OPA4187IRUMT [TI]

零漂移(10µV、0.001µV/°C)、多路复用器友好型、低噪声、RRO、CMOS 四路精密运算放大器(四路) | RUM | 16 | -40 to 125;
OPA4187IRUMT
型号: OPA4187IRUMT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

零漂移(10µV、0.001µV/°C)、多路复用器友好型、低噪声、RRO、CMOS 四路精密运算放大器(四路) | RUM | 16 | -40 to 125

放大器 运算放大器 复用器
文件: 总45页 (文件大小:2408K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA187, OPA2187, OPA4187  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
OPAx187 0.001-µV/°C Drift, Low Power, Rail-to-Rail Output  
36-V Operational Amplifiers Zero-Drift Series  
1 Features  
3 Description  
The OPAx187 series operational amplifiers use auto-  
1
Low Offset Voltage: 10 µV (maximum)  
Zero Drift: 0.001 µV/°C  
Low Noise: 15 nV/Hz  
zeroing techniques to simultaneously provide low-  
offset voltage (1 µV), and near zero drift over time  
and temperature. These miniature, high-precision,  
low-quiescent current amplifiers offer high-input  
impedance and rail-to-rail output swing within 5 mV of  
the rails into high-impedance loads. The input  
common-mode range includes the negative rail.  
Either single or dual supplies can be used in the  
range of 4.5 V to 36 V (±2.25 V to ±18 V).  
PSRR: 160 dB  
CMRR: 140 dB  
AOL: 160 dB  
Quiescent Current: 100 µA  
Wide Supply Voltage: ±2.25 V to ±18 V  
Rail-to-Rail Output Operation  
Input Includes Negative Rail  
Low Bias Current: 100 pA (typical)  
EMI Filtered Inputs  
The single version of the OPAx187 device is  
available in microsize 8-pin VSSOP, 5-pin SOT-23,  
and 8-pin SOIC packages. The dual version is offered  
in 8-pin VSSOP and 8-pin SOIC packages. The quad  
version is offered in 14-pin SOIC, 14-pin TSSOP, and  
16-pin WQFN packages. All versions are specified for  
operation from –40°C to +125°C.  
Microsize Packages  
2 Applications  
Device Information(1)  
Bridge Amplifier  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
4.90 mm × 3.91 mm  
2.90 mm × 1.60 mm  
3.00 mm × 3.00 mm  
4.90 mm × 3.91 mm  
3.00 mm × 3.00 mm  
8.70 mm × 3.90 mm  
5.00 mm × 4.40 mm  
Strain Gauge  
SOIC (8)  
Test and Measurement Equipment  
Transducer Application  
Temperature Measurement  
Electronic Scales  
OPA187  
SOT-23 (5)  
VSSOP (8)  
SOIC (8)  
OPA2187  
OPA4187  
VSSOP (8)  
SOIC (14)  
TSSOP (14)  
Medical Instrumentation  
RTD Amplifier  
WQFN (16)  
(Preview)  
Precision Active Filters  
Low-Side Current Monitoring  
4.00 mm × 4.00 mm  
(1) For all available packages, see the package option addendum  
at the end of the data sheet.  
OPAx187 Offers Precision Low-Side Current Measurement Capability  
+
Load  
VSUPPLY  
100 k  
GND  
œ
VSUPPLY  
100 ꢀ  
+
VOUT  
OPA187  
RSHUNT  
100 ꢀ  
œ
GND  
I
I
100 kꢀ  
GND  
G = 1000 • RSHUNT • I  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
 
 
 
 
 
 
 
OPA187, OPA2187, OPA4187  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
www.ti.com  
Table of Contents  
7.4 Device Functional Modes........................................ 20  
Application and Implementation ........................ 21  
8.1 Application Information............................................ 21  
8.2 Typical Applications ................................................ 21  
Power Supply Recommendations...................... 25  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information: OPA187 .................................. 6  
6.5 Thermal Information: OPA2187 ................................ 6  
6.6 Thermal Information: OPA4187 ................................ 6  
6.7 Electrical Characteristics: High-Voltage Operation.. 7  
6.8 Electrical Characteristics: Low-Voltage Operation... 8  
6.9 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 16  
7.1 Overview ................................................................. 16  
7.2 Functional Block Diagram ....................................... 16  
7.3 Feature Description................................................. 17  
8
9
10 Layout................................................................... 26  
10.1 Layout Guidelines ................................................. 26  
10.2 Layout Example .................................................... 26  
11 Device and Documentation Support ................. 27  
11.1 Device Support .................................................... 27  
11.2 Documentation Support ....................................... 27  
11.3 Related Links ........................................................ 28  
11.4 Receiving Notification of Documentation Updates 28  
11.5 Community Resources.......................................... 28  
11.6 Trademarks........................................................... 28  
11.7 Electrostatic Discharge Caution............................ 28  
11.8 Glossary................................................................ 28  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 28  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision C (December 2018) to Revision D  
Page  
Changed OPA4187 SOIC and TSSOP packages from product preview to production data................................................. 1  
Changed offset drift (high and low supply) max to ±15nV/°C................................................................................................. 8  
Changes from Revision B (October 2018) to Revision C  
Page  
First release of production OPA187 SOIC device.................................................................................................................. 1  
Changes from Revision A (July 2017) to Revision B  
Page  
Changed OPA187 SOIC status to preview ............................................................................................................................ 1  
Changed OPA4187 SOIC, TSSOP and WQFN status to preview......................................................................................... 1  
Changed offset drift (high supply) typical from ±5 nV/to ±1 nV/and max from ±50 nV/to ±20 nV/...................... 7  
Changed input bias current max (high supply) from ±5 nA to ±7.5 nA .................................................................................. 7  
Changed input offset current max (high supply) from ±5 nA to ±14.5 nA .............................................................................. 7  
Changed offset drift (low supply) typical from ±5 nV/to ±1 nV/and max from ±50 nV/to ±20 nV/........................ 8  
Changed Offset Voltage Production Distribution figure........................................................................................................ 10  
Changes from Original (December 2016) to Revision A  
Page  
Deleted VSON package option from the Description ............................................................................................................. 1  
Deleted VSON package option from the Device Information table ........................................................................................ 1  
Added WQFN package option to the Device Information table.............................................................................................. 1  
Deleted OPA187 DRG package option from Pin Configuration and Functions ..................................................................... 3  
Added WQFN package to Pin Configuration and Functions .................................................................................................. 4  
2
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: OPA187 OPA2187 OPA4187  
 
