OPA4196ID [TI]

具有多路复用器友好型输入的四路、36V、低功耗通用放大器 | D | 14 | -40 to 125;
OPA4196ID
型号: OPA4196ID
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有多路复用器友好型输入的四路、36V、低功耗通用放大器 | D | 14 | -40 to 125

放大器 复用器
文件: 总47页 (文件大小:3184K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA196, OPA2196, OPA4196  
ZHCSGE9 JULY 2017  
OPAx196 36V 低功耗、低偏移电压、轨至轨运算放大器  
1 特性  
3 说明  
1
低偏移电压:±100µV(最大值)  
OPAx196 系列(OPA196OPA2196 OPA4196)  
是新一代 36V 轨至轨 e-trim™运算放大器。  
低偏移电压漂移:±0.5µV/°C(典型值)  
低偏置电流:±5pA(典型值)  
高共模抑制:140dB  
这些器件在整个输出范围内提供非常低的偏移电压(典  
型值为 ±25μV)、漂移(典型值为 ±0.5μV/°C)和低  
偏置电流(典型值为 ±5pA),同时还具有非常低的静  
态电流(典型值为 140μA/通道)。  
低噪声:1kHz 时为 15nV/Hz  
轨至轨输入和输出  
可提供电源轨的差分输入电压范围  
高带宽:2.5MHz GBW  
OPAx196 拥有诸多独一无二的特性,例如可提供电源  
轨的差分输入电压范围、高输出电流 (±65mA) 以及高  
1nF 的高电容负载驱动能力,是稳健耐用的高性能  
运算放大器,适用于各种高电压工业 应用。  
低静态电流:每个放大器为 140µA(典型值)  
宽电源范围:±2.25V ±18V4.5V 36V  
已过滤电磁干扰 (EMI)/射频干扰 (RFI) 的输入  
高电容负载驱动能力:1nF  
OPAx196 系列运算放大器采用标准封装,在 -40°C 至  
+125°C 的额定温度范围内工作。  
行业标准封装:  
SOIC-8SOT-5 VSSOP-8 单体封装  
SOIC-8 VSSOP-8 双列封装  
器件信息(1)  
器件型号  
封装  
SOIC (8)  
封装尺寸(标称值)  
SOIC-14TSSOP-14 QFN-16 四列封装  
4.90mm × 3.90mm  
小外形尺寸晶体管  
(SOT) (5)  
2 应用  
OPA196  
2.90mm x 1.60mm  
多路复用数据采集系统  
VSSOP (8)  
SOIC (8)  
3.00mm × 3.00mm  
4.90mm × 3.90mm  
3.00mm × 3.00mm  
8.65mm x 3.90mm  
5.00mm x 4.40mm  
测试和测量设备  
OPA2196  
OPA4196  
VSSOP (8)  
SOIC (14)  
TSSOP (14)  
高分辨率模数转换器 (ADC) 驱动器放大器  
SAR ADC 基准缓冲器  
模拟输入和输出模块  
高侧和低侧电流感应  
高精度比较器  
(1) 要了解所有可用封装,请参见数据表末尾的封装选项附录。  
医疗仪器  
OPA196 应用于高压多路复用数据采集系统  
Analog  
Inputs  
RC  
RC  
REF3140  
Filter  
Filter  
Bridge  
Sensor  
OPA625  
OPA196  
Gain  
Gain  
+
4:2  
HV  
Thermocouple  
MUX  
REF  
+
OPA196  
+
VINP  
ADS8864  
VINM  
Antialiasing  
Filter  
OPA196  
Gain  
Current Sensing  
Reference  
Driver  
High-Voltage Multiplexed  
Input  
High-Voltage Level  
Translation  
VCM  
Optical Sensor  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS869  
 
 
 
OPA196, OPA2196, OPA4196  
ZHCSGE9 JULY 2017  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 19  
7.4 Device Functional Modes........................................ 26  
Application and Implementation ........................ 27  
8.1 Application Information............................................ 27  
8.2 Typical Applications ................................................ 27  
Power-Supply Recommendations...................... 31  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information: OPA196 .................................. 5  
6.5 Thermal Information: OPA2196 ................................ 6  
6.6 Thermal Information: OPA4196 ................................ 6  
8
9
10 Layout................................................................... 31  
10.1 Layout Guidelines ................................................. 31  
10.2 Layout Example .................................................... 32  
11 器件和文档支持 ..................................................... 33  
11.1 器件支持................................................................ 33  
11.2 文档支持................................................................ 33  
11.3 相关链接................................................................ 33  
11.4 接收文档更新通知 ................................................. 33  
11.5 社区资源................................................................ 34  
11.6 ....................................................................... 34  
11.7 静电放电警告......................................................... 34  
11.8 Glossary................................................................ 34  
12 机械、封装和可订购信息....................................... 34  
6.7 Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8  
V to 36 V)................................................................... 7  
6.8 Electrical Characteristics: VS = ±2.25 V to ±4 V (VS  
=
4.5 V to 8 V)............................................................... 9  
6.9 Typical Characteristics............................................ 11  
Detailed Description ............................................ 18  
7.1 Overview ................................................................. 18  
7.2 Functional Block Diagram ....................................... 18  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
注意  
2017 7 月  
*
最初发布版本  
2
Copyright © 2017, Texas Instruments Incorporated  
 
OPA196, OPA2196, OPA4196  
www.ti.com.cn  
ZHCSGE9 JULY 2017  
5 Pin Configuration and Functions  
DBV Package: OPA196  
5-Pin SOT  
D and DGK Packages: OPA2196  
8-Pin SOIC and VSSOP  
Top View  
Top View  
OUT A  
œIN A  
+IN A  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT  
Vœ  
1
2
3
5
V+  
OUT B  
œIN B  
+IN B  
+IN  
4
œIN  
Not to scale  
Not to scale  
D and DGK Packages: OPA196  
8-Pin SOIC and VSSOP  
Top View  
D and PW Packages: OPA4196  
14-Pin SOIC and TSSOP  
Top View  
NC  
œIN  
+IN  
Vœ  
1
2
3
4
8
7
6
5
NC  
OUT A  
œIN A  
+IN A  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
œIN D  
+IN D  
Vœ  
V+  
œ
OUT  
NC  
+
+IN B  
œIN B  
OUT B  
+IN C  
œIN C  
OUT C  
Not to scale  
8
Not to scale  
(1) NC = No internal connection.  
Copyright © 2017, Texas Instruments Incorporated  
3
OPA196, OPA2196, OPA4196  
ZHCSGE9 JULY 2017  
www.ti.com.cn  
Pin Functions: OPA196  
PIN  
OPA196  
I/O  
DESCRIPTION  
NAME  
D (SOIC),  
DGK (VSSOP)  
DBV (SOT)  
+IN  
–IN  
NC  
OUT  
V+  
3
3
4
I
Noninverting input  
Inverting input  
2
I
1, 5, 8  
1
O
No internal connection (can be left floating)  
Output  
6
7
4
5
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
2
Pin Functions: OPA2196 and OPA4196  
PIN  
OPA2196  
OPA4196  
I/O  
DESCRIPTION  
NAME  
D (SOIC),  
D (SOIC),  
DGK (VSSOP)  
PW (TSSOP)  
+IN A  
+IN B  
+IN C  
+IN D  
–IN A  
–IN B  
–IN C  
–IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V+  
3
5
3
5
I
I
Noninverting input, channel A  
Noninverting input, channel B  
Noninverting input, channel C  
Noninverting input, channel D  
Inverting input, channel A  
Inverting input, channel B  
Inverting input,,channel C  
Inverting input, channel D  
Output, channel A  
2
10  
12  
2
I
I
I
6
6
I
1
9
I
13  
1
I
O
O
O
O
7
7
Output, channel B  
8
8
Output, channel C  
14  
4
Output, channel D  
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
4
11  
4
Copyright © 2017, Texas Instruments Incorporated  
OPA196, OPA2196, OPA4196  
www.ti.com.cn  
ZHCSGE9 JULY 2017  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
±20  
Supply voltage, VS = (V+) – (V–)  
V
(+40, single supply)  
Common-mode  
Voltage  
(V–) – 0.5  
(V+) + 0.5  
(V+) – (V–) + 0.2  
±10  
V
Signal input pins  
Output short circuit(2)  
Temperature  
Differential  
Current  
mA  
Continuous  
–40  
Continuous  
150  
Continuous  
Operating  
Junction  
150  
°C  
Storage, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
UNIT  
Electrostatic  
discharge  
V(ESD)  
OPAx196  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±3000  
V
OPA196  
OPA2196  
OPA4196  
±1000  
±500  
±500  
V
V
V
Electrostatic  
discharge  
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
V(ESD)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5 (±2.25)  
–40  
NOM  
MAX  
UNIT  
Supply voltage, VS = (V+) – (V–)  
Specified temperature  
36 (±18)  
125  
V
°C  
6.4 Thermal Information: OPA196  
OPA196  
DGK  
(VSSOP)  
180.4  
67.9  
8 PINS  
5 PINS  
THERMAL METRIC(1)  
UNIT  
D (SOIC)  
DBV (SOT)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
115.8  
60.1  
56.4  
12.8  
55.9  
N/A  
158.8  
60.7  
44.8  
1.6  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
102.1  
10.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
ψJB  
100.3  
N/A  
4.2  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017, Texas Instruments Incorporated  
5
 
