OPA4191IRUMR [TI]

具有 RRIO 的四路低功耗 36V 精密 e-trim 放大器 | RUM | 16 | -40 to 125;
OPA4191IRUMR
型号: OPA4191IRUMR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 RRIO 的四路低功耗 36V 精密 e-trim 放大器 | RUM | 16 | -40 to 125

放大器
文件: 总59页 (文件大小:5063K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
OPAx191 36-V, Low-Power, Precision, CMOS, Rail-to-Rail Input/Output,  
Low Offset Voltage, Low Input Bias Current Op Amp  
1 Features  
3 Description  
Low offset voltage: ±5 µV  
The OPAx191 family (OPA191, OPA2191, and  
OPA4191) is a new generation of 36-V, e-trim™  
operational amplifiers.  
Low offset voltage drift: ±0.1 µV/°C  
Low noise: 15 nV/√ Hz at 1 kHz  
High common-mode rejection: 140 dB  
Low bias current: ±5 pA  
Rail-to-rail input and output  
Wide bandwidth: 2.5-MHz GBW  
High slew rate: 5 V/µs  
Low quiescent current: 140 µA per amplifier  
Wide supply: ±2.25 V to ±18 V, 4.5 V to 36 V  
EMI/RFI filtered inputs  
Differential input voltage range to supply rail  
High capacitive load drive capability: 1 nF  
Industry standard packages:  
These devices offer outstanding dc precision and  
ac performance, including rail-to-rail input/output, low  
offset voltage (±5 µV, typ), low offset drift (±0.2 µV/°C,  
typ), and 2-MHz bandwidth.  
Unique features, such as differential input-voltage  
range to the supply rail, high output current (±65 mA),  
high capacitive load drive of up to 1 nF, and high  
slew rate (5 V/µs), make the OPAx191 a robust, high-  
performance operational amplifier for high-voltage  
industrial applications.  
– Single in SOIC-8, SOT-5, and VSSOP-8  
– Dual in SOIC-8 and VSSOP-8  
– Quad in SOIC-14, TSSOP-14, and WQFN-16  
The OPAx191 family of op amps is available in  
standard packages and is specified from –40°C to  
+125°C.  
2 Applications  
Device Information  
PART NUMBER  
PACKAGE(1)  
BODY SIZE (NOM)  
4.90 mm × 3.90 mm  
2.90 mm × 1.60 mm  
3.00 mm × 3.00 mm  
4.90 mm × 3.90 mm  
3.00 mm × 3.00 mm  
8.65 mm x 3.90 mm  
5.00 mm x 4.40 mm  
4.00 mm x 4.00 mm  
Analog input module  
Mixed module (AI, AO, DI, DO)  
Data acquisition (DAQ)  
Source measurement unit (SMU)  
Pressure transmitter  
Train control and management systems  
Lab and field instrumentation  
SOIC (8)  
OPA191  
SOT (5)  
VSSOP (8)  
SOIC (8)  
OPA2191  
OPA4191  
VSSOP (8)  
SOIC (14)  
TSSOP (14)  
WQFN (16)  
(1) For all available packages, see the package option  
addendum at the end of the data sheet.  
Analog Inputs  
REF3140  
RC Filter  
RC Filter  
OPA625  
Reference Driver  
Bridge Sensor  
Gain  
Gain  
OPA191  
+
4:2  
HV MUX  
Thermocouple  
REF  
VIN  
+
OPA191  
P
Gain  
OPA191  
+
Antialiasing  
Filter  
ADS8864  
VIN  
Current Sensing  
Optical Sensor  
M
High-Voltage Multiplexed Input  
High-Voltage Level Translation  
VCM  
OPA191 in a High-Voltage, Multiplexed, Data-Acquisition System  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings ....................................... 5  
6.2 ESD Ratings .............................................................. 5  
6.3 Recommended Operating Conditions ........................5  
6.4 Thermal Information: OPA191 ................................... 6  
6.5 Thermal Information: OPA2191 ................................. 6  
6.6 Thermal Information: OPA4191 ................................. 6  
6.7 Electrical Characteristics: VS = ±4 V to ±18 V  
8.2 Functional Block Diagram.........................................22  
8.3 Feature Description...................................................23  
8.4 Device Functional Modes..........................................30  
9 Application and Implementation..................................31  
9.1 Application Information............................................. 31  
9.2 Typical Applications.................................................. 31  
10 Power Supply Recommendations..............................35  
11 Layout...........................................................................35  
11.1 Layout Guidelines................................................... 35  
11.2 Layout Example...................................................... 36  
12 Device and Documentation Support..........................37  
12.1 Device Support....................................................... 37  
12.2 Documentation Support.......................................... 37  
12.3 Receiving Notification of Documentation Updates..37  
12.4 Support Resources................................................. 37  
12.5 Trademarks.............................................................38  
12.6 Electrostatic Discharge Caution..............................38  
12.7 Glossary..................................................................38  
13 Mechanical, Packaging, and Orderable  
(VS = 8 V to 36 V) .........................................................7  
6.8 Electrical Characteristics: VS = ±2.25 V to ±4 V  
(VS = 4.5 V to 8 V) ........................................................9  
6.9 Typical Characteristics.............................................. 11  
7 Parameter Measurement Information..........................20  
7.1 Input Offset Voltage Drift...........................................20  
8 Detailed Description......................................................22  
8.1 Overview...................................................................22  
Information.................................................................... 38  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision C (October 2019) to Revision D (August 2021)  
Page  
Changed OPA4191 PW (TSSOP-14) package from preview to production data (active).................................. 1  
Changes from Revision B (July 2019) to Revision C (October 2019)  
Page  
Changed OPA4191 RUM package from preview to production data (active).....................................................1  
Changes from Revision A (April 2016) to Revision B (July 2019)  
Page  
Added advanced information (preview) 16-pin RUM (WQFN) package and associated content to data sheet 1  
Changed Figure 32 condition from G = –1 to G = 1..........................................................................................11  
Changed Figure 33 condition from G = 1 to G = –1 .........................................................................................11  
Changes from Revision * (December 2015) to Revision A (April 2016)  
Page  
Changed DBV and DGK packages from product preview to production data.................................................... 1  
Changed Figure 23, 0.1-Hz to 10-Hz Noise......................................................................................................11  
Added text regarding capacitive load drive to the Capacitive Load and Stability section.................................26  
Added Figure 56 .............................................................................................................................................. 26  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
5 Pin Configuration and Functions  
NC  
œIN  
+IN  
Vœ  
1
2
3
4
8
7
6
5
NC  
V+  
OUT  
Vœ  
1
2
3
5
V+  
œ
OUT  
NC  
+
+IN  
4
œIN  
Not to scale  
Not to scale  
Figure 5-1. OPA191 DBV (5-Pin SOT) Package,  
Top View  
Figure 5-2. OPA191 D (8-Pin SOIC) and  
DGK (8-Pin VSSOP) Packages, Top View  
Pin Functions: OPA191  
PIN  
OPA191  
I/O  
DESCRIPTION  
NAME  
D (SOIC),  
DGK (VSSOP)  
DBV (SOT)  
+IN  
–IN  
NC  
OUT  
V+  
3
3
4
I
Noninverting input  
2
I
Inverting input  
1, 5, 8  
1
O
No internal connection (can be left floating)  
Output  
6
7
4
5
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
2
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA191 OPA2191 OPA4191  
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
OUT A  
œIN A  
+IN A  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT B  
œIN B  
+IN B  
Not to scale  
Figure 5-3. OPA2191 D (8-Pin SOIC) and  
DGK (8-Pin VSSOP) Packages, Top View  
OUT A  
œIN A  
+IN A  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
œIN D  
+IN D  
Vœ  
-IN A  
+IN A  
V+  
1
2
3
4
12  
11  
10  
9
-IN D  
+IN D  
Vœ  
Thermal  
Pad  
+IN B  
œIN B  
OUT B  
+IN C  
œIN C  
OUT C  
+IN B  
+IN C  
8
Not to scale  
Figure 5-4. OPA4191 D (14-Pin SOIC) and  
PW (14-Pin TSSOP) Packages, Top View  
Not to scale  
Figure 5-5. OPA4191 RUM (16-Pin WQFN With  
Exposed Thermal Pad) Package, Top View  
Pin Functions: OPA2191 and OPA4191  
PIN  
OPA2191  
D (SOIC),  
OPA4191  
I/O  
DESCRIPTION  
NAME  
D (SOIC),  
RUM (QFN)  
DGK (VSSOP) PW (TSSOP)  
+IN A  
+IN B  
+IN C  
+IN D  
–IN A  
–IN B  
–IN C  
–IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V+  
3
5
3
5
2
4
I
I
Noninverting input, channel A  
Noninverting input, channel B  
Noninverting input, channel C  
Noninverting input, channel D  
Inverting input, channel A  
Inverting input, channel B  
Inverting input,,channel C  
Inverting input, channel D  
Output, channel A  
2
10  
12  
2
9
I
11  
1
I
I
6
6
5
I
1
9
8
I
13  
1
12  
15  
6
I
O
O
O
O
7
7
Output, channel B  
8
8
7
Output, channel C  
14  
4
14  
3
Output, channel D  
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
4
11  
10  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA191 OPA2191 OPA4191  
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
±20  
Supply voltage, VS = (V+) – (V–)  
V
(+40, single supply)  
Common-mode  
Voltage  
(V–) – 0.5  
(V+) + 0.5  
(V+) – (V–) + 0.2  
±10  
V
Signal input pins  
Output short circuit(2)  
Temperature  
Differential  
Current  
mA  
Continuous  
–40  
Continuous Continuous  
150  
Operating  
Junction  
150  
150  
°C  
Storage, Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±3000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
OPA4191IPW package only  
,
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5 (±2.25)  
–40  
NOM  
MAX  
36 (±18)  
125  
UNIT  
V
Supply voltage, VS = (V+) – (V–)  
Specified temperature  
°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
 