OPA187, OPA2187, OPA4187  
www.ti.com  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
5 Pin Configuration and Functions  
OPA187: DBV Package  
5-Pin SOT-23  
OPA187: D and DGK Packages  
8-Pin SOIC and 8-pin VSSOP  
Top View  
Top View  
OUT  
Vœ  
1
2
3
5
V+  
NC  
œIN  
+IN  
Vœ  
1
2
3
4
8
7
6
5
NC  
V+  
œ
OUT  
NC  
+
+IN  
4
œIN  
Not to scale  
Not to scale  
(1) NC denotes no internal connection.  
Pin Functions: OPA187  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN  
–IN  
DBV  
D and DGK  
3
4
3
I
Non-inverting input  
Inverting input  
2
I
NC  
1
1, 5, 8  
O
No connection (can be left floating)  
Output signal  
OUT  
V+  
6
7
4
5
Positive (highest) supply voltage  
Negative (lowest) supply voltage  
V–  
2
OPA2187: D and DGK Packages  
8-Pin SOIC and 8-Pin VSSOP  
Top View  
OUT A  
œIN A  
+IN A  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT B  
œIN B  
+IN B  
Not to scale  
Pin Functions: OPA2187  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN A  
–IN A  
+IN B  
–IN B  
OUT A  
OUT B  
V+  
D and DGK  
3
2
5
6
1
7
8
4
I
I
Non-inverting input, channel A  
Inverting input, channel A  
Non-inverting input, channel B  
Inverting input, channel B  
Output, channel A  
I
I
O
O
Output, channel B  
Positive (highest) supply voltage  
Negative (lowest) supply voltage  
V–  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: OPA187 OPA2187 OPA4187  
OPA187, OPA2187, OPA4187  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
www.ti.com  
OPA4187: D and PW Packages  
14-pin SOIC and 14-Pin TSSOP  
Top View  
OPA4187: RUM Package (Preview)  
16-pin WQFN  
Top View  
OUT A  
œIN A  
+IN A  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
œIN D  
+IN D  
Vœ  
+IN B  
œIN B  
OUT B  
+IN C  
œIN C  
OUT C  
8
Not to scale  
Pin Functions: OPA4187  
PIN  
I/O  
DESCRIPTION  
NAME  
D and PW  
RUM  
+IN A  
–IN A  
+IN B  
–IN B  
+IN C  
–IN C  
+IN D  
–IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V+  
3
2
2
1
I
I
Non-inverting input, channel A  
Inverting input, channel A  
Non-inverting input, channel B  
Inverting input, channel B  
Non-inverting input, channel C  
Inverting input, channel C  
Non-inverting input, channel D  
Inverting input, channel D  
Output, channel A  
5
4
I
6
5
I
10  
9
9
I
8
I
12  
13  
1
11  
12  
15  
6
I
I
O
O
O
O
7
Output, channel B  
8
7
Output, channel C  
14  
4
14  
3
Output, channel D  
Positive (highest) supply voltage  
Negative (lowest) supply voltage  
No internal connection (can be left floating)  
V–  
11  
10  
13, 16  
NC  
4
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: OPA187 OPA2187 OPA4187  
OPA187, OPA2187, OPA4187  
www.ti.com  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
40  
UNIT  
Supply, VS = (V+) – (V)  
Voltage  
Current  
Signal input pin(2)  
Signal output pin(3)  
Signal input pin(2)  
Signal output pin(3)  
Output short-circuit(4)  
Operating range, TA  
(V) – 0.5  
(V) – 0.5  
–10  
(V+) + 0.5  
(V+) + 0.5  
10  
V
mA  
mA  
–55  
55  
Continuous  
–55  
Continuous Continuous  
150  
Temperature Junction, TJ  
Storage, Tstg  
150  
150  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails should  
be current limited to ±10 mA or less.  
(3) Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.5 V beyond the supply rails  
should be current limited to ±55 mA or less.  
(4) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5 (±2.25)  
–40  
NOM  
MAX  
36 (±18)  
150  
UNIT  
V
(V+) – (V)  
TA  
Supply voltage  
Operating temperature  
°C  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: OPA187 OPA2187 OPA4187  
 
