  
180.0  
12.4  
8.4  
5.3  
3.4  
1.4  
8.0  
4.0  
12.0  
8.0  
Q1  
Q3  
3.23  
3.17  
1.37  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Dec-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2388QDGKRQ1  
OPA388QDBVRQ1  
VSSOP  
SOT-23  
DGK  
DBV  
8
5
2500  
3000  
366.0  
213.0  
364.0  
191.0  
50.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA388ID

单路、10MHz、CMOS、零漂移、零交叉、真 RRIO 精密运算放大器 | D | 8 | -40 to 125
TI

OPA388IDBVR

单路、10MHz、CMOS、零漂移、零交叉、真 RRIO 精密运算放大器 | DBV | 5 | -40 to 125
TI

OPA388IDBVT

单路、10MHz、CMOS、零漂移、零交叉、真 RRIO 精密运算放大器 | DBV | 5 | -40 to 125
TI

OPA388IDGKR

单路、10MHz、CMOS、零漂移、零交叉、真 RRIO 精密运算放大器 | DGK | 8 | -40 to 125
TI

OPA388IDGKT

单路、10MHz、CMOS、零漂移、零交叉、真 RRIO 精密运算放大器 | DGK | 8 | -40 to 125
TI

OPA388IDR

单路、10MHz、CMOS、零漂移、零交叉、真 RRIO 精密运算放大器 | D | 8 | -40 to 125
TI

OPA388QDBVRQ1

符合汽车标准的宽带宽、零温漂、零交叉、精密放大器 | DBV | 5 | -40 to 125
TI

OPA391

具有高速功率比的微功耗、单通道、高精度、低偏置电流 RRIO 运算放大器
TI

OPA391DCKR

Micropower, single, high-precision low-bias-current RRIO op amp with high speed-to-power ratio | DCK | 5 | -40 to 125
TI

OPA391DCKT

Micropower, single, high-precision low-bias-current RRIO op amp with high speed-to-power ratio | DCK | 5 | -40 to 125
TI

OPA392

OPAx392 Precision, Low-Offset-Voltage, Low-Noise, Low-Input-Bias-Current, Rail-to-Rail I/O, e-trim™ Operational Amplifiers
TI

OPA392DBVR

OPAx392 Precision, Low-Offset-Voltage, Low-Noise, Low-Input-Bias-Current, Rail-to-Rail I/O, e-trim™ Operational Amplifiers
TI