 
 
 
 
 
OPA191, OPA2191, OPA4191  
www.ti.com  
UNIT  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
6.4 Thermal Information: OPA191  
OPA191  
THERMAL METRIC(1)  
D (SOIC)  
DGK (VSSOP)  
DBV (SOT)  
5 PINS  
158.8  
60.7  
8 PINS  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
115.8  
60.1  
56.4  
12.8  
55.9  
N/A  
180.4  
67.9  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
102.1  
10.4  
44.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
1.6  
ψJB  
100.3  
N/A  
4.2  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Thermal Information: OPA2191  
OPA2191  
THERMAL METRIC(1)  
D (SOIC)  
DGK (VSSOP)  
UNIT  
8 PINS  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
107.9  
53.9  
48.9  
6.6  
158  
48.6  
78.7  
3.9  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
ψJB  
48.3  
N/A  
77.3  
N/A  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.6 Thermal Information: OPA4191  
OPA4191  
THERMAL METRIC(1)  
D (SOIC)  
PW (TSSOP)  
14 PINS  
RUM (QFN)  
16 PINS  
33.0  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
86.4  
46.3  
41.0  
11.3  
40.7  
N/A  
108.1  
26.3  
54.4  
1.4  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
25.1  
11.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
0.2  
ψJB  
53.3  
N/A  
11.5  
RθJC(bot)  
2.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
 