 
OPA196, OPA2196, OPA4196  
ZHCSGE9 JULY 2017  
www.ti.com.cn  
6.5 Thermal Information: OPA2196  
OPA2196  
8 PINS  
THERMAL METRIC(1)  
UNIT  
D (SOIC)  
107.9  
53.9  
DGK (VSSOP)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
158  
48.6  
78.7  
3.9  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
48.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
6.6  
ψJB  
48.3  
77.3  
N/A  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Thermal Information: OPA4196  
OPA4196  
THERMAL METRIC(1)  
14 PINS  
UNIT  
D (SOIC)  
86.4  
PW (TSSOP)  
92.6  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
46.3  
27.5  
41.0  
33.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
11.3  
1.9  
ψJB  
40.7  
33.1  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2017, Texas Instruments Incorporated  
OPA196, OPA2196, OPA4196  
www.ti.com.cn  
ZHCSGE9 JULY 2017  
6.7 Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8 V to 36 V)  
at TA = 25°C, VCM = VOUT = VS / 2, and RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VOS  
Input offset voltage  
VS = ±18 V  
±25  
±100  
µV  
(V+) – 3.0 V < VCM < (V+) – 1.5 V  
See Common-Mode Voltage Range  
VS = ±18 V,  
VCM = (V+) – 1.5 V  
±25  
±100  
VS = ±18 V, VCM = (V+) – 3 V  
VS = ±18 V, VCM = (V+) – 1.5 V  
±0.5  
±0.8  
dVOS/dT  
PSRR  
Input offset voltage drift  
TA = –40°C to +125°C  
µV/°C  
µV/V  
Power-supply rejection  
ratio  
TA = –40°C to +125°C  
±0.3  
±1  
INPUT BIAS CURRENT  
IB  
Input bias current  
±5  
±2  
±20  
±20  
pA  
pA  
IOS  
Input offset current  
NOISE  
(V–) – 0.1 V < VCM < (V+) – 3 V  
(V+) – 1.5 V < VCM < (V+) + 0.1 V  
f = 0.1 Hz to 10 Hz  
f = 0.1 Hz to 10 Hz  
f = 100 Hz  
1.4  
7
En  
Input voltage noise  
µVPP  
18  
15  
53  
24  
(V–) – 0.1 V < VCM < (V+) – 3 V  
f = 1 kHz  
Input voltage noise  
density  
en  
nV/Hz  
f = 100 Hz  
(V+) – 1.5 V < VCM < (V+) + 0.1 V  
f = 1 kHz  
f = 1 kHz  
Input current noise  
density  
in  
1.5  
fA/Hz  
INPUT VOLTAGE  
Common-mode voltage  
range  
VCM  
(V–) – 0.1  
120  
(V+) + 0.1  
V
VS = ±18 V,  
(V–) – 0.1 V < VCM < (V+) – 3 V  
140  
126  
VS = ±18 V,  
(V–) < VCM < (V+) – 3 V  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
114  
Common-mode  
rejection ratio  
CMRR  
dB  
96  
86  
120  
100  
VS = ±18 V,  
(V+) – 1.5 V < VCM < (V+)  
(V+) – 3 V < VCM < (V+) – 1.5 V  
See Typical Characteristics  
INPUT IMPEDANCE  
ZID  
Differential  
100 || 1.6  
1 || 6.4  
MΩ || pF  
1013Ω ||  
pF  
ZIC  
Common-mode  
OPEN-LOOP GAIN  
VS = ±18 V,  
(V–) + 0.6 V < VO < (V+) – 0.6 V,  
RL = 2 kΩ  
124  
114  
126  
120  
134  
126  
140  
134  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
AOL  
Open-loop voltage gain  
dB  
VS = ±18 V,  
(V–) + 0.3 V < VO < (V+) – 0.3 V,  
RL = 10 kΩ  
Copyright © 2017, Texas Instruments Incorporated  
7
OPA196, OPA2196, OPA4196  
ZHCSGE9 JULY 2017  
www.ti.com.cn  
Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8 V to 36 V) (continued)  
at TA = 25°C, VCM = VOUT = VS / 2, and RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY RESPONSE  
GBW  
Unity gain bandwidth  
2.5  
7.5  
5.5  
0.7  
1
MHz  
V/µs  
Rising  
SR  
Slew rate  
VS = ±18 V, G = 1, 10-V step  
Falling  
VS = ±18 V, G = 1, 2-V step  
VS = ±18 V, G = 1, 5-V step  
VS = ±18 V, G = 1, 2-V step  
VS = ±18 V, G = 1, 5-V step  
From overload to negative rail  
From overload to positive rail  
To 0.01%, CL = 20 pF  
To 0.001%, CL = 20 pF  
ts  
Settling time  
µs  
µs  
1.8  
3.7  
0.4  
1
tOR  
Overload recovery time VIN × G = VS  
Total harmonic  
THD+N  
G = 1, f = 1 kHz, VO = 3.5 VRMS  
0.0012%  
distortion + noise  
OPA2196 and OPA4196, at dc  
150  
130  
dB  
dB  
Crosstalk  
OPA2196 and OPA4196, f = 100 kHz  
OUTPUT  
No load  
5
50  
15  
110  
500  
15  
Positive rail  
RL = 10 kΩ  
RL = 2 kΩ  
No load  
200  
5
Voltage output swing  
from rail  
VO  
mV  
Negative rail  
VS = ±18 V  
RL = 10 kΩ  
RL = 2 kΩ  
50  
110  
500  
200  
±65  
ISC  
CL  
Short-circuit current  
Capacitive load drive  
mA  
See Typical Characteristics  
Open-loop output  
impedance  
ZO  
f = 1 MHz, IO = 0 A, See Figure 19  
700  
Ω
POWER SUPPLY  
140  
200  
250  
Quiescent current per  
IQ  
IO = 0 A  
µA  
amplifier  
TEMPERATURE  
Thermal protection  
Thermal hysteresis  
TA = –40°C to +125°C  
180  
30  
°C  
°C  
8
Copyright © 2017, Texas Instruments Incorporated  
OPA196, OPA2196, OPA4196  
www.ti.com.cn  
ZHCSGE9 JULY 2017  
6.8 Electrical Characteristics: VS = ±2.25 V to ±4 V (VS = 4.5 V to 8 V)  
at TA = +25°C, VCM = VOUT = VS / 2, and RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VS = ±2.25V,  
VCM = (V+) – 3 V  
VOS  
Input offset voltage  
±25  
±100  
µV  
(V+) – 3.0 V < VCM < (V+) – 1.5 V  
See Common-Mode Voltage Range  
VS = ±3V,  
VCM = (V+) – 1.5 V  
±25  
±100  
VS = ±2.25V, VCM = (V+) – 3 V  
VS = ±2.25V, VCM = (V+) – 1.5 V  
±0.5  
±0.5  
dVOS/dT  
PSRR  
Input offset voltage drift  
TA = –40°C to +125°C  
µV/°C  
µV/V  
Power-supply rejection  
ratio  
TA = –40°C to +125°C, VCM = VS / 2 – 0.75 V  
±1  
INPUT BIAS CURRENT  
IB  
Input bias current  
±5  
±2  
±20  
±20  
pA  
pA  
IOS  
Input offset current  
NOISE  
(V–) – 0.1 V < VCM < (V+) – 3 V  
(V+) – 1.5 V < VCM < (V+) + 0.1 V  
f = 0.1 Hz to 10 Hz  
1.4  
7
En  
Input voltage noise  
µVPP  
f = 0.1 Hz to 10 Hz  
f = 100 Hz  
f = 1 kHz  
18  
15  
53  
24  
1.5  
(V–) – 0.1 V < VCM < (V+) – 3 V  
(V+) – 1.5 V < VCM < (V+) + 0.1 V  
en  
Input voltage noise density  
Input current noise density  
nV/Hz  
f = 100 Hz  
f = 1 kHz  
in  
INPUT VOLTAGE  
f = 1 kHz  
fA/Hz  
Common-mode voltage  
range  
VCM  
(V–) – 0.1  
(V+) + 0.1  
V
VS = ±2.25 V,  
(V–) – 0.1 V < VCM < (V+) – 3 V  
96  
90  
110  
104  
VS = ±2.25 V,  
(V–) < VCM < (V+) – 3 V  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
Common-mode rejection  
ratio  
CMRR  
dB  
96  
84  
120  
100  
VS = ±2.25 V,  
(V+) – 1.5 V < VCM < (V+)  
(V+) – 3 V < VCM < (V+) – 1.5 V  
See Typical Characteristics  
INPUT IMPEDANCE  
ZID  
Differential  
100 || 1.6  
1 || 6.4  
MΩ || pF  
1013Ω ||  
pF  
ZIC  
Common-mode  
OPEN-LOOP GAIN  
VS = ±2.25V,  
(V–) + 0.6 V < VO < (V+) – 0.6 V,  
RL = 2 kΩ  
110  
100  
110  
106  
120  
114  
126  
120  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
AOL  
Open-loop voltage gain  
dB  
VS = ±2.25V,  
(V–) + 0.3 V < VO < (V+) – 0.3 V,  
RL = 10 kΩ  
Copyright © 2017, Texas Instruments Incorporated  
9
OPA196, OPA2196, OPA4196  
ZHCSGE9 JULY 2017  
www.ti.com.cn  
Electrical Characteristics: VS = ±2.25 V to ±4 V (VS = 4.5 V to 8 V) (continued)  
at TA = +25°C, VCM = VOUT = VS / 2, and RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY RESPONSE  
GBW  
Unity gain bandwidth  
2.2  
6.5  
5.5  
0.4  
1
MHz  
V/µs  
Rising  
SR  
Slew rate  
VS = ±2.25V, G = 1, 1-V step  
Falling  
From overload to negative rail  
From overload to positive rail  
tOR  
Overload recovery time  
Crosstalk  
VIN × G = VS  
µs  
OPA2196 and OPA4196, at dc  
150  
130  
dB  
dB  
OPA2196 and OPA4196, f = 100 kHz  
OUTPUT  
No load  
5
15  
60  
5
15  
110  
500  
15  
Positive rail  
RL = 10 kΩ  
RL = 2 kΩ  
No load  
Voltage output swing from  
rail  
VO  
mV  
Negative rail  
VS = ±2.25V  
RL = 10 kΩ  
RL = 2 kΩ  
15  
60  
±30  
110  
500  
ISC  
CL  
Short-circuit current  
Capacitive load drive  
mA  
See Typical Characteristics  
Open-loop output  
impedance  
ZO  
f = 1 MHz, IO = 0 A, see Figure 19  
700  
Ω
POWER SUPPLY  
140  
200  
250  
Quiescent current per  
IQ  
IO = 0 A  
µA  
amplifier  
TEMPERATURE  
Thermal protection  
Thermal hysteresis  
TA = –40°C to +125°C  
180  
30  
°C  
°C  
10  
Copyright © 2017, Texas Instruments Incorporated  
OPA196, OPA2196, OPA4196  
www.ti.com.cn  
ZHCSGE9 JULY 2017  
6.9 Typical Characteristics  
Table 1. Table of Graphs  
DESCRIPTION  
FIGURE  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Offset Voltage vs Common-Mode Voltage  
Open-Loop Gain and Phase vs Frequency  
Closed-Loop Gain and Phase vs Frequency  
Input Bias Current vs Common-Mode Voltage  
Input Bias Current vs Temperature  
Output Voltage Swing vs Output Current (maximum supply)  
CMRR and PSRR vs Frequency  
CMRR vs Temperature  
Figure 6, Figure 7  
Figure 8  
Figure 9  
PSRR vs Temperature  
Figure 10  
0.1-Hz to 10-Hz Noise  
Figure 11  
Input Voltage Noise Spectral Density vs Frequency  
THD+N Ratio vs Frequency  
Figure 12  
Figure 13  
THD+N vs Output Amplitude  
Figure 14  
Quiescent Current vs Supply Voltage  
Quiescent Current vs Temperature  
Open Loop Gain vs Temperature  
Open Loop Output Impedance vs Frequency  
Small Signal Overshoot vs Capacitive Load (100-mV output step)  
No Phase Reversal  
Figure 15  
Figure 16  
Figure 17, Figure 18  
Figure 19  
Figure 20, Figure 21  
Figure 22  
Overload Recovery  
Figure 23  
Small-Signal Step Response (100 mV)  
Large-Signal Step Response  
Figure 24, Figure 25  
Figure 26, Figure 27  
Figure 28, Figure 29, Figure 30, Figure 31  
Figure 32  
Settling Time  
Short-Circuit Current vs Temperature  
Maximum Output Voltage vs Frequency  
Propagation Delay Rising Edge  
Figure 33  
Figure 34  
Propagation Delay Falling Edge  
Figure 35  
At TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
25  
160  
180  
135  
90  
140  
Open-loop Gain  
15  
5
120  
100  
80  
Phase  
VCM = œ18.1 V  
45  
60  
0
œ5  
40  
20  
-45  
-90  
-135  
œ15  
œ25  
0
œ20  
œ40  
0
5
10  
15  
œ20  
œ15  
œ10  
œ5  
0.1  
1.0 10.0 100.0 1k  
10k 100k 1M 10M 100M  
Common Mode Voltage (V)  
Frequency (Hz)  
C001  
C001  
Figure 1. Offset Voltage vs Common-Mode Voltage  
Figure 2. Open-Loop Gain and Phase vs Frequency  
Copyright © 2017, Texas Instruments Incorporated  
11  
 
 
OPA196, OPA2196, OPA4196  
ZHCSGE9 JULY 2017  
www.ti.com.cn  
At TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
1000  
60  
G = -1  
800  
G = +1  
600  
40  
G= -10  
400  
200  
G= -100  
0
20  
0
œ200  
œ400  
œ600  
œ800  
œ1000  
-20  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
5
10  
15  
20  
œ20  
œ15  
œ10  
œ5  
Frequency (Hz)  
Common Mode Voltage (V)  
C004  
C001  
Figure 3. Closed-Loop Gain vs Frequency  
Figure 4. Input Bias Current vs Common-Mode Voltage  
20  
18  
16  
14  
12  
10  
8
10  
IB -  
IB+  
9
8
7
6
5
4
3
2
1
0
6
-40èC  
4
25èC  
85èC  
2
125èC  
0
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
20  
40  
60  
80  
100  
Output Current (mA)  
Temperature (°C)  
C001  
Sourcing  
Figure 6. Output Voltage Swing vs Output Current  
Figure 5. Input Bias Current vs Temperature  
0
-2  
140  
120  
100  
80  
-40èC  
25èC  
85èC  
-4  
125èC  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
60  
40  
CMRR  
+PSRR  
œPSRR  
20  
0
0.1  
1.0  
10.0 100.0  
1k  
10k 100k  
1M  
10M  
0
20  
40  
60  
80  
100  
Frequency (Hz)  
Output Current (mA)  
C004  
Sinking  
Figure 8. CMRR and PSRR vs Frequency  
Figure 7. Output Voltage Swing vs Output Current  
12  
Copyright © 2017, Texas Instruments Incorporated  
OPA196, OPA2196, OPA4196  
www.ti.com.cn  
ZHCSGE9 JULY 2017  
At TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
10  
5
VS = ±2.25 V, (Vœ) ≤ VCM ≤ (V+) œ 3 V  
8
4
6
3
4
2
2
1
0
0
-2  
-4  
-6  
-8  
-10  
-1  
-2  
-3  
-4  
-5  
VS = ±18 V, (Vœ) ≤ VCM ≤ (V+) œ 3 V  
0
25  
50  
75  
100 125 150  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
œ75 œ50 œ25  
Temperature (°C)  
Temperature (°C)  
C001  
C001  
Figure 9. CMRR vs Temperature  
Figure 10. PSRR vs Temperature  
100  
10  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
C002  
Time (1 s/div)  
Figure 12. Input Voltage Noise Spectral Density  
vs Frequency  
Figure 11. 0.1-Hz to 10-Hz Noise  
0.5  
0.1  
1
-40  
G = -1, 2k-Load  
G = -1, 10k-Load  
G = +1, 2k-Load  
G = +1, 10k-Load  
G = -1 V/V, RL = 2 kW  
G = -1 V/V, RL = 10 kW  
G = 1 V/V, RL = 2 kW  
G = 1 V/V, RL = 10 kW  
0.1  
0.01  
-60  
-80  
0.01  
0.001  
-100  
-120  
-140  
0.0001  
0.00001  
0.001  
0.0005  
20  
200  
2k  
20k  
0.01  
0.1  
1
10 20  
Output Amplitude (VRMS  
)
Frequency (Hz)  
C004  
Figure 14. THD+N vs Output Amplitude  
Figure 13. THD+N vs Frequency  
Copyright © 2017, Texas Instruments Incorporated  
13  
OPA196, OPA2196, OPA4196  
ZHCSGE9 JULY 2017  
www.ti.com.cn  
At TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
VS = ê2.25 V  
VS = ê18 V  
VS = ±18 V  
VS = ±2.25 V  
60  
60  
40  
40  
20  
20  
0
0
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Supply Voltage (V)  
Temperature (°C)  
C001  
Figure 15. Quiescent Current vs Supply Voltage  
Figure 16. Quiescent Current vs Temperature  
5.0  
4.0  
5.0  
4.0  
3.0  
3.0  
VS = ±2.25 V  
2.0  
2.0  
VS = ±2.25 V  
1.0  
1.0  
0.0  
0.0  
œ1.0  
œ2.0  
œ3.0  
œ4.0  
œ5.0  
œ1.0  
œ2.0  
œ3.0  
œ4.0  
œ5.0  
VS = ±18 V  
VS = ±18 V  
0
25  
50  
75  
100 125 150  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
œ75 œ50 œ25  
Temperature (°C)  
Temperature (°C)  
C001  
C001  
RL = 10 kΩ  
Figure 17. Open-Loop Gain vs Temperature  
RL = 2 kΩ  
Figure 18. Open-Loop Gain vs Temperature  
100k  
60  
RISO = 0  
RISO = 25  
RISO = 50  
50  
40  
30  
20  
10  
0
10k  
1k  
100  
100m  
10  
100  
1000  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Capacitive Load (pF)  
G = –1, 100-mV output step  
C004  
Frequency (Hz)  
Figure 20. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step)  
Figure 19. Open-Loop Output Impedance vs Frequency  
14  
Copyright © 2017, Texas Instruments Incorporated  
OPA196, OPA2196, OPA4196  
www.ti.com.cn  
ZHCSGE9 JULY 2017  
At TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
20  
Output  
Input  
RISO = 0  
RISO = 25  
RISO = 50  
10  
0
10  
100  
1000  
Capacitive Load (pF)  
G = 1, 100-mV output step  
Time (50 ms/div)  
C004  
Figure 21. Small-Signal Overshoot vs Capacitive Load  
Figure 22. No Phase Reversal  
Negative overload  
Positive overload  
Time (2.5 µs/div)  
C017  
Time (ms)  
G = 1, CL = 10 pF  
VS = ±18 V, G = –10 V/V  
Figure 24. Small-Signal Step Response  
Figure 23. Overload Recovery  
Time (2.5 µs/div)  
Time (2.5 µs/div)  
C017  
C017  
G = –1, RL = 1 kΩ, CL = 10 pF  
G = 1, CL = 10 pF  
Figure 25. Small-Signal Step Response  
Figure 26. Large-Signal Step Response  
Copyright © 2017, Texas Instruments Incorporated  
15  
OPA196, OPA2196, OPA4196  
ZHCSGE9 JULY 2017  
www.ti.com.cn  
At TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
0.01% settling = ê200 mV  
Time (2.5 µs/div)  
Time (500 ns/div)  
C017  
Gain = 1, 2-V step, rising, step applied at t = 0 µs on all four plots  
G = –1, RL = 1 kΩ, CL = 10 pF  
Figure 28. 0.01% Settling Time  
Figure 27. Large-Signal Step Response  
0.01% settling = ê200 mV  
0.01% settling = ê500 mV  
Time (500 ns/div)  
Time (500 ns/div)  
Gain = 1, 5-V step, rising, step applied at t = 0 µs  
Gain = 1, 2-V step, falling, step applied at t = 0 µs  
Figure 29. 0.01% Settling Time  
0.01% settling = ê500 mV  
Figure 30. 0.01% Settling Time  
100  
ISC, Source  
80  
60  
40  
20  
0
ISC, Sink  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
Temperature (°C)  
C001  
Time (500 ns/div)  
Gain = 1, 5-V step, falling, step applied at t = 0 µs  
Figure 32. Short-Circuit Current vs Temperature  
Figure 31. 0.01% Settling Time  
16  
Copyright © 2017, Texas Instruments Incorporated  
OPA196, OPA2196, OPA4196  
www.ti.com.cn  
ZHCSGE9 JULY 2017  
At TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.  
35  
Maximum output voltage without  
slew-rate induced distortion.  
30  
25  
20  
15  
10  
5
Overdrive = 100 mV  
VS = ±15 V  
tpLH = 26 µs  
VOUT Voltage  
VS = ±4 V  
VS = ±2.25 V  
1k  
0
Time (10 µs/div)  
100  
10k  
100k  
1M  
10M  
Frequency (Hz)  
C001  
C017  
Figure 33. Maximum Output Voltage vs Frequency  
Figure 34. Propagation Delay Rising Edge  
tpHL = 26 µs  
VOUT Voltage  
Overdrive = 100 mV  
Time (10 µs/div)  
C017  
Figure 35. Propagation Delay Falling Edge  
Copyright © 2017, Texas Instruments Incorporated  
17  
OPA196, OPA2196, OPA4196  
ZHCSGE9 JULY 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPAx196 family of operational amplifiers use e-trim, a method of package-level trim for offset and offset  
temperature drift implemented during the final steps of manufacturing after the plastic molding process. This  
method minimizes the influence of inherent input transistor mismatch, as well as errors induced during package  
molding. The trim communication occurs on the output pin of the standard pinout, and after the trim points are  
set, further communication to the trim structure is permanently disabled. The Functional Block Diagram shows  
the simplified diagram of the OPA196 with e-trim.  
Unlike previous e-trim op amps, the OPAx196 uses a patented two-temperature trim architecture to achieve a  
very low offset voltage and low voltage offset drift over the full specified temperature range. This level of  
precision performance at wide supply voltages makes these amplifiers useful for high-impedance industrial  
sensors, filters, and high-voltage data acquisition.  
7.2 Functional Block Diagram  
OPAx196  
NCH Input  
Stage  
IN+  
High  
Capacitive Load  
Compensation  
VOUT  
36-V  
Differential  
Front End  
Output  
Stage  
Slew  
Boost  
IN-  
PCH Input  
Stage  
e-trim  
Package Level Trim  
Copyright © 2017, Texas Instruments Incorporated  
18  
Copyright © 2017, Texas Instruments Incorporated  
 
