OPA4202 [TI]

高容性驱动 (25nF)、精密 (200uV)、低噪声 (9nV/rtHz)、超 β 四路运算放大器;
OPA4202
型号: OPA4202
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高容性驱动 (25nF)、精密 (200uV)、低噪声 (9nV/rtHz)、超 β 四路运算放大器

放大器 驱动 运算放大器
文件: 总50页 (文件大小:3019K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA202, OPA2202, OPA4202  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
OPAx202 精密、低噪声、高电容驱动能力 36V 运算放大器  
1 特性  
3 说明  
1
精密超级 ß 性能:  
OPA202OPA2202 OPA4202 (OPAx202) 是在 TI  
业界领先的精密超级 ß 互补双极半导体工艺基础上构  
建的一系列器件。此工艺提供超低闪烁噪声、低失调电  
压、低失调电压温漂和优异线性度,并具有共模和电源  
变化。这些器件具有一系列出色的特性:直流精度、高  
容性负载驱动以及外部 EMI 保护、过热保护和短路保  
护。  
低失调电压:200µV(最大值)  
超低温漂:1µV/°C(最大值)  
出色的效率:  
静态电流:580µA(典型值)  
增益带宽积:1MHz  
低输入电压噪声:9nV/Hz  
方便易用,简化设计:  
±18V 时的电源电流为 580µAOPAx202 系列不会出  
现相位反转,并能够在高容性负载下保持稳定。  
OPAx202 额定工作温度范围为 -40°C +105°C。  
高容性负载驱动:25nF 负载时具有 5µs 稳定时  
超高输入阻抗:3000GΩ 和  
0.5pF  
器件信息(1)  
器件型号  
封装  
SOIC (8)  
封装尺寸(标称值)  
4.90mm × 3.91mm  
2.90mm × 1.60mm  
3.00mm × 3.00mm  
3.00mm × 3.00mm  
8.65mm × 3.91mm  
抗电磁干扰 (EMI),具有过热保护和短路保护  
稳定性能:  
OPA202  
SOT-23 (5)  
CMRR AOL126dB(最小值)  
PSRR126dB(最小值)  
VSSOP (8)(预览)  
VSSOP (8)  
OPA2202  
OPA4202  
低偏置电流:2nA(最大值)  
0.1Hz 10Hz 低噪声:0.2µVPP  
宽电源电压:±2.25V ±18V  
取代 OP-07 OP-27  
SOIC (14)  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
OPAx202 即使在直接驱动高容性负载时也表现优异  
10  
2 应用  
8
数据采集 (DAQ)  
6
实验室和现场仪表  
商用网络和服务器 PSU  
多参数患者监护仪  
串式逆变器  
4
2
25000 pF  
0
œ2  
œ4  
œ6  
œ8  
CL = 28 pF to 25000 pF  
œ10  
0
1
2
3
4
5
Time (s)  
C003  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS812  
 
 
 
 
OPA202, OPA2202, OPA4202  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 25  
Application and Implementation ........................ 26  
8.1 Application Information............................................ 26  
8.2 Typical Application ................................................. 28  
Power Supply Recommendations...................... 29  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information: OPA202 .................................. 7  
6.5 Thermal Information: OPA2202 ................................ 7  
6.6 Thermal Information: OPA4202 ................................ 7  
6.7 Electrical Characteristics........................................... 8  
6.8 Typical Characteristics............................................ 10  
6.9 Typical Characteristics............................................ 11  
Detailed Description ............................................ 18  
7.1 Overview ................................................................. 18  
7.2 Functional Block Diagram ....................................... 18  
7.3 Feature Description................................................. 19  
8
9
10 Layout................................................................... 30  
10.1 Layout Guidelines ................................................. 30  
10.2 Layout Example .................................................... 30  
11 器件和文档支持 ..................................................... 31  
11.1 器件支持................................................................ 31  
11.2 文档支持................................................................ 31  
11.3 相关链接................................................................ 32  
11.4 接收文档更新通知 ................................................. 32  
11.5 支持资源................................................................ 32  
11.6 ....................................................................... 32  
11.7 静电放电警告......................................................... 32  
11.8 Glossary................................................................ 32  
12 机械、封装和可订购信息....................................... 32  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision D (December 2019) to Revision E  
Page  
已添加 向数据表添加了 OPA202 8 引脚 VSSOP (DGK) 预发布封装和相关内................................................................... 1  
Changes from Revision C (October 2018) to Revision D  
Page  
已更改 将 OPA2202 OPA4202 器件从预告信息(预发布)更改为生产数据(正在供货) ............................................... 1  
Changes from Revision B (December 2018) to Revision C  
Page  
已添加 向数据表添加了 OPA2202 OPA4202 预发布器件和相关内容................................................................................ 1  
已删除 Operating Voltage section; redundant information ................................................................................................... 19  
Changes from Revision A (September 2018) to Revision B  
Page  
已更改 将 SOT-23 封装从预发布更改为生产数据................................................................................................................... 1  
Changes from Original (October 2017) to Revision A  
Page  
已添加 添加了适用于 SOT-23 封装产品的预发布内容............................................................................................................ 1  
2
Copyright © 2017–2020, Texas Instruments Incorporated  
 
OPA202, OPA2202, OPA4202  
www.ti.com.cn  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
5 Pin Configuration and Functions  
OPA202 D, DGK(1) Packages  
8-Pin SOIC and VSSOP  
Top View  
OPA202 DBV Package  
5-Pin SOT-23  
Top View  
NC  
œIN  
+IN  
Vœ  
1
2
3
4
8
7
6
5
NC  
V+  
OUT  
Vœ  
1
2
3
5
V+  
œ
OUT  
NC  
+
+IN  
4
œIN  
Not to scale  
Not to scale  
(1) DGK package is preview.  
Pin Functions: OPA202  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
D (SOIC)  
DGK (VSSOP)  
DBV (SOT-23)  
–IN  
+IN  
NC  
OUT  
V–  
2
4
3
I
Inverting input  
Noninverting input  
3
I
1, 5, 8  
1
O
No internal connection (can be left floating)  
Output  
6
4
7
2
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
5
Copyright © 2017–2020, Texas Instruments Incorporated  
3
OPA202, OPA2202, OPA4202  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
OPA2202 DGK Package  
8-Pin VSSOP  
Top View  
OUT A  
œIN A  
+IN A  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT B  
œIN B  
+IN B  
Not to scale  
Pin Functions: OPA2202  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN A  
+IN A  
–IN B  
+IN B  
OUT A  
OUT B  
V–  
NO.  
2
I
I
Inverting input channel A  
3
Noninverting input channel A  
Inverting input channel B  
Noninverting input channel B  
Output channel A  
6
I
5
I
1
O
O
7
Output channel B  
4
Negative supply  
V+  
8
Positive supply  
4
Copyright © 2017–2020, Texas Instruments Incorporated  
OPA202, OPA2202, OPA4202  
www.ti.com.cn  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
OPA4202 D Package  
14-Pin SOIC  
Top View  
OUT A  
œIN A  
+IN A  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
œIN D  
+IN D  
Vœ  
+IN B  
œIN B  
OUT B  
+IN C  
œIN C  
OUT C  
8
Not to scale  
Pin Functions: OPA4202  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN A  
+IN A  
–IN B  
+IN B  
–IN C  
+IN C  
–IN D  
+IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V–  
NO.  
2
I
I
Inverting input channel A  
3
Noninverting input channel A  
Inverting input channel B  
Noninverting input channel B  
Inverting input channel C  
Noninverting input channel C  
Inverting input channel D  
Noninverting input channel D  
Output channel A  
6
I
5
I
9
I
10  
13  
12  
1
I
I
I
O
O
O
O
7
Output channel B  
8
Output channel C  
14  
11  
4
Output channel D  
Negative supply  
V+  
Positive supply  
Copyright © 2017–2020, Texas Instruments Incorporated  
5
OPA202, OPA2202, OPA4202  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
40  
UNIT  
V
Single-supply  
Dual-supply  
Supply voltage,  
VS = (V+) – (V–)  
±20  
Common-mode(2)  
Differential(3)  
(V–) – 0.5  
(V+) + 0.5  
±0.5  
Voltage  
Current  
Signal input pins  
±10  
mA  
Output short current(4)  
Continuous  
Operating temperature, TA  
Junction temperature, TJ  
Storage temperature, Tstg  
–40  
125  
125  
150  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that swing more than 0.5 V beyond the supply rails must be  
current-limited to 10 mA or less.  
(3) Input terminals are anti-parallel diode-clamped to each other. Input signals that cause differential voltages of swing more than ± 0.5 V  
must be current-limited to 10 mA or less.  
(4) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±2500  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
36  
UNIT  
Single-supply  
Dual-supply  
VS  
TA  
Supply voltage, [ (V+) – (V–) ]  
Specified temperature  
V
±2.25  
–40  
±18  
105  
°C  
6
Copyright © 2017–2020, Texas Instruments Incorporated  
 
OPA202, OPA2202, OPA4202  
www.ti.com.cn  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
6.4 Thermal Information: OPA202  
OPA202  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
136  
DGK (VSSOP)  
8 PINS  
176.7  
63.9  
DBV (SOT-23)  
5 PINS  
206.0  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
74  
121.8  
62  
99.4  
65.9  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
19.7  
54.8  
N/A  
8.8  
39.0  
ΨJB  
97.6  
65.6  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Thermal Information: OPA2202  
OPA2202  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
180.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
68.3  
101.4  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
10.5  
ΨJB  
99.8  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Thermal Information: OPA4202  
OPA4202  
THERMAL METRIC(1)  
D (SOIC)  
14 PINS  
87.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
42.7  
44.6  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
8.9  
ΨJB  
44.1  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017–2020, Texas Instruments Incorporated  
7
OPA202, OPA2202, OPA4202  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
6.7 Electrical Characteristics  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, and VOUT = VS / 2, RL = 10 kconnected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VS = ±18 V  
VS = ±18 V, TA = –40°C to +105°C  
±20  
±200  
±250  
±1  
VOS  
Input offset voltage  
µV  
OPA202, OPA4202ID  
OPA2202IDGK  
TA = –40°C to +105°C  
TA = –40°C to +105°C  
±0.5  
±0.5  
±0.1  
µV/°C  
µV/°C  
dVOS/dT  
PSRR  
Input offset voltage drift  
±1.5  
±0.5  
±0.5  
VS = ±2.25 V to ±18 V  
Input offset voltage  
versus power supply  
µV/V  
VS = ±2.25 V to ±18 V, TA = –40°C to +105°C  
INPUT BIAS CURRENT  
±0.25  
±15  
±2  
±2.1  
IB  
Input bias current  
nA  
TA = –40°C to +105°C  
±150  
±700  
±250  
±700  
OPA202  
TA = –40°C to +105°C  
IOS  
Input offset current  
pA  
±25  
OPA2202IDGK,  
OPA4202ID  
TA = –40°C to +105°C  
NOISE  
0.2  
0.03  
9.5  
µVPP  
Input voltage noise  
f = 0.1 Hz to 10 Hz  
µVRMS  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
f = 1 kHz  
Input voltage noise  
density  
en  
in  
9.1  
nV/Hz  
pA/Hz  
9
Input current noise  
0.076  
INPUT VOLTAGE RANGE  
Common-mode voltage  
range  
VCM  
(V–) + 1.5  
114  
(V+) – 1.5  
V
(V–) + 1.5 V < VCM < (V+) – 1.5 V  
131  
148  
VS = ±2.25 V  
VS = ±18 V  
(V–) + 1.5 V < VCM < (V+) – 1.5 V,  
TA = –40°C to +105°C  
114  
Common-mode rejection  
ratio  
CMRR  
dB  
(V–) + 1.5 V < VCM < (V+) – 1.5 V  
126  
(V–) + 1.5 V < VCM < (V+) – 1.5 V,  
TA = –40°C to +105°C  
119  
INPUT CAPACITANCE  
Differential  
10 || 3.3  
3 || 0.5  
M|| pF  
T|| pF  
Common-mode  
OPEN-LOOP GAIN  
(V–) + 1.25 V VO (V+) – 1.25 V,  
RL = 10 kΩ  
120  
119  
126  
126  
120  
119  
126  
126  
135  
150  
133  
150  
VS = ±2.25 V  
VS = ±18 V  
VS = ±2.25 V  
VS = ±18 V  
(V–) + 1.25 V VO (V+) – 1.25 V,  
RL = 10 k, TA = –40to +105℃  
(V–) + 1.25 V VO (V+) – 1.25 V,  
RL = 10 kΩ  
(V–) + 1.25 V VO (V+) – 1.25 V,  
RL = 10 k, TA = –40to +105℃  
AOL  
Open-loop voltage gain  
dB  
(V–) + 1.25 V VO (V+) – 1.25 V,  
RL = 2 kΩ  
(V–) + 1.25 V VO (V+) – 1.25 V,  
RL = 2 k, TA = –40to +105℃  
(V–) + 1.25 V VO (V+) – 1.25 V,  
RL = 2 kΩ  
(V–) + 1.25 V VO (V+) – 1.25 V,  
RL = 2 k, TA = –40to +105℃  
8
Copyright © 2017–2020, Texas Instruments Incorporated  
OPA202, OPA2202, OPA4202  
www.ti.com.cn  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
Electrical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, and VOUT = VS / 2, RL = 10 kconnected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
1
0.35  
30  
MHz  
V/µs  
Slew rate  
10-V step, G = 1  
To 0.1%, 10-V step , G = 1  
To 0.01%, 10-V step , G = 1  
VIN × gain > VS  
tS  
Settling time  
µs  
µs  
32  
Overload recovery time  
4
Total harmonic distortion  
+ noise  
THD+N  
VO = 3 VRMS, G = 1, f = 1 kHz, RL = 10 kΩ  
0.0002%  
OUTPUT  
TA = 25°C, No Load  
650  
800  
750  
900  
1.15  
1
mV  
V
TA = 25°C, RL = 10 kΩ  
TA = 25°C, RL = 2 kΩ  
1.05  
Voltage output swing  
from rail  
VS = ±18 V  
TA = –40°C to +105°C, RL = 10 kΩ  
AOL > 120 dB, RL = 10 kΩ  
AOL > 120 dB, RL = 2 kΩ  
1.05  
1.25  
Sinking  
35  
35  
ISC  
Short-circuit current  
Capacitive load drive  
mA  
Sourcing  
CLOAD  
ZO  
28  
Open-loop output  
impedance  
IO = 0 mA, f = 1 MHz; see 27  
50  
POWER SUPPLY  
IO = 0 mA  
580  
800  
900  
Quiescent current per  
amplifier  
IQ  
µA  
IO = 0 mA, TA = –40°C to +105°C  
版权 © 2017–2020, Texas Instruments Incorporated  
9
OPA202, OPA2202, OPA4202  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
6.8 Typical Characteristics  
1. Table of Graphs  
DESCRIPTION  
Offset Voltage Production Distribution  
Offset Voltage Drift Distribution From –40°C to +105°C  
Input Bias Current Production Distribution  
Input Offset Current Production Distribution  
Offset Voltage vs Temperature  
FIGURE  
1  
2  
3  
4  
5  
Offset Voltage vs Common-Mode Voltage  
Offset Voltage vs Supply Voltage  
6  
7  
Open-Loop Gain and Phase vs Frequency  
Closed-Loop Gain vs Frequency  
8  
9  
Input Bias Current vs Common-Mode Voltage  
Input Bias Current and Offset vs Temperature  
Output Voltage Swing vs Output Current  
Output Voltage Swing vs Output Current (Sourcing)  
Output Voltage Swing vs Output Current (Sinking)  
CMRR and PSRR vs Frequency  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25, 26  
27  
28  
29  
30  
31  
32, 33  
34, 35  
36  
37  
38  
39  
CMRR vs Temperature  
PSRR vs Temperature  
0.1-Hz to 10-Hz Voltage Noise  
Input Voltage Noise Spectral Density vs Frequency  
THD+N Ratio vs Frequency  
THD+N vs Output Amplitude  
Quiescent Current vs Supply Voltage  
Quiescent Current vs Temperature  
Open-Loop Gain vs Temperature (10-kΩ)  
Open-Loop Gain vs Output Voltage Swing to Supply  
Open-Loop Output Impedance vs Frequency  
Small-Signal Overshoot vs Capacitive Load (10-mV Step)  
No Phase Reversal  
Positive Overload Recovery  
Negative Overload Recovery  
Small-Signal Step Response (10-mV Step)  
Large-Signal Step Response (10-V Step)  
Settling Time (10-V Step)  
Short-Circuit Current vs Temperature  
Maximum Output Voltage vs Frequency  
EMIRR vs Frequency  
10  
版权 © 2017–2020, Texas Instruments Incorporated  
OPA202, OPA2202, OPA4202  
www.ti.com.cn  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
6.9 Typical Characteristics  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
Input Offset Voltage Drift (µV/°C)  
σ = 177.41 nV/°C  
Input Offset Voltage (µV)  
C001  
C002  
µ = –18.23 nV/°C  
N = 252  
µ = –3.56 µV  
σ = 32.09 µV  
N = 252  
TA = –40°C to +105°C  
2. Offset Voltage Drift Distribution  
1. Offset Voltage Production Distribution  
œIN Bias Current  
35  
30  
25  
20  
15  
10  
5
20  
16  
12  
8
4
0
4
8
12  
16  
20  
+IN Bias Current  
0
Input Offset Current (pA)  
Input Bias Current (pA)  
C013  
C013  
µ = 0.112 pA  
σ = 15.023 pA  
N = 90  
µ–IN = 112.335 pA  
µ+IN = 112.448 pA  
σ–IN = 154.946 pA  
σ+IN = 152.739 pA  
N = 90  
4. Input Offset Current Production Distribution  
3. Input Bias Current Production Distribution  
400  
300  
120  
80  
40  
200  
100  
0
0
œ100  
œ200  
œ300  
œ400  
œ40  
œ80  
œ120  
VCM = 16.5 V  
VCM = œ 16.5 V  
œ15 œ10 œ5  
0
25  
50  
75  
100 125 150  
0
5
10  
15  
20  
œ75 œ50 œ25  
œ20  
Temperature (°C)  
Input Common-mode Voltage (V)  
C001  
C003  
5 typical units  
5. Offset Voltage vs Temperature  
5 typical units  
6. Offset Voltage vs Common-Mode Voltage  
版权 © 2017–2020, Texas Instruments Incorporated  
11  
 
OPA202, OPA2202, OPA4202  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
150  
100  
50  
120  
100  
80  
180  
150  
120  
90  
Magnitude  
VS = 4.5 V  
60  
0
40  
60  
Phase  
œ50  
œ100  
œ150  
20  
30  
0
0
œ20  
-30  
10M  
0
9
18  
27  
36  
1
10  
100  
1k  
10k  
100k  
1M  
Supply Voltage (V)  
Frequency (Hz)  
C001  
C022  
5 typical units  
7. Offset Voltage vs Supply Voltage  
8. Open-Loop Gain and Phase vs Frequency  
25  
20  
15  
10  
5
40  
20  
0
G = +1  
G= -1  
G= +10  
0
œ5  
œ10  
œ15  
œ20  
œ25  
-20  
-40  
100  
1k  
10k  
100k  
1M  
10M  
0
5
10  
15  
20  
œ20  
œ15  
œ10  
œ5  
Frequency (Hz)  
Input Common-mode Voltage (V)  
C004  
C001  
9. Closed-Loop Gain vs Frequency  
10. Input Bias Current vs Common-Mode Voltage  
1.0  
0.8  
10V  
125°C  
85°C  
25°C  
-40°C  
0.5  
IBN  
0.3  
1V  
0.0  
IBP  
œ0.3  
œ0.5  
IOS  
100mV  
0
25  
50  
75  
100 125 150  
1
10  
100  
œ75 œ50 œ25  
Temperature (°C)  
Output Current (mA)  
C001  
C019  
11. Input Bias Current and Offset vs Temperature  
12. Output Voltage Swing vs Output Current  
12  
版权 © 2017–2020, Texas Instruments Incorporated  
OPA202, OPA2202, OPA4202  
www.ti.com.cn  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
18  
17.5  
17  
-14  
-14.5  
-15  
85°C  
125°C  
25°C  
œ40°C  
16.5  
16  
-15.5  
-16  
15.5  
15  
-16.5  
-17  
25°C  
40  
85°C  
125°C  
14.5  
14  
-17.5  
-18  
œ40°C  
0
5
10  
15  
20  
25  
30  
35  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Output Current (mA)  
Output Current (mA)  
C001  
C001  
13. Output Voltage Swing vs Output Current (Sourcing)  
14. Output Voltage Swing vs Output Current (Sinking)  
160  
150  
140  
130  
120  
110  
100  
0.01  
0.1  
1
160  
CMRR  
140  
+PSRR  
120  
œPSRR  
100  
80  
60  
40  
20  
0
10  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0
25  
50  
75 100 125 150  
œ75 œ50 œ25  
Frequency (Hz)  
Temperature (°C)  
C004  
C001  
15. CMRR and PSRR vs Frequency  
16. CMRR vs Temperature  
160  
150  
140  
130  
120  
0.01  
0.1  
1
Time (1 s/div)  
0
25  
50  
75 100 125 150  
œ75 œ50 œ25  
Temperature (°C)  
C001  
C017  
17. PSRR vs Temperature  
18. 0.1-Hz to 10-Hz Voltage Noise  
版权 © 2017–2020, Texas Instruments Incorporated  
13  
OPA202, OPA2202, OPA4202  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
1000  
100  
10  
1000  
100  
10  
1
-40  
G = -1, 2-kLoad  
G = -1, 600-Load  
G = -1, 10-kLoad  
G = +1, 2-kLoad  
G = +1, 600-Load  
G = +1, 10-kLoad  
Current Noise  
0.1  
-60  
0.01  
-80  
0.001  
0.0001  
0.00001  
-100  
-120  
-140  
Voltage Noise  
1
1
0.01 0.1  
1.0 10.0 100.0 1k  
Frequency (Hz)  
10k 100k 1M  
20  
200  
2k  
20k  
Frequency (Hz)  
C002  
C004  
VOUT = 3.5 VRMS  
BW = 90 kHz  
19. Input Voltage Noise Spectral Density vs Frequency  
20. THD+N Ratio vs Frequency  
700  
600  
500  
400  
300  
200  
100  
0.1  
-60  
0.01  
-80  
0.001  
-100  
-120  
-140  
VS = 4.5 V  
G = -1, 600-Load  
G = -1, 2-kLoad  
G = -1, 10-kLoad  
G = +1, 600-Load  
G = +1, 2-kLoad  
G = +1, 10-kLoad  
0.0001  
0.00001  
0
0
0.001  
0.01  
0.1  
1
10  
9
18  
27  
36  
Output Amplitude (VRMS  
)
Supply Voltage (V)  
C004  
C001  
f = 1 kHz  
BW = 90 kHz  
21. THD+N vs Output Amplitude  
22. Quiescent Current vs Supply Voltage  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
180  
170  
160  
150  
140  
130  
120  
110  
100  
0.001  
VS  
=
18 V  
0.01  
0.1  
1
VS  
=
18 V  
VS  
=
2.25 V  
VS  
=
2.25 V  
10  
0
25  
50  
75  
100 125 150  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
œ50 œ25  
Temperature (°C)  
Temperature (°C)  
C001  
C001  
23. Quiescent Current vs Temperature  
24. Open-Loop Gain vs Temperature  
(With 10-kΩ Load)  
14  
版权 © 2017–2020, Texas Instruments Incorporated  
OPA202, OPA2202, OPA4202  
www.ti.com.cn  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
Output Voltage Swing from Rail (V)  
Output Voltage Swing from Rail (V)  
C001  
C001  
VS = ±18 V  
VS = ±2.25 V  
25. Open-Loop Gain vs Output Voltage  
26. Open-Loop Gain vs Output Voltage Swing to Supply  
Swing to Supply  
1k  
100  
10  
50  
G = -1, RISO = 0  
G = -1, RISO = 25  
G = -1, RISO = 50  
G = +1, RISO = 0  
G = +1, RISO = 25  
G = +1, RISO = 50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
25  
250  
2500  
25000  
Frequency (Hz)  
C021  
Capacitive Load (pF)  
10-mV step  
C004  
Unity-gain bandwidth = 1 MHz  
27. Open-Loop Output Impedance vs Frequency  
28. Small-Signal Overshoot vs Capacitive Load  
VOUT  
VIN  
Time (1 ms/div)  
Time (2 µs/div)  
C017  
C017  
29. No Phase Reversal  
30. Positive Overload Recovery  
版权 © 2017–2020, Texas Instruments Incorporated  
15  
 
OPA202, OPA2202, OPA4202  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
VIN  
VOUT  
Input  
Output  
Time (25 µs/div)  
Time (2 µs/div)  
C017  
C017  
C017  
C017  
G = +1  
32. Small-Signal Step Response (10-mV Step)  
31. Negative Overload Recovery  
Output  
Input  
Input  
Output  
Time (25 µs/div)  
Time (10 µs/div)  
C017  
G = –1  
G = –1  
10-V step  
33. Small-Signal Step Response (10-mV Step)  
34. Large-Signal Step Response  
.01% Settling = ±1 mV  
Output  
Input  
Time (10 µs/div)  
Time (5 µs/div)  
C017  
G = +1  
10-V step  
10-V step  
35. Large-Signal Step Response  
36. Settling Time  
16  
版权 © 2017–2020, Texas Instruments Incorporated  
OPA202, OPA2202, OPA4202  
www.ti.com.cn  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
50  
40  
Maximum output voltage without  
slew-rate induced distortion.  
Sinking  
35  
30  
25  
20  
15  
10  
5
40  
30  
20  
10  
0
VS  
=
18 V  
Sourcing  
VS  
=
2.25 V  
0
100  
1k  
10k  
100k  
1M  
0
25  
50  
75  
100  
125  
150  
œ75  
œ50  
œ25  
Frequency (Hz)  
Temperature (°C)  
C001  
C001  
37. Short-Circuit Current vs Temperature  
38. Maximum Output Voltage Amplitude vs Frequency  
100  
80  
60  
40  
20  
0
10M  
100M  
Frequency (Hz)  
1000M  
C004  
PRF = –10 dBm  
39. EMIRR vs Frequency  
版权 © 2017–2020, Texas Instruments Incorporated  
17  
 
OPA202, OPA2202, OPA4202  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPA202, OPA2202, and OPA4202 (OPAx202) family of devices is a series of low-power, super-beta, bipolar  
junction transistor (super-β BJT), input amplifiers that features superior drift performance and low input bias  
current. The low output impedance and heavy capacitive load drive abilities allow designers to interface to  
modern, fast-acquisition, precision analog-to-digital converters (ADCs) and buffer precision voltage references  
and drive power supply decoupling capacitors. The OPAx202 achieve a 1-MHz gain-bandwidth product and a  
0.35-V/μs slew rate, and consumes only 580 µA (typical) of quiescent current, making the devices a great choice  
for low-power applications. These devices operate on a single 4.5-V to 36-V supply, or dual ±2.25-V to ±18-V  
supplies.  
All versions are fully specified from –40°C to +105°C for use in the most challenging environments. The single-  
channel OPA202 is available in 8-pin SOIC, 8-pin VSSOP, and 5-pin SOT-23 packages. The dual-channel  
OPA2202 is available in an 8-pin VSSOP package. The quad-channel OPA4202 is available in a 14-pin SOIC  
package.  
The Functional Block Diagram shows the simplified diagram of the OPAx202.  
7.2 Functional Block Diagram  
V+  
gm1  
OUT  
+IN  
œIN  
Vœ  
Copyright © 2017, Texas Instruments Incorporated  
18  
版权 © 2017–2020, Texas Instruments Incorporated  
 
OPA202, OPA2202, OPA4202  
www.ti.com.cn  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
7.3 Feature Description  
7.3.1 Capacitive Load and Stability  
The dynamic characteristics of the OPAx202 are optimized for commonly encountered gains, loads, and  
operating conditions. The OPAx202 feature a patented output stage capable of driving large capacitive loads. In  
a unity-gain configuration, the series is capable of directly driving to 25 nF of pure capacitive load. Increase the  
gain to enhance the ability of the devices to drive greater capacitive loads. The particular op amp circuit  
configuration, layout, gain, and output loading are some of the factors to consider when establishing whether an  
amplifier is stable in operation.  
The combination of low closed-loop gain and high capacitive loads decreases the phase margin of the amplifier,  
and can lead to gain peaking or oscillations. As a result, heavier capacitive loads must be isolated from the  
output. Add a small resistor (ROUT equal to 50 Ω, for example) in series with the output to achieve isolation. 40  
shows the effects on small-signal overshoot for several capacitive loads and combinations of isolation resistance.  
See the Feedback Plots Define Op Amp AC Performance application bulletin for details of analysis techniques  
and application circuits, available for download from the www.TI.com. By using isolation resistors, driving  
capacitive loads of 100 nF and beyond is possible.  
50  
G = -1, RISO = 0  
45  
G = -1, RISO = 25  
40  
G = -1, RISO = 50  
35  
G = +1, RISO = 0  
G = +1, RISO = 25  
G = +1, RISO = 50  
30  
25  
20  
15  
10  
5
0
25  
250  
2500  
25000  
Capacitive Load (pF)  
C004  
40. Small-Signal Overshoot vs Capacitive Load (10-mV Output Step)  
版权 © 2017–2020, Texas Instruments Incorporated  
19  
 
OPA202, OPA2202, OPA4202  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Feature Description (接下页)  
For additional drive capability in unity-gain configurations, insert a small (10 Ω to 20 Ω) resistor (RISO) in series  
with the output to improve capacitive load drive, as shown in 41. This resistor reduces ringing and maintains  
dc performance for purely capacitive loads. However, if a resistive load is in parallel with the capacitive load, then  
a voltage divider is created, which introduces a gain error at the output and reduces the output swing. The error  
is proportional to the ratio RISO / RL, and is generally negligible at low output levels. A high capacitive load drive  
makes the OPAx202 a great choice for applications such as reference buffers, MOSFET gate drives, and cable-  
shield drives. The circuit shown in 41 uses an isolation resistor (RISO) to stabilize the output of an op amp.  
RISO modifies the open-loop gain of the system for increased phase margin. 2 lists the results using the  
OPAx202. For additional information on techniques to optimize and design using this circuit, TI Precision Design  
TIPD128 details complete design goals, simulation, and test results.  
+Vs  
Vout  
Riso  
+
Cload  
+
Vin  
-Vs  
œ
41. Extending Capacitive Load Drive With the OPAx202  
2. OPAx202 Capacitive Load Drive Solution Using Isolation Resistor Measured Results  
MEASURED OVERSHOOT (%)  
PARAMETER  
INVERTING CONFIGURATION  
NONINVERTING CONFIGURATION  
CLOAD (pF)  
31  
RISO = 0 Ω  
RISO = 25 Ω  
6.6  
RISO = 50 Ω  
RISO = 0 Ω  
RISO = 25 Ω  
9
RISO = 50 Ω  
8.6  
6.7  
6.4  
6.7  
6.1  
6.4  
6.1  
8.1  
14.9  
21.8  
29.4  
37  
6.6  
6.7  
9.3  
8.9  
9.4  
8.9  
251  
6.4  
8.9  
421  
6.3  
6.6  
8.8  
8.8  
8.7  
641  
6.3  
6.5  
8.1  
8.8  
8.5  
1079  
1539  
2579  
3949  
6269  
10139  
15729  
25069  
6.1  
6.4  
8.6  
8.7  
9.8  
6.3  
6.1  
8.9  
10.3  
13.3  
16  
10.1  
12  
6.3  
6.9  
16  
7.9  
8.3  
25  
14.1  
14.5  
15.4  
14.5  
13.9  
10.8  
13.5  
15.2  
16.5  
9.9  
33.1  
40.2  
46.2  
52.6  
18.1  
19.1  
19.6  
19.2  
10.8  
11.6  
12.3  
For step-by-step design procedure, circuit schematics, bill of materials, printed circuit board (PCB) files, simulation results, and test results,  
see TIPD128, Capacitive Load Drive Solution Using an Isolation Resistor verified reference design.  
20  
版权 © 2017–2020, Texas Instruments Incorporated  
 
 
OPA202, OPA2202, OPA4202  
www.ti.com.cn  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
7.3.2 Output Current Limit  
The output current of the OPAx202 is limited by internal circuitry to ±35 mA (sinking or sourcing) to protect the  
device if the output is accidentally shorted. This short-circuit current depends on temperature, as 37 shows.  
7.3.3 Noise Performance  
42 shows the total circuit noise for varying source impedances with the operational amplifier in a unity-gain  
configuration (with no feedback resistor network and therefore no additional noise contributions). The OPAx202  
and OPA211 are shown with total circuit noise calculated. The op amp itself contributes a voltage noise  
component and a current noise component. The voltage noise is commonly modeled as a time-varying  
component of the offset voltage. The current noise is modeled as the time-varying component of the input bias  
current and reacts with the source resistance to create a voltage component of noise. Therefore, the lowest noise  
op amp for a given application depends on the source impedance. For low source impedance, current noise is  
negligible and voltage noise dominates. The OPAx202 have both low voltage noise and low current noise  
because of the super-beta bipolar junction transistor (super-β BJT) input of the op amp. As a result, the current  
noise contribution of the OPAx202 is negligible for most practical source impedances, which makes the series  
the better choice for applications with high source impedance.  
The equation in 42 shows the calculation of the total circuit noise with these parameters:  
en = voltage noise  
In = current noise  
RS = source impedance  
k = Boltzmann's constant = 1.38 × 10–23 J/K  
T = temperature in kelvins (K)  
For more details on calculating noise, see Basic Noise Calculations.  
10µ  
OPA211  
1µ  
100n  
10n  
OPA202  
1n  
RS = 6 k  
Resistor Noise  
100 1k  
0.1n  
1
10  
10k  
100k  
1M  
10M  
Source Resistance, RS ()  
C003  
NOTE: For source resistances (RS) greater than 6 kΩ, the OPAx202 is a lower-noise option compared to the  
OPA211, as shown in 42.  
42. Noise Performance of the OPAx202 vs the OPA211 in a Unity-Gain Buffer Configuration  
版权 © 2017–2020, Texas Instruments Incorporated  
21  
 
OPA202, OPA2202, OPA4202  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
7.3.4 Phase-Reversal Protection  
The OPAx202 family has internal phase-reversal protection. Many FET- and bipolar-input op amps exhibit a  
phase reversal when the input is driven beyond its linear common-mode range. This condition is most often  
encountered in noninverting circuits when the input is driven beyond the specified common-mode voltage range,  
causing the output to reverse into the opposite rail. The input circuitry of the OPAx202 prevents phase reversal  
with excessive common-mode voltage; instead, the output limits into the appropriate rail (see 29).  
7.3.5 Thermal Protection  
The OPAx202 family of op amps is capable of driving 2-kΩ loads with power-supply voltages of up to ±18 V  
across the specified temperature range. In a single-supply configuration, where the load is connected to the  
negative supply voltage, the minimum load resistance is 1.1 kΩ at a supply voltage of 36 V. For lower supply  
voltages (either single-supply or symmetrical supplies), a lower load resistance may be used as long as the  
output current does not exceed 35 mA; otherwise, the device short-circuit current protection circuit may activate.  
Internal power dissipation increases when operating at high supply voltages. Copper leadframe construction  
used in the OPAx202 devices improves heat dissipation. Printed-circuit-board (PCB) layout helps reduce a  
possible increase in junction temperature. Wide copper traces help dissipate the heat by acting as an additional  
heat sink. An increase in temperature is further minimized by soldering the devices directly to the PCB rather  
than using a socket.  
Although the output current is limited by internal protection circuitry, accidental shorting of one or more output  
channels of a device can result in excessive heating. For instance, when an output is shorted to midsupply, the  
typical short-circuit current of 35 mA leads to an internal power dissipation of over 600 mW at a supply of ±18 V.  
To prevent excessive heating, the OPAx202 have an internal thermal shutdown circuit that shuts down the  
device if the die temperature exceeds approximately 135°C. When this thermal shutdown circuit activates, a built-  
in hysteresis of 10°C makes sure that the die temperature drops to approximately 125°C before the device  
switches on again. Additional consideration must be given to the combination of maximum operating voltage,  
maximum operating temperature, load, and package type.  
7.3.6 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress.  
These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output  
pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly.  
It is helpful to have a good understanding of this basic ESD circuitry and the relevance to an electrical overstress  
event. See 43 for an illustration of the ESD circuits contained in the OPAx202 (indicated by the dashed line  
area). The ESD protection circuitry involves several current-steering diodes connected from the input and output  
pins and routed back to the internal power-supply lines, where they meet at an absorption device internal to the  
operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation.  
An ESD event produces a short duration, high-voltage pulse that is transformed into a short duration, high-  
current pulse as the pulse discharges through a semiconductor device. The ESD protection circuits are designed  
to provide a current path around the operational amplifier core to protect the core from damage. The energy  
absorbed by the protection circuitry is then dissipated as heat.  
When an ESD voltage develops across two or more of the amplifier device pins, current flows through one or  
more of the steering diodes. Depending on the path that the current takes, the absorption device may activate.  
The absorption device has a trigger, or threshold voltage, that is above the normal operating voltage of the  
OPAx202 but below the device breakdown voltage level. Once this threshold is exceeded, the absorption device  
quickly activates and clamps the voltage across the supply rails to a safe level.  
When the operational amplifier connects into a circuit (such as the one 43 shows), the ESD protection  
components are intended to remain inactive and not become involved in the application circuit operation.  
However, circumstances may arise where an applied voltage exceeds the operating voltage range of a given pin.  
If this condition occurs, there is a risk that some of the internal ESD protection circuits may be biased on and  
conduct current. Any such current flow occurs through steering diode paths and rarely involves the absorption  
device.  
22  
版权 © 2017–2020, Texas Instruments Incorporated  
OPA202, OPA2202, OPA4202  
www.ti.com.cn  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
43 shows a specific example where the input voltage, VIN, exceeds the positive supply voltage (+VS) by 500  
mV or more. Much of what happens in the circuit depends on the supply characteristics. If +VS can sink the  
current, one of the upper input steering diodes conducts and directs current to +VS. Excessively high current  
levels can flow with increasingly higher VIN. As a result, the data sheet specifications recommend that  
applications limit the input current to 10 mA.  
If the supply is not capable of sinking the current, VIN may begin sourcing current to the operational amplifier, and  
then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to  
levels that exceed the operational amplifier absolute maximum ratings.  
Another common question involves what happens to the amplifier if an input signal is applied to the input while  
the power supplies +VS or –VS are at 0 V.  
It depends on the supply characteristic while at 0 V, or at a level below the input signal amplitude. If the supplies  
appear as high impedance, then the operational amplifier supply current may be supplied by the input source  
through the current steering diodes. This state is not a normal bias condition; the amplifier most likely does not  
operate normally. If the supplies are low impedance, then the current through the steering diodes can become  
quite high. The current level depends on the ability of the input source to deliver current, and any resistance in  
the input path.  
If there is an uncertainty about the ability of the supply to absorb this current, external Zener diodes may be  
added to the supply pins as shown in 43. The Zener voltage must be selected such that the diode does not  
turn on during normal operation.  
However, the Zener voltage must be low enough so that the Zener diode conducts if the supply pin rises above  
the safe operating supply voltage level.  
TVS(2)  
RF  
+VS  
V+  
RI  
100  
100 ꢀ  
ESD Current-  
Steering Diodes  
-IN  
OUT  
Op Amp  
Core  
(3)  
RS  
+IN  
Edge-Triggered ESD  
Absorption Circuit  
RL  
ID  
(1)  
VIN  
Vœ  
-VS  
TVS(2)  
Copyright © 2017, Texas Instruments Incorporated  
(1) VIN = +VS + 500 mV.  
(2) TVS: +VS(max) > VTVSBR (Min) > +VS  
(3) Suggested value is approximately 5 kΩ in overvoltage conditions.  
43. Equivalent Internal ESD Circuitry in a Typical Application Circuit  
版权 © 2017–2020, Texas Instruments Incorporated  
23  
 
OPA202, OPA2202, OPA4202  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
7.3.7 EMI Rejection  
The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational  
amplifiers. An adverse effect that is common to many op amps is a change in the offset voltage as a result of RF  
signal rectification. An op amp that is more efficient at rejecting this change in offset as a result of EMI has a  
higher EMIRR and is quantified by a decibel value. Measuring EMIRR is performed in many ways, but this  
section provides the EMIRR IN+, which specifically describes the EMIRR performance when the RF signal is  
applied to the noninverting input pin of the op amp. In general, only the noninverting input is tested for EMIRR for  
the following three reasons:  
Op amp input pins are known to be the most sensitive to EMI, and typically rectify RF signals better than the  
supply or output pins.  
The noninverting and inverting op amp inputs have symmetrical physical layouts and exhibit matching EMIRR  
performance  
EMIRR is easier to measure on noninverting pins than on other pins because the noninverting input pin can  
be isolated on a PCB. This isolation allows the RF signal to be applied directly to the noninverting input pin  
with no complex interactions from other components or connecting PCB traces.  
High-frequency signals conducted or radiated to any pin of the operational amplifier may result in adverse  
effects, as the amplifier does not have sufficient loop gain to correct for signals with spectral content outside  
the bandwidth. Conducted or radiated EMI on inputs, power supply, or output may result in unexpected DC  
offsets, transient voltages, or other unknown behavior. Take care to properly shield and isolate sensitive  
analog nodes from noisy radio signals and digital clocks and interfaces. shows the effect of conducted EMI to  
the power supplies on the input offset voltage of OPAx202.  
The EMIRR IN+ of the OPAx202 is plotted versus frequency, as shown in 44. If available, any dual and  
quad op-amp device versions have similar EMIRR IN+ performance. The OPAx202 unity-gain bandwidth is 1  
MHz. EMIRR performance less than this frequency denotes interfering signals that fall within the op-amp  
bandwidth.  
See the EMI Rejection Ratio of Operational Amplifiers application report, available for download from  
www.ti.com.  
100  
80  
60  
40  
20  
0
10M  
100M  
Frequency (Hz)  
1000M  
C004  
44. OPAx202 EMIRR IN+  
24  
版权 © 2017–2020, Texas Instruments Incorporated  
 
OPA202, OPA2202, OPA4202  
www.ti.com.cn  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
3 lists the EMIRR IN+ values for the OPAx202 at particular frequencies commonly encountered in real-world  
applications. 3 lists applications that may be centered on or operated near the particular frequency shown.  
This information may be of special interest to designers working with these types of applications, or working in  
other fields likely to encounter RF interference from broad sources, such as the industrial, scientific, and medical  
(ISM) radio band.  
3. OPAx202 EMIRR IN+ for Frequencies of Interest  
FREQUENCY  
APPLICATION OR ALLOCATION  
EMIRR IN+  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF)  
applications  
400 MHz  
41 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation,  
GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
5 GHz  
47 dB  
54 dB  
67 dB  
67 dB  
81 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite  
operation, C-band (4 GHz to 8 GHz)  
7.3.8 EMIRR +IN Test Configuration  
45 shows the circuit configuration for testing the EMIRR IN+. An RF source is connected to the op amp  
noninverting input pin using a transmission line. The op amp is configured in a unity-gain buffer topology with the  
output connected to a low-pass filter (LPF) and a digital multimeter (DMM). A large impedance mismatch at the  
op amp input causes a voltage reflection; however, this effect is characterized and accounted for when  
determining the EMIRR IN+. The resulting DC offset voltage is sampled and measured by the multimeter. The  
LPF isolates the multimeter from residual RF signals that may interfere with multimeter accuracy.  
Ambient temperature: 25˘C  
+VS  
œ
50  
Low-Pass Filter  
+
RF source  
DC Bias: 0 V  
Modulation: None (CW)  
-VS  
Sample /  
Averaging  
Digital Multimeter  
Not shown: 0.1 µF and 10 µF  
supply decoupling  
Frequency Sweep: 201 pt. Log  
45. EMIRR +IN Test Configuration  
7.4 Device Functional Modes  
The OPAx202 have a single functional mode and are operational when the power-supply voltage is greater than  
4.5 V (±2.25 V). The maximum power supply voltage for the OPAx202 is 36 V (±18 V).  
版权 © 2017–2020, Texas Instruments Incorporated  
25  
 
 
OPA202, OPA2202, OPA4202  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The OPA202, OPA2202, and OPA4202 (OPAx202) are unity-gain stable operational amplifiers with low noise,  
low input bias current, and low input offset voltage. Applications with noisy or high-impedance power supplies  
require decoupling capacitors placed close to the device pins. In most cases, 0.1-µF capacitors are adequate.  
Designers can use the low output impedance and heavy capacitive load drive abilities to interface to modern,  
fast-acquisition, precision analog-to-digital converters (ADCs) and buffer precision voltage references and drive  
power supply decoupling capacitors.  
8.1.1 Basic Noise Calculations  
Low-noise circuit design requires careful analysis of all noise sources. External noise sources dominates in many  
cases; consider the effect of source resistance on overall op amp noise performance. Total noise of the circuit is  
the root-sum-square combination of all noise components.  
The resistive portion of the source impedance produces thermal noise proportional to the square root of the  
resistance. 42 shows this function. The source impedance is usually fixed; consequently, select the op amp  
and the feedback resistors to minimize the respective contributions to the total noise.  
46 shows noninverting (A) and inverting (B) op amp circuit configurations with gain. In circuit configurations  
with gain, the feedback network resistors contribute noise. Typically, the current noise of the op amp reacts with  
the feedback resistors to create additional noise components. However, the extremely low current noise of the  
OPAx202 means that the current noise contribution is neglected.  
The feedback resistor values are typically selected to make these noise sources negligible. Low impedance  
feedback resistors load the output of the amplifier. The equations for total noise are shown for both  
configurations.  
26  
版权 © 2017–2020, Texas Instruments Incorporated  
OPA202, OPA2202, OPA4202  
www.ti.com.cn  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
Application Information (接下页)  
(A) Noise in Noninverting Gain Configuration  
Noise at the output is given as EO, where  
R1  
R2  
2
42  
= l1 + p A5 + A0 + kA4 2 o + E0 45 + lE0 d  
41 42  
2
2
2
2
¨
:
: ;  
1
;
:
;
:
;
>
?
84/5  
'
1
hp  
æ4  
1
41  
41 + 42  
GND  
œ
EO  
8
: ;  
2
A = 4 G$ 6(-) 45  
d
h
¥
Thermal noise of RS  
+
5
*V  
¾
RS  
41 42  
8
: ;  
3
A4  
= ¨4 G$ 6(-) d  
2
h
d
h
Thermal noise of R1 || R2  
æ4  
1
41 + 42  
*V  
¾
+
,
h
VS  
Source  
GND  
G$ = 1.38065 10F23  
: ;  
4
d
œ
Boltzmann Constant  
-
Temperature in kelvins  
: ;  
>
?
-
5
6(-) = 237.15 + 6%)  
(B) Noise in Inverting Gain Configuration  
Noise at the output is given as EO, where  
R1  
R2  
2
:
;
42  
45 + 41 42  
'
1
= l1 +  
p A0 2 + kA4  
o2 + FE0 H  
+4 æ4  
5 2  
IG  
¨
: ;  
6
:
;
>
84/5  
?
1
45 + 41  
45 + 41 + 42  
RS  
œ
EO  
:
;
45 + 41 42  
8
+
: ;  
7
¨
4 G$ 6(-) H  
A4  
=
I
d
h
Thermal noise of (R1 + RS) || R2  
+4 æ4  
5
1
2
45 + 41 + 42  
*V  
¾
+
VS  
œ
,
GND  
G$ = 1.38065 10F23  
d
h
: ;  
8
Boltzmann Constant  
Source  
GND  
-
: ;  
9
>
?
6(-) = 237.15 + 6%)  
-
Temperature in kelvins  
Copyright © 2017, Texas Instruments Incorporated  
(1) eN = the voltage noise of the amplifier = 9 nV/Hz at 1 kHz.  
(2) iN = the current noise of the amplifier = 76 fA/Hz at 1 kHz.  
(3) For additional resources on noise calculations, visit TI's Precision Labs.  
46. Noise Calculation in Gain Configurations  
版权 © 2017–2020, Texas Instruments Incorporated  
27  
OPA202, OPA2202, OPA4202  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
8.2 Typical Application  
R4  
2.94 k  
C5  
1 nF  
œ
R1  
590 ꢀ  
R3  
499 ꢀ  
Output  
+
Input  
OPA202  
C2  
39 nF  
Copyright © 2017, Texas Instruments Incorporated  
47. 25-kHz, Low-Pass Filter  
8.2.1 Design Requirements  
Low-pass filters are used in signal processing applications to reduce noise and prevent aliasing. The OPAx202  
devices are is designed to construct high-speed, high-precision active filters. 47 shows a second-order, low-  
pass filter commonly encountered in signal processing applications.  
Use the following parameters for this design example:  
Gain = 5 V/V (inverting gain)  
Low-pass cutoff frequency = 25 kHz  
Second-order Chebyshev filter response with 3-dB gain peaking in the passband  
8.2.2 Detailed Design Procedure  
The infinite-gain multiple-feedback circuit for a low-pass network function is shown in 47. Use 公式 1 to  
calculate the voltage transfer function.  
-1 R1R3C2C5  
Output  
s =  
( )  
s2 + s C 1 R +1 R +1 R +1 R R C C  
Input  
(
)
(
)
2
1
3
4
3 4 2 5  
(1)  
This circuit produces a signal inversion. For this circuit, the gain at DC and the low-pass cutoff frequency are  
calculated by 公式 2:  
R4  
Gain =  
R1  
1
fC =  
1 R R C C  
(
3 4 2 5  
)
2p  
(2)  
Software tools are readily available to simplify filter design. WEBENCH® Filter Designer is a simple, powerful,  
and easy-to-use active filter design program. The WEBENCH® Filter Designer lets you create optimized filter  
designs using a selection of TI operational amplifiers and passive components from TI's vendor partners.  
Available as a web based tool from the WEBENCH Design Center, WEBENCH Filter Designer allows you to  
design, optimize, and simulate complete multistage active filter solutions within minutes.  
28  
版权 © 2017–2020, Texas Instruments Incorporated  
 
 
 
OPA202, OPA2202, OPA4202  
www.ti.com.cn  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
Typical Application (接下页)  
8.2.3 Application Curve  
20  
0
-20  
-40  
-60  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
48. OPAx202 Second-Order, 25-kHz, Chebyshev, Low-Pass Filter  
9 Power Supply Recommendations  
The OPAx202 are specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications apply from  
–40°C to +105°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are shown in the Typical Characteristics.  
CAUTION  
Supply voltages greater than 40 V can permanently damage the device; see the  
Absolute Maximum Ratings.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout  
section.  
版权 © 2017–2020, Texas Instruments Incorporated  
29  
OPA202, OPA2202, OPA4202  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the op amp  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power  
sources local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close as possible to the device. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground  
planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically  
separate digital and analog grounds paying attention to the flow of the ground current. For more detailed  
information, see The PCB is a component of op amp design.  
To reduce parasitic coupling, run the input traces as far away as possible from the supply or output  
traces. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better  
as opposed to in parallel with the noisy trace.  
Place the external components as close as possible to the device. As shown in 49, keeping RF and  
RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly  
reduce leakage currents from nearby traces that are at different potentials.  
For best performance, TI recommends cleaning the PCB following board assembly.  
Any precision integrated circuit may experience performance shifts due to moisture ingress into the  
plastic package. Following any aqueous PCB cleaning process, TI recommends baking the PCB  
assembly to remove moisture introduced into the device packaging during the cleaning process. A low  
temperature, post cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
10.2 Layout Example  
Place bypass  
capacitors as close to  
device as possible  
(avoid use of vias)  
Use ground pours for  
shielding the input  
signal pairs  
GND  
C3  
C4  
+V  
R3  
C3  
C4  
R3  
INœ  
+V  
1
NC  
œIN  
+IN  
Vœ  
NC  
V+  
8
7
6
5
1
2
3
4
NC  
œIN  
+IN  
Vœ  
NC  
V+  
8
7
6
5
R1  
R2  
R1  
2
3
4
INœ  
œ
OUT  
IN+  
OUT  
NC  
OUT  
OUT  
NC  
+
R2  
-V  
C1  
C2  
IN+  
R4  
GND  
R4  
-V  
Place components  
C1  
C2  
Use a low-  
ESR,ceramic bypass  
capacitor  
close to device and to  
each other to reduce  
parasitic errors  
Copyright © 2017, Texas Instruments Incorporated  
49. Operational Amplifier Board Layout for Difference Amplifier Configuration  
30  
版权 © 2017–2020, Texas Instruments Incorporated  
 
OPA202, OPA2202, OPA4202  
www.ti.com.cn  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 TINA-TI™(免费软件下载)  
TINA™是一款简单、功能强大且易于使用的电路仿真程序,此程序基于 SPICE 引擎。TINA-TI TINA 软件的一  
款免费全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。TINA-TI 提供所有传  
统的 SPICE 直流、瞬态和频域分析,以及其他设计功能。  
TINA-TI 可从 Analog eLab Design Center(模拟电子实验室设计中心)免费下载,它提供全面的后续处理能力,  
使得用户能够以多种方式形成结果。虚拟仪器提供选择输入波形和探测电路节点、电压和波形的功能,从而创建一  
个动态的快速入门工具。  
这些文件需要安装 TINA 软件(由 DesignSoft™提供)或者 TINA-TI 软件。请从 TINA-TI 文  
件夹 中下载免费的 TINA-TI 软件。  
11.1.1.2 WEBENCH 滤波器设计器工具  
WEBENCH® 滤波器设计器是一款简单、功能强大且便于使用的有源滤波器设计程序。借助 WEBENCH 滤波器设  
计器,用户可使用精选 TI 运算放大器和 TI 供应商合作伙伴提供的无源组件来构建最佳滤波器设计方案。  
11.1.1.3 TI 高精度设计  
欲获取 TI 高精度设计,请访问 http://www.ti.com.cn/ww/analog/precision-designs/TI 高精度设计是由 TI 公司高  
精度模拟 应用 专家创建的模拟解决方案,提供了许多实用电路的工作原理、组件选择、仿真、完整印刷电路板  
(PCB) 电路原理图和布局布线、物料清单以及性能测量结果。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《运算放大器设计组件 PCB》  
德州仪器 (TI)《用直观方式补偿跨阻放大器》  
德州仪器 (TI)《运算放大器增益稳定性,第 3 部分:交流增益误差分析》  
德州仪器 (TI)《运算放大器增益稳定性,第 2 部分:直流增益误差分析》  
德州仪器 (TI)《在全差分有源滤波器中使用无限增益、MFB 滤波器拓扑》  
德州仪器 (TI)《运算放大器性能分析》  
德州仪器 (TI)《运算放大器的单电源运行》  
德州仪器 (TI)《放大器调优》  
德州仪器 (TI)《无铅组件涂层的储存寿命评估》  
德州仪器 (TI)《反馈曲线图定义运算放大器交流性能》  
德州仪器 (TI)《运算放大器的 EMI 抑制比》  
版权 © 2017–2020, Texas Instruments Incorporated  
31  
OPA202, OPA2202, OPA4202  
ZHCSGW0E OCTOBER 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
11.3 相关链接  
4 列出了快速访问链接。类别包括技术文档、支持和社区资源、工具与软件,以及立即订购快速访问。  
4. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
单击此处  
OPA202  
OPA2202  
OPA4202  
11.4 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.5 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.6 商标  
E2E is a trademark of Texas Instruments.  
TINA-TI is a trademark of Texas Instruments, Inc and DesignSoft, Inc.  
WEBENCH is a registered trademark of Texas Instruments.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
TINA, DesignSoft are trademarks of DesignSoft, Inc.  
All other trademarks are the property of their respective owners.  
11.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
32  
版权 © 2017–2020, Texas Instruments Incorporated  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA202ID  
OPA202IDBVR  
OPA202IDBVT  
OPA202IDGKR  
OPA202IDGKT  
OPA202IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOT-23  
SOT-23  
VSSOP  
VSSOP  
SOIC  
D
DBV  
DBV  
DGK  
DGK  
D
8
5
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 120  
-40 to 120  
-40 to 120  
-40 to 105  
-40 to 105  
-40 to 120  
-40 to 150  
-40 to 120  
-40 to 120  
-40 to 150  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
OPA202  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
50 RoHS & Green  
2500 RoHS & Green  
90 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
1T72  
5
1T72  
8
NIPDAUAG | SN  
NIPDAUAG | SN  
NIPDAU  
1T2Q  
8
1T2Q  
8
OPA202  
OP2202  
1XDQ  
OPA2202ID  
SOIC  
D
8
NIPDAU  
OPA2202IDGKR  
OPA2202IDGKT  
OPA2202IDR  
OPA4202ID  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
NIPDAUAG | SN  
NIPDAUAG | SN  
NIPDAU  
8
1XDQ  
8
OP2202  
OPA4202  
OPA4202  
OPA4202  
OPA4202  
SOIC  
D
14  
14  
14  
14  
NIPDAU  
OPA4202IDR  
OPA4202IPW  
OPA4202IPWR  
SOIC  
D
NIPDAU  
TSSOP  
TSSOP  
PW  
PW  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Jun-2023  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA202IDBVR  
OPA202IDBVT  
OPA202IDGKR  
OPA202IDGKR  
OPA202IDGKT  
OPA202IDGKT  
OPA202IDR  
SOT-23  
SOT-23  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DBV  
DBV  
DGK  
DGK  
DGK  
DGK  
D
5
5
3000  
250  
180.0  
180.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
8.4  
3.23  
3.23  
5.3  
5.3  
5.3  
5.3  
6.4  
5.3  
5.3  
5.3  
5.3  
6.4  
6.5  
6.9  
3.17  
3.17  
3.4  
3.4  
3.4  
3.4  
5.2  
3.4  
3.4  
3.4  
3.4  
5.2  
9.0  
5.6  
1.37  
1.37  
1.4  
1.4  
1.4  
1.4  
2.1  
1.4  
1.4  
1.4  
1.4  
2.1  
2.1  
1.6  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
8.4  
8.0  
8
2500  
2500  
250  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
16.4  
12.4  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
12.0  
8
8
8
250  
8
2500  
2500  
2500  
250  
OPA2202IDGKR  
OPA2202IDGKR  
OPA2202IDGKT  
OPA2202IDGKT  
OPA2202IDR  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
8
8
8
250  
8
2500  
2500  
2000  
OPA4202IDR  
SOIC  
D
14  
14  
OPA4202IPWR  
TSSOP  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA202IDBVR  
OPA202IDBVT  
OPA202IDGKR  
OPA202IDGKR  
OPA202IDGKT  
OPA202IDGKT  
OPA202IDR  
SOT-23  
SOT-23  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DBV  
DBV  
DGK  
DGK  
DGK  
DGK  
D
5
5
3000  
250  
213.0  
213.0  
366.0  
366.0  
366.0  
366.0  
356.0  
366.0  
366.0  
366.0  
366.0  
356.0  
356.0  
356.0  
191.0  
191.0  
364.0  
364.0  
364.0  
364.0  
356.0  
364.0  
364.0  
364.0  
364.0  
356.0  
356.0  
356.0  
35.0  
35.0  
50.0  
50.0  
50.0  
50.0  
35.0  
50.0  
50.0  
50.0  
50.0  
35.0  
35.0  
35.0  
8
2500  
2500  
250  
8
8
8
250  
8
2500  
2500  
2500  
250  
OPA2202IDGKR  
OPA2202IDGKR  
OPA2202IDGKT  
OPA2202IDGKT  
OPA2202IDR  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
8
8
8
250  
8
2500  
2500  
2000  
OPA4202IDR  
SOIC  
D
14  
14  
OPA4202IPWR  
TSSOP  
PW  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Jul-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
OPA202ID  
OPA2202ID  
OPA4202ID  
OPA4202IPW  
D
D
SOIC  
SOIC  
8
8
75  
75  
50  
90  
506.6  
506.6  
506.6  
530  
8
8
3940  
3940  
3940  
3600  
4.32  
4.32  
4.32  
3.5  
D
SOIC  
14  
14  
8
PW  
TSSOP  
10.2  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA4202ID

高容性驱动 (25nF)、精密 (200uV)、低噪声 (9nV/rtHz)、超 β 四路运算放大器 | D | 14 | -40 to 125
TI

OPA4202IDR

高容性驱动 (25nF)、精密 (200uV)、低噪声 (9nV/rtHz)、超 β 四路运算放大器 | D | 14 | -40 to 125
TI

OPA4202IPW

高容性驱动 (25nF)、精密 (200uV)、低噪声 (9nV/rtHz)、超 β 四路运算放大器 | PW | 14 | -40 to 125
TI

OPA4202IPWR

高容性驱动 (25nF)、精密 (200uV)、低噪声 (9nV/rtHz)、超 β 四路运算放大器 | PW | 14 | -40 to 125
TI

OPA4205

具有低输入辅助电源电流和低噪声的四路轨到轨、双极精密 e-trim™ 运算放大器
TI

OPA4205ADR

具有低输入辅助电源电流和低噪声的四路轨到轨、双极精密 e-trim™ 运算放大器 | D | 14 | -40 to 125
TI

OPA4205ADT

具有低输入辅助电源电流和低噪声的四路轨到轨、双极精密 e-trim™ 运算放大器 | D | 14 | -40 to 125
TI

OPA4205APWR

Quad, rail-to-rail bipolar precision e-trim™ op amp with low input bias current and low noise | PW | 14 | -40 to 125
TI

OPA4205APWT

Quad, rail-to-rail bipolar precision e-trim™ op amp with low input bias current and low noise | PW | 14 | -40 to 125
TI

OPA4209

OPERATIONAL AMPLIFIER
TI

OPA4209AIPW

OPERATIONAL AMPLIFIER
TI

OPA4209AIPWR

OPERATIONAL AMPLIFIER
TI