 
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
6.7 Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8 V to 36 V)  
at TA = +25°C, VCM = VOUT = VS / 2, and RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
±5  
±8  
±25  
±75  
VS = ±18 V  
TA = 0°C to 85°C  
TA = –40°C to +125°C  
±10  
±125  
(V+) – 3.0 V < VCM < (V+) – 1.5 V  
See Typical Characteristics  
±10  
±25  
±50  
±150  
±250  
±50  
VOS  
Input offset voltage  
µV  
VS = ±18 V,  
VCM = (V+) – 1.5 V  
TA = 0°C to 85°C  
TA = –40°C to +125°C  
±50  
±5  
OPA4191 (RUM, PW), VS = ±18 V  
VCM = (V+) – 1.5 V  
TA = 0°C to 85°C  
±10  
±475  
±740  
±0.8  
±1.2  
±0.9  
±1.3  
TA = –40°C to +125°C  
TA = 0°C to 85°C  
±20  
±0.1  
±0.15  
±0.1  
±0.15  
±0.5  
VS = ±18 V, D and PW packages  
only  
TA = –40°C to +125°C  
TA = 0°C to 85°C  
dVOS/dT  
PSRR  
Input offset voltage drift  
µV/°C  
µV/V  
VS = ±18 V, RUM, DGK and DBV  
packages only  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
VS = ±18 V, VCM = (V+) – 1.5 V  
TA = –40°C to +125°C  
Power-supply rejection  
ratio  
±0.3  
±1.0  
INPUT BIAS CURRENT  
±5  
±2  
±20  
±9  
pA  
nA  
pA  
nA  
IB  
Input bias current  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
±20  
±2  
IOS  
Input offset current  
Input voltage noise  
NOISE  
En  
(V–) – 0.1 V < VCM < (V+) – 3 V  
(V+) – 1.5 V < VCM < (V+) + 0.1 V  
f = 0.1 Hz to 10 Hz  
f = 0.1 Hz to 10 Hz  
f = 100 Hz  
1.4  
7
µVPP  
18  
15  
53  
24  
(V–) – 0.1 V < VCM < (V+) – 3 V  
f = 1 kHz  
Input voltage noise  
density  
en  
nV/√Hz  
f = 100 Hz  
(V+) – 1.5 V < VCM < (V+) + 0.1 V  
f = 1 kHz  
f = 1 kHz  
Input current noise  
density  
in  
1.5  
fA/√Hz  
V
INPUT VOLTAGE  
Common-mode voltage  
range  
VCM  
(V–) – 0.1  
120  
(V+) + 0.1  
VS = ±18 V,  
(V–) – 0.1 V < VCM < (V+) – 3 V  
140  
126  
VS = ±18 V,  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
114  
Common-mode rejection (V–) < VCM < (V+) – 3 V  
ratio  
CMRR  
dB  
96  
86  
120  
100  
VS = ±18 V,  
(V+) – 1.5 V < VCM < (V+)  
(V+) – 3 V < VCM < (V+) – 1.5 V  
See Typical Characteristics  
INPUT IMPEDANCE  
ZID  
ZIC  
Differential  
100 || 1.6  
1 || 6.4  
MΩ || pF  
1013Ω ||  
pF  
Common-mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA191 OPA2191 OPA4191  
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
6.7 Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8 V to 36 V) (continued)  
at TA = +25°C, VCM = VOUT = VS / 2, and RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPEN-LOOP GAIN  
VS = ±18 V,  
(V–) + 0.6 V < VO < (V+) – 0.6 V,  
RL = 2 kΩ  
124  
124  
114  
114  
126  
120  
134  
134  
126  
126  
140  
134  
VS = ±18 V,  
(V–) + 0.8 V < VO < (V+) – 0.8 V,  
RL = 2 kΩ, RUM package  
VS = ±18 V,  
(V–) + 0.6 V < VO < (V+) – 0.6 V,  
RL = 2 kΩ  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
AOL  
Open-loop voltage gain  
dB  
VS = ±18 V,  
(V–) + 0.8 V < VO < (V+) – 0.8 V,  
RL = 2 kΩ, RUM package  
VS = ±18 V,  
(V–) + 0.3 V < VO < (V+) – 0.3 V,  
RL = 10 kΩ  
VS = ±18 V,  
(V–) + 0.3 V < VO < (V+) – 0.3 V,  
RL = 10 kΩ  
TA = –40°C to +125°C  
FREQUENCY RESPONSE  
GBW  
Unity gain bandwidth  
2.5  
7.5  
5.5  
0.7  
1
MHz  
V/µs  
Falling  
SR  
Slew rate  
VS = ±18 V, G = 1, 10-V step  
To 0.01%, CL = 20 pF  
Rising  
VS = ±18 V, G = 1, 2-V step  
VS = ±18 V, G = 1, 5-V step  
VS = ±18 V, G = 1, 2-V step  
VS = ±18 V, G = 1, 5-V step  
From overload to negative rail  
From overload to positive rail  
ts  
Settling time  
µs  
µs  
1.8  
3.7  
0.4  
1
To 0.001%, CL = 20 pF  
tOR  
Overload recovery time VIN × G = VS  
Total harmonic distortion  
THD+N  
G = 1, f = 1 kHz, VO = 3.5 VRMS  
0.0012%  
+ noise  
OPA2191 and OPA4191, at dc  
150  
130  
dB  
dB  
Crosstalk  
OPA2191 and OPA4191, f = 100 kHz  
OUTPUT  
No load  
5
50  
15  
110  
500  
15  
Positive rail  
RL = 10 kΩ  
RL = 2 kΩ  
No load  
200  
5
Voltage output swing  
from rail  
VO  
mV  
Negative rail  
VS = ±18 V  
RL = 10 kΩ  
RL = 2 kΩ  
50  
110  
500  
200  
±65  
ISC  
CL  
Short-circuit current  
Capacitive load drive  
mA  
Ω
See Typical Characteristics  
700  
Open-loop output  
impedance  
ZO  
f = 1 MHz, IO = 0 A, See Typical Characteristics  
POWER SUPPLY  
140  
200  
250  
Quiescent current per  
amplifier  
IQ  
IO = 0 A  
µA  
TA = –40°C to +125°C  
TEMPERATURE  
Thermal protection  
180  
30  
°C  
°C  
Thermal hysteresis  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA191 OPA2191 OPA4191  
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
6.8 Electrical Characteristics: VS = ±2.25 V to ±4 V (VS = 4.5 V to 8 V)  
at TA = +25°C, VCM = VOUT = VS / 2, and RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
±5  
±8  
±25  
±75  
VS = ±2.25 V,  
VCM = (V+) – 3 V  
TA = 0°C to 85°C  
TA = –40°C to +125°C  
±10  
±125  
(V+) – 3.0 V < VCM < (V+) – 1.5 V  
See Typical Characteristics  
±10  
±25  
±50  
±150  
±250  
±50  
VOS  
Input offset voltage  
µV  
VS = ±3 V,  
VCM = (V+) – 1.5 V  
TA = 0°C to 85°C  
TA = –40°C to +125°C  
±50  
±10  
OPA4191 (RUM, PW), VS = ±3 V,  
VCM = (V+) – 1.5 V  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
TA = 0°C to 85°C  
±90  
±475  
±740  
±0.8  
±1.2  
±0.9  
±150  
±0.1  
±0.15  
±0.1  
µV/°C  
µV/°C  
VS = ±2.25 V, VCM = (V+) – 3 V,  
D and PW packages only  
TA = –40°C to +125°C  
TA = 0°C to 85°C  
VS = ±2.25 V, VCM = (V+) – 3  
V, RUM, DGK and DBV packages  
only  
dVOS/dT  
PSRR  
Input offset voltage drift  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
±0.15  
±0.5  
±1.3  
µV/°C  
µV/V  
VS = ±2.25 V, VCM = (V+) – 1.5 V  
Power-supply rejection  
ratio  
TA = –40°C to +125°C, VCM = VS / 2 – 0.75 V  
±1  
INPUT BIAS CURRENT  
±5  
±2  
±20  
±9  
pA  
nA  
pA  
nA  
IB  
Input bias current  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
±20  
±2  
IOS  
Input offset current  
Input voltage noise  
NOISE  
En  
(V–) – 0.1 V < VCM < (V+) – 3 V  
f = 0.1 Hz to 10 Hz  
1.4  
7
µVPP  
(V+) – 1.5 V < VCM < (V+) + 0.1 V f = 0.1 Hz to 10 Hz  
f = 100 Hz  
(V–) – 0.1 V < VCM < (V+) – 3 V  
f = 1 kHz  
18  
15  
53  
24  
1.5  
en  
Input voltage noise density  
Input current noise density  
nV/√Hz  
f = 100 Hz  
(V+) – 1.5 V < VCM < (V+) + 0.1 V  
f = 1 kHz  
in  
INPUT VOLTAGE  
f = 1 kHz  
fA/√Hz  
V
Common-mode voltage  
range  
VCM  
(V–) – 0.1  
(V+) + 0.1  
VS = ±2.25 V,  
(V–) – 0.1 V < VCM < (V+) – 3 V  
96  
90  
110  
104  
VS = ±2.25 V,  
TA = –40°C to +125°C  
(V–) < VCM < (V+) – 3 V  
Common-mode rejection  
ratio  
CMRR  
dB  
96  
84  
120  
100  
VS = ±2.25 V,  
(V+) – 1.5 V < VCM < (V+)  
TA = –40°C to +125°C  
(V+) – 3 V < VCM < (V+) – 1.5 V  
See Typical Characteristics  
INPUT IMPEDANCE  
ZID  
ZIC  
Differential  
100 || 1.6  
1 || 6.4  
MΩ || pF  
1013Ω ||  
pF  
Common-mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA191 OPA2191 OPA4191  
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
6.8 Electrical Characteristics: VS = ±2.25 V to ±4 V (VS = 4.5 V to 8 V) (continued)  
at TA = +25°C, VCM = VOUT = VS / 2, and RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPEN-LOOP GAIN  
VS = ±2.25 V,  
(V–) + 0.6 V < VO < (V+) – 0.6 V,  
RL = 2 kΩ  
110  
100  
110  
106  
120  
114  
126  
120  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
AOL  
Open-loop voltage gain  
dB  
VS = ±2.25 V,  
(V–) + 0.3 V < VO < (V+) – 0.3 V,  
RL = 10 kΩ  
FREQUENCY RESPONSE  
GBW  
Unity gain bandwidth  
2.2  
6.5  
5.5  
0.4  
1
MHz  
V/µs  
Falling  
SR  
Slew rate  
VS = ±2.25 V, G = 1, 1-V step  
VIN × G = VS  
Rising  
From overload to negative rail  
From overload to positive rail  
tOR  
Overload recovery time  
Crosstalk  
µs  
OPA2191 and OPA4191, at dc  
150  
130  
dB  
dB  
OPA2191 and OPA4191, f = 100 kHz  
OUTPUT  
No load  
5
15  
60  
5
15  
110  
500  
15  
Positive rail  
RL = 10 kΩ  
RL = 2 kΩ  
No load  
Voltage output swing from  
rail  
VO  
mV  
Negative rail  
VS = ±2.25 V  
RL = 10 kΩ  
RL = 2 kΩ  
15  
60  
±30  
110  
500  
ISC  
CL  
Short-circuit current  
Capacitive load drive  
mA  
Ω
See Typical Characteristics  
700  
Open-loop output  
impedance  
ZO  
f = 1 MHz, IO = 0 A, see Typical Characteristics  
POWER SUPPLY  
140  
200  
250  
Quiescent current per  
amplifier  
IQ  
IO = 0 A  
µA  
TA = –40°C to +125°C  
TEMPERATURE  
Thermal protection  
180  
30  
°C  
°C  
Thermal hysteresis  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA191 OPA2191 OPA4191  
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
6.9 Typical Characteristics  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
Table 6-1. Table of Graphs  
DESCRIPTION  
Offset Voltage Production Distribution  
Offset Voltage Drift Distribution  
FIGURE  
Figure 6-1, Figure 6-2, Figure 6-3, Figure 6-4, Figure 6-5, Figure 6-6  
Figure 6-7, Figure 6-8,  
Figure 6-9, Figure 6-10  
Figure 6-11, Figure 6-12  
Figure 6-13  
Offset Voltage vs Temperature  
Offset Voltage vs Common-Mode Voltage  
Offset Voltage vs Power Supply  
Open-Loop Gain and Phase vs Frequency  
Closed-Loop Gain and Phase vs Frequency  
Input Bias Current vs Common-Mode Voltage  
Input Bias Current vs Temperature  
Output Voltage Swing vs Output Current (maximum supply)  
CMRR and PSRR vs Frequency  
CMRR vs Temperature  
Figure 6-14  
Figure 6-15  
Figure 6-16  
Figure 6-17  
Figure 6-18, Figure 6-19  
Figure 6-20  
Figure 6-21  
PSRR vs Temperature  
Figure 6-22  
0.1-Hz to 10-Hz Noise  
Figure 6-23  
Input Voltage Noise Spectral Density vs Frequency  
THD+N Ratio vs Frequency  
Figure 6-24  
Figure 6-25  
THD+N vs Output Amplitude  
Figure 6-26  
Quiescent Current vs Supply Voltage  
Quiescent Current vs Temperature  
Open Loop Gain vs Temperature  
Open Loop Output Impedance vs Frequency  
Small Signal Overshoot vs Capacitive Load (100-mV output step)  
No Phase Reversal  
Figure 6-27  
Figure 6-28  
Figure 6-29, Figure 6-30  
Figure 6-31  
Figure 6-32, Figure 6-33  
Figure 6-34  
Overload Recovery  
Figure 6-35  
Small-Signal Step Response (100 mV)  
Large-Signal Step Response  
Figure 6-36, Figure 6-37  
Figure 6-38, Figure 6-39  
Figure 6-40, Figure 6-41, Figure 6-42, Figure 6-43  
Figure 6-44  
Settling Time  
Short-Circuit Current vs Temperature  
Maximum Output Voltage vs Frequency  
Propagation Delay Rising Edge  
Figure 6-45  
Figure 6-46  
Propagation Delay Falling Edge  
Figure 6-47  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
35  
30  
25  
20  
15  
10  
5
48  
42  
36  
30  
24  
18  
12  
6
0
0
-25 -20 -15 -10  
-5  
0
5
10  
15  
20  
25  
50  
75  
-50 -40 -30 -20 -10  
0
10  
20  
30  
40  
50  
50  
75  
Input Offset Voltage (mV)  
Input Offset Voltage (mV)  
TA = 25°C  
TA = 125°C  
Figure 6-1. Offset Voltage Production Distribution  
48  
Figure 6-2. Offset Voltage Production Distribution  
48  
42  
36  
30  
24  
18  
12  
6
42  
36  
30  
24  
18  
12  
6
0
0
-50 -40 -30 -20 -10  
0
10  
20  
30  
40  
-50 -40 -30 -20 -10  
0
10  
20  
30  
40  
Input Offset Voltage (mV)  
Input Offset Voltage (mV)  
TA = 85°C  
TA = 0°C  
Figure 6-3. Offset Voltage Production Distribution  
48  
Figure 6-4. Offset Voltage Production Distribution  
48  
42  
36  
30  
24  
18  
12  
6
42  
36  
30  
24  
18  
12  
6
0
0
-75 -60 -45 -30 -15  
0
15  
30  
45  
60  
-75 -60 -45 -30 -15  
0
15  
30  
45  
60  
Input Offset Voltage (mV)  
Input Offset Voltage (mV)  
TA = –25°C  
TA = –40°C  
Figure 6-5. Offset Voltage Production Distribution  
Figure 6-6. Offset Voltage Production Distribution  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
Offset Voltage Drift (µV/°C)  
Offset Voltage Drift (µV/°C)  
C013  
C013  
TA = –40°C to +125°C, SOIC package  
TA = 0°C to 85°C, SOIC package  
Figure 6-7. Offset Voltage Drift Distribution  
Figure 6-8. Offset Voltage Drift Distribution  
125  
100  
75  
125  
Average ê 3d  
Average ê 1d  
75  
50  
25  
25  
0
œ25  
œ75  
œ125  
-25  
-50  
-75  
-100  
-125  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
C001  
Temperature (èC)  
4 typical units  
Statistical distribution  
Figure 6-10. Offset Voltage vs Temperature  
Figure 6-9. Offset Voltage vs Temperature  
25  
15  
250  
200  
150  
100  
50  
Transition  
VCM = œ18.1 V  
P-Channel  
5
VCM = -18.1 V  
0
œ5  
œ50  
œ100  
œ150  
œ200  
œ250  
N-Channel  
VCM = 18 V  
œ15  
œ25  
0
5
10  
15  
13  
14  
15  
16  
17  
18  
19  
œ20  
œ15  
œ10  
œ5  
Common Mode Voltage (V)  
Common Mode Voltage (V)  
C001  
C001  
Figure 6-11. Offset Voltage vs Common-Mode Voltage  
Figure 6-12. Offset Voltage vs Common-Mode Voltage in  
Transition Region  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
25  
160  
180  
135  
90  
20  
140  
Open-loop Gain  
15  
120  
Phase  
10  
100  
5
80  
45  
0
-5  
60  
40  
0
-10  
-15  
-20  
-25  
20  
-45  
-90  
-135  
0
œ20  
œ40  
0
ê5  
ê10  
Power Supply Voltage (V)  
ê15  
ê20  
0.1  
1.0 10.0 100.0 1k  
10k 100k 1M 10M 100M  
Frequency (Hz)  
C001  
30 typical units  
Figure 6-13. Offset Voltage vs Power Supply  
Figure 6-14. Open-Loop Gain and Phase  
vs Frequency  
1000  
800  
60  
40  
20  
0
G = -1  
G = +1  
G= -10  
G= -100  
600  
400  
200  
0
œ200  
œ400  
œ600  
œ800  
œ1000  
-20  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
5
10  
15  
20  
œ20  
œ15  
œ10  
œ5  
Frequency (Hz)  
Common Mode Voltage (V)  
C004  
C001  
Figure 6-15. Closed-Loop Gain vs Frequency  
Figure 6-16. Input Bias Current  
vs Common-Mode Voltage  
20  
18  
16  
14  
12  
10  
8
10  
IB -  
IB+  
9
8
7
6
5
4
3
2
1
0
6
-40èC  
25èC  
85èC  
125èC  
4
2
0
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
20  
40 60  
Output Current (mA)  
80  
100  
Temperature (°C)  
C001  
Sourcing  
Figure 6-17. Input Bias Current vs Temperature  
Figure 6-18. Output Voltage Swing  
vs Output Current  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
0
140  
-40èC  
-2  
25èC  
120  
85èC  
125èC  
-4  
100  
80  
60  
40  
20  
0
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
CMRR  
+PSRR  
œPSRR  
0.1  
1.0  
10.0 100.0  
1k  
10k 100k  
1M  
10M  
0
20  
40 60  
Output Current (mA)  
80  
100  
Frequency (Hz)  
C004  
Sinking  
Figure 6-20. CMRR and PSRR vs Frequency  
Figure 6-19. Output Voltage Swing  
vs Output Current  
10  
5
VS  
= 2.25 V, (Vœ) ≤ VCM ≤ (V+) œ 3 V  
8
6
4
3
4
2
2
1
0
0
-2  
-4  
-6  
-8  
-10  
-1  
-2  
-3  
-4  
-5  
VS  
= 18 V, (Vœ) ≤ VCM ≤ (V+) œ 3 V  
0
25  
50  
75  
100 125 150  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
œ75 œ50 œ25  
Temperature (°C)  
Temperature (°C)  
C001  
C001  
Figure 6-21. CMRR vs Temperature  
Figure 6-22. PSRR vs Temperature  
100  
10  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Time (1 s/div)  
Frequency (Hz)  
C002  
Figure 6-23. 0.1-Hz to 10-Hz Noise  
Figure 6-24. Input Voltage Noise Spectral Density vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
0.5  
1
0.1  
-40  
G = -1, 2k-Load  
G = -1, 10k-Load  
G = +1, 2k-Load  
G = +1, 10k-Load  
G = -1 V/V, RL = 2 kW  
G = -1 V/V, RL = 10 kW  
G = 1 V/V, RL = 2 kW  
G = 1 V/V, RL = 10 kW  
-60  
0.1  
0.01  
-80  
0.01  
0.001  
0.0001  
0.00001  
-100  
-120  
-140  
0.001  
20  
200  
2k  
20k  
0.0005  
0.01  
0.1 1  
Output Amplitude (VRMS  
10 20  
Frequency (Hz)  
C004  
)
Figure 6-25. THD+N vs Frequency  
Figure 6-26. THD+N vs Output Amplitude  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
VS = ê2.25 V  
VS = ê18 V  
VS  
= 18 V  
VS  
= 2.25 V  
60  
60  
40  
40  
20  
20  
0
0
0
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
2
4
6
8
10  
12  
Supply Voltage (V)  
14  
16  
18  
20  
Temperature (°C)  
C001  
Figure 6-28. Quiescent Current vs Temperature  
Figure 6-27. Quiescent Current vs Supply Voltage  
5.0  
4.0  
3.0  
2.0  
5.0  
4.0  
3.0  
VS  
= 2.25 V  
2.0  
1.0  
VS  
= 2.25 V  
1.0  
0.0  
0.0  
œ1.0  
œ2.0  
œ3.0  
œ4.0  
œ5.0  
œ1.0  
œ2.0  
œ3.0  
œ4.0  
œ5.0  
VS  
=
18 V  
VS  
= 18 V  
0
25  
50  
75  
100 125 150  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
œ75 œ50 œ25  
Temperature (°C)  
Temperature (°C)  
C001  
C001  
RL = 10 kΩ  
RL = 2 kΩ  
Figure 6-29. Open-Loop Gain vs Temperature  
Figure 6-30. Open-Loop Gain vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
100k  
60  
RISO = 0  
RISO = 25  
50  
RISO = 50  
10k  
1k  
40  
30  
20  
10  
0
100  
10  
100  
1000  
100m  
1
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
1M  
10M  
Capacitive Load (pF)  
C004  
G = 1, 100-mV output step  
Figure 6-31. Open-Loop Output Impedance  
vs Frequency  
Figure 6-32. Small-Signal Overshoot  
vs Capacitive Load (100-mV Output Step)  
20  
10  
0
Output  
Input  
RISO = 0  
RISO = 25  
RISO = 50  
10  
100  
1000  
Time (50 ms/div)  
Capacitive Load (pF)  
C004  
G = –1, 100-mV output step  
Figure 6-34. No Phase Reversal  
Figure 6-33. Small-Signal Overshoot  
vs Capacitive Load  
Negative overload  
Positive overload  
Time (2.5 µs/div)  
Time (ms)  
C017  
VS = ±18 V, G = –10 V/V  
G = 1, CL = 10 pF  
Figure 6-35. Overload Recovery  
Figure 6-36. Small-Signal Step Response  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
Time (2.5 µs/div)  
Time (2.5 µs/div)  
C017  
C017  
G = –1, RL = 1 kΩ, CL = 10 pF  
G = 1, CL = 10 pF  
Figure 6-37. Small-Signal Step Response  
Figure 6-38. Large-Signal Step Response  
0.01% settling = ê200 mV  
Time (2.5 µs/div)  
Time (500 ns/div)  
C017  
Gain = 1, 2-V step, rising, step applied at t = 0 µs  
G = –1, RL = 1 kΩ, CL = 10 pF  
Figure 6-40. 0.01% Settling Time  
Figure 6-39. Large-Signal Step Response  
0.01% settling = ê200 mV  
0.01% settling = ê500 mV  
Time (500 ns/div)  
Time (500 ns/div)  
Gain = 1, 2-V step, falling, step applied at t = 0 µs  
Gain = 1, 5-V step, rising, step applied at t = 0 µs  
Figure 6-41. 0.01% Settling Time  
Figure 6-42. 0.01% Settling Time  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
100  
0.01% settling = ê500 mV  
ISC, Source  
80  
60  
40  
20  
0
ISC, Sink  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
Time (500 ns/div)  
Temperature (°C)  
C001  
Gain = 1, 5-V step, falling, step applied at t = 0 µs  
Figure 6-43. 0.01% Settling Time  
Figure 6-44. Short-Circuit Current vs Temperature  
35  
30  
25  
20  
15  
10  
5
Maximum output voltage without  
slew-rate induced distortion.  
Overdrive = 100 mV  
VS  
= 15 V  
tpLH = 26 µs  
VOUT Voltage  
VS  
VS  
= 4 V  
=
2.25 V  
1k  
0
Time (10 µs/div)  
100  
10k  
100k  
1M  
10M  
Frequency (Hz)  
C001  
C017  
Figure 6-45. Maximum Output Voltage vs Frequency  
Figure 6-46. Propagation Delay Rising Edge  
tpHL = 26 µs  
VOUT Voltage  
Overdrive = 100 mV  
Time (10 µs/div)  
C017  
Figure 6-47. Propagation Delay Falling Edge  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
7 Parameter Measurement Information  
7.1 Input Offset Voltage Drift  
The OPAx191 family of operational amplifiers is manufactured using TI’s e-trim operation amplifier technology.  
This e-trim operational amplifier technology is a TI proprietary method of trimming internal device parameters  
during either wafer probing or final testing. Each amplifier input offset voltage and input offset voltage drift is  
trimmed in production, thereby minimizing errors associated with input offset voltage and input offset voltage  
drift. When trimming input offset voltage drift, the systematic or linear drift error on each device is trimmed to  
zero. Figure 7-1 illustrates this concept.  
VOS before trim  
VOS after trim  
Linear component of drift  
Linear component of drift  
Temperature  
Figure 7-1. Input Offset Before and After Drift Trim  
A common method of specifying input offset voltage drift is the box method. The box method estimates a  
maximum input offset drift by bounding an offset voltage versus temperature curve with a box and using the  
corners of this bounding box to determine the drift. The slope of the line connecting the diagonal corners of  
the box corresponds to the input offset voltage drift. Figure 7-2 illustrates the box method concept. The box  
method works particularly well when the input offset drift is dominated by the linear component of drift, but  
because the OPA191 family uses TI’s e-trim operational amplifier technology to remove the linear component  
input offset voltage drift, the box method is not a particularly useful method of accurately performing an error  
analysis. Shown in Figure 7-2 are 30 typical units of OPAx191 with the box method superimposed for illustrative  
purposes. The boundaries of the box are determined by the specified temperature range along the x-axis and  
the maximum specified input offset voltage across that same temperature range along the y-axis. Using the  
box method predicts an input offset voltage drift of 0.9 µV/°C. As shown in Figure 7-2, the slopes of the actual  
input offset voltage versus temperature are much less than that predicted by the box method. The box method  
predicts a pessimistic value for the maximum input offset voltage drift and is not recommended when performing  
an error analysis.  
Offset Voltage vs Temperature  
100  
75  
50  
25  
0
-25  
-50  
-75  
-100  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Figure 7-2. The Box Method  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
Instead of the box method, a convenient way to illustrate input offset drift is to compute the slopes of the input  
offset voltage versus temperature curve. This is the same as computing the input offset drift at each point along  
the input offset voltage versus temperature curve. The results for the OPAx191 family are illustrated in Figure  
7-3.  
1.2  
0.9  
0.6  
+3 1  
0.3  
1
0
-1  
-0.3  
-0.6  
-0.9  
-3 1  
-1.2  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
Temperature (°C)  
C001  
Figure 7-3. Input Offset Voltage Drift vs Temperature (SOIC Package)  
As illustrated in Figure 7-3, the input offset drift is typically less than ±0.3 µV/°C over the range from –40°C  
to +125°C. When performing an error analysis over the full specified temperature range, use the typical and  
maximum values for input offset voltage drift as described in the Electrical Characteristics tables. If a reduced  
temperature range is applicable, use the information illustrated in Figure 7-3 when performing an error analysis.  
To determine the change in input offset voltage, use Equation 1:  
ΔVOS = ΔT × dVOS/dT  
(1)  
where  
ΔVOS = Change in input offset voltage  
ΔT = Change in temperature  
dVOS/dT = Input offset voltage drift  
For example, determine the amount of OPA191ID input offset voltage change over the temperature range of  
25°C to 75°C for 1 σ (68%) of the units. As shown in Figure 7-3, the input offset drift is typically 0.25 µV/°C. This  
input offset drift results in a typical input offset voltage change of (75°C – 25°C) × 0.25 µV/°C = 12.5 µV.  
For 3 σ (99.7%) of the units, Figure 7-3 shows a typical input offset drift of approximately 0.75 µV/°C. This input  
offset drift results in a typical input offset voltage change of (75°C – 25°C) × 0.75 µV/°C = 37.5 µV.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The OPAx191 family of e-trim operational amplifiers use a method of package-level trim for offset and offset  
temperature drift implemented during the final steps of manufacturing after the plastic molding process. This  
method minimizes the influence of inherent input transistor mismatch, as well as errors induced during package  
molding. The trim communication occurs on the output pin of the standard pinout, and after the trim points  
are set, further communication to the trim structure is permanently disabled. Section 8.2 shows the simplified  
diagram of the OPAx191.  
Unlike previous e-trim operational amplifiers, the OPAx191 uses a patented two-temperature trim architecture to  
achieve a very low offset voltage and low voltage offset drift over the full specified temperature range. This level  
of precision performance at wide supply voltages makes these amplifiers useful for high-impedance industrial  
sensors, filters, and high-voltage data acquisition.  
8.2 Functional Block Diagram  
OPAx191  
œ
NCH Input  
Stage  
+
IN+  
œ
High  
Capacitive Load  
Compensation  
VOUT  
36-V  
Differential  
Front End  
Output  
Stage  
Slew  
Boost  
+
INœ  
+
PCH Input  
Stage  
œ
e-trim™  
Operational Amplifier  
Package Level Trim  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
8.3 Feature Description  
8.3.1 Input Protection Circuitry  
The OPAx191 uses a unique input architecture to eliminate the need for input protection diodes but still provides  
robust input protection under transient conditions. Conventional input diode protection schemes shown in Figure  
8-1 can be activated by fast transient step responses and can introduce signal distortion and settling time  
delays because of alternate current paths, as shown in Figure 8-2. For low-gain circuits, these fast-ramping input  
signals forward-bias back-to-back diodes that cause an increase in input current, resulting in extended settling  
time.  
V+  
V+  
VIN+  
VIN+  
VOUT  
VOUT  
OPAx191  
~0.7 V  
36 V  
VIN-  
VIN-  
V-  
V-  
OPAx191 Provides Full 36-  
V Differential Input Range  
Conventional Input Protection  
Limits Differential Input Range  
Figure 8-1. OPA191 Input Protection Does Not Limit Differential Input Capability  
1
Ron_mux  
Vn = 10 V  
RFILT  
10 V  
Sn  
D
1
2
~œ9.3 V  
10 V  
CFILT  
CS  
CD  
VINœ  
2
Ron_mux  
Sn+1  
Vn+1 = œ10 V RFILT  
œ10 V  
~0.7 V  
VOUT  
CFILT  
CS  
Idiode_transient  
VIN+  
œ10 V  
Input Low-Pass Filter  
Simplified Mux Model  
Buffer Amplifier  
Figure 8-2. Back-to-Back Diodes Create Settling Issues  
The OPAx191 family of operational amplifiers provides a true high-impedance differential input capability  
for high-voltage applications. This patented input protection architecture does not introduce additional signal  
distortion or delayed settling time, making the device an optimal op amp for multichannel, high-switched, input  
applications. The OPAx191 tolerates a maximum differential swing (voltage between inverting and noninverting  
pins of the op amp) of up to 36 V, making the device an excellent choice for use as a comparator or in  
applications with fast-ramping input signals such as multiplexed data-acquisition systems (see Figure 9-4).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
8.3.2 EMI Rejection  
The OPAx191 uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from  
sources such as wireless communications and densely-populated boards with a mix of analog signal chain and  
digital components. EMI immunity can be improved with circuit design techniques; the OPAx191 benefits from  
these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the  
immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. Figure  
8-3 shows the results of this testing on the OPAx191. Table 8-1 shows the EMIRR IN+ values for the OPAx191 at  
particular frequencies commonly encountered in real-world applications. Applications listed in Table 8-1 may be  
centered on or operated near the particular frequency shown. Detailed information can also be found in the EMI  
Rejection Ratio of Operational Amplifiers application report , available for download from www.ti.com.  
120  
100  
80  
60  
40  
20  
0
10  
100  
Frequency (MHz)  
1k  
10k  
PRF = –10 dBm, VS = ±15 V, VCM = 0 V  
Figure 8-3. EMIRR Testing  
Table 8-1. OPA191 EMIRR IN+ For Frequencies of Interest  
FREQUENCY  
APPLICATION OR ALLOCATION  
EMIRR IN+  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF)  
applications  
400 MHz  
36 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation,  
GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
5.0 GHz  
45 dB  
57 dB  
62 dB  
76 dB  
86 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite  
operation, C-band (4 GHz to 8 GHz)  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
8.3.3 Phase Reversal Protection  
The OPAx191 family has internal phase-reversal protection. Many op amps exhibit phase reversal when the  
input is driven beyond the linear common-mode range. This condition is most often encountered in noninverting  
circuits when the input is driven beyond the specified common-mode voltage range, causing the output to  
reverse into the opposite rail. The OPAx191 is a rail-to-rail input op amp, and therefore the common-mode range  
can extend up to the rails. Input signals beyond the rails do not cause phase reversal; instead, the output limits  
into the appropriate rail. This performance is shown in Figure 8-4.  
VIN  
VOUT  
Time (35 ms/div)  
C017  
Figure 8-4. No Phase Reversal  
8.3.4 Thermal Protection  
The internal power dissipation of any amplifier causes the internal (junction) temperature to rise. This  
phenomenon is called self heating. The OPAx191 has a thermal protection feature that prevents damage from  
self heating.  
This thermal protection works by monitoring the temperature of the output stage and turning off the op  
amp output drive for temperatures above approximately 180°C. Thermal protection forces the output to a  
high-impedance state. The OPAx191 is also designed with approximately 30°C of thermal hysteresis. Thermal  
hysteresis prevents the output stage from cycling in and out of the high-impedance state. The OPAx191 returns  
to normal operation when the output stage temperature falls below approximately 150°C.  
The absolute maximum junction temperature of the OPAx191 is 150°C. Exceeding the limits shown in Section  
6.1 may cause damage to the device. Thermal protection triggers at 180°C because of unit-to-unit variance,  
but does not interfere with device operation up to the absolute maximum ratings. This thermal protection is not  
designed to prevent this device from exceeding absolute maximum ratings, but rather from excessive thermal  
overload.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
8.3.5 Capacitive Load and Stability  
The OPAx191 features a patented output stage capable of driving large capacitive loads, and in a unity-gain  
configuration, directly drives up to 1 nF of pure capacitive load. Increasing the gain enhances the ability of the  
amplifier to drive greater capacitive loads; see Figure 8-5. The particular op amp circuit configuration, layout,  
gain, and output loading are some of the factors to consider when establishing whether an amplifier will be stable  
in operation.  
G = +1 V/V  
Time (2 ms/Div)  
Figure 8-5. Transient Response with a Purely Capacitive Load of 1 nF  
Like many low-power amplifiers, some ringing can occur even with capacitive loads less than 100 pF. In  
unity-gain configurations with no or very light dc loads, place an RC snubber circuit at the OPAx191 output  
to reduce any possibility of ringing in lightly-loaded applications. Figure 8-6 illustrates the recommended RC  
snubber circuit.  
œ
Output  
Input  
+
R 619   
C 320 pF  
Figure 8-6. RC Snubber Circuit for Lightly-Loaded Applications in Unity Gain  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
For additional drive capability in unity-gain configurations, improve capacitive load drive by inserting a small,  
10-Ω to 20-Ω resistor (RISO) in series with the output, as shown in Figure 8-7. This resistor significantly reduces  
ringing while maintaining dc performance for purely capacitive loads. However, if there is a resistive load in  
parallel with the capacitive load, a voltage divider is created, introducing a gain error at the output and slightly  
reducing the output swing. The error introduced is proportional to the ratio RISO / RL, and is generally negligible  
at low output levels. A high capacitive load drive makes the OPA191 a great choice for applications such as  
reference buffers, MOSFET gate drives, and cable-shield drives. The circuit shown in Figure 8-7 uses RISO to  
stabilize the output of an op amp. RISO modifies the open-loop gain of the system for increased phase margin.  
Results using the OPA191 are summarized in Table 8-2. For additional information on techniques to optimize  
and design using this circuit, TI Precision Design TIPD128, Capacitive Load Drive Verified Reference Design  
Using an Isolation Resistor, details complete design goals, simulation, and test results.  
+Vs  
Vout  
Riso  
+
Cload  
+
Vin  
-Vs  
œ
Figure 8-7. Extending Capacitive Load Drive With the OPA191  
Table 8-2. OPA191 Capacitive Load Drive Solution Using Isolation Resistor Comparison of Calculated  
and Measured Results  
PARAMETER  
Capacitive Load  
Phase Margin  
RISO (Ω)  
VALUE  
100 pF  
45°  
1000 pF  
0.01 µF  
0.1 µF  
1 µF  
45°  
60°  
45°  
60°  
45°  
60°  
45°  
60°  
280  
113  
432  
68  
210  
17.8  
53.6  
3.6  
10  
Measured  
Overshoot (%)  
23  
23  
8
23  
8
23  
8
23  
8
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
8.3.6 Common-Mode Voltage Range  
The OPAx191 is a 36-V, true rail-to-rail input operational amplifier with an input common-mode range that  
extends 100 mV beyond either supply rail. This wide range is achieved with paralleled complementary N-channel  
and P-channel differential input pairs, as shown in Figure 8-8. The N-channel pair is active for input voltages  
close to the positive rail, typically (V+) – 3 V to 100 mV above the positive supply. The P-channel pair is active  
for inputs from 100 mV below the negative supply to approximately (V+) – 1.5 V. There is a small transition  
region, typically ( V+) –3 V to (V+) – 1.5 V in which both input pairs are active. This transition region varies  
modestly with process variation. Within this region PSRR, CMRR, offset voltage, offset drift, noise, and THD  
performance are degraded compared to operation outside this region.  
+Vsupply  
IS1  
VINœ  
PCH1  
NCH4  
NCH3  
PCH2  
VIN+  
e-TrimTM Integrated Circuit  
FUSE BANK  
VOS TRIM VOS DRIFT TRIM  
œVsupply  
Figure 8-8. Rail-to-Rail Input Stage  
To achieve the best performance for two-stage rail-to-rail input amplifiers, avoid the transition region when  
possible. The OPAx191 uses a precision trim for both the N-channel and P-channel regions. This technique  
enables significantly lower levels of offset than previous-generation devices, causing variance in the transition  
region of the input stages to appear exaggerated relative to offset over the full common-mode range, as shown  
in Figure 8-9.  
P-Channel  
Region  
Transition  
Region  
N-Channel  
Region  
P-Channel  
Region  
Transition  
Region  
N-Channel  
Region  
200  
100  
200  
100  
0
0
œ100  
œ100  
œ200  
œ300  
OPAx191 e-trim™ Operational Amplifier  
Input Offset Voltage vs Vcm  
œ200  
œ300  
Input Offset Voltage vs Vcm  
Without e-trim™ Integrated Circuit  
œ15.0 œ14.0  
11.0  
12.0  
Common-Mode Voltage (V)  
13.0  
14.0  
15.0  
œ15.0 œ14.0  
11.0  
12.0  
Common-Mode Voltage (V)  
13.0  
14.0  
15.0  
Figure 8-9. Common-Mode Transition vs Standard Rail-to-Rail Amplifiers  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
8.3.7 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress  
(EOS). These questions tend to focus on the device inputs, but may involve the supply voltage pins or even  
the output pin. Each of these different pin functions have electrical stress limits determined by the voltage  
breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to  
the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them  
from accidental ESD events both before and during product assembly.  
Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is  
helpful. See Figure 8-10 for an illustration of the ESD circuits contained in the OPAx191 (indicated by the dashed  
line area). The ESD protection circuitry involves several current-steering diodes connected from the input and  
output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device  
or the power-supply ESD cell, internal to the operational amplifier. This protection circuitry is intended to remain  
inactive during normal circuit operation.  
TVS  
RF  
+VS  
VDD  
OPAx191  
100 Ω  
100 Ω  
R1  
RS  
INœ  
œ
IN+  
+
Power-Supply  
ESD Cell  
RL  
ID  
+
VIN  
œ
VSS  
œVS  
TVS  
Figure 8-10. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
An ESD event is very high voltage for a very short duration (for example, 1 kV for 100 ns); whereas, an EOS  
event is lower voltage for a longer duration (for example, 50 V for 100 ms). The ESD diodes are designed for  
out-of-circuit ESD protection (that is, during assembly, test, and storage of the device before being soldered to  
the PCB). During an ESD event, the ESD signal is passed through the ESD steering diodes to an absorption  
circuit labeled ESD power-supply circuit. The ESD absorption circuit clamps the supplies to a safe level.  
Although this behavior is necessary for out-of-circuit protection, excessive current and damage is caused if  
activated in-circuit. A transient voltage suppressor (TVS) can be used to prevent against damage caused by  
turning on the ESD absorption circuit during an in-circuit ESD event. Using the appropriate current limiting  
resistors and TVS diodes allows for the use of device ESD diodes to protect against EOS events.  
8.3.8 Overload Recovery  
Overload recovery is defined as the time required for the op amp output to recover from a saturated state to  
a linear state. The output devices of the op amp enter a saturation region when the output voltage exceeds  
the rated operating voltage, either due to the high input voltage or the high gain. After the device enters the  
saturation region, the charge carriers in the output devices require time to return back to the linear state. After  
the charge carriers return back to the linear state, the device begins to slew at the specified slew rate. Thus, the  
propagation delay in case of an overload condition is the sum of the overload recovery time and the slew time.  
8.4 Device Functional Modes  
The OPAx191 has a single functional mode and is operational when the power-supply voltage is greater than  
4.5 V (±2.25 V). The maximum power supply voltage for the OPAx191 is 36 V (±18 V).  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The OPAx191 family offers outstanding dc precision and ac performance. These devices operate up to 36-V  
supply rails and offer true rail-to-rail input/output, ultralow offset voltage and offset voltage drift, as well as  
2-MHz bandwidth and high capacitive load drive. These features make the OPAx191 a robust, high-performance  
operational amplifier for high-voltage industrial applications.  
9.2 Typical Applications  
9.2.1 Low-side Current Measurement  
Figure 9-1 shows the OPA191 configured in a low-side current sensing application. For a full analysis of the  
circuit shown in Figure 9-1 including theory, calculations, simulations, and measured data, see TI Precision  
Design TIPD129, 0-A to 1-A Single-Supply Low-Side Current-Sensing Solution .  
VCC  
5 V  
LOAD  
OPA191  
+
VOUT  
œ
RSHUNT  
ILOAD  
100 m  
LM7705  
RF  
360 kꢀ  
RG  
7.5 kꢀ  
Figure 9-1. OPA191 in a Low-Side, Current-Sensing Application  
9.2.1.1 Design Requirements  
The design requirements for this design are:  
Load current: 0 A to 1 A  
Output voltage: 4.9 V  
Maximum shunt voltage: 100 mV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
9.2.1.2 Detailed Design Procedure  
The transfer function of the circuit in Figure 9-1 is given in Equation 2  
VOUT = ILOAD ìRSHUNT ìGain  
(2)  
The load current (ILOAD) produces a voltage drop across the shunt resistor (RSHUNT). The load current is set  
from 0 A to 1 A. To keep the shunt voltage below 100 mV at maximum load current, the largest shunt resistor is  
defined using Equation 3.  
VSHUNT _MAX  
100mV  
1A  
RSHUNT  
=
=
=100mW  
ILOAD_MAX  
(3)  
Using Equation 3, RSHUNT is calculated to be 100 mΩ. The voltage drop produced by ILOAD and RSHUNT is  
amplified by the OPA191 to produce an output voltage of 0 V to 4.9 V. The gain needed by the OPA191 to  
produce the necessary output voltage is calculated using Equation 4:  
V
OUT _MAX - VOUT _MIN  
(
)
Gain =  
VIN_MAX - V  
(
)
IN_MIN  
(4)  
Using Equation 4, the required gain is calculated to be 49 V/V, which is set with resistors RF and RG. Equation 5  
is used to size the resistors, RF and RG, to set the gain of the OPA191 to 49 V/V.  
R
(
(
)
)
F
Gain = 1+  
R
G
(5)  
Choosing RF as 360 kΩ, RG is calculated to be 7.5 kΩ. RF and RG were chosen as 360 kΩ and 7.5 kΩ because  
they are standard value resistors that create a 49:1 ratio. Other resistors that create a 49:1 ratio can also be  
used. Figure 2 shows the measured transfer function of the circuit shown in Figure 9-1.  
9.2.1.3 Application Curves  
5
4
3
2
1
0
0.1  
0.08  
0.06  
0.04  
0.02  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
ILOAD (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
ILOAD (A)  
1
Figure 9-2. Low-Side, Current-Sense, Transfer  
Function  
Figure 9-3. Low-Side, Current-Sense, Full-Scale  
Error  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
9.2.2 16-Bit Precision Multiplexed Data-Acquisition System  
Figure 9-4 shows a 16-bit, differential, 4-channel, multiplexed, data-acquisition system. This example is typical  
in industrial applications that require low distortion and a high-voltage differential input. The circuit uses the  
ADS8864, a 16-bit, 400-kSPS successive-approximation-resistor (SAR), analog-to-digital converter (ADC), along  
with a precision, high-voltage, signal-conditioning front-end, and a 4-channel differential multiplexer (mux). This  
application example shows the process for optimizing the precision, high-voltage, front-end drive circuit using the  
OPA191 and OPA140 to achieve excellent dynamic performance and linearity with the ADS8864. The full design  
can be found in TI Precision Design TIPD151, 16-Bit, 400-kSPS, Four-Channel MUX Data Acquisition System  
for High-Voltage Inputs.  
1
2
3
4
High-Impedance Inputs  
No Differential Input Clamps  
Fast Settling-Time Requirements  
Attenuate High-Voltage Input Signal  
Fast-Settling Time Requirements  
Stability of the Input Driver  
Attenuate ADC Kickback Noise  
VREF Output: Value and Accuracy  
Low Temp and Long-Term Drift  
Very Low Output Impedance  
Input-Filter Bandwidth  
Voltage  
Reference  
CH0+  
CH0-  
RC Filter  
Buffer  
RC Filter  
+
+
20-V,  
10-kHz  
Sine Wave  
OPA191  
OPA191  
Reference Driver  
Gain  
Network  
Gain  
Network  
OPA191  
+
4:2  
Mux  
REFP  
+
OPA140  
VINP  
Gain  
Network  
CH3+  
+
OPA191  
Antialiasing  
Filter  
SAR  
ADC  
+
+
20-V,  
10-kHz  
Sine Wave  
OPA191  
OPA191  
VINM  
CH3-  
n
CONV  
16 Bits  
400 kSPS  
High-Voltage Level Translation  
High-Voltage Multiplexed Input  
VCM  
Voltage  
Divider  
REF3240  
OPA350  
Shmidtt  
Trigger  
VCM Generation Circuit  
Counter  
Delay  
n
Digital Counter For Multiplexer  
5
Fast logic transition  
Figure 9-4. OPA191 in 16-Bit, 400-kSPS, 4-Channel, Multiplexed Data Acquisition System for High-Voltage  
Inputs With Lowest Distortion  
9.2.2.1 Design Requirements  
The primary objective is to design a ±20-V, differential, 4-channel, multiplexed, data acquisition system with  
lowest distortion using the 16-bit ADS8864 at a throughput of 400 kSPS for a 10-kHz, full-scale, pure sine-wave  
input. The design requirements for this block design are:  
System supply voltage: ±15 V  
ADC supply voltage: 3.3 V  
ADC sampling rate: 400 kSPS  
ADC reference voltage (REFP): 4.096 V  
System input signal: A high-voltage differential input signal with a peak amplitude of 10 V and frequency (fIN)  
of 10 kHz are applied to each differential input of the mux.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
9.2.2.2 Detailed Design Procedure  
The purpose of this application example is to design an optimal, high-voltage, multiplexed, data-acquisition  
system for highest system linearity and fast settling. The overall system block diagram is shown in Figure 9-4.  
The circuit is a multichannel, data-acquisition, signal chain consisting of an input low-pass filter, multiplexer  
(mux), mux output buffer, attenuating SAR ADC driver, digital counter for the mux, and the reference driver. The  
architecture allows fast sampling of multiple channels using a single ADC, providing a low-cost solution. The two  
primary design considerations to maximize the performance of a precision, multiplexed, data-acquisition system  
are the mux input analog front-end and the high-voltage, level translation, SAR ADC driver design. However,  
carefully design each analog circuit block based on the ADC performance specifications in order to achieve  
the fastest settling at 16-bit resolution and lowest distortion system. Figure 9-4 includes the most important  
specifications for each individual analog block.  
This design systematically approaches each analog circuit block to achieve a 16-bit settling for a full-scale input  
stage voltage and linearity for a 10-kHz sinusoidal input signal at each input channel. The first step in the  
design is to understand the requirement for an extremely-low-impedance input-filter design for the mux. This  
understanding helps in the decision of an appropriate input filter and selection of a mux to meet the system  
settling requirements. The next important step is the design of the attenuating analog front-end (AFE) used to  
level translate the high-voltage input signal to a low-voltage ADC input while maintaining the amplifier stability.  
Then, the next step is to design a digital interface to switch the mux input channels with minimum delay. The final  
design challenge is to design a high-precision, reference-driver circuit that provides the required REFP reference  
voltage with low offset, drift, and noise contributions.  
9.2.3 Slew Rate Limit for Input Protection  
In control systems for valves or motors, abrupt changes in voltages or currents can cause mechanical damages.  
By controlling the slew rate of the command voltages into the drive circuits, the load voltages ramps up and  
down at a safe rate. For symmetrical slew-rate applications (positive slew rate equals negative slew rate), one  
additional op amp provides slew-rate control for a given analog gain stage. The unique input protection and high  
output current and slew rate of the OPAx191 make the device an optimal amplifier to achieve slew rate control  
for both dual-supply and single-supply systems. Figure 9-5 shows the OPA191 in a slew-rate limit design. For  
step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test results,  
refer to TI Precision Design TIPD140, Single Op-Amp Slew Rate Limiter..  
Op Amp Gain Stage  
Slew Rate Limiter  
C1  
R1  
VCC  
VCC  
-
R2  
-
OPA191  
+
VIN  
OPA191  
VOUT  
+
VEE  
RL  
VEE  
Figure 9-5. Slew Rate Limiter Uses One Op Amp  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
10 Power Supply Recommendations  
The OPAx191 is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications apply from –  
40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature  
are presented in Section 6.9.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see Section 6.1.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or  
high-impedance power supplies. For more detailed information on bypass capacitor placement, see Section 11.  
11 Layout  
11.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close  
to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-supply  
applications.  
– Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources  
local to the analog circuitry.  
Make sure to physically separate digital and analog grounds paying attention to the flow of the ground  
current. Separate grounding for analog and digital portions of circuitry is one of the simplest and most-  
effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to  
ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. For more detailed  
information, refer to Circuit Board Layout Techniques.  
In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as  
opposed to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As shown in Figure 11-2, keeping RF and  
RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
Clean the PCB following board assembly for best performance.  
Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic  
package. After any aqueous PCB cleaning process, bake the PCB assembly to remove moisture introduced  
into the device packaging during the cleaning process. A low-temperature, post-cleaning bake at 85°C for 30  
minutes is sufficient for most circumstances.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
11.2 Layout Example  
VIN  
+
VOUT  
RG  
RF  
Figure 11-1. Schematic Representation  
Place components close  
to device and to each  
other to reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
VS+  
RF  
NC  
NC  
Use a low-ESR,  
ceramic bypass  
capacitor  
RG  
GND  
œIN  
+IN  
Vœ  
V+  
OUTPUT  
NC  
VIN  
GND  
GND  
VSœ  
VOUT  
Ground (GND) plane on another layer  
Use low-ESR,  
ceramic bypass  
capacitor  
Figure 11-2. Operational Amplifier Board Layout for Noninverting Configuration  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
12.1.1.1 TINA-TI™ SImulation Software (Free Download)  
TINAis a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI  
simulation software is a free, fully-functional version of the TINA software, preloaded with a library of macro  
models in addition to a range of both passive and active models. TINA-TI simulation software provides all the  
conventional dc, transient, and frequency domain analysis of SPICE, as well as additional design capabilities.  
Available as a free download from the Analog eLab Design Center, TINA-TI simulation software offers extensive  
post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer  
the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic  
quick-start tool.  
Note  
These files require that either the TINA software (from DesignSoft) or TINA-TI software be installed.  
Download the free TINA-TI software from the TINA-TI folder at http://www.ti.com/tool/tina-ti.  
12.1.1.2 TI Precision Designs  
TI Precision Designs, available online at http://www.ti.com/ww/en/analog/precision-designs/, are analog solutions  
created by TI’s precision analog applications experts and offer the theory of operation, component selection,  
simulation, complete PCB schematic and layout, bill of materials, and measured performance of many useful  
circuits.  
12.2 Documentation Support  
12.2.1 Related Documentation  
Texas Instruments, Circuit Board Layout Techniques  
Texas Instruments, Op Amps for Everyone design reference  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
 
 
 
OPA191, OPA2191, OPA4191  
SBOS701D – DECEMBER 2015 – REVISED AUGUST 2021  
www.ti.com  
12.5 Trademarks  
e-trimand TI E2Eare trademarks of Texas Instruments.  
TINAand DesignSoftare trademarks of DesignSoft, Inc.  
Bluetooth® is a registered trademark of Bluetooth SIG, Inc.  
All trademarks are the property of their respective owners.  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: OPA191 OPA2191 OPA4191  
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA191ID  
OPA191IDBVR  
OPA191IDBVT  
OPA191IDGKR  
OPA191IDGKT  
OPA191IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOT-23  
SOT-23  
VSSOP  
VSSOP  
SOIC  
D
DBV  
DBV  
DGK  
DGK  
D
8
5
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
OPA191  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
50 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
ZAMV  
5
ZAMV  
8
ZANV  
8
ZANV  
8
OPA191  
2191  
OPA2191ID  
SOIC  
D
8
OPA2191IDGKR  
OPA2191IDGKT  
OPA2191IDR  
OPA4191ID  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
2191  
8
2191  
8
2191  
SOIC  
D
14  
14  
14  
14  
16  
OPA4191  
OPA4191  
OPA4191  
OPA4191  
OPA4191IDR  
OPA4191IPWR  
OPA4191IPWT  
OPA4191IRUMR  
SOIC  
D
2500 RoHS & Green  
2000 RoHS & Green  
TSSOP  
TSSOP  
WQFN  
PW  
PW  
RUM  
250  
3000 RoHS & Green  
250 RoHS & Green  
RoHS & Green  
OPA  
4191  
OPA4191IRUMT  
ACTIVE  
WQFN  
RUM  
16  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
OPA  
4191  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Aug-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA191IDBVR  
OPA191IDBVT  
OPA191IDGKR  
OPA191IDGKT  
OPA191IDR  
SOT-23  
SOT-23  
VSSOP  
VSSOP  
SOIC  
DBV  
DBV  
DGK  
DGK  
D
5
5
3000  
250  
180.0  
180.0  
330.0  
177.8  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
180.0  
8.4  
3.23  
3.23  
5.3  
3.17  
3.17  
3.4  
1.37  
1.37  
1.4  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q2  
Q2  
8.4  
8.0  
8
2500  
250  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
16.4  
12.4  
12.4  
12.4  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
12.0  
12.0  
12.0  
8
5.3  
3.4  
1.4  
8
2500  
2500  
250  
6.4  
5.2  
2.1  
OPA2191IDGKR  
OPA2191IDGKT  
OPA2191IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
5.3  
3.4  
1.4  
8
5.3  
3.4  
1.4  
8
2500  
2500  
250  
6.4  
5.2  
2.1  
OPA4191IDR  
SOIC  
D
14  
14  
16  
16  
6.5  
9.0  
2.1  
OPA4191IPWT  
OPA4191IRUMR  
OPA4191IRUMT  
TSSOP  
WQFN  
WQFN  
PW  
RUM  
RUM  
6.9  
5.6  
1.6  
3000  
250  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Aug-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA191IDBVR  
OPA191IDBVT  
OPA191IDGKR  
OPA191IDGKT  
OPA191IDR  
SOT-23  
SOT-23  
VSSOP  
VSSOP  
SOIC  
DBV  
DBV  
DGK  
DGK  
D
5
5
3000  
250  
213.0  
223.0  
346.0  
213.0  
853.0  
853.0  
210.0  
853.0  
853.0  
210.0  
367.0  
210.0  
191.0  
270.0  
346.0  
191.0  
449.0  
449.0  
185.0  
449.0  
449.0  
185.0  
367.0  
185.0  
35.0  
35.0  
29.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
8
2500  
250  
8
8
2500  
2500  
250  
OPA2191IDGKR  
OPA2191IDGKT  
OPA2191IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
2500  
2500  
250  
OPA4191IDR  
SOIC  
D
14  
14  
16  
16  
OPA4191IPWT  
OPA4191IRUMR  
OPA4191IRUMT  
TSSOP  
WQFN  
WQFN  
PW  
RUM  
RUM  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
2X 0.95  
1.9  
3.05  
2.75  
1.9  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/F 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/F 06/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/F 06/2021  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
RUM 16  
4 x 4, 0.65 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224843/A  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

OPA4191IRUMT

具有 RRIO 的四路低功耗 36V 精密 e-trim 放大器 | RUM | 16 | -40 to 125
TI

OPA4192

E-Trim™ 系列、低噪声、低静态电流、36V RRI/O 精密运算放大器
TI

OPA4192ID

E-Trim™ 系列、低噪声、低静态电流、36V RRI/O 精密运算放大器 | D | 14 | -40 to 125
TI

OPA4192IDR

E-Trim™ 系列、低噪声、低静态电流、36V RRI/O 精密运算放大器 | D | 14 | -40 to 125
TI

OPA4192IPW

E-Trim™ 系列、低噪声、低静态电流、36V RRI/O 精密运算放大器 | PW | 14 | -40 to 125
TI

OPA4192IPWR

E-Trim™ 系列、低噪声、低静态电流、36V RRI/O 精密运算放大器 | PW | 14 | -40 to 125
TI

OPA4196

具有多路复用器友好型输入的四路、36V、低功耗通用放大器
TI

OPA4196ID

具有多路复用器友好型输入的四路、36V、低功耗通用放大器 | D | 14 | -40 to 125
TI

OPA4196IDR

具有多路复用器友好型输入的四路、36V、低功耗通用放大器 | D | 14 | -40 to 125
TI

OPA4197

四路、36V、精密轨到轨输入/输出、低失调电压运算放大器
TI

OPA4197-Q1

汽车类、四通道、高精度、36V、10MHz 轨至轨输入/输出运算放大器
TI

OPA4197ID

四路、36V、精密轨到轨输入/输出、低失调电压运算放大器 | D | 14 | -40 to 125
TI