OPA196, OPA2196, OPA4196  
www.ti.com.cn  
ZHCSGE9 JULY 2017  
7.3 Feature Description  
7.3.1 Input Protection Circuitry  
The OPAx196 uses a unique input architecture to eliminate the need for input protection diodes but still provides  
robust input protection under transient conditions. Conventional input diode protection schemes shown in  
Figure 36 can be activated by fast transient step responses and can introduce signal distortion and settling time  
delays because of alternate current paths, as shown in Figure 37. For low-gain circuits, these fast-ramping input  
signals forward-bias back-to-back diodes that cause an increase in input current, resulting in extended settling  
time.  
V+  
V+  
VIN+  
VIN+  
VOUT  
VOUT  
OPAx196  
~0.7 V  
36 V  
VIN-  
VIN-  
V-  
V-  
OPAx196 Provides Full 36-  
V Differential Input Range  
Conventional Input Protection  
Limits Differential Input Range  
Figure 36. OPA196 Input Protection Does Not Limit Differential Input Capability  
1
Ron_mux  
Vn = +10 V  
RFILT  
+10 V  
Sn  
D
1
2
~œ9.3 V  
+10 V  
CFILT  
CS  
CD  
Vinœ  
2
Ron_mux  
Sn+1  
Vn+1 = œ10 V RFILT  
œ10 V  
~0.7 V  
Vout  
CFILT  
CS  
Idiode_transient  
Vin+  
œ10 V  
Input Low Pass Filter  
Simplified Mux Model  
Buffer Amplifier  
Figure 37. Back-to-Back Diodes Create Settling Issues  
The OPAx196 family of operational amplifiers provides a true high-impedance differential input capability for high-  
voltage applications. This patented input protection architecture does not introduce additional signal distortion or  
delayed settling time, making the device an optimal op amp for multichannel, high-switched, input applications.  
The OPA196 can tolerate a maximum differential swing (voltage between inverting and noninverting pins of the  
op amp) of up to 36 V, making the device suitable for use as a comparator or in applications with fast-ramping  
input signals such as multiplexed data-acquisition systems (see Figure 49).  
Copyright © 2017, Texas Instruments Incorporated  
19  
 
 
OPA196, OPA2196, OPA4196  
ZHCSGE9 JULY 2017  
www.ti.com.cn  
Feature Description (continued)  
7.3.2 EMI Rejection  
The OPAx196 uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from  
sources such as wireless communications and densely-populated boards with a mix of analog signal chain and  
digital components. EMI immunity can be improved with circuit design techniques; the OPAx196 benefits from  
these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the  
immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz.  
Figure 38 shows the results of this testing on the OPAx196. Table 2 shows the EMIRR IN+ values for the  
OPAx196 at particular frequencies commonly encountered in real-world applications. Applications listed in  
Table 2 may be centered on or operated near the particular frequency shown. Detailed information can also be  
found in the application report EMI Rejection Ratio of Operational Amplifiers, available for download from  
www.ti.com.  
120  
100  
80  
60  
40  
20  
0
10  
100  
Frequency (MHz)  
1k  
10k  
PRF = –10 dBm, VS = ±15 V, VCM = 0 V  
Figure 38. EMIRR Testing  
Table 2. OPA196 EMIRR IN+ For Frequencies of Interest  
FREQUENCY  
APPLICATION OR ALLOCATION  
EMIRR IN+  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF)  
applications  
400 MHz  
36 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation,  
GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
5.0 GHz  
45 dB  
57 dB  
62 dB  
76 dB  
86 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite  
operation, C-band (4 GHz to 8 GHz)  
20  
Copyright © 2017, Texas Instruments Incorporated  
 
 
OPA196, OPA2196, OPA4196  
www.ti.com.cn  
ZHCSGE9 JULY 2017  
7.3.3 Phase Reversal Protection  
The OPAx196 family has internal phase-reversal protection. Many op amps exhibit phase reversal when the  
input is driven beyond the linear common-mode range. This condition is most often encountered in noninverting  
circuits when the input is driven beyond the specified common-mode voltage range, causing the output to  
reverse into the opposite rail. The OPAx196 is a rail-to-rail input op amp, and therefore the common-mode range  
can extend up to the rails. Input signals beyond the rails do not cause phase reversal; instead, the output limits  
into the appropriate rail. This performance is shown in Figure 39.  
VIN  
VOUT  
Time (35 ms/div)  
C017  
Figure 39. No Phase Reversal  
7.3.4 Thermal Protection  
The internal power dissipation of any amplifier causes the internal (junction) temperature to rise. This  
phenomenon is called self heating. The OPAx196 has a thermal protection feature that prevents damage from  
self heating.  
This thermal protection works by monitoring the temperature of the output stage and turning off the op amp  
output drive for temperatures above approximately 180°C. Thermal protection forces the output to a high-  
impedance state. The OPAx196 is also designed with approximately 30°C of thermal hysteresis. Thermal  
hysteresis prevents the output stage from cycling in and out of the high-impedance state. The OPAx196 returns  
to normal operation when the output stage temperature falls below approximately 150°C.  
The absolute maximum junction temperature of the OPAx196 is 150°C. Exceeding the limits shown in the  
Absolute Maximum Ratings table may cause damage to the device. Thermal protection triggers at 180°C  
because of unit-to-unit variance, but does not interfere with device operation up to the absolute maximum ratings.  
This thermal protection is not designed to prevent this device from exceeding absolute maximum ratings, but  
rather from excessive thermal overload.  
Copyright © 2017, Texas Instruments Incorporated  
21  
 
OPA196, OPA2196, OPA4196  
ZHCSGE9 JULY 2017  
www.ti.com.cn  
7.3.5 Capacitive Load and Stability  
The OPAx196 features a patented output stage capable of driving large capacitive loads, and in a unity-gain  
configuration, directly drives up to 1 nF of pure capacitive load. Increasing the gain enhances the ability of the  
amplifier to drive greater capacitive loads; see Figure 40. The particular op amp circuit configuration, layout, gain,  
and output loading are some of the factors to consider when establishing whether an amplifier will be stable in  
operation.  
G = +1 V/V  
Time (2 ms/Div)  
Figure 40. Transient Response with a Purely Capacitive Load of 1 nF  
Like many low-power amplifiers, some ringing can occur even with capacitive loads less than 100 pF. In unity-  
gain configurations with no or very light dc loads, place an RC snubber circuit at the OPAx196 output to reduce  
any possibility of ringing in lightly-loaded applications. Figure 41 illustrates the recommended RC snubber circuit.  
œ
Output  
Input  
+
R 619   
C 320 pF  
Figure 41. RC Snubber Circuit for Lightly-Loaded Applications in Unity Gain  
22  
Copyright © 2017, Texas Instruments Incorporated  
 
 
OPA196, OPA2196, OPA4196  
www.ti.com.cn  
ZHCSGE9 JULY 2017  
For additional drive capability in unity-gain configurations, improve capacitive load drive by inserting a small,  
10-Ω to 20-Ω resistor (RISO) in series with the output, as shown in Figure 42. This resistor significantly reduces  
ringing while maintaining dc performance for purely capacitive loads. However, if there is a resistive load in  
parallel with the capacitive load, a voltage divider is created, introducing a gain error at the output and slightly  
reducing the output swing. The error introduced is proportional to the ratio RISO / RL and is generally negligible at  
low output levels. A high capacitive load drive makes the OPA196 well suited for applications such as reference  
buffers, MOSFET gate drives, and cable-shield drives. The circuit shown in Figure 42 uses RISO to stabilize the  
output of an op amp. RISO modifies the open-loop gain of the system for increased phase margin. Results using  
the OPA196 are summarized in Table 3. For additional information on techniques to optimize and design using  
this circuit, TI Precision Design TIDU032 details complete design goals, simulation, and test results.  
+Vs  
Vout  
Riso  
+
Cload  
+
Vin  
-Vs  
œ
Figure 42. Extending Capacitive Load Drive With the OPA196  
Table 3. OPA196 Capacitive Load Drive Solution Using Isolation Resistor Comparison of Calculated and  
Measured Results  
PARAMETER  
Capacitive Load  
Phase Margin  
RISO (Ω)  
VALUE  
0.01 µF  
100 pF  
45°  
1000 pF  
0.1 µF  
1 µF  
45°  
60°  
45°  
60°  
45°  
60°  
45°  
60°  
280  
113  
432  
68  
210  
17.8  
53.6  
3.6  
10  
Measured  
Overshoot (%)  
23  
23  
8
23  
8
23  
8
23  
8
For step-by-step design procedure, circuit schematics, bill of materials, printed circuit board (PCB) files,  
simulation results, and test results, refer to TI Precision Design TIDU032, Capacitive Load Drive Solution using  
an Isolation Resistor .  
Copyright © 2017, Texas Instruments Incorporated  
23  
 
 
OPA196, OPA2196, OPA4196  
ZHCSGE9 JULY 2017  
www.ti.com.cn  
7.3.6 Common-Mode Voltage Range  
The OPAx196 is a 36-V, true rail-to-rail input operational amplifier with an input common-mode range that  
extends 100 mV beyond either supply rail. This wide range is achieved with paralleled complementary N-channel  
and P-channel differential input pairs, as shown in Figure 43. The N-channel pair is active for input voltages  
close to the positive rail, typically (V+) – 3 V to 100 mV above the positive supply. The P-channel pair is active  
for inputs from 100 mV below the negative supply to approximately (V+) – 1.5 V. There is a small transition  
region, typically (V+) –3 V to (V+) – 1.5 V in which both input pairs are active. This transition region varies  
modestly with process variation. Within this region PSRR, CMRR, offset voltage, offset drift, noise, and THD  
performance are degraded compared to operation outside this region.  
+Vsupply  
IS1  
VIN-  
PCH1  
NCH4  
NCH3  
PCH2  
VIN+  
e-ÇrimÇa  
CÜ{9 .!bY  
ëh{ ÇwLa  
ëh{ 5wLCÇ ÇwLa  
-Vsupply  
Figure 43. Rail-to-Rail Input Stage  
To achieve the best performance for two-stage rail-to-rail input amplifiers, avoid the transition region when  
possible. The OPAx196 uses a precision trim for both the N-channel and P-channel regions. This technique  
enables significantly lower levels of offset than previous-generation devices, causing variance in the transition  
region of the input stages to appear exaggerated relative to offset over the full common-mode range, as shown in  
Figure 44.  
P-Channel  
Region  
Transition  
Region  
N-Channel  
Region  
P-Channel  
Region  
Transition  
Region  
N-Channel  
Region  
200  
100  
200  
100  
0
0
œ100  
œ100  
œ200  
œ300  
OPAx196 e-Trim  
Input Offset Voltage vs Vcm  
œ200  
œ300  
Input Offset Voltage vs Vcm  
without e-Trim Input  
œ15.0 œ14.0  
11.0  
12.0  
13.0  
14.0  
15.0  
œ15.0 œ14.0  
11.0  
12.0  
13.0  
14.0  
15.0  
Common-Mode Voltage (V)  
Common-Mode Voltage (V)  
Figure 44. Common-Mode Transition vs Standard Rail-to-Rail Amplifiers  
24  
Copyright © 2017, Texas Instruments Incorporated  
 
 
OPA196, OPA2196, OPA4196  
www.ti.com.cn  
ZHCSGE9 JULY 2017  
7.3.7 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress  
(EOS). These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the  
output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly.  
Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is  
helpful. See Figure 45 for an illustration of the ESD circuits contained in the OPAx196 (indicated by the dashed  
line area). The ESD protection circuitry involves several current-steering diodes connected from the input and  
output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device or  
the power-supply ESD cell, internal to the operational amplifier. This protection circuitry is intended to remain  
inactive during normal circuit operation.  
TVS  
RF  
+VS  
VDD  
OPAx196  
100 Ω  
100 Ω  
R1  
RS  
INœ  
œ
IN+  
+
Power-Supply  
ESD Cell  
RL  
ID  
+
VIN  
œ
VSS  
œVS  
TVS  
Figure 45. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
Copyright © 2017, Texas Instruments Incorporated  
25  
 
OPA196, OPA2196, OPA4196  
ZHCSGE9 JULY 2017  
www.ti.com.cn  
An ESD event is very high voltage for a very short duration (for example, 1 kV for 100 ns); whereas, an EOS  
event is lower voltage for a longer duration (for example, 50 V for 100 ms). The ESD diodes are designed for  
out-of-circuit ESD protection (that is, during assembly, test, and storage of the device before being soldered to  
the PCB). During an ESD event, the ESD signal is passed through the ESD steering diodes to an absorption  
circuit labeled ESD power-supply circuit. The ESD absorption circuit clamps the supplies to a safe level.  
Although this behavior is necessary for out-of-circuit protection, excessive current and damage is caused if  
activated in-circuit. A transient voltage suppressor (TVS) can be used to prevent against damage caused by  
turning on the ESD absorption circuit during an in-circuit ESD event. Using the appropriate current limiting  
resistors and TVS diodes allows for the use of device ESD diodes to protect against EOS events.  
7.3.8 Overload Recovery  
Overload recovery is defined as the time required for the op amp output to recover from a saturated state to a  
linear state. The output devices of the op amp enter a saturation region when the output voltage exceeds the  
rated operating voltage, either due to the high input voltage or the high gain. After the device enters the  
saturation region, the charge carriers in the output devices require time to return back to the linear state. After  
the charge carriers return back to the linear state, the device begins to slew at the specified slew rate. Thus, the  
propagation delay in case of an overload condition is the sum of the overload recovery time and the slew time.  
7.4 Device Functional Modes  
The OPAx196 has a single functional mode and is operational when the power-supply voltage is greater than  
4.5 V (±2.25 V). The maximum power supply voltage for the OPAx196 is 36 V (±18 V).  
26  
Copyright © 2017, Texas Instruments Incorporated  
OPA196, OPA2196, OPA4196  
www.ti.com.cn  
ZHCSGE9 JULY 2017  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The OPAx196 family offers outstanding dc precision and ac performance. These devices operate up to 36-V  
supply rails and offer true rail-to-rail input/output, ultralow offset voltage and offset voltage drift, as well as  
2-MHz bandwidth and high capacitive load drive. These features make the OPAx196 a robust, high-performance  
operational amplifier for high-voltage industrial applications.  
8.2 Typical Applications  
8.2.1 Low-side Current Measurement  
Figure 46 shows the OPA196 configured in a low-side current sensing application. For a full analysis of the  
circuit shown in Figure 46 including theory, calculations, simulations, and measured data see the 0-1A, single-  
supply, low-side, current sensing solution, see TIPD129.  
VCC  
5 V  
LOAD  
OPA196  
+
VOUT  
œ
RSHUNT  
100m  
ILOAD  
LM7705  
RF  
360k ꢀ  
RG  
7.5k ꢀ  
Figure 46. OPA196 in a Low-Side, Current-Sensing Application  
8.2.1.1 Design Requirements  
The design requirements for this design are:  
Load current: 0 A to 1 A  
Output voltage: 4.9 V  
Maximum shunt voltage: 100 mV  
Copyright © 2017, Texas Instruments Incorporated  
27  
 
OPA196, OPA2196, OPA4196  
ZHCSGE9 JULY 2017  
www.ti.com.cn  
Typical Applications (continued)  
8.2.1.2 Detailed Design Procedure  
The transfer function of the circuit in Figure 46 is given in Equation 1:  
VOUT = ILOAD ìRSHUNT ìGain  
(1)  
The load current (ILOAD) produces a voltage drop across the shunt resistor (RSHUNT). The load current is set from  
0 A to 1 A. To keep the shunt voltage below 100 mV at maximum load current, the largest shunt resistor is  
defined using Equation 2.  
VSHUNT _MAX  
100mV  
1A  
RSHUNT  
=
=
=100mW  
ILOAD_MAX  
(2)  
Using Equation 2, RSHUNT is calculated to be 100 m. The voltage drop produced by ILOAD and RSHUNT is  
amplified by the OPA196 to produce an output voltage of 0 V to 4.9 V. The gain needed by the OPA196 to  
produce the necessary output voltage is calculated using Equation 3:  
V
OUT _MAX - VOUT _MIN  
(
)
Gain =  
VIN_MAX - V  
(
)
IN_MIN  
(3)  
Using Equation 3, the required gain is calculated to be 49 V/V, which is set with resistors RF and RG. Equation 4  
is used to size the resistors, RF and RG, to set the gain of the OPA196 to 49 V/V.  
R
(
(
)
)
F
Gain = 1+  
R
G
(4)  
Choosing RF as 360 k, RG is calculated to be 7.5 k. RF and RG were chosen as 360 kand 7.5 kbecause  
they are standard value resistors that create a 49:1 ratio. Other resistors that create a 49:1 ratio can also be  
used. Figure 2 shows the measured transfer function of the circuit shown in Figure 46.  
8.2.1.3 Application Curves  
5
4
3
2
1
0
0.1  
0.08  
0.06  
0.04  
0.02  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
ILOAD (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
ILOAD (A)  
1
Figure 47. Low-Side, Current-Sense, Transfer Function  
Figure 48. Low-Side, Current-Sense, Full-Scale Error  
28  
Copyright © 2017, Texas Instruments Incorporated  
 
 
 
 
OPA196, OPA2196, OPA4196  
www.ti.com.cn  
ZHCSGE9 JULY 2017  
Typical Applications (continued)  
8.2.2 16-Bit Precision Multiplexed Data-Acquisition System  
Figure 49 shows a 16-bit, differential, 4-channel, multiplexed, data-acquisition system. This example is typical in  
industrial applications that require low distortion and a high-voltage differential input. The circuit uses the  
ADS8864, a 16-bit, 400-kSPS successive-approximation-resistor (SAR), analog-to-digital converter (ADC), along  
with a precision, high-voltage, signal-conditioning front-end, and a 4-channel differential multiplexer (mux). This  
application example shows the process for optimizing the precision, high-voltage, front-end drive circuit using the  
OPA196 and OPA140 to achieve excellent dynamic performance and linearity with the ADS8864. The full TI  
Precision Design can be found in TIDU181.  
1
2
3
4
Attenuate ADC Kickback  
Noise  
VREF Output: Value and  
Accuracy  
Low Temp and Long-Term  
Drift  
High-Impedance Inputs  
No Differential Input  
Clamps  
Fast Settling-Time  
Requirements  
Attenuate High-Voltage Input  
Signal  
Fast-Settling Time  
Requirements  
Stability of the Input Driver  
Very Low Output  
Impedance  
Input-Filter Bandwidth  
RC  
Filter  
RC  
Filter  
Voltage  
Reference  
/I0+  
/I0-  
.uffer  
±20-V,  
10-kHz  
Sine  
+
ht!196  
Reference  
Driver  
+
Gain  
Network  
Gain  
Network  
Wave  
ht!196  
+
ht!196  
4:2  
aux  
REFP  
+
ht!140  
VINP  
Gain  
Network  
±20-V,  
10-kHz  
Sine  
/I3+  
Antialiasing  
Filter  
+
ht!196  
SAR  
ADC  
+
ht!196  
+
VINM  
Wave  
/I3-  
n
CONV  
ht!196  
16 Bits  
400 kSPS  
High-Voltage Level  
Translation  
Iigh-ëoltage ꢀultiplexed Lnput  
ë/a  
Voltage  
Divider  
REF3240  
ht!350  
VCM Generation Circuit  
Shmidtt  
Trigger  
Counter  
Delay  
n
Digital Counter For  
Multiplexer  
5
Fast logic transition  
Figure 49. OPA196 in 16-Bit, 400-kSPS, 4-Channel, Multiplexed Data Acquisition System for High-Voltage  
Inputs With Lowest Distortion  
8.2.2.1 Design Requirements  
The primary objective is to design a ±20-V, differential, 4-channel, multiplexed, data acquisition system with  
lowest distortion using the 16-bit ADS8864 at a throughput of 400 kSPS for a 10-kHz, full-scale, pure sine-wave  
input. The design requirements for this block design are:  
System supply voltage: ±15 V  
ADC supply voltage: 3.3 V  
ADC sampling rate: 400 kSPS  
ADC reference voltage (REFP): 4.096 V  
System input signal: A high-voltage differential input signal with a peak amplitude of 10 V and frequency  
(fIN) of 10 kHz are applied to each differential input of the mux.  
8.2.2.2 Detailed Design Procedure  
The purpose of this application example is to design an optimal, high-voltage, multiplexed, data-acquisition  
system for highest system linearity and fast settling. The overall system block diagram is shown in Figure 49.  
The circuit is a multichannel, data-acquisition, signal chain consisting of an input low-pass filter, multiplexer  
(mux), mux output buffer, attenuating SAR ADC driver, digital counter for the mux, and the reference driver. The  
architecture allows fast sampling of multiple channels using a single ADC, providing a low-cost solution. The two  
primary design considerations to maximize the performance of a precision, multiplexed, data-acquisition system  
are the mux input analog front-end and the high-voltage, level translation, SAR ADC driver design. However,  
carefully design each analog circuit block based on the ADC performance specifications in order to achieve the  
fastest settling at 16-bit resolution and lowest distortion system. Figure 49 includes the most important  
specifications for each individual analog block.  
Copyright © 2017, Texas Instruments Incorporated  
29  
 
OPA196, OPA2196, OPA4196  
ZHCSGE9 JULY 2017  
www.ti.com.cn  
Typical Applications (continued)  
This design systematically approaches each analog circuit block to achieve a 16-bit settling for a full-scale input  
stage voltage and linearity for a 10-kHz sinusoidal input signal at each input channel. The first step in the design  
is to understand the requirement for an extremely-low-impedance input-filter design for the mux. This  
understanding helps in the decision of an appropriate input filter and selection of a mux to meet the system  
settling requirements. The next important step is the design of the attenuating analog front-end (AFE) used to  
level translate the high-voltage input signal to a low-voltage ADC input while maintaining the amplifier stability.  
Then, the next step is to design a digital interface to switch the mux input channels with minimum delay. The final  
design challenge is to design a high-precision, reference-driver circuit that provides the required REFP reference  
voltage with low offset, drift, and noise contributions.  
For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test  
results, refer to TI Precision Design TIDU181, 16-bit, 400-kSPS, 4-Channel, Multiplexed Data Acquisition  
System for High Voltage Inputs with Lowest Distortion.  
8.2.3 Slew Rate Limit for Input Protection  
In control systems for valves or motors, abrupt changes in voltages or currents can cause mechanical damages.  
By controlling the slew rate of the command voltages into the drive circuits, the load voltages ramps up and down  
at a safe rate. For symmetrical slew-rate applications (positive slew rate equals negative slew rate), one  
additional op amp provides slew-rate control for a given analog gain stage. The unique input protection and high  
output current and slew rate of the OPAx196 make the device an optimal amplifier to achieve slew rate control  
for both dual- and single-supply systems.Figure 50 shows the OPA196 in a slew-rate limit design.  
Op Amp Gain Stage  
Slew Rate Limiter  
C1  
R1  
VCC  
VCC  
-
R2  
-
OPA196  
+
VIN  
OPA196  
VOUT  
+
VEE  
RL  
VEE  
Figure 50. Slew Rate Limiter Uses One Op Amp  
For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test  
results, refer to TI Precision Design TIDU026, Slew Rate Limiter Uses One Op Amp.  
30  
Copyright © 2017, Texas Instruments Incorporated  
 
OPA196, OPA2196, OPA4196  
www.ti.com.cn  
ZHCSGE9 JULY 2017  
9 Power-Supply Recommendations  
The OPAx196 is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications apply from  
–40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in the Typical Characteristics.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see the  
Absolute Maximum Ratings.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Layout  
section.  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close  
as possible to the device. A single bypass capacitor from V+ to ground is applicable for single-supply  
applications.  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources  
local to the analog circuitry.  
Make sure to physically separate digital and analog grounds paying attention to the flow of the ground  
current. Separate grounding for analog and digital portions of circuitry is one of the simplest and most-  
effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to  
ground planes. A ground plane helps distribute heat and reduces EMI noise pickup.  
In order to reduce parasitic coupling, run the input traces as far away as possible from the supply or output  
traces. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as  
opposed to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As shown in Figure 52, keeping RF and  
RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
Clean the PCB following board assembly for best performance.  
Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic  
package. After any aqueous PCB cleaning process, bake the PCB assembly to remove moisture introduced  
into the device packaging during the cleaning process. A low-temperature, post-cleaning bake at 85°C for 30  
minutes is sufficient for most circumstances.  
Copyright © 2017, Texas Instruments Incorporated  
31  
 
OPA196, OPA2196, OPA4196  
ZHCSGE9 JULY 2017  
www.ti.com.cn  
10.2 Layout Example  
VIN  
+
VOUT  
RG  
RF  
Figure 51. Schematic Representation  
Place components close  
to device and to each  
other to reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
RF  
VS+  
N/C  
N/C  
RG  
GND  
œIN  
+IN  
Vœ  
V+  
OUTPUT  
N/C  
VIN  
GND  
GND  
VOUT  
Ground (GND) plane on another layer  
Use low-ESR,  
ceramic bypass  
capacitors  
Copyright © 2017, Texas Instruments Incorporated  
Figure 52. Operational Amplifier Board Layout for Non-inverting Configuration  
32  
版权 © 2017, Texas Instruments Incorporated  
OPA196, OPA2196, OPA4196  
www.ti.com.cn  
ZHCSGE9 JULY 2017  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 TINA-TI™(免费软件下载)  
TINA™是一款简单、功能强大且易于使用的电路仿真程序,此程序基于 SPICE 引擎。TINA-TI TINA 软件的一  
款免费全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。TINA-TI 提供所有传  
统的 SPICE 直流、瞬态和频域分析,以及其他设计功能。  
TINA-TI 可从 Analog eLab Design Center(模拟电子实验室设计中心)免费下载,它提供全面的后续处理能力,  
使得用户能够以多种方式形成结果。虚拟仪器提供选择输入波形和探测电路节点、电压以及波形的功能,从而构建  
一个动态的快速入门工具。  
这些文件需要安装 TINA 软件(由 DesignSoft™提供)或者 TINA-TI 软件。请从 TINA-TI 文  
件夹中下载免费的 TINA-TI 软件(网址为 http://www.ti.com.cn/tool/cn/tina-ti)。  
11.1.1.2 TI 高精度设计  
TI 高精度设计(请访问 http://www.ti.com.cn/ww/analog/precision-designs/ 获取)是由 TI 公司高精度模拟 应用 专  
家创建的模拟解决方案,提供了许多实用电路的工作原理、组件选择、仿真、完整印刷电路板 (PCB) 电路原理图和  
布局布线、物料清单以及性能测量结果。  
11.2 文档支持  
11.2.1 相关文档  
《运算放大器的电磁干扰 (EMI) 抑制比》  
0-1A 单电源低侧电流传感解决方案  
《适合所有人的运算放大器》  
11.3 相关链接  
4 列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即购买的快速链接。  
4. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
OPA196  
OPA2196  
OPA4196  
11.4 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可收到任意产  
品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
版权 © 2017, Texas Instruments Incorporated  
33  
 
OPA196, OPA2196, OPA4196  
ZHCSGE9 JULY 2017  
www.ti.com.cn  
11.5 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.6 商标  
e-trim, E2E are trademarks of Texas Instruments.  
TINA-TI is a trademark of Texas Instruments, Inc and DesignSoft, Inc.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
TINA, DesignSoft are trademarks of DesignSoft, Inc.  
11.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参见左侧的导航栏。  
34  
版权 © 2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Sep-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA196ID  
OPA196IDBVR  
OPA196IDBVT  
OPA196IDGKR  
OPA196IDGKT  
OPA196IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOT-23  
SOT-23  
VSSOP  
VSSOP  
SOIC  
D
DBV  
DBV  
DGK  
DGK  
D
8
5
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
OPA196  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
50 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
O196  
5
O196  
8
NIPDAU  
O196  
8
NIPDAU  
O196  
8
NIPDAU  
OPA196  
OP2196  
2196  
OPA2196ID  
SOIC  
D
8
NIPDAU  
OPA2196IDGKR  
OPA2196IDGKT  
OPA2196IDR  
OPA4196ID  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
Call TI | NIPDAU  
Call TI | NIPDAU  
NIPDAU  
8
2196  
8
OP2196  
OPA4196  
OPA4196  
SOIC  
D
14  
14  
NIPDAU  
OPA4196IDR  
SOIC  
D
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Sep-2022  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY