OPA4205 [TI]

具有低输入辅助电源电流和低噪声的四路轨到轨、双极精密 e-trim™ 运算放大器;
OPA4205
型号: OPA4205
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有低输入辅助电源电流和低噪声的四路轨到轨、双极精密 e-trim™ 运算放大器

放大器 运算放大器
文件: 总42页 (文件大小:2889K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
OPAx205 4µV0.08µV/°C 低功耗β e-trim™ 运算放大器  
1 特性  
3 说明  
e-trim运算放大器性能  
OPA205OPA2205 OPA4205 (OPAx205) 是业界  
通用 OPAx277 列的新一代版本。OPA206 和  
OPA2206 是使用相同运算放大器内核的相关器件但  
具有高于电源电±40V 的输入过压保护的额外特性。  
这些器件是具有超 β 输入的精密双极 e-trim运算放  
大器。TI 的专有微调技术用于实现 ±4μV±2µV高  
等级的典型输入失调电压和 ±0.08μV±0.04µV,  
高等级的典型输入失调电压漂移。  
– 低失调电压25µV最大值),  
15µV最大值高等级)  
– 低失调电压漂移±0.5µV/°C典型值),  
±0.2µV/°C最大值高等级)  
β入  
– 输入偏置电流500 pA最大值)  
– 输入电流噪声110fA/Hz  
• 低噪声  
OPAx205 采用双极工艺设计可针对220µA 的静态  
电流提供 3.6MHz 增益带宽。这些器件还可在 1kHz 下  
实现仅 7.2nV/Hz 的低电压噪声密度。得益于超 β  
输入OPAx205 具有 100pA典型值的超低输入偏  
置电流110fA/Hz 的电流噪声密度。  
0.1 10Hz0.2µVPP  
– 电压噪声7.2nV/Hz  
AOLCMRR PSRR> 126dB全温度范围)  
• 增益带宽积3.6MHz  
• 低静态电流240µA最大值)  
• 压摆率4V/µs  
• 过载功率限制器  
OPAx205 的高性能使这些器件成为了高精度和低功耗  
系统的理想选择例如流量和压力变送器、便携式数据  
(DAQ) 系统和高密度源测量单(SMU)。  
• 轨到轨输出  
EMI RFI 已滤除的输入  
• 宽电源电压范围4.5V 36V  
• 温度范围40°C +125°C  
• 提供标准等(OPAx205A) 和  
高等级OPA2205预发布)  
OPA206 OPA2206 ±40V 过压保护  
器件信息  
封装(1)  
器件型号  
OPA205  
通道  
DSOIC8)  
单通道  
双通道  
双通道  
四通道  
四通道  
DSOIC8)  
OPA2205(2)  
DGKVSSOP8)  
DSOIC14)  
PWTSSOP14)  
OPA4205  
2 应用  
流量变送器  
串式逆变器  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
(2) 高等级版本为预发布信息而非量产数据。  
数据采(DAQ)  
源测量单(SMU)  
实验室和现场仪表  
电池测试  
模拟输入模块  
压力变送器  
750  
15  
12  
9
470 pF  
+7 V  
3 kꢀ  
œ
2.4 kꢀ  
IN+  
+
OPA2205  
Þ7 V  
100 ꢀ  
100 ꢀ  
+7 V  
œ
1.1 nF  
1 nF  
VOUT  
6
+
THP210  
Þ7 V  
+7 V  
2.4 kꢀ  
3 kꢀ  
œ
3
INÞ  
+
470 pF  
OPA2205  
Þ7 V  
0
750 ꢀ  
-0.1 -0.08 -0.06 -0.04 -0.02  
0
0.02 0.04 0.06 0.08 0.1  
Offset Voltage Drift (µV/°C)  
OPA2205 典型应用  
OPAx205 失调电压漂移  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS962  
 
 
 