OPA187, OPA2187, OPA4187  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
www.ti.com  
6.4 Thermal Information: OPA187  
OPA187  
5 PINS  
8 PINS  
THERMAL METRIC(1)  
UNIT  
DGK  
(VSSOP)  
DBV (SOT-23)  
D (SOIC)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
273.8  
159  
37  
100.1  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
126.8  
85.9  
10.9  
84.9  
n/a  
42.4  
41.0  
4.8  
49  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.2  
77.1  
n/a  
ψJB  
40.3  
n/a  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Thermal Information: OPA2187  
OPA2187  
THERMAL METRIC(1)  
8 PINS  
DGK (VSSOP)  
159  
UNIT  
D (SOIC)  
100.1  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
37  
42.4  
41.0  
4.8  
49  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.2  
77.1  
n/a  
ψJB  
40.3  
n/a  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Thermal Information: OPA4187  
OPA4187  
THERMAL METRIC(1)  
14 PINS  
PW (TSSOP)  
16 PINS  
RUM (WQFN)  
35.3  
UNIT  
D (SOIC)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
107.8  
29.6  
52.6  
1.5  
83.8  
70.7  
59.5  
11.6  
37.7  
n/a  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
32.7  
12.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
51.6  
n/a  
12.9  
RθJC(bot)  
3.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: OPA187 OPA2187 OPA4187  
OPA187, OPA2187, OPA4187  
www.ti.com  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
6.7 Electrical Characteristics: High-Voltage Operation  
at TA = +25°C, VS = ±4 V to ±18 V (VS = +8 V to +36 V), RL = 10 kΩ connected to VS / 2(1), and VCM = VOUT = VS / 2(1) (unless  
otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
±1  
±10  
μV  
VOS  
Input offset voltage  
TA = –40°C to +125°C  
±0.001  
±0.015  
μV/°C  
VS = 4.5 V to 36 V, TA = –40°C to  
+125°C  
PSRR  
Power-supply rejection ratio  
±0.01  
±1  
μV/V  
INPUT BIAS CURRENT  
VCM = VS / 2  
±100  
±100  
±350  
±7.5  
pA  
nA  
pA  
nA  
IB  
Input bias current  
TA = –40°C to +125°C  
±500  
±14.5  
IOS  
Input offset current  
TA = –40°C to +125°C  
NOISE  
en  
f = 0.1 Hz to 10 Hz  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
0.4  
60  
µVPP  
nVrms  
nV/Hz  
fA/Hz  
Input voltage noise  
Input voltage noise density  
Input current noise density  
20  
in  
f = 1 kHz  
160  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
(V–) – 0.1  
126  
(V+) – 2  
V
(V–) – 0.1 V < VCM < (V+) – 2 V, VS  
±18 V  
=
140  
145  
dB  
CMRR  
Common-mode rejection ratio  
(V–) < VCM < (V+) – 2 V, VS = ±18 V,  
TA = –40°C to +125°C  
130  
dB  
INPUT IMPEDANCE  
ZID  
ZIC  
Differential  
Common-mode  
100 || 6  
6 || 4.2  
MΩ || pF  
1012 Ω || pF  
OPEN-LOOP GAIN  
TA = –40°C to +125°C, VS = ±4 V to ±18  
AOL  
Open-loop voltage gain  
V, (V–) + 0.3 V < VO < (V+) – 0.3 V, RL  
=
132  
160  
dB  
10 kΩ  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
550  
0.2  
46  
48  
8
kHz  
V/μs  
μs  
Slew rate  
VO = 10-V step, G = +1  
VS = ±18 V, G = 1, 10-V step  
VS = ±18 V, G = 1, 10-V step  
VIN × G = VS  
0.1%  
tS  
Settling time  
0.01%  
μs  
tOR  
Overload recovery time  
μs  
1 kHz, G = +1, VOUT = 3.5 VRMS, No  
Load  
THD+N  
OUTPUT  
Total harmonic distortion + noise  
0.035%  
VS = ±4 V to ±18 V, No Load  
5
15  
VS = ±4 V to ±18 V, RL = 10 kΩ  
75  
100  
Voltage output swing from rail  
Short-circuit current  
mV  
VS = ±4 V to ±18 V, RL = 10 k, TA  
–40°C to +125°C  
=
100  
125  
VS = ±18 V, Sinking  
–30  
+30  
1.4  
mA  
mA  
kΩ  
ISC  
VS = ±18 V, Sourcing  
RO  
Open-loop output resistance  
Capacitive load drive  
f = 550 kHz, IO = 0, See Figure 21  
CLOAD  
See Typical Characteristics  
POWER SUPPLY  
VS = ±4 V to VS = ±18 V  
100  
145  
150  
μA  
μA  
IQ  
Quiescent current (per amplifier)  
IO = 0 mA, TA = –40°C to +125°C  
(1) VS / 2 = midsupply.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: OPA187 OPA2187 OPA4187  
OPA187, OPA2187, OPA4187  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
www.ti.com  
6.8 Electrical Characteristics: Low-Voltage Operation  
at TA = +25°C, VS = ±2.25 V to < ±4 V (VS = +4.5 V to < +8 V), RL = 10 kΩ connected to VS / 2(1), and VCM = VOUT = VS / 2(1)  
(unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
±1  
±15  
μV  
VOS  
Input offset voltage  
TA = –40°C to +125°C  
±0.001  
±0.015  
μV/°C  
VS = 4.5 V to 36 V,  
TA = –40°C to +125°C  
PSRR  
Power-supply rejection ratio  
±0.01  
±1  
μV/V  
INPUT BIAS CURRENT  
VCM = VS / 2  
±100  
±100  
±350  
±5  
pA  
nA  
pA  
nA  
IB  
Input bias current  
TA = –40°C to +125°C  
±500  
±5  
IOS  
Input offset current  
TA = –40°C to +125°C  
NOISE  
en  
f = 0.1 Hz to 10 Hz  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
0.4  
60  
µVPP  
nVrms  
nV/Hz  
fA/Hz  
Input voltage noise  
Input voltage noise density  
Input current noise density  
20  
in  
f = 1 kHz  
160  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
(V–) – 0.1  
114  
(V+) – 2  
V
(V–) – 0.1 V < VCM < (V+) – 2 V, VS  
±2.25 V  
=
130  
137  
dB  
CMRR  
Common-mode rejection ratio  
(V–) < VCM < (V+) – 2 V, VS = ±2.25 V,  
TA = –40°C to +125°C  
120  
dB  
INPUT IMPEDANCE  
ZID  
ZIC  
Differential  
Common-mode  
100 || 6  
6 || 4.2  
MΩ || pF  
1012 Ω || pF  
OPEN-LOOP GAIN  
TA = –40°C to +125°C, VS = ±2.25 V  
to ±4 V, (V–) + 0.3 V < VO < (V+) – 0.3  
V, RL = 10 kΩ  
AOL  
Open-loop voltage gain  
120  
140  
dB  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
550  
0.2  
kHz  
V/μs  
μs  
Slew rate  
VO = 1-V step, G = +1  
tOR  
Overload recovery time  
Total harmonic distortion + noise  
VIN × G = VS  
8
THD+N  
OUTPUT  
1 kHz, G = +1, VOUT = 1 Vrms, No Load  
0.05%  
VS = ±2.25 V to ±4 V, No Load  
5
15  
25  
VS = ±2.25 V to ±4 V, RL = 10 kΩ  
15  
Voltage output swing from rail  
Short-circuit current  
mV  
VS = ±2.25 V to ±4 V, RL = 10 kΩ, TA  
–40°C to +125°C  
=
15  
30  
VS = ±2.25, Sinking  
–20  
+20  
1.4  
mA  
mA  
kΩ  
ISC  
VS = ±2.25, Sourcing  
RO  
Open-loop output resistance  
Capacitive load drive  
f = 550 kHz, IO = 0, See Figure 21  
CLOAD  
See Typical Characteristics  
POWER SUPPLY  
VS = ±2.25 V to VS = ±4 V  
100  
145  
150  
μA  
μA  
IQ  
Quiescent current (per amplifier)  
IO = 0 mA, TA = –40°C to +125°C  
(1) VS / 2 = midsupply.  
8
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: OPA187 OPA2187 OPA4187  
OPA187, OPA2187, OPA4187  
www.ti.com  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
6.9 Typical Characteristics  
Table 1. Typical Characteristic Graphs  
DESCRIPTION  
FIGURE  
Figure 1  
Offset Voltage Production Distribution  
Offset Voltage Drift Distribution  
Figure 2  
Offset Voltage vs Temperature  
Figure 3  
Offset Voltage vs Common-Mode Voltage  
Offset Voltage vs Power Supply  
Figure 4  
Figure 5  
Open-Loop Gain and Phase vs Frequency  
Closed-Loop Gain vs Frequency  
IB vs Common-Mode Voltage  
Figure 6  
Figure 7  
Figure 8  
Input Bias Current vs Temperature  
Output Voltage Swing vs Output Current  
CMRR and PSRR vs Frequency (Referred-to-Input)  
CMRR vs Temperature  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
Figure 24  
Figure 25  
Figure 26, Figure 27  
Figure 28, Figure 29  
Figure 30  
Figure 31  
Figure 32  
Figure 33  
Figure 34  
Figure 35  
PSRR vs Temperature  
0.1-Hz to 10-Hz Noise  
Input Voltage Noise Spectral Density vs Frequency  
THD+N Ratio vs Frequency  
THD+N vs Output Amplitude  
Quiescent Current vs Supply Voltage  
Quiescent Current vs Temperature  
Open-Loop Gain vs Temperature  
Open-Loop Output Impedance vs Frequency  
Small-Signal Overshoot vs Capacitive Load (G = 1) (10-mV Output Step)  
No Phase Reversal  
Positive Overload Recovery  
Negative Overload Recovery  
Small-Signal Step Response (10 mV)  
Large-Signal Step Response  
Large-Signal Settling Time (10-V Positive Step)  
Large-Signal Settling Time (10-V Negative Step)  
Short-Circuit Current vs Temperature  
Maximum Output Voltage vs Frequency  
Crosstalk vs Frequency  
EMIRR IN+ vs Frequency  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: OPA187 OPA2187 OPA4187  
 
OPA187, OPA2187, OPA4187  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
www.ti.com  
at VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
15%  
10%  
5%  
0
20  
18  
16  
14  
12  
10  
8
6
4
2
0
-0.015  
-0.01  
-0.005  
0
0.005  
0.01  
0.015  
Offset Voltage (µV)  
Offset Voltage Drift (mV/èC)  
C002  
Figure 2. Offset Voltage Drift Distribution  
Figure 1. Offset Voltage Production Distribution  
10  
8
10  
8
6
6
4
4
2
2
0
0
œ2  
œ4  
œ6  
œ8  
œ10  
œ2  
œ4  
œ6  
œ8  
œ10  
VCM = œ18.1 V  
VCM = 16 V  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
5
10  
15  
20  
œ20  
œ15  
œ10  
œ5  
Temperature (°C)  
VCM (V)  
C001  
C003  
Figure 3. Offset Voltage vs Temperature  
Figure 4. Offset Voltage vs Common-Mode Voltage  
5
4
140  
120  
100  
80  
135  
Open-loop Gain  
Phase  
3
2
90  
45  
0
1
60  
0
40  
œ1  
œ2  
œ3  
œ4  
œ5  
20  
0
VS = ± 2.25 V  
œ20  
œ40  
-45  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0  
C001  
VSUPPLY (V)  
C001  
Figure 5. Offset Voltage vs Power Supply  
Figure 6. Open-Loop Gain and Phase vs Frequency  
10  
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: OPA187 OPA2187 OPA4187  
OPA187, OPA2187, OPA4187  
www.ti.com  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
at VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
350  
40  
G = +1  
G= +10  
G= -1  
250  
150  
20  
0
50  
œ50  
œ150  
œ250  
œ350  
-20  
-40  
100  
1k  
10k  
100k  
1M  
10M  
0
5
10  
15  
20  
œ20  
œ15  
œ10  
œ5  
Frequency (Hz)  
VCM (V)  
C004  
C001  
Figure 7. Closed-Loop Gain vs Frequency  
Figure 8. IB vs Common-Mode Voltage  
15.0  
12.5  
10.0  
7.5  
3
2.5  
2
1.5  
1
0.5  
0
125°C  
25°C  
œ40°C  
-0.5  
-1  
5.0  
-1.5  
-2  
2.5  
ios  
-2.5  
-3  
0.0  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
10  
20  
30  
IO (mA)  
40  
50  
60  
Temperature (°C)  
C001  
C001  
Figure 9. Input Bias Current vs Temperature  
Figure 10. Output Voltage Swing vs Output Current  
180  
170  
160  
150  
140  
130  
120  
0.001  
180  
160  
140  
120  
100  
80  
0.01  
0.1  
1
60  
CMRR  
+PSRR  
œPSRR  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0
25 50 75 100 125 150  
œ75 œ50 œ25  
Frequency (Hz)  
Temperature (°C)  
C004  
C001  
Figure 11. CMRR and PSRR vs Frequency  
(Referred-to-Input)  
Figure 12. CMRR vs Temperature  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: OPA187 OPA2187 OPA4187  
OPA187, OPA2187, OPA4187  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
www.ti.com  
at VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
180  
170  
160  
150  
140  
130  
120  
0.001  
0.01  
0.1  
Time (1 s/div)  
1
C017  
0
25  
50  
75 100 125 150  
œ75 œ50 œ25  
Temperature (°C)  
C001  
Figure 13. PSRR vs Temperature  
Figure 14. 0.1-Hz to 10-Hz Noise  
10  
1
-40  
1000  
100  
10  
G = -1, 10k-Load  
G = -1, 2k-Load  
G = -1, 600-Load  
G = +1, 10k-Load  
G = +1, 2k-Load  
G = +1, 600-Load  
-60  
-80  
0.1  
-100  
-120  
0.01  
0.001  
-140  
20  
200  
2k  
20k  
1
Frequency (Hz)  
1
10  
100  
1k  
10k  
100k  
C004  
Frequency (Hz)  
C002  
Figure 16. THD+N Ratio vs Frequency  
Figure 15. Input-Referred Voltage Noise Spectral Density vs  
Frequency (G = +101)  
140  
120  
100  
80  
1
-60  
0.1  
-80  
0.01  
60  
G = -1, 10k-Load  
G = -1, 2k-Load  
G = -1, 600-Load  
G = +1, 10k-Load  
G = +1, 2k-Load  
G = +1, 600-Load  
-100  
-120  
0.001  
0.0001  
40  
20  
0.001  
0.01  
0.1  
1
10  
0
Output Amplitude (VRMS  
)
0
2
4
6
8
10  
12  
14  
16  
18  
20  
C004  
Supply Voltage (V)  
C001  
Figure 17. THD+N vs Output Amplitude  
Figure 18. Quiescent Current vs Supply Voltage  
12  
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: OPA187 OPA2187 OPA4187  
OPA187, OPA2187, OPA4187  
www.ti.com  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
at VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
150  
120  
90  
60  
30  
0
200  
190  
180  
170  
160  
150  
140  
0.0001  
0.001  
0.01  
VS = ± 2.25 V  
VS = ± 18 V  
0.1  
0
25  
50  
75  
100 125 150  
0
25 50 75 100 125 150  
œ75 œ50 œ25  
œ75 œ50 œ25  
Temperature (°C)  
Temperature (°C)  
C001  
C001  
Figure 19. Quiescent Current vs Temperature  
Figure 20. Open-Loop Gain vs Temperature  
10000  
1000  
100  
10  
70  
60  
50  
40  
30  
20  
10  
RISO = 0  
RISO = 25 Ω  
RISO = 50 Ω  
1
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
Frequency (Hz)  
Capacitive Load (pF)  
C001  
C004  
Figure 21. Open-Loop Output Impedance vs Frequency  
Figure 22. Small-Signal Overshoot vs  
Capacitive Load (G = +1) (10-mV Output Step)  
VIN  
VOUT  
VIN  
VOUT  
Time (40 ms/div)  
Time (2 µs/div)  
C017  
C017  
Figure 23. No Phase Reversal  
Figure 24. Positive Overload Recovery  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: OPA187 OPA2187 OPA4187  
OPA187, OPA2187, OPA4187  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
www.ti.com  
at VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
VIN  
VOUT  
VOUT  
VIN  
Time (2 µs/div)  
Time (1 µs/div)  
C017  
C017  
Figure 25. Negative Overload Recovery  
Figure 26. Small-Signal Step Response  
(100 mV)  
VOUT  
VIN  
VOUT  
VIN  
Time (2.5 µs/div)  
Time (25 µs/div)  
C017  
C017  
Figure 27. Small-Signal Step Response  
(100 mV)  
Figure 28. Large-Signal Step Response  
VOUT  
VIN  
0.01% Settling = ±1mV  
t0 = 45 µs  
50  
Time (25 µs/div)  
45  
55  
Time (5 µs/div)  
60  
65  
C017  
C017  
Figure 29. Large-Signal Step Response  
Figure 30. Large-Signal Settling Time  
(10-V Positive Step)  
14  
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: OPA187 OPA2187 OPA4187  
OPA187, OPA2187, OPA4187  
www.ti.com  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
at VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
60  
0.01% Settling = ±1mV  
50  
ISC, Sink  
40  
30  
20  
10  
0
ISC, Source  
t0 = 45 µs  
50  
45  
55  
60  
65  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
Time (5 µs/div)  
Temperature (°C)  
C017  
C001  
Figure 31. Large-Signal Settling Time  
(10-V Negative Step)  
Figure 32. Short-Circuit Current vs Temperature  
40  
35  
30  
25  
20  
15  
10  
5
-60  
-80  
Maximum output voltage without  
slew-rate induced distortion.  
VS = ±18V  
-100  
-120  
-140  
-160  
VS = ±4V  
VS = ±2.25V  
0
100  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
C001  
C004  
Figure 33. Maximum Output Voltage vs Frequency  
Figure 34. Crosstalk vs Frequency  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
10M  
100M  
Frequency (Hz)  
1000M  
C004  
Figure 35. EMIRR IN+ vs Frequency  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: OPA187 OPA2187 OPA4187  
OPA187, OPA2187, OPA4187  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The OPAx187 operational amplifier combines precision offset and drift with excellent overall performance,  
making the device ideal for many precision applications. The precision offset drift of only 0.001 µV/°C provides  
stability over the entire temperature range. In addition, this device offers excellent overall performance with high  
CMRR, PSRR, and AOL. As with all amplifiers, applications with noisy or high-impedance power supplies require  
decoupling capacitors close to the device pins. In most cases, 0.1-µF capacitors are adequate.  
The OPAx187 device is part of a family of zero-drift, low-power, rail-to-rail output operational amplifiers. These  
devices operate from 4.5 V to 36 V, are unity-gain stable, and are suitable for a wide range of general-purpose  
applications. The zero-drift architecture provides ultra-low input offset voltage and near-zero input offset voltage  
drift over temperature and time. This choice of architecture also offers outstanding ac performance, such as ultra-  
low broadband noise and zero flicker noise.  
7.2 Functional Block Diagram  
Figure 36 shows a representation of the proprietary OPAx187 architecture. Functional blocks CHOP1 and  
CHOP2 operate such that the non-idealities of GM1 are cancelled while the input signal is left in-phase. The  
integrated notch filter of the OPAx187 family suppresses most of the auto-zero amplifier carrier.  
V+  
C2  
Notch  
CHOP1  
GM1  
CHOP2  
Filter  
GM2  
GM3  
+
-
+
+
OUT  
+IN  
-IN  
-
+
-
-
C1  
+
-
GM_FF  
V-  
Figure 36. Functional Block Diagram  
Copyright © 2016, Texas Instruments Incorporated  
16  
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: OPA187 OPA2187 OPA4187  
 
OPA187, OPA2187, OPA4187  
www.ti.com  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
7.3 Feature Description  
The OPAx187 is unity-gain stable and free from unexpected output phase reversal. This device uses a  
proprietary, periodic autocalibration technique to provide ultra-low input offset voltage and near zero input offset  
voltage drift over temp and temperature. For lowest offset voltage and precision performance, optimize circuit  
layout and mechanical conditions. Avoid temperature gradients that create thermoelectric (Seebeck) effects in  
the thermocouple junctions formed from connecting dissimilar conductors. Cancel these thermally-generated  
potentials by making sure they are equal on both input pins. Other layout and design considerations include:  
Use low thermoelectric-coefficient conditions (avoid dissimilar metals).  
Thermally isolate components from power supplies or other heat sources.  
Shield operational amplifier and input circuitry from air currents, such as cooling fans.  
Follow these guidelines to reduce the likelihood of junctions being at different temperatures, which may cause  
thermoelectric voltages of 0.1 µV/°C or higher, depending on the materials used.  
7.3.1 Operating Characteristics  
The OPAx187 device is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V). Many specifications apply  
from –40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in the Typical Characteristics section.  
7.3.2 Phase-Reversal Protection  
The OPAx187 device has an internal phase-reversal protection. Many op amps exhibit a phase reversal when  
the input is driven beyond its linear common-mode range. This condition is most often encountered in non-  
inverting circuits when the input is driven beyond the specified common-mode voltage range, causing the output  
to reverse into the opposite rail. The OPAx187 input prevents phase reversal with excessive common-mode  
voltage. Instead, the output limits into the appropriate rail. Figure 37 shows this performance.  
VIN  
VOUT  
Time (40 ms/div)  
C017  
Figure 37. No Phase Reversal  
7.3.3 Input Bias Current Clock Feedthrough  
Zero-drift amplifiers, such as the OPAx187, use switching on their inputs to correct for the intrinsic offset and drift  
of the amplifier. Charge injection from the integrated switches on the inputs can introduce very short transients in  
the input bias current of the amplifier. The extremely short duration of these pulses prevents them from being  
amplified, however they may be coupled to the output of the amplifier through the feedback network. The most  
effective method to prevent transients in the input bias current from producing additional noise at the amplifier  
output is to use a low-pass filter such as an RC network.  
7.3.4 Internal Offset Correction  
The OPAx187 op amp uses an auto-calibration technique with a time-continuous 125-kHz op amp in the signal  
path. This amplifier is zero-corrected every 22 μs using a proprietary technique. Upon power-up, the amplifier  
requires approximately 100 μs to achieve the specified VOS accuracy. This design has no aliasing or flicker noise.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: OPA187 OPA2187 OPA4187  
 
OPA187, OPA2187, OPA4187  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
www.ti.com  
Feature Description (continued)  
7.3.5 EMI Rejection  
The OPAx187 device uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI  
interference from sources such as wireless communications and densely-populated boards with a mix of analog  
signal chain and digital components. EMI immunity can be improved with circuit design techniques; the OPAx187  
benefits from these design improvements. Texas Instruments has developed the ability to accurately measure  
and quantify the immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to  
6 GHz. Figure 38 shows the results of this testing on the OPAx187. Table 2 lists the EMIRR IN+ values for the  
OPAx187 at particular frequencies commonly encountered in real-world applications. Applications listed in  
Table 2 may be centered on or operated near the particular frequency shown. Detailed information can also be  
found in EMI Rejection Ratio of Operational Amplifiers, available for download from www.ti.com.  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
10M  
100M  
Frequency (Hz)  
1000M  
C004  
Figure 38. EMIRR Testing  
Table 2. OPAx187 EMIRR IN+ for Frequencies of Interest  
FREQUENCY  
APPLICATION/ALLOCATION  
EMIRR IN+  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency  
(UHF) applications  
400 MHz  
81.8 dB  
Global system for mobile communications (GSM) applications, radio  
communication, navigation, GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF  
applications  
900 MHz  
1.8 GHz  
2.4 GHz  
102.7 dB  
115.4 dB  
150.7 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band  
(1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications,  
industrial, scientific and medical (ISM) radio band, amateur radio and satellite, S-  
band (2 GHz to 4 GHz)  
3.6 GHz  
5 GHz  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
142.0 dB  
173.8 dB  
802.11a, 802.11n, aero communication and navigation, mobile communication,  
space and satellite operation, C-band (4 GHz to 8 GHz)  
7.3.6 Capacitive Load and Stability  
The device dynamic characteristics are optimized for a range of common operating conditions. The combination  
of low closed-loop gain and high capacitive loads decreases the amplifier phase margin and can lead to gain  
peaking or oscillations. As a result, larger capacitive loads must be isolated from the output. The simplest way to  
achieve this isolation is to add a small resistor (for example, ROUT equal to 50 Ω) in series with the output.  
Figure 39 illustrates small-signal overshoot versus capacitive load for several values of ROUT. Also, for details of  
analysis techniques and application circuits, refer to Feedback Plots Define Op Amp AC Performance, available  
for download from www.ti.com.  
18  
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: OPA187 OPA2187 OPA4187  
 
 
OPA187, OPA2187, OPA4187  
www.ti.com  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
G = 1, RL = 10 kΩ, 10-mV Output Step  
70  
60  
50  
40  
30  
20  
RISO = 0  
RISO = 25 Ω  
RISO = 50 Ω  
10  
10  
100  
Capacitive Load (pF)  
C004  
Figure 39. Small-Signal Overshoot Versus Capacitive Load  
7.3.7 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress.  
These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output  
pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly.  
Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is  
helpful. See Figure 40 for an illustration of the ESD circuits contained in the OPAx187 (indicated by the dashed  
line area). The ESD protection circuitry involves several current-steering diodes connected from the input and  
output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device  
internal to the operational amplifier. This protection circuitry is intended to remain inactive during normal circuit  
operation.  
An ESD event produces a short-duration, high-voltage pulse that is transformed into a short-duration, high-  
current pulse while discharging through a semiconductor device. The ESD protection circuits are designed to  
provide a current path around the operational amplifier core to prevent damage. The energy absorbed by the  
protection circuitry is then dissipated as heat.  
When an ESD voltage develops across two or more amplifier device pins, current flows through one or more  
steering diodes. Depending on the path that the current takes, the absorption device may activate. The  
absorption device has a trigger, or threshold voltage, that is above the normal operating voltage of the OPAx187  
but below the device breakdown voltage level. When this threshold is exceeded, the absorption device quickly  
activates and clamps the voltage across the supply rails to a safe level.  
When the operational amplifier connects into a circuit (as shown in Figure 40), the ESD protection components  
are intended to remain inactive and do not become involved in the application circuit operation. However,  
circumstances may arise where an applied voltage exceeds the operating voltage range of a given pin. Should  
this condition occur, there is a risk that some internal ESD protection circuits may be biased on, and conduct  
current. Any such current flow occurs through steering-diode paths and rarely involves the absorption device.  
Figure 40 shows a specific example where the input voltage, VIN, exceeds the positive supply voltage (+VS) by  
500 mV or more. Much of what happens in the circuit depends on the supply characteristics. If +VS can sink the  
current, one of the upper input steering diodes conducts and directs current to +VS. Excessively high current  
levels can flow with increasingly higher VIN. As a result, the data sheet specifications recommend that  
applications limit the input current to 10 mA.  
If the supply is not capable of sinking the current, VIN may begin sourcing current to the operational amplifier, and  
then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to  
levels that exceed the operational amplifier absolute maximum ratings.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: OPA187 OPA2187 OPA4187  
OPA187, OPA2187, OPA4187  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
www.ti.com  
Another common question involves what happens to the amplifier if an input signal is applied to the input while  
the power supplies +VS or –VS are at 0 V. Again, this question depends on the supply characteristic while at 0 V,  
or at a level below the input signal amplitude. If the supplies appear as high impedance, then the operational  
amplifier supply current may be supplied by the input source via the current-steering diodes. This state is not a  
normal bias condition; the amplifier most likely will not operate normally. If the supplies are low impedance, then  
the current through the steering diodes can become quite high. The current level depends on the ability of the  
input source to deliver current, and any resistance in the input path.  
If there is any uncertainty about the ability of the supply to absorb this current, external TVS (Transient Voltage  
Suppressor) diodes may be added to the supply pins, as shown in Figure 40. The TVS voltage must be selected  
such that the diode does not turn on during normal operation. However, the TVS voltage should be low enough  
so that the TVS diode conducts if the supply pin begins to rise above the safe operating supply voltage level.  
TVS(See Note 2)  
RF  
+VS  
V+  
RI  
ESD Current-  
Steering Diodes  
-IN  
RS(See Note 3)  
+IN  
OUT  
Op Amp  
Core  
Edge-Triggered ESD  
Absorption Circuit  
RL  
ID  
VIN  
(See  
Vœ  
Note 1)  
-VS  
TVS  
(See Note 2)  
Copyright © 2016, Texas Instruments Incorporated  
NOTE 1: VIN = +VS + 500 mV.  
NOTE 2: TVS: +VS(max) > VTVSBR (min) > +VS.  
NOTE 3: Suggested value is approximately 1 kΩ.  
Figure 40. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
The OPAx187 input terminals are protected from excessive differential voltage with back-to-back diodes, as  
shown in Figure 40. In most circuit applications, the input protection circuitry has no consequence. However, in  
low-gain or G = 1 circuits, fast-ramping input signals can forward-bias these diodes because the output of the  
amplifier cannot respond rapidly enough to the input ramp. If the input signal is fast enough to create this  
forward-bias condition, the input signal current must be limited to 10 mA or less. If the input signal current is not  
inherently limited, an input series resistor can be used to limit the signal input current. This input series resistor  
degrades the low-noise performance of the OPAx187. Figure 40 shows an example configuration that  
implements a current-limiting feedback resistor.  
7.4 Device Functional Modes  
The OPAx187 has a single functional mode and is operational when the power-supply voltage is greater than 4.5  
V (±2.25 V). The maximum power supply voltage for the OPAx187 is 36 V (±18 V).  
20  
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: OPA187 OPA2187 OPA4187  
 
OPA187, OPA2187, OPA4187  
www.ti.com  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The OPAx187 operational amplifier combines precision offset and drift with excellent overall performance,  
making it ideal for many precision applications. The precision offset drift of only 0.001 µV/°C provides stability  
over the entire temperature range. In addition, the device pairs excellent CMRR, PSRR, and AOL dc performance  
with outstanding low-noise operation. As with all amplifiers, applications with noisy or high-impedance power  
supplies require decoupling capacitors close to the device pins. In most cases, 0.1-µF capacitors are adequate.  
The following application examples highlight only a few of the circuits where the OPAx187 can be used.  
8.2 Typical Applications  
8.2.1 High-Side Voltage-to-Current (V-I) Converter  
The circuit shown in Figure 41 is a high-side voltage-to-current (V-I) converter. The converter translates an input  
voltage of 0 V to 2 V into an output current of 0 mA to 100 mA. Figure 42 shows the measured transfer function  
for this circuit. The low offset voltage and offset drift of the OPA2187 facilitate excellent dc accuracy for the  
circuit.  
V+  
RS2  
470  
RS3  
4.7 ꢀ  
IRS2  
IRS3  
R4  
VRS2  
10 kꢀ  
VRS3  
C7  
2200 pF  
R5  
330 ꢀ  
Q2  
+
R3  
200 ꢀ  
+
Q1  
C6  
1000 pF  
+
VIN  
R2  
10 ꢀ  
œ
VRS1  
VLOAD  
ILOAD  
RS1  
2 kꢀ  
RLOAD  
IRS1  
Copyright © 2016, Texas Instruments Incorporated  
Figure 41. High-Side Voltage-to-Current (V-I) Converter  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: OPA187 OPA2187 OPA4187  
 
OPA187, OPA2187, OPA4187  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
www.ti.com  
Typical Applications (continued)  
8.2.1.1 Design Requirements  
The design requirements are:  
Supply voltage: 5 V DC  
Input: 0 V to 2 V DC  
Output: 0 mA to 100 mA DC  
8.2.1.2 Detailed Design Procedure  
The V-I transfer function of the circuit is based on the relationship between the input voltage, VIN, and the three  
current sensing resistors, RS1, RS2, and RS3. The relationship between VIN and RS1 determines the current that  
flows through the first stage of the design. The current gain from the first stage to the second stage is based on  
the relationship between RS2 and RS3.  
This application benefits from an operational amplifier with low offset voltage, low temperature drift, and rail-to-  
rail output. The OPAx187 CMOS operational amplifier is a high-precision, ultra-low offset, ultra-low drift amplifier,  
optimized for wide-voltage, single-supply operation, with an output swing to within 5 mV of the positive rail. The  
OPAx187 family uses chopping techniques to provide low initial offset voltage and near-zero drift over time and  
temperature. Low offset voltage and low drift reduce the offset error in the system, making this device  
appropriate for precise dc control. The rail-to-rail output stage of the OPAx187 makes sure that the output swing  
of the operational amplifier is able to fully control the gate of the MOSFET devices within the supply rails.  
A detailed error analysis, design procedure, and additional measured results are given in reference design  
TIPD102, a step-by-step process to design a High-Side Voltage-to-Current (V-I) Converter.  
For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test  
results, refer to TI Precision Design TIPD102, High-Side Voltage-to-Current (V-I) Converter (SLAU502).  
8.2.1.3 Application Curve  
Figure 42 shows the measured transfer function for the high-side voltage-to-current converter shown in  
Figure 41.  
0.1  
Load  
0.075  
0.05  
0.025  
0
0
0.5  
1
Input Voltage (V)  
1.5  
2
D001  
Figure 42. Measured Transfer Function for High-Side V-I Converter  
22  
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: OPA187 OPA2187 OPA4187  
 
OPA187, OPA2187, OPA4187  
www.ti.com  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
8.2.2 Discrete INA + Attenuation for ADC With 3.3-V Supply  
NOTE  
The TINA-TI files shown in the following sections require that either the TINA software  
(from DesignSoft™) or TINA-TI software be installed. Download the free TINA-TI software  
from the TINA-TI folder.  
Figure 43 shows an example of how the OPAx187 is used as a high-voltage, high-impedance front-end for a  
precision, discreet instrumentation amplifier with attenuation. The INA159 provides the attenuation that allows  
this circuit to easily interface with 3.3-V or 5-V analog-to-digital converters (ADCs). Click the following link  
download the TINA-TI file: Discrete INA.  
15 V  
OPA187  
VOUTP  
5 V  
RP  
10 kΩ  
VDIFF / 2  
- 15 V  
Ref 1  
Ref 2  
RG  
500 Ω  
(1)  
INA159  
VOUT  
+
VCM  
10V  
Sense  
RN  
10 kΩ  
15 V  
œVDIFF / 2  
OPA187  
VOUTN  
-15 V  
Copyright © 2016, Texas Instruments Incorporated  
(1) VOUT = VDIFF × (41 / 5) + (Ref 1) / 2.  
Figure 43. Discrete INA + Attenuation for ADC With 3.3-V Supply  
8.2.3 Bridge Amplifier  
Figure 44 shows the basic configuration for a bridge amplifier. Click the following link to download the TINA-TI  
file: Bridge Amplifier Circuit.  
15 V  
R
15 V  
R
R
R
R
œ
OPA187  
VOUT  
+
R
VREF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 44. Bridge Amplifier  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: OPA187 OPA2187 OPA4187  
 
 
OPA187, OPA2187, OPA4187  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
www.ti.com  
8.2.4 Low-Side Current Monitor  
Figure 45 shows the OPAx187 configured in a low-side current-sensing application. The load current (ILOAD  
)
creates a voltage drop across the shunt resistor (RSHUNT). This voltage is amplified by the OPAx187, with a gain  
of 201. The load current is set from 0 A to 500 mA, which corresponds to an output voltage range from 0 V to 10  
V. The output range can be adjusted by changing the shunt resistor or gain of the configuration. Click the  
following link to download the TINA-TI file: Current-Sensing Circuit.  
V
Load  
15 V  
+
VOUT = ILOAD * RSHUNT(1 + RF / RIN)  
OPA187  
œ
VOUT  
RSHUNT  
100 m  
VOUT / ILOAD= 1 V / 49.75 mA  
ILOAD  
RIN  
RF  
100 ꢀ  
20 kꢀ  
CF  
150  
pF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 45. Low-Side Current Monitor  
8.2.5 Programmable Power Supply  
Figure 46 shows the OPAx187 configured as a precision programmable power supply using the 16-bit, voltage  
output DAC8581 and the OPA548 high-current amplifier. This application amplifies the digital-to-analog converter  
(DAC) voltage by a value of five, and handles a large variety of capacitive and current loads. The OPAx187 in  
the front-end provides precision and low drift across a wide range of inputs and conditions. Click the following  
link to download the TINA-TI file: Programmable Power-Supply Circuit.  
C1  
500 nF  
R1  
R4  
10 k  
40 kꢀ  
R2  
GND  
1 kꢀ  
C2  
500 nF  
+30V  
+15V  
œ
R3  
10 kꢀ  
OPA548  
+
VOUT  
œ
OPA187  
+
Output = ± 25V  
DAC8581  
œ30V  
œ15V  
Input = ± 5V  
Copyright © 2016, Texas Instruments Incorporated  
Figure 46. Programmable Power Supply  
24  
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: OPA187 OPA2187 OPA4187  
 
 
OPA187, OPA2187, OPA4187  
www.ti.com  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
8.2.6 RTD Amplifier With Linearization  
See Analog Linearization Of Resistance Temperature Detectors, for an in-depth analysis of Figure 47. Click the  
following link to download the TINA-TI file: RTD Amplifier With Linearization.  
15 V  
(5 V)  
Out  
In  
REF5050  
1 µF  
1 µF  
R2  
49.1 kΩ  
R3  
60.4 kΩ  
R1  
4.99 kΩ  
0°C = 0 V  
200°C = 5 V  
OPA187  
VOUT  
R5  
105.8 k(1)  
RTD  
Pt100  
R4  
1 kΩ  
Copyright © 2016, Texas Instruments Incorporated  
(1) R5 provides positive-varying excitation to linearize output.  
Figure 47. RTD Amplifier With Linearization  
9 Power Supply Recommendations  
The OPAx187 is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications apply from  
–40°C to +125°C. The Typical Characteristics presents parameters that can exhibit significant variance with  
regard to operating voltage or temperature.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device (see the  
Absolute Maximum Ratings).  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout  
section.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: OPA187 OPA2187 OPA4187  
 
OPA187, OPA2187, OPA4187  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
www.ti.com  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Low-ESR, 0.1-µF ceramic bypass capacitors must be connected between each supply pin and ground; place  
the capacitors as close to the device as possible. A single bypass capacitor from V+ to ground is applicable  
to single-supply applications.  
To reduce parasitic coupling, run the input traces as far away from the supply lines as possible.  
A ground plane helps distribute heat and reduces EMI noise pickup.  
Place the external components as close to the device as possible. This configuration prevents parasitic errors  
(such as the Seebeck effect) from occurring.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
10.2 Layout Example  
VIN  
+
VOUT  
RG  
RF  
(Schematic Representation)  
Place components  
close to device and to  
each other to reduce  
parasitic errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
VS+  
RF  
N/C  
N/C  
RG  
GND  
VIN  
GND  
œIN  
+IN  
Vœ  
V+  
OUT  
N/C  
VOUT  
Use low-ESR, ceramic  
bypass capacitor  
GND  
Use low-ESR,  
ceramic bypass  
capacitor  
Ground (GND) plane on another layer  
Copyright © 2017, Texas Instruments Incorporated  
VOUT  
VSœ  
Figure 48. Layout Example  
26  
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: OPA187 OPA2187 OPA4187  
OPA187, OPA2187, OPA4187  
www.ti.com  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 TINA-TI™ (Free Software Download)  
TINA™ is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI™ is  
a free, fully-functional version of the TINA software, preloaded with a library of macro models, in addition to a  
range of both passive and active models. TINA-TI provides all the conventional DC, transient, and frequency  
domain analysis of SPICE, as well as additional design capabilities.  
Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing  
capability that lets users format results various ways. Virtual instruments offer users the ability to select input  
waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.  
NOTE  
These files require that either the TINA software (from DesignSoft™) or TINA-TI software  
be installed. Download the free TINA-TI software from the TINA-TI folder.  
11.1.1.2 TI Precision Designs  
TI Precision Designs are analog solutions created by TI’s precision analog applications experts which offer the  
theory of operation, component selection, simulation, complete PCB schematic and layout, bill of materials, and  
measured performance of many useful circuits. TI Precision Designs are available online at  
http://www.ti.com/ww/en/analog/precision-designs/.  
11.1.1.3 WEBENCH® Filter Designer  
WEBENCH® Filter Designer is a simple, powerful, and easy-to-use active filter design program. The WEBENCH  
Filter Designer lets users create optimized filter designs using a selection of TI operational amplifiers and passive  
components from TI's vendor partners.  
Available as a web-based tool from the WEBENCH Design Center, WEBENCH® Filter Designer lets users  
design, optimize, and simulate complete multistage active filter solutions within minutes.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Operational Amplifier Gain Stability, Part 3: AC Gain-Error Analysis  
Texas Instruments, Operational Amplifier Gain Stability, Part 2: DC Gain-Error Analysis  
Texas Instruments, Using Infinite-Gain, MFB Filter Topology In Fully Differential Active Filters  
Texas Instruments, Op Amp Performance Analysis  
Texas Instruments, Single-Supply Operation of Operational Amplifiers  
Texas Instruments, Tuning in Amplifiers  
Texas Instruments, Shelf-Life Evaluation of Lead-Free Component Finishes  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: OPA187 OPA2187 OPA4187  
OPA187, OPA2187, OPA4187  
SBOS807D DECEMBER 2016REVISED DECEMBER 2018  
www.ti.com  
11.3 Related Links  
Table 3 lists quick access links. Categories include technical documents, support and community resources,  
tools and software, and quick access to sample or buy.  
Table 3. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS AND  
SOFTWARE  
SUPPORT AND  
COMMUNITY  
PARTS  
PRODUCT FOLDER SAMPLE AND BUY  
OPA187  
OPA2187  
OPA4187  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
11.4 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on the Alert me button to register and receive a weekly digest of any product information that  
has changed. For change details, review the revision history included in any revised document  
11.5 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.6 Trademarks  
TINA-TI, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
DesignSoft, TINA are trademarks of DesignSoft, Inc.  
All other trademarks are the property of their respective owners.  
11.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
11.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
28  
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: OPA187 OPA2187 OPA4187  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Jan-2019  
PACKAGING INFORMATION  
Orderable Device  
OPA187ID  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
SOIC  
SOT-23  
SOT-23  
VSSOP  
VSSOP  
SOIC  
D
8
5
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAUAG  
CU NIPDAUAG  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
OPA187  
OPA187IDBVR  
OPA187IDBVT  
OPA187IDGKR  
OPA187IDGKT  
OPA187IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PREVIEW  
PREVIEW  
DBV  
DBV  
DGK  
DGK  
D
3000  
250  
Green (RoHS  
& no Sb/Br)  
1CUV  
5
Green (RoHS  
& no Sb/Br)  
1CUV  
8
2500  
250  
Green (RoHS  
& no Sb/Br)  
1D96  
8
Green (RoHS  
& no Sb/Br)  
1D96  
8
2500  
75  
Green (RoHS  
& no Sb/Br)  
OPA187  
OP2187  
16TV  
OPA2187ID  
SOIC  
D
8
Green (RoHS  
& no Sb/Br)  
OPA2187IDGKR  
OPA2187IDGKT  
OPA2187IDR  
OPA4187ID  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
2500  
250  
Green (RoHS  
& no Sb/Br)  
8
Green (RoHS  
& no Sb/Br)  
16TV  
8
2500  
50  
Green (RoHS  
& no Sb/Br)  
OP2187  
OPA4187  
OPA4187  
OPA4187  
OPA4187  
SOIC  
D
14  
14  
14  
14  
Green (RoHS  
& no Sb/Br)  
OPA4187IDR  
OPA4187IPW  
OPA4187IPWR  
SOIC  
D
2500  
90  
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
PW  
PW  
Green (RoHS  
& no Sb/Br)  
2000  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Jan-2019  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Jan-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA187IDBVR  
OPA187IDBVT  
OPA187IDGKR  
OPA187IDGKT  
OPA187IDR  
SOT-23  
SOT-23  
VSSOP  
VSSOP  
SOIC  
DBV  
DBV  
DGK  
DGK  
D
5
5
3000  
250  
180.0  
180.0  
330.0  
330.0  
330.0  
330.0  
180.0  
330.0  
330.0  
8.4  
3.23  
3.23  
5.3  
5.3  
6.4  
5.3  
5.3  
6.4  
6.5  
3.17  
3.17  
3.4  
3.4  
5.2  
3.4  
3.4  
5.2  
9.0  
1.37  
1.37  
1.4  
1.4  
2.1  
1.4  
1.4  
2.1  
2.1  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
8.4  
8.0  
8
2500  
250  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
16.4  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
8
8
2500  
2500  
250  
OPA2187IDGKR  
OPA2187IDGKT  
OPA2187IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
2500  
2500  
OPA4187IDR  
SOIC  
D
14  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Jan-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA187IDBVR  
OPA187IDBVT  
OPA187IDGKR  
OPA187IDGKT  
OPA187IDR  
SOT-23  
SOT-23  
VSSOP  
VSSOP  
SOIC  
DBV  
DBV  
DGK  
DGK  
D
5
5
3000  
250  
213.0  
213.0  
366.0  
366.0  
367.0  
367.0  
210.0  
367.0  
367.0  
191.0  
191.0  
364.0  
364.0  
367.0  
367.0  
185.0  
367.0  
367.0  
35.0  
35.0  
50.0  
50.0  
35.0  
35.0  
35.0  
35.0  
38.0  
8
2500  
250  
8
8
2500  
2500  
250  
OPA2187IDGKR  
OPA2187IDGKT  
OPA2187IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
2500  
2500  
OPA4187IDR  
SOIC  
D
14  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
2X 0.95  
1.9  
3.05  
2.75  
1.9  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/D 11/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/D 11/2018  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/D 11/2018  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2019, Texas Instruments Incorporated  

相关型号:

OPA4188

0.03-uV/C Drift, Low-Noise, Rail-to-Rail Output, 36-V, Zero-Drift OPERATIONAL AMPLIFIERS
TI

OPA4188AID

0.03µV/C、低噪声、轨到轨输出的 36V 零漂移运算放大器 | D | 14 | -40 to 125
TI

OPA4188AIDR

0.03µV/C、低噪声、轨到轨输出的 36V 零漂移运算放大器 | D | 14 | -40 to 125
TI

OPA4188AIPW

0.03µV/C、低噪声、轨到轨输出的 36V 零漂移运算放大器 | PW | 14 | -40 to 125
TI

OPA4188AIPWR

0.03µV/C、低噪声、轨到轨输出的 36V 零漂移运算放大器 | PW | 14 | -40 to 125
TI

OPA4189

四路、14MHz、支持多路复用器、零漂移、轨到轨输出、精密运算放大器
TI

OPA4189IDR

OPAx189 Precision, Lowest-Noise, 36-V, Zero-Drift, 14-MHz, MUX-Friendly, Rail-to-Rail Output Operational Amplifiers
TI

OPA4189IDT

OPAx189 Precision, Lowest-Noise, 36-V, Zero-Drift, 14-MHz, MUX-Friendly, Rail-to-Rail Output Operational Amplifiers
TI

OPA4189IPWR

OPAx189 Precision, Lowest-Noise, 36-V, Zero-Drift, 14-MHz, MUX-Friendly, Rail-to-Rail Output Operational Amplifiers
TI

OPA4189IPWT

OPAx189 Precision, Lowest-Noise, 36-V, Zero-Drift, 14-MHz, MUX-Friendly, Rail-to-Rail Output Operational Amplifiers
TI

OPA4191

具有 RRIO 的四路低功耗 36V 精密 e-trim 放大器
TI

OPA4191ID

具有 RRIO 的四路低功耗 36V 精密 e-trim 放大器 | D | 14 | -40 to 125
TI