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
Table of Contents  
8.2 Functional Block Diagram.........................................22  
8.3 Feature Description...................................................23  
8.4 Device Functional Modes..........................................24  
9 Application and Implementation..................................25  
9.1 Application Information............................................. 25  
9.2 Typical Applications.................................................. 25  
9.3 Power Supply Recommendations.............................28  
9.4 Layout....................................................................... 28  
10 Device and Documentation Support..........................30  
10.1 Device Support....................................................... 30  
10.2 文档支持..................................................................30  
10.3 接收文档更新通知................................................... 30  
10.4 支持资源..................................................................30  
10.5 Trademarks.............................................................30  
10.6 静电放电警告.......................................................... 30  
10.7 术语表..................................................................... 30  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings .............................................................. 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information: OPA205.................................... 7  
6.5 Thermal Information: OPA2205.................................. 7  
6.6 Thermal Information: OPA4205.................................. 7  
6.7 Electrical Characteristics: VS = ±5 V...........................8  
6.8 Electrical Characteristics: VS = ±15 V.......................10  
6.9 Typical Characteristics..............................................12  
7 Parameter Measurement Information..........................21  
7.1 Typical Specifications and Distributions....................21  
8 Detailed Description......................................................22  
8.1 Overview...................................................................22  
Information.................................................................... 30  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision E (December 2022) to Revision F (March 2023)  
Page  
• 更改了标题以与标准级器件规格保持一致...........................................................................................................1  
• 添加OPA2205 DSOIC8封装和相关内容作为量产数据........................................................................ 1  
• 添加OPA4205 DSOIC14封装和相关内容作为量产数据...................................................................... 1  
Changed maximum input bias from ±0.4 nA to ±0.5 nA................................................................................... 21  
Changed offset and offset drift values to match standard-grade device specifications in Detailed Design  
Description .......................................................................................................................................................26  
Changed Figure 9-6 to show correct VS+ connection ..................................................................................... 29  
Changes from Revision D (September 2022) to Revision E (December 2022)  
Page  
• 添加了 OPA4205 TSSOP 封装和相关内容作为量产数据................................................................................... 1  
Changed typical input offset voltage from 8 µV to 4 µV in Electrical Characteristics .........................................8  
Changed maximum input offset voltage from 50 µV to 25 µV in Electrical Characteristics ............................... 8  
Changed maximum input offset voltage over temperature from 80 µV to 55 µV in Electrical Characteristics .....  
............................................................................................................................................................................8  
Changed typical input offset voltage from 8 µV to 4 µV in Electrical Characteristics .......................................10  
Changed maximum input offset voltage from 50 µV to 25 µV in Electrical Characteristics ............................. 10  
Changed maximum input offset voltage over temperature from 80 µV to 55 µV in Electrical Characteristics .....  
..........................................................................................................................................................................10  
Changes from Revision C (July 2022) to Revision D (September 2022)  
Page  
OPA205 (SOIC) 从“预发布”更改为“量产数据”正在供货.................................................................1  
Changes from Revision B (August 2021) to Revision C (July 2022)  
Page  
• 添加了 OPA205 D (SOIC) 封装作为预告信息预发布...................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS962  
2
Submit Document Feedback  
Product Folder Links: OPA205 OPA2205 OPA4205  
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
Changes from Revision A (May 2021) to Revision B (August 2021)  
Page  
Changed Figure 6-22, Voltage Noise Density vs Frequency, to show voltage noise density instead of current  
noise density.....................................................................................................................................................12  
Changes from Revision * (April 2020) to Revision A (May 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
OPA2205 从“预告信息预发布”更改为“量产数据正在供货..................................................... 1  
Changed both Electrical Characteristics tables to show differentiated performance between OPA2205 (high  
grade) and OPA2205A (standard grade)............................................................................................................8  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA205 OPA2205 OPA4205  
English Data Sheet: SBOS962  
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
NC  
œIN  
+IN  
Vœ  
1
2
3
4
8
7
6
5
NC  
V+  
œ
OUT  
NC  
+
Not to scale  
5-1. OPA205 D Package, 8-Pin SOIC (Top View)  
5-1. Pin Functions: OPA205  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
+IN  
IN  
NC  
3
Input  
Input  
Noninverting input  
2
Inverting input  
1, 5, 8  
No internal connection (can be left floating)  
Output  
OUT  
V+  
6
7
4
Output  
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
OUT A  
œIN A  
+IN A  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT B  
œIN B  
+IN B  
Not to scale  
5-2. OPA2205 DGK Package, 8-Pin VSSOP and D Package, 8-pin SOIC (Top View)  
5-2. Pin Functions: OPA2205  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
3
+IN A  
Input  
Input  
Input  
Input  
Output  
Output  
Noninverting input, channel A  
Inverting input, channel A  
Noninverting input, channel B  
Inverting input, channel B  
Output, channel A  
2
IN A  
+IN B  
IN B  
OUT A  
OUT B  
V+  
5
6
1
7
Output, channel B  
8
Positive (highest) power supply  
Negative (lowest) power supply  
4
V–  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS962  
4
Submit Document Feedback  
Product Folder Links: OPA205 OPA2205 OPA4205  
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
OUT A  
œIN A  
+IN A  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
œIN D  
+IN D  
Vœ  
+IN B  
œIN B  
OUT B  
+IN C  
œIN C  
OUT C  
8
Not to scale  
5-3. OPA4205 PW Package, 14-Pin TSSOP and D Package, 14-Pin SOIC (Top View)  
Pin Functions: OPA4205  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
3
+IN A  
+IN B  
+IN C  
+IN D  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
Output  
Output  
Noninverting input, channel A  
Noninverting input, channel B  
Noninverting input, channel C  
Noninverting input, channel D  
Inverting input, channel A  
Inverting input, channel B  
Inverting input, channel C  
Inverting input, channel D  
Output, channel A  
5
10  
12  
2
IN A  
IN B  
IN C  
IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V+  
6
9
13  
1
7
Output, channel B  
8
Output, channel C  
14  
4
Output, channel D  
Positive (highest) power supply  
Negative (lowest) power supply  
11  
V–  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA205 OPA2205 OPA4205  
English Data Sheet: SBOS962  
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
40  
UNIT  
Single supply  
VS  
V
Supply voltage, VS = (V+) (V)  
Dual supply  
Common-mode  
Differential  
±20  
(V+) + 0.5  
±0.5  
(V) 0.5  
Signal input pin voltage  
V
Signal input pin current  
Output short-circuit(2)  
Operating temperature  
Junction temperature  
Storage temperature  
±10  
mA  
Continuous  
TA  
150  
150  
150  
°C  
°C  
°C  
40  
TJ  
TSTG  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002((2))  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
36  
UNIT  
V
Single supply  
Dual supply  
VS  
TA  
Supply voltage, VS = (V+) (V)  
±2.25  
40  
±18  
125  
Operating temperature  
°C  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS962  
6
Submit Document Feedback  
Product Folder Links: OPA205 OPA2205 OPA4205  
 
 
 
 
 
 
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.4 Thermal Information: OPA205  
OPA205  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
121.5  
64.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
/W  
/W  
/W  
/W  
/W  
/W  
RθJC(top)  
RθJB  
65.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
18.2  
ψJT  
64.3  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Thermal Information: OPA2205  
OPA2205  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
126.9  
67.1  
DGK (VSSOP)  
8 PINS  
175.6  
63.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
70.3  
97.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
18.8  
7.8  
ψJT  
69.5  
95.5  
ψJB  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Thermal Information: OPA4205  
OPA4205  
THERMAL METRIC(1)  
D (SOIC)  
14 PINS  
86.5  
PW (TSSOP)  
14 PINS  
117.1  
36.0  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
38.5  
43.5  
59.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
7.4  
2.6  
ψJT  
42.9  
58.3  
ψJB  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA205 OPA2205 OPA4205  
English Data Sheet: SBOS962  
 
 
 
 
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.7 Electrical Characteristics: VS = ±5 V  
at TA = 25°C, VCM = VOUT = midsupply, and RL = 10 kconnected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
±2  
MAX  
UNIT  
OFFSET VOLTAGE  
±15  
±25  
OPA2205  
TA = 40°C to +125°C  
VOS  
Input offset voltage  
μV  
±4  
±25  
OPAx205A  
±55  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
OPA2205  
±0.04  
±0.08  
±0.05  
±0.2  
±0.5  
±0.25  
±0.5  
±0.5  
±1  
dVOS/dT Input offset voltage drift  
μV/°C  
OPAx205A  
OPA2205,  
VS = ±2.25 V to ±18 V  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
Power supply rejection  
PSRR  
ratio  
μV/V  
±0.05  
OPAx205A,  
VS = ±2.25 V to ±18 V  
f = dc  
130  
110  
Channel separation,  
(dual, quad)  
dB  
f = 100 kHz  
INPUT BIAS CURRENT  
±0.1  
±0.1  
±0.1  
±0.4  
±0.6  
±0.9  
±0.5  
±0.75  
±1  
TA = 0°C to 85°C  
OPA2205  
TA = 40°C to +125°C  
IB  
Input bias current  
nA  
nA  
TA = 0°C to 85°C  
OPAx205A  
TA = 40°C to +125°C  
±0.4  
±0.5  
±0.6  
TA = 0°C to 85°C  
IOS  
Input offset current  
Input voltage noise  
TA = 40°C to +125°C  
NOISE  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
0.2  
7.4  
7.2  
7.2  
μVPP  
Input voltage noise  
density  
en  
f = 100 Hz  
nV/Hz  
f = 1 kHz  
Input current noise  
density  
in  
f = 1 kHz  
110  
fA/Hz  
INPUT VOLTAGE  
VCM  
Common-mode voltage  
V
(V) + 1  
(V+) 1.4  
OPA2205, (V) + 1 V < VCM < (V+) 1.4 V,  
TA = 40°C to +125°C  
124  
140  
140  
Common-mode rejection  
ratio  
CMRR  
dB  
OPAx205A, (V) + 1 V < VCM < (V+) 1.4 V,  
TA = 40°C to +125°C  
124  
INPUT IMPEDANCE  
ZID  
Differential  
9 || 4.4  
MΩ|| pF  
GΩ|| pF  
ZICM  
Common-mode  
300 || 4.4  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS962  
8
Submit Document Feedback  
Product Folder Links: OPA205 OPA2205 OPA4205  
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.7 Electrical Characteristics: VS = ±5 V (continued)  
at TA = 25°C, VCM = VOUT = midsupply, and RL = 10 kconnected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPEN-LOOP GAIN  
OPA2205,  
TA = 40°C to +125°C,  
(V) + 200 mV < VO < (V+) 200 mV  
126  
126  
126  
126  
132  
130  
132  
130  
RL = 10 k  
RL = 2 kΩ  
RL = 10 kΩ  
RL = 2 kΩ  
AOL  
Open-loop voltage gain  
dB  
OPAx205A,  
TA = 40°C to +125°C,  
(V) + 200 mV < VO < (V+) 200 mV  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
3.6  
3.2  
67  
MHz  
V/μs  
Slew rate  
4-V step, gain = 1  
Phase margin  
degrees  
RL = 10 k, CL = 25 pF  
To 0.024% (12-bit),  
4-V step, gain = 1,  
CL = 30 pF  
Falling  
Rising  
2.2  
tS  
Settling time  
μs  
2.8  
0.3  
Overload recovery time  
Gain = 10  
μs  
Total harmonic distortion  
+ noise  
THD+N  
0.0004  
%
VO = 5 VPP, gain = +1, f = 1 kHz, RL = 2 kΩ  
OUTPUT  
RL = 10 kΩ  
(V) + 0.2  
(V) + 0.2  
(V) + 0.2  
(V+) 0.2  
(V+) 0.2  
(V+) 0.2  
AOL > 126 dB  
Voltage output swing  
from rail  
V
RL = 2 kΩ  
TA = 40°C to +125°C, RL = 10 kΩ  
ISC  
Short-circuit current  
Capacitive load drive  
±25  
mA  
CLOAD  
See Typical Characteristics  
See Typical Characteristics  
Open-loop output  
impedance  
RO  
POWER SUPPLY  
220  
240  
310  
Quiescent current per  
amplifier  
IQ  
IO = 0 mA  
μA  
TA = 40°C to +125°C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA205 OPA2205 OPA4205  
English Data Sheet: SBOS962  
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.8 Electrical Characteristics: VS = ±15 V  
at TA = 25°C, VCM = VOUT = midsupply, and RL = 10 kconnected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
±2  
MAX  
UNIT  
OFFSET VOLTAGE  
±15  
±25  
OPA2205  
TA = 40°C to +125°C  
VOS  
Input offset voltage  
μV  
±4  
±25  
OPAx205A  
±55  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
OPA2205  
±0.04  
±0.08  
±0.05  
±0.2  
±0.5  
±0.25  
±0.5  
±0.5  
±1  
dVOS/dT Input offset voltage drift  
μV/°C  
OPAx205A  
OPA2205,  
VS = ±2.25 V to ±18 V  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
Power supply rejection  
PSRR  
ratio  
μV/V  
±0.05  
OPAx205A,  
VS = ±2.25 V to ±18 V  
f = dc  
130  
110  
Channel separation,  
(dual, quad)  
dB  
f = 100 kHz  
INPUT BIAS CURRENT  
±0.1  
±0.1  
±0.1  
±0.4  
±0.6  
±0.9  
±0.5  
±1  
TA = 0°C to 85°C  
OPA2205  
TA = 40°C to +125°C  
IB  
Input bias current  
nA  
nA  
TA = 0°C to 85°C  
OPAx205A  
±1.2  
±0.4  
±0.8  
±0.9  
TA = 40°C to +125°C  
TA = 0°C to 85°C  
IOS  
Input offset current  
Input voltage noise  
TA = 40°C to +125°C  
NOISE  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
0.2  
7.4  
7.2  
7.2  
μVPP  
Input voltage noise  
density  
en  
f = 100 Hz  
nV/Hz  
f = 1 kHz  
Input current noise  
density  
in  
f = 1 kHz  
110  
fA/Hz  
INPUT VOLTAGE  
VCM  
Common-mode voltage  
V
(V) + 1  
126  
(V+) 1.4  
140  
140  
140  
140  
OPA2205,  
(V) + 1 V < VCM < (V+) 1.4 V  
124  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
Common-mode rejection  
ratio  
CMRR  
dB  
126  
OPAx205A,  
(V) + 1 V < VCM < (V+) 1.4 V  
124  
INPUT IMPEDANCE  
ZID  
Differential  
9 || 4.4  
MΩ|| pF  
GΩ|| pF  
ZICM  
Common-mode  
300 || 4.3  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS962  
10  
Submit Document Feedback  
Product Folder Links: OPA205 OPA2205 OPA4205  
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.8 Electrical Characteristics: VS = ±15 V (continued)  
at TA = 25°C, VCM = VOUT = midsupply, and RL = 10 kconnected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPEN-LOOP GAIN  
RL = 10 k,  
(V) + 200 mV < VO  
(V+) 200 mV  
132  
132  
126  
126  
135  
135  
132  
130  
<
<
<
<
OPA2205,  
TA = 40°C to +125°C  
RL = 2 k,  
(V) + 350 mV < VO  
(V+) 350 mV  
AOL  
Open-loop voltage gain  
dB  
RL = 10 k,  
(V) + 200 mV < VO  
(V+) 200 mV  
OPAx205A,  
TA = 40°C to +125°C  
RL = 2 k,  
(V) + 350 mV < VO  
(V+) 350 mV  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product CL = 30 pF  
3.6  
4
MHz  
V/μs  
Slew rate  
10-V step, gain = 1  
RL = 10 k, CL = 25 pF  
Phase margin  
58  
2.8  
degrees  
To 0.024% (12-bit),  
10-V step, gain = 1,  
CL = 30 pF  
Falling  
Rising  
tS  
Settling time  
μs  
4.5  
0.2  
Overload recovery time  
Gain = 10  
μs  
Total harmonic distortion  
+ noise  
THD+N  
0.0004  
%
VO = 5 VPP, gain = +1, f = 1 kHz, RL = 2 kΩ  
OUTPUT  
RL = 10 kΩ  
RL = 2 kΩ  
(V) + 0.2  
(V) + 0.35  
(V) + 0.2  
(V+) 0.2  
(V+) 0.35  
(V+) 0.2  
AOL > 126 dB  
Voltage output swing  
from rail  
V
TA = 40°C to +125°C, RL = 10 kΩ  
ISC  
Short-circuit current  
Capacitive load drive  
±25  
mA  
CLOAD  
See Typical Characteristics  
See Typical Characteristics  
Open-loop output  
impedance  
RO  
POWER SUPPLY  
220  
240  
310  
Quiescent current per  
amplifier  
IQ  
IO = 0 mA  
μA  
TA = 40°C to +125°C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA205 OPA2205 OPA4205  
English Data Sheet: SBOS962  
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.9 Typical Characteristics  
at TA = 25°C, VS = ±15V, VCM = VOUT = midsupply, and RL = 10 kΩ(unless otherwise noted)  
6-1. Table of Graphs  
DESCRIPTION  
FIGURE  
6-1  
Offset Voltage Production Distribution at 25°C  
Offset Voltage at 125°C  
6-2  
Offset Voltage at 40°C  
6-3  
Offset Voltage vs Temperature  
6-4  
Offset Voltage Drift Distribution  
6-5  
Offset Voltage vs Output Voltage  
6-6  
Offset Voltage vs Power Supply Voltage  
Power-Supply Rejection Ratio vs Temperature  
Power-Supply and Common-Mode Rejection Ratio vs Frequency  
Common-Mode Rejection Ratio vs Temperature  
Offset Voltage vs Common-Mode Voltage  
Offset Voltage vs VCM at Low Supply  
Offset Voltage vs VCM at High Supply  
Open-Loop Gain and Phase vs Frequency  
Open-Loop Gain vs Swing From the Rail  
Open-Loop Gain vs Temperature  
6-7  
6-8  
6-9  
6-10  
6-11  
6-12  
6-13  
6-14  
6-15  
6-16  
6-17  
6-18  
6-19  
6-20  
6-21  
6-22  
6-23  
6-24  
6-25  
6-26  
6-27  
6-28  
6-29  
6-30  
6-31  
6-32  
6-33  
6-34  
6-35  
6-36  
6-37  
6-38  
6-39  
6-40  
6-41  
6-42  
6-43  
6-44  
Closed-Loop Gain vs Frequency  
Input Bias Production Distribution  
Input Bias vs Common-Mode Voltage  
Input Bias and Input Offset Current vs Temperature  
Input Offset Current Production Distribution  
Voltage Noise Density vs Frequency  
0.1-Hz to 10-Hz Noise  
Total Harmonic Distortion + Noise Ratio vs Frequency  
Total Harmonic Distortion + Noise Ratio vs Output Amplitude  
Current Noise vs Frequency  
Maximum Output Voltage vs Frequency  
Output Voltage Swing vs Output Sourcing Current  
Output Voltage Swing vs Output Sinking Current  
Open-Loop Output Impedance vs Frequency  
No Phase Reversal  
Small-Signal Overshoot vs Capacitive Load, Gain = +1  
Small-Signal Overshoot vs Capacitive Load, Gain = 1  
Phase Margin vs Capacitive Load  
Positive Overload Recovery, Gain = 1  
Negative Overload Recovery, Gain = 1  
Settling Time  
Small-Signal Step Response, Gain = +1  
Small-Signal Step Response, Gain = 1  
Large-Signal Step Response, Gain = +1  
Large-Signal Step Response, Gain = 1  
Short-Circuit Current vs Temperature  
Electromagnetic Interference Rejection (EMIRR)  
Quiescent Current vs Supply Voltage  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS962  
12  
Submit Document Feedback  
Product Folder Links: OPA205 OPA2205 OPA4205  
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.9 Typical Characteristics  
at TA = 25°C, VS = ±15V, VCM = VOUT = midsupply, and RL = 10 kΩ(unless otherwise noted)  
6-1. Table of Graphs (continued)  
DESCRIPTION  
FIGURE  
Quiescent Current vs Temperature  
6-45  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
-15 -12  
-9  
-6  
-3  
0
3
6
9
12  
15  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
Input Offset Voltage (µV)  
Offset Voltage (µV)  
TA = 25°C  
TA = 125°C  
6-1. Offset Voltage Production Distribution at 25°C  
6-2. Offset Voltage Distribution at 125°C  
20  
20  
10  
0
15  
10  
5
+3 Sigma  
–3 Sigma  
-10  
0
-20  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Offset Voltage (µV)  
Temperature (°C)  
TA = 40°C  
6-3. Offset Voltage Distribution at -40°C  
6-4. Offset Voltage vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA205 OPA2205 OPA4205  
English Data Sheet: SBOS962  
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15V, VCM = VOUT = midsupply, and RL = 10 kΩ(unless otherwise noted)  
15  
12  
9
10  
8
6
4
2
0
6
-2  
-4  
-6  
-8  
-10  
TA = –40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
3
0
-0.1 -0.08 -0.06 -0.04 -0.02  
0
0.02 0.04 0.06 0.08 0.1  
-18  
-14  
-10  
-6  
-2  
2
6
10  
14  
18  
Offset Voltage Drift (µV/°C)  
Output Voltage (V)  
6-5. Offset Voltage Drift Distribution  
6-6. Offset Voltage vs Output Voltage  
200  
0.0001  
10  
5
190  
180  
170  
160  
150  
140  
0.001  
0.01  
0.1  
0
-5  
-10  
-50  
-25  
0
25  
50  
75  
100  
125  
0
10  
20  
30  
40  
Temperature (°C)  
Supply Voltage (V)  
6-7. Offset Voltage vs Power Supply Voltage  
6-8. Power-Supply Rejection Ratio vs Temperature  
160  
150  
140  
130  
120  
0.01  
0.1  
1
160  
140  
120  
100  
80  
CMRR  
–PSRR  
+PSRR  
60  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
-50  
-25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Temperature (°C)  
6-9. Power-Supply and Common-Mode Rejection Ratio vs  
6-10. Common-Mode Rejection Ratio vs Temperature  
Frequency  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA205 OPA2205 OPA4205  
English Data Sheet: SBOS962  
 
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15V, VCM = VOUT = midsupply, and RL = 10 kΩ(unless otherwise noted)  
10  
15  
10  
5
5
0
0
-5  
-5  
-10  
-10  
-14.5  
-14  
-13.5  
-13  
-15  
-10  
-5  
0
5
10  
14  
Common-mode Voltage (V)  
Common-mode Voltage (V)  
6-11. Offset Voltage vs Common-Mode Voltage  
6-12. Offset Voltage vs VCM at Low Supply  
15  
160  
240  
Gain  
140  
120  
100  
80  
Phase 200  
160  
120  
80  
10  
5
60  
40  
40  
0
0
20  
-40  
-80  
0
-5  
12.5  
-20  
100m  
-120  
10M  
13  
13.5  
14  
1
10  
100  
1k  
10k  
100k  
1M  
Common-mode Voltage (V)  
Frequency (Hz)  
6-13. Offset Voltage vs VCM at High Supply  
6-14. Open-Loop Gain and Phase vs Frequency  
180  
160  
140  
120  
100  
80  
0.001  
0.01  
0.1  
180  
0.001  
RL = 2 kohm  
RL = 10 kohm  
170  
160  
150  
140  
130  
120  
0.01  
0.1  
1
1
10  
100  
1000  
60  
0.09  
-50  
-25  
0
25  
50  
75  
100  
125  
0.1  
0.11  
0.12  
0.13  
0.14  
0.15  
Temperature (°C)  
Swing from the Rail (V)  
6-16. Open-Loop Gain vs Temperature  
6-15. Open-Loop Gain vs Swing From the Rail  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA205 OPA2205 OPA4205  
English Data Sheet: SBOS962  
 
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15V, VCM = VOUT = midsupply, and RL = 10 kΩ(unless otherwise noted)  
50  
40  
30  
20  
10  
0
24  
20  
16  
12  
8
Gain = +1  
Gain = –1  
Gain = +10  
Gain = +100  
-10  
-20  
-30  
4
0
100  
1k  
10k  
100k  
1M  
10M  
-500  
-250  
0
250  
500  
Frequency (Hz)  
Input Bias Current (pA)  
6-17. Closed-Loop Gain vs Frequency  
6-18. Input Bias Production Distribution  
2
1.5  
1
0.75  
0.6  
0.45  
0.3  
0.15  
0
TA= –40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
IB–  
IB+  
IOS  
0.5  
0
-0.5  
-1  
-1.5  
-2  
-15  
-10  
-5  
0
5
10  
15  
-50  
-25  
0
25  
50  
75  
100  
125  
Common-Mode Voltage (V)  
Temperature (°C)  
6-19. Input Bias vs Common-Mode Voltage  
6-20. Input Bias and Input Offset Current vs Temperature  
24  
20  
16  
12  
8
100  
10  
4
1
100m  
0
1
10  
100  
1k  
10k  
100k  
-400 -300 -200 -100  
0
100  
200  
300  
400  
Frequency (Hz)  
Input Offset Current (pA)  
6-22. Voltage Noise Density vs Frequency  
6-21. Input Offset Current Production Distribution  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS962  
16  
Submit Document Feedback  
Product Folder Links: OPA205 OPA2205 OPA4205  
 
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15V, VCM = VOUT = midsupply, and RL = 10 kΩ(unless otherwise noted)  
-70  
G = –1, 10 kohm Load  
G = –1, 2 kohm Load  
G = +1, 10 kohm Load  
G = +1, 2 kohm Load  
-80  
-90  
-100  
-110  
-120  
Time (1 s/div)  
100  
1k  
Frequency (Hz)  
10k  
6-24. Total Harmonic Distortion + Noise Ratio  
6-23. 0.1-Hz to 10-Hz Noise  
vs Frequency  
1000  
-60  
-66  
G = +1, 2 kohm Load  
G = –1, 2 kohm Load  
G = +1, 10 kohm Load  
G = –1, 10 kohm Load  
-72  
-78  
-84  
100  
-90  
-96  
-102  
-108  
-114  
-120  
10  
100m  
1
10  
100  
1k  
10k  
100k  
10m  
100m  
1
10  
Frequency (Hz)  
Amplitude (VRMS  
)
6-26. Current Noise vs Frequency  
6-25. Total Harmonic Distortion + Noise Ratio  
vs Output Amplitude  
40  
35  
30  
25  
20  
15  
10  
5
15  
12.5  
10  
Vs = ±18 V  
Vs = ±2.25 V  
7.5  
5
TA = –40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
2.5  
0
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0
5
10  
15  
20  
25  
30  
Frequency (Hz)  
Output Current (mA)  
6-27. Maximum Output Voltage vs Frequency  
6-28. Output Voltage Swing vs Output Sourcing Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA205 OPA2205 OPA4205  
English Data Sheet: SBOS962  
 
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15V, VCM = VOUT = midsupply, and RL = 10 kΩ(unless otherwise noted)  
0
-2.5  
-5  
1000  
100  
10  
TA = –40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
-7.5  
-10  
-12.5  
-15  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0
5
10  
15  
20  
25  
30  
Frequency (Hz)  
Output Current (mA)  
6-30. Open-Loop Output Impedance vs Frequency  
6-29. Output Voltage Swing vs Output Sinking Current  
60  
Input (V)  
RISO = 0 ohm  
RISO = 25 ohm  
RISO = 50 ohm  
Output (V)  
50  
40  
30  
20  
10  
0
Time (100 µs/div)  
30  
100  
Capactiance (pF)  
1000  
Gain = 1  
6-32. Small-Signal Overshoot vs Capacitive Load,  
6-31. No Phase Reversal  
Gain = +1  
80  
70  
60  
50  
40  
30  
20  
10  
100  
RISO = 0 ohm  
RISO = 25 ohm  
90  
RISO = 50 ohm  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
100  
1000  
30  
100  
Capactiance (pF)  
1000  
Capacitance (pF)  
Gain = 1  
6-34. Phase Margin vs Capacitive Load  
6-33. Small-Signal Overshoot vs Capacitive Load,  
Gain = 1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS962  
18  
Submit Document Feedback  
Product Folder Links: OPA205 OPA2205 OPA4205  
 
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15V, VCM = VOUT = midsupply, and RL = 10 kΩ(unless otherwise noted)  
VOUT  
VIN  
VOUT  
VIN  
Time (500 ns/div)  
Time (500 ns/div)  
Gain = 1  
Gain = 1  
6-35. Positive Overload Recovery, Gain = 1  
6-36. Negative Overload Recovery, Gain = 1  
3
VOUT (V)  
VIN (V)  
Falling (mV)  
Rising (mV)  
2
1
0
-1  
-2  
-3  
2
3
4
5
6
Time (uS)  
Time (1 µS/div)  
Gain = 1  
6-37. Settling Time  
6-38. Small-Signal Step Response, Gain = +1  
VOUT (V)  
VIN (V)  
VIN (V)  
VOUT (V)  
Time (1 µS/div)  
Time (2 µS/div)  
Gain = 1  
Gain = 1  
6-40. Large-Signal Step Response, Gain = +1  
6-39. Small-Signal Step Response, Gain = 1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA205 OPA2205 OPA4205  
English Data Sheet: SBOS962  
 
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15V, VCM = VOUT = midsupply, and RL = 10 kΩ(unless otherwise noted)  
28  
VOUT (V)  
VIN (V)  
25  
22  
19  
16  
13  
Positive Output Voltage  
Negative Output Voltage  
10  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Time (2 µS/div)  
Gain = 1  
6-41. Large-Signal Step Response, Gain = 1  
6-42. Short-Circuit Current vs Temperature  
140  
250  
200  
150  
100  
50  
130  
120  
110  
100  
90  
80  
Vs = 4.5V  
70  
60  
50  
40  
0
10  
100  
Frequency (MHz)  
1000  
6000  
0
8
16  
24  
32  
40  
Supply Voltage (V)  
6-43. Electromagnetic Interference Rejection  
6-44. Quiescent Current vs Supply Voltage  
360  
320  
280  
240  
200  
160  
120  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
6-45. Quiescent Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS962  
20  
Submit Document Feedback  
Product Folder Links: OPA205 OPA2205 OPA4205  
 
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Typical Specifications and Distributions  
To design a more robust circuit, designers often have questions about a typical specification of an amplifier. As a  
result of natural variations in process technology and manufacturing procedures, every specification of an  
amplifier exhibits some amount of deviation from the ideal value, such as the input bias current of an amplifier.  
These deviations often follow Gaussian (bell curve), or normal distributions. Circuit designers can leverage this  
information to guard-band their system, even when there is no minimum or maximum specification in the  
Electrical Characteristics.  
0.00312% 0.13185%  
0.13185% 0.00312%  
0.00002%  
0.00002%  
2.145% 13.59% 34.13% 34.13% 13.59% 2.145%  
1
1 1 1 1 1 1 1 1  
1
1
1
-61 -51 -41 -31 -21 -1  
+1 +21 +31 +41 +51 +61  
7-1. Ideal Gaussian Distribution  
7-1 shows an example distribution, where µ, is the mean of the distribution, and where σ, or sigma, is the  
standard deviation of a system. For a specification that exhibits this kind of distribution, approximately two-thirds  
(68.26%) of all units can be expected to have a value within one standard deviation, or one sigma, of the mean  
(from µ σto µ + σ).  
Depending on the specification, values listed in the typical column of Electrical Characteristics are represented in  
different ways. As a general guideline, if a specification naturally has a nonzero mean (for example, gain  
bandwidth), then the typical value is equal to the mean (µ). However, if a specification naturally has a mean near  
zero (for example, input bias current), then the typical value is equal to the mean plus one standard deviation  
(µ + σ) to most accurately represent the typical value.  
Use this chart to calculate the approximate probability of a specification in a unit. For example, the OPAx205  
typical input bias current is ±0.1 nA; therefore, 68.2% of all devices are expected to have an input bias from  
±0.1 nA. At 4σ, 99.9937% of the distribution has an input bias less than ±0.28 nA, which means that 0.0063% of  
the population is outside of these limits, and corresponds to approximately 1 in 15,873 units.  
Units that are found to exceed any tested minimum or maximum specifications are removed from production  
material. For example, the OPAx205 have a maximum input bias of ±0.5 nA at 25°C. Although this value  
corresponds to approximately 6σ (approximately 1 in 500 million units), TI removes any unit with a larger input  
bias from production material.  
For specifications with no value in the minimum or maximum column, consider selecting a sigma value of  
sufficient guard band for your application, and design worst-case conditions using this value. Use this  
information to only estimate the performance of a device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA205 OPA2205 OPA4205  
English Data Sheet: SBOS962  
 
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The OPAx205 are the first 36-V bipolar, e-trim operational amplifiers that uses a package-level offset trim to  
minimize the offset voltage and offset voltage drift introduced during the manufacturing process. This trim is  
performed after the device has been assembled to remove any offset errors introduced throughout the  
manufacturing process, and trim communication is disabled afterward. These devices also feature super-beta  
inputs that decrease the input bias current and input current noise.  
The following section shows the simplified diagram of the OPAx205.  
8.2 Functional Block Diagram  
V+  
e-trimTM  
Pre-Driver  
OUT  
Super Beta  
+IN  
IN  
Input Devices  
Overload  
Power  
Limiter  
V
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS962  
22  
Submit Document Feedback  
Product Folder Links: OPA205 OPA2205 OPA4205  
 
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Input Offset Trimming  
The OPAx205 are the industry's first e-trim operational amplifiers built on a bipolar process. The input offset  
voltage of an amplifier is determined by the inherent mismatch between the input transistors. The offset can be  
minimized using laser-trimming performed during the manufacturing process while the devices are still in the  
bare silicon form. However, when the silicon is packaged, the packaging process introduces additional offset due  
to mechanic stresses. TI's new trimming processes are used to trim the offset after the packaging process is  
complete to minimize both inherent and package-induced offsets. After trimming, communication is disabled to  
make sure the amplifiers operate properly in the final system.  
A comparison between production offset values for the industry-popular, laser-trimmed OPA2277 and the  
OPAx205 proprietary trim can be seen in 8-1 and 8-2.  
25  
20  
15  
10  
5
16  
14  
12  
10  
8
Typical distribution  
of packaged units.  
Single, dual, and  
quad included.  
6
4
2
0
0
504540353025201510–5  
0 5 10 15 20 25 30 35 40 45 50  
-50 -40 -30 -20 -10  
0
10  
20  
30  
40  
50  
Offset Voltage (µV)  
Input Offset Voltage (µV)  
8-1. OPA2277 Laser-Trimmed Operational  
8-2. OPAx205 e-trim™ Operational Amplifier  
Amplifier Offset  
Offset  
The OPAx205 are also trimmed at two temperatures to minimize the input offset voltage drift over temperature.  
The final performance of the offset drift can be seen in 8-3.  
15  
12  
9
6
3
0
-0.1 -0.08 -0.06 -0.04 -0.02  
0
0.02 0.04 0.06 0.08 0.1  
Offset Voltage Drift (µV/°C)  
8-3. OPAx205 e-trim™ Operational Amplifier Drift  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA205 OPA2205 OPA4205  
English Data Sheet: SBOS962  
 
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
8.3.2 Lower Input Bias With Super-Beta Inputs  
The OPAx205 have a super-beta input transistor architecture. In a transistor, the beta value is the ratio between  
the current flowing into the base and the current flowing from the collector to the emitter. A super-beta transistor  
is one where the beta value has been increased from several hundred to thousands. In a bipolar amplifier, the  
input bias current is the current flowing into the base of the input transistor pair, as well as a small leakage  
current that flows through the ESD diodes. A super-beta input reduces the input bias current of the amplifier. In  
addition, the super-beta inputs lower the input current noise that is directly related to the input bias current of the  
device. A comparison between the input bias current of the OPA2277 and the OPAx205 super-beta input bias  
currents can be seen in 8-4 and 8-5.  
5
4
6
5
IBN  
IBP  
4
3
3
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
-1  
-2  
-3  
-4  
-5  
Curves represent typical  
production units.  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
8-4. OPA2277 Input Bias Current  
8-5. OPAx205 Super-Beta Input Bias Current  
8.3.3 Overload Power Limiter  
In many bipolar-based amplifiers, the output stage of the amplifier can draw significant (several milliamperes) of  
quiescent current if the output voltage becomes clipped (that is, the output voltage becomes limited by the  
negative or positive supply voltage). This condition can cause the system to enter a high-power consumption  
state, and potentially cause oscillations between the power supply and signal chain. The OPAx205 have an  
advanced output stage design that eliminates this problem. When the output voltage reaches either supply (V+  
or V), there is virtually no additional current consumption from the nominal quiescent current. This feature  
helps eliminate any potential system problems when the signal chain is disrupted by large external transient  
voltage.  
8.3.4 EMI Rejection  
The OPAx205 use integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from  
sources, such as wireless communications and densely populated boards with a mix of analog signal chain and  
digital components. EMI immunity can be improved through circuit design techniques that improve the system  
performance. Additional information can be found in the EMI Rejection Ratio of Operation Amplifiers application  
report.  
8.4 Device Functional Modes  
The OPAx205 have a single functional mode and are operational with any supply between 4.5 V (±2.25 V) and  
36 V (±18 V).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS962  
24  
Submit Document Feedback  
Product Folder Links: OPA205 OPA2205 OPA4205  
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The OPAx205 are unity-gain stable operational amplifiers with very low offset voltage, offset voltage drift, voltage  
noise, current noise and power consumption. These features make this device family a great choice for a variety  
of space-constrained and power-constrained systems.  
9.2 Typical Applications  
9.2.1 High-Precision Signal-Chain Input Buffer  
A common application for the OPAx205 is an input buffer for the signal chain of a data acquisition (DAQ) or field  
instrumentation system. This amplifier family is selected because of the low offset and drift that maintain system  
accuracy across a variety of operating conditions. The low power consumption of the OPAx205 enables the  
device to be used in battery-operated or high-density applications, where thermal dissipation is difficult. The low  
1/f (flicker) noise and broadband noise allow for higher-accuracy signal chains, such as those using a 24-bit  
delta-sigma analog-to-digital converter (ADC). If a higher sampling rate is needed, the OPAx205 can be paired  
with a fully differential amplifier, such as the THP210, to drive the ADC inputs. 9-1 shows the OPA2205  
configured as an input buffer to a differential ADC driver.  
750  
470 pF  
+7 V  
3 kꢀ  
œ
2.4 kꢀ  
IN+  
+
OPA2205  
Þ7 V  
100 ꢀ  
100 ꢀ  
+7 V  
œ
1.1 nF  
1 nF  
VOUT  
+
THP210  
Þ7 V  
+7 V  
2.4 kꢀ  
3 kꢀ  
œ
INÞ  
+
470 pF  
OPA2205  
Þ7 V  
750 ꢀ  
9-1. OPA2205 Configured as a DAQ Input Buffer  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA205 OPA2205 OPA4205  
English Data Sheet: SBOS962  
 
 
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
9.2.1.1 Design Requirements  
The design requirements for this application are:  
Input range: ±10 V  
Input frequency: 10 kHz  
Output voltage: ±3.3 V  
Quiescent current: < 1.5 mA  
9.2.1.2 Detailed Design Procedure  
In this application, the input signal ranges from 10 V to +10 V with a frequency of up to 10 kHz. Because of  
possible portable-use cases for this data acquisition system (DAQ), low power consumption is required to  
minimize battery drain and thermal dissipation requirements.  
To maintain high system accuracy the OPA2205 is selected as input buffers. This device is selected because of  
the high dc precision (4 µV offset and 0.08 µV/°C offset drift), low flicker noise (0.2 µVpp), and low quiescent  
current (220 µA). The buffers are followed by a high-precision, fully differential amplifier such as the THP210,  
which is capable of accurately driving a 24-bit, fully differential ADC such as the ADS127L01.  
9.2.1.3 Application Curves  
The gain plot for this system can be seen in 9-2. This plot shows proper attenuation of the ±10-V signal to the  
target ±3.3-V output, and adequate bandwidth to support the input frequency range.  
0
-25  
-50  
-75  
-100  
-125  
-150  
10  
100  
1K  
10K 100K  
Frequency (Hz)  
1M  
10M  
100M  
9-2. Gain Plot of DAQ Front End  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS962  
26  
Submit Document Feedback  
Product Folder Links: OPA205 OPA2205 OPA4205  
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
9.2.2 Discrete, Two-Op-Amp Instrumentation Amplifier  
9-3 shows the OPA2205 configured as a two-op-amp, discrete instrumentation amplifier. This configuration  
allows for a differential signal measurement, such as the signal from a load cell, with higher input impedance to  
the signal chain than most monolithic instrumentation amplifiers. The strong ac and dc performance of the  
OPA2205 enables high accuracy measurements.  
V+  
V1  
+
V
OUT = (V1 – V2)(1 + R2/R1)  
OPA2205  
R2  
V
V+  
R1  
V2  
+
OPA2205  
V
R2  
R1  
GND  
9-3. OPA2205 Configured as a Two-Op-Amp, Discrete Instrumentation Amplifier  
9.2.3 Second-Order Low-Pass Filter  
The OPAx205 has a very-low broadband voltage noise of only 7.2 nV/Hz and flicker noise of 0.2 µVPP given  
the low power consumption of only 220 µA, making this device an excellent choice for low-power filter  
applications. 9-4 is an example of one channel of the OPAx205 configured as a second-order low-pass filter  
with a cutoff frequency of 50 kHz.  
2.25 k  
1 nF  
2.25 k  
1.13 k  
Input  
+
Output  
4 nF  
GND  
GND  
9-4. Second-Order Low-Pass Filter  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: OPA205 OPA2205 OPA4205  
English Data Sheet: SBOS962  
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
9.3 Power Supply Recommendations  
The OPAx205 operate with a power supply between 4.5 V to 36 V (±2.25 V to ±18 V). Parameters that can  
exhibit significant variance with regard to operating voltage are presented in 6.9.  
Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see 9.4.1.  
9.4 Layout  
9.4.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close  
to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-supply  
applications. Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as  
well as through the individual op amp. Bypass capacitors are used to reduce the coupled noise by providing  
low-impedance power sources local to the analog circuitry.  
Make sure to physically separate digital and analog grounds paying attention to the flow of the ground  
current. Separate grounding for analog and digital portions of circuitry is one of the simplest and most  
effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to  
ground planes. A ground plane helps distribute heat and reduces EMI noise pickup.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed  
to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As shown in 9-5, keep RF and RG  
close to the inverting input to minimize parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
Clean the PCB following board assembly for best performance.  
Any precision integrated circuit can experience performance shifts due to moisture ingress into the plastic  
package. After any aqueous PCB cleaning process, bake the PCB assembly to remove moisture introduced  
into the device packaging during the cleaning process. A low-temperature, post-cleaning bake at 85°C for 30  
minutes is sufficient for most circumstances.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS962  
28  
Submit Document Feedback  
Product Folder Links: OPA205 OPA2205 OPA4205  
 
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
9.4.2 Layout Example  
VIN  
+
VOUT  
RG  
RF  
9-5. Schematic Representation  
Place components  
close to device and to  
each other to reduce  
parasitic errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
RF  
VS+  
NC  
NC  
RG  
Use a low-ESR,  
V+  
GND  
VIN  
–IN  
+IN  
V–  
ceramic bypass  
capacitor  
OUTPUT  
NC  
GND  
GND  
VS–  
VOUT  
Ground (GND) plane on another layer  
Use low-ESR,  
ceramic bypass  
capacitor  
9-6. Operational Amplifier Board Layout for Noninverting Configuration  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: OPA205 OPA2205 OPA4205  
English Data Sheet: SBOS962  
 
 
OPA205, OPA2205, OPA4205  
ZHCSLB1F APRIL 2020 REVISED MARCH 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 Development Support  
The following evaluation modules are available:  
DIP-ADAPTER-EVM  
DIYAMP-EVM  
10.1.1.1 PSpice® for TI  
PSpice® for TI 是可帮助评估模拟电路性能的设计和仿真环境。在进行布局和制造之前创建子系统设计和原型解决  
方案可降低开发成本并缩短上市时间。  
10.2 文档支持  
10.2.1 相关文档  
请参阅以下相关文档:  
• 德州仪(TI)DIP-ADAPTER-EVM 用户指南  
• 德州仪(TI)DIYAMP-SOIC-EVM 用户指南  
10.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.5 Trademarks  
e-trimand TI E2Eare trademarks of Texas Instruments.  
PSpice® is a registered trademark of Cadence Design Systems, Inc.  
所有商标均为其各自所有者的财产。  
10.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOS962  
30  
Submit Document Feedback  
Product Folder Links: OPA205 OPA2205 OPA4205  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA205ADR  
OPA205ADT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
OP205A  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Call TI  
OP205A  
22A5  
OPA2205ADGKR  
OPA2205ADGKT  
OPA2205ADR  
OPA2205ADT  
OPA4205ADR  
OPA4205ADT  
OPA4205APWR  
OPA4205APWT  
XOPA205ADR  
XOPA2205DGKR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
22A5  
8
2205A  
SOIC  
D
8
2205A  
SOIC  
D
14  
14  
14  
14  
8
OPA4205A  
OPA4205A  
OP4205A  
OP4205A  
SOIC  
D
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
250  
3000  
2500  
RoHS & Green  
TBD  
VSSOP  
DGK  
8
TBD  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Apr-2023  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA205ADR  
OPA205ADT  
SOIC  
SOIC  
D
D
8
8
3000  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
16.4  
16.4  
12.4  
12.4  
6.4  
6.4  
5.3  
5.3  
6.4  
6.4  
6.5  
6.5  
6.9  
6.9  
5.2  
5.2  
3.4  
3.4  
5.2  
5.2  
9.0  
9.0  
5.6  
5.6  
2.1  
2.1  
1.4  
1.4  
2.1  
2.1  
2.1  
2.1  
1.6  
1.6  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
OPA2205ADGKR  
OPA2205ADGKT  
OPA2205ADR  
OPA2205ADT  
OPA4205ADR  
OPA4205ADT  
OPA4205APWR  
OPA4205APWT  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
2500  
250  
8
8
3000  
250  
SOIC  
D
8
SOIC  
D
14  
14  
14  
14  
3000  
250  
SOIC  
D
TSSOP  
TSSOP  
PW  
PW  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA205ADR  
OPA205ADT  
SOIC  
SOIC  
D
D
8
8
3000  
250  
356.0  
210.0  
356.0  
210.0  
356.0  
210.0  
356.0  
210.0  
356.0  
210.0  
356.0  
185.0  
356.0  
185.0  
356.0  
185.0  
356.0  
185.0  
356.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
OPA2205ADGKR  
OPA2205ADGKT  
OPA2205ADR  
OPA2205ADT  
OPA4205ADR  
OPA4205ADT  
OPA4205APWR  
OPA4205APWT  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
2500  
250  
8
8
3000  
250  
SOIC  
D
8
SOIC  
D
14  
14  
14  
14  
3000  
250  
SOIC  
D
TSSOP  
TSSOP  
PW  
PW  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY