OPA4325 [TI]

低噪声 (10nV/rtHz)、高带宽 (10MHz)、低功耗 (0.65mA)、四路零交叉运算放大器;
OPA4325
型号: OPA4325
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

低噪声 (10nV/rtHz)、高带宽 (10MHz)、低功耗 (0.65mA)、四路零交叉运算放大器

放大器 运算放大器
文件: 总43页 (文件大小:3105K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA325, OPA2325, OPA4325  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
OPAx325  
精度、10MHz、低噪声、低功耗、RRIOCMOS 运算放大器  
1 特性  
3 说明  
1
零交叉失真时的精度:  
OPA325OPA2325 OPA4325 (OPAx325) 是精密  
的低压互补金属氧化物半导体 (CMOS) 运算放大器,  
经优化后具有极低噪声和高带宽,静态工作电流仅为  
650μA。  
低失调电压:150μV(最大值)  
高共模抑制比 (CMRR)114dB  
轨至轨 I/O  
高带宽:10MHz  
OPAx325 具有零交叉失真的线性输入级,能够在整个  
输入范围内提供 114dB(典型值)的出色共模抑制比  
(CMRR)。共模输入范围将正负电源电压分别扩展了  
100mV。输出电压摆幅通常在 10mV 电源轨内。  
静态电流:650μA/每通道  
单电源电压范围:2.2V 5.5V  
低输入偏置电流:0.2pA  
低噪声:10kHz 时为 9nV/Hz  
压摆率:5V/μs  
OPAx325 同时拥有零交叉失真、高带宽 (10MHz)、高  
压摆率 (5V/µs) 和低噪声 (9nV/Hz) 等优秀特性,堪称  
一款非常出色的逐次逼近寄存器 (SAR) 模数转换器  
(ADC) 输入驱动放大器。此外,OPAx325 还具有  
2.2V 5.5V 的宽电源电压范围,而且整个电源电压  
范围内的电源抑制比 (PSRR) 都极为出色,因此该器  
件非常适合不经稳压而直接由电池 供电的 高精度、低  
功耗类应用。  
单位增益稳定  
2 应用  
高阻抗传感器信号调节  
跨阻放大器  
测试和测量设备  
可编程逻辑控制器 (PLC)  
电机控制环路  
OPA325(单通道版)采用 SOT23-5 封装。OPA2325  
(双通道版)采用 SO-8 MSOP-8 封装。OPA4325  
(四通道版)采用 TSSOP-14 封装。  
通信  
输入、输出 ADC DAC 缓冲器  
有源滤波器  
器件信息(1)  
器件型号  
OPA325  
封装  
SOT-23 (5)  
封装尺寸(标称值)  
2.90mm × 1.60mm  
4.90mm × 3.91mm  
3.00mm × 3.00mm  
5.00mm × 4.40mm  
失调电压与输入共模电压间的关系  
SOIC (8)  
150  
125  
100  
75  
OPA2325  
OPA4325  
VSSOP (8)  
TSSOP (14)  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
50  
25  
可用作 ADC 驱动放大器的 OPAx325  
3.3 V  
0
œ25  
œ50  
œ75  
VREF  
R
VCM = œ2.85 V  
œ100  
ADC  
VCM = 2.85 V  
OPAx325  
œ125  
œ150  
Input  
+
VSS  
VDD  
5 V  
C
0
1
2
3
œ3  
œ2  
œ1  
VCM (V)  
C003  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS637  
 
 
 
 
OPA325, OPA2325, OPA4325  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 17  
7.4 Device Functional Modes........................................ 18  
Application and Implementation ........................ 19  
8.1 Application Information............................................ 19  
8.2 Typical Application .................................................. 20  
Power Supply Recommendations...................... 25  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information: OPA325 .................................. 6  
6.5 Thermal Information: OPA2325 ................................ 6  
6.6 Thermal Information: OPA4325 ................................ 6  
8
9
10 Layout................................................................... 25  
10.1 Layout Guidelines ................................................. 25  
10.2 Layout Example .................................................... 26  
11 器件和文档支持 ..................................................... 27  
11.1 文档支持................................................................ 27  
11.2 相关链接................................................................ 27  
11.3 接收文档更新通知 ................................................. 27  
11.4 社区资源................................................................ 27  
11.5 ....................................................................... 27  
11.6 静电放电警告......................................................... 27  
11.7 Glossary................................................................ 27  
12 机械、封装和可订购信息....................................... 27  
6.7 Electrical Characteristics: VS = 2.2 V to 5.5 V or  
±1.1 V to ±2.75 V ....................................................... 7  
6.8 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 16  
7.1 Overview ................................................................. 16  
7.2 Functional Block Diagram ....................................... 16  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (May 2019) to Revision D  
Page  
已添加 向数据表中添加了 OPA325 及相关内容 ..................................................................................................................... 1  
Changes from Revision B (February 2019) to Revision C  
Page  
已更改 将 OPA4325 器件状态从预览更改为生产数据(正在供货)....................................................................................... 1  
Changes from Revision A (July 2017) to Revision B  
Page  
已添加 向数据表中添加了 OPA4325 预告信息器件................................................................................................................ 1  
Added operating temperature to Absolute Maximum Ratings table....................................................................................... 5  
Deleted specified temperature from Absolute Maximum Ratings table; specified temperature already listed in  
Recommended Operating Conditions table............................................................................................................................ 5  
Changes from Original (October 2016) to Revision A  
Page  
已添加 针对双通道器件添加了新型 VSSOP 封装选项............................................................................................................ 1  
已添加 针对 TI 参考设计添加了顶部导航图标......................................................................................................................... 1  
2
Copyright © 2016–2019, Texas Instruments Incorporated  
 
OPA325, OPA2325, OPA4325  
www.ti.com.cn  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
5 Pin Configuration and Functions  
OPA325: DBV Package  
5-Pin SOT-23  
Top View  
OUT  
Vœ  
1
2
3
5
V+  
+IN  
4
œIN  
Not to scale  
Pin Functions: OPA325  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN  
NO.  
4
I
Inverting input  
+IN  
3
I
Noninverting input  
OUT  
V–  
1
O
Output  
2
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
5
OPA2325: D and DGK Packages  
8-Pin SOIC, 8-Pin VSSOP  
Top View  
OUT A  
œIN A  
+IN A  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT B  
œIN B  
+IN B  
Not to scale  
Pin Functions: OPA2325  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN A  
+IN A  
–IN B  
+IN B  
OUT A  
OUT B  
V–  
NO.  
2
I
I
Inverting input channel A  
Noninverting input channel A  
Inverting input channel B  
Noninverting input channel B  
Output channel A  
3
6
I
5
I
1
O
O
7
Output channel B  
4
Negative supply  
V+  
8
Positive supply  
Copyright © 2016–2019, Texas Instruments Incorporated  
3
OPA325, OPA2325, OPA4325  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
www.ti.com.cn  
OPA4325: PW Package  
14-Pin TSSOP  
Top View  
OUT A  
œIN A  
+IN A  
V+  
1
2
3
4
5
6
7
14  
OUT D  
œIN D  
+IN D  
Vœ  
13  
12  
11  
10  
9
+IN B  
œIN B  
OUT B  
+IN C  
œIN C  
OUT C  
8
Not to scale  
Pin Functions: OPA4325  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN A  
NO.  
2
I
I
Inverting input channel A  
Noninverting input channel A  
Inverting input channel B  
Noninverting input channel B  
Inverting input channel C  
Noninverting input channel C  
Inverting input channel D  
Noninverting input channel D  
Output channel A  
+IN A  
–IN B  
+IN B  
–IN C  
+IN C  
–IN D  
+IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V–  
3
6
I
5
I
9
I
10  
13  
12  
1
I
I
I
O
O
O
O
7
Output channel B  
8
Output channel C  
14  
11  
4
Output channel D  
Negative supply  
V+  
Positive supply  
4
Copyright © 2016–2019, Texas Instruments Incorporated  
OPA325, OPA2325, OPA4325  
www.ti.com.cn  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Supply voltage  
VS = (V+) – (V–)  
Voltage(2)  
Current(2)  
6
(V+) + 0.5  
10  
(V–) – 0.5  
–10  
V
Signal input pins  
Output short-circuit(3)  
mA  
mA  
Continuous  
Operating, TA  
Junction, TJ  
Storage, Tstg  
–40  
150  
150  
150  
Temperature  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails must be  
current limited to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.2  
NOM  
MAX  
5.5  
UNIT  
Single supply  
Dual supply  
VS  
TA  
Supply voltage  
V
±1.1  
–40  
±2.75  
125  
Specified temperature  
°C  
Copyright © 2016–2019, Texas Instruments Incorporated  
5
 
OPA325, OPA2325, OPA4325  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
www.ti.com.cn  
6.4 Thermal Information: OPA325  
OPA325  
DBV (SOT)  
5 PINS  
205  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
200  
113  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
38.2  
ΨJB  
104.9  
N/A  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Thermal Information: OPA2325  
OPA2325  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
119  
DGK (VSSOP)  
UNIT  
8 PINS  
143  
47  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
60  
61  
64  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
15.0  
60.4  
N/A  
5.3  
ΨJB  
62.8  
N/A  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Thermal Information: OPA4325  
OPA4325  
THERMAL METRIC(1)  
PW (TSSOP)  
UNIT  
14 PINS  
93  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
28  
34  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.9  
ΨJB  
33.1  
N/A  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2016–2019, Texas Instruments Incorporated  
OPA325, OPA2325, OPA4325  
www.ti.com.cn  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
6.7 Electrical Characteristics: VS = 2.2 V to 5.5 V or ±1.1 V to ±2.75 V  
at TA = 25°C, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VOS  
Input offset voltage  
40  
2
150  
7.5  
20  
µV  
dVOS/dT  
Input offset voltage drift  
VS = 5.5 V, TA = –40°C to +125°C  
VS = 2.2 V to +5.5 V  
µV/°C  
6
PSRR  
Power-supply rejection ratio  
Channel separation  
µV/V  
dB  
VS = 2.2 V to 5.5 V, TA = –40°C to +125°C  
At 1 kHz  
15  
130  
INPUT VOLTAGE  
VCM  
Common-mode voltage range  
(V–) – 0.1  
100  
(V+) + 0.1  
V
VS = 5.5 V, (V–) – 0.1 V < VCM < (V+) + 0.1 V  
TA = –40°C to +125°C  
114  
±0.2  
±0.2  
CMRR  
Common-mode rejection ratio  
dB  
95  
INPUT BIAS CURRENT  
±10  
±500  
±10  
pA  
nA  
pA  
nA  
IB  
Input bias current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
±10  
IOS  
Input offset current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
±500  
±10  
NOISE  
Input voltage noise  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
2.8  
10  
9
µVPP  
en  
in  
Input voltage noise density  
nV/Hz  
fA/Hz  
f = 10 kHz  
Input current noise density  
f = 1 kHz  
1.3  
INPUT CAPACITANCE  
Differential  
5
4
pF  
pF  
Common-mode  
OPEN-LOOP GAIN  
0.1 V < VO < (V+) – 0.1 V, RL = 10 kΩ  
105  
95  
130  
128  
0.1 V < VO < (V+) – 0.1 V, RL = 10 kΩ,  
TA = –40°C to +125°C  
AOL  
PM  
Open-loop voltage gain  
dB  
0.2 V < VO < (V+) – 0.2 V, RL = 2 kΩ  
100  
110  
67  
Phase margin  
G = 1 V/V, VS = 5 V, CL = 15 pF  
Degrees  
FREQUENCY RESPONSE (VS = 5.0 V, CL = 50 pF)  
GBP  
SR  
Gain bandwidth product  
Slew rate  
Unity gain  
10  
5
MHz  
G = +1  
V/μs  
To 0.1%, 2-V step, G = +1  
To 0.01%, 2-V step, G = +1  
VIN × G > VS  
0.6  
tS  
Settling time  
µs  
ns  
1
Overload recovery time  
Total harmonic distortion + noise(1)  
200  
VO = 4 VPP, G = +1, f = 10 kHz, RL = 10 kΩ  
VO = 2 VPP, G = +1, f = 10 kHz, RL = 600 Ω  
0.0005%  
0.005%  
THD+N  
(1) Third-order filter; bandwidth = 80 kHz at –3 dB.  
Copyright © 2016–2019, Texas Instruments Incorporated  
7
OPA325, OPA2325, OPA4325  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
www.ti.com.cn  
Electrical Characteristics: VS = 2.2 V to 5.5 V or ±1.1 V to ±2.75 V (continued)  
at TA = 25°C, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
RL = 10 kΩ  
10  
20  
30  
45  
55  
RL = 10 kΩ, TA = –40°C to +125°C  
RL = 2 kΩ  
VO  
Voltage output swing from both rails  
mV  
25  
RL = 2 kΩ, TA = –40°C to +125°C  
VS = 5.5 V  
ISC  
CL  
RO  
Short-circuit current  
See the Typical Characteristics  
See the Typical Characteristics  
180  
mA  
Capacitive load drive  
Open-loop output resistance  
IO = 0 mA, f = 1 MHz  
Ω
POWER SUPPLY  
IQ Quiescent current per amplifier  
Power-on time  
IO = 0 mA, VS = 5.5 V  
0.65  
28  
0.75  
0.8  
mA  
µs  
IO = 0 mA, VS = 5.5 V, TA = –40°C to +125°C  
V+ = 0 V to 5 V, to 90% IQ level  
8
版权 © 2016–2019, Texas Instruments Incorporated  
OPA325, OPA2325, OPA4325  
www.ti.com.cn  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
6.8 Typical Characteristics  
at TA = 25°C, VCM = VOUT = midsupply, and RL = 10 kΩ (unless otherwise noted)  
15  
10  
5
20  
15  
10  
5
0
0
Offset Voltage Drift (µV/°C)  
Offset Voltage (µV)  
C002  
C001  
1. Offset Voltage Production Distribution Histogram  
2. Offset Voltage Drift Distribution Histogram  
500  
400  
150  
125  
100  
75  
300  
200  
50  
100  
25  
0
0
œ25  
œ50  
œ100  
œ200  
œ300  
œ400  
œ500  
œ75  
VCM = œ2.85 V  
œ100  
VCM = 2.85 V  
œ125  
œ150  
0
1
2
3
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ3  
œ2  
œ1  
VCM (V)  
Temperature (°C)  
C003  
C010  
3. Offset Voltage vs Common-Mode Voltage  
4. Offset Voltage vs Temperature  
150  
140  
180  
120  
100  
80  
100  
50  
Gain  
135  
90  
45  
0
Phase  
0
60  
40  
œ50  
œ100  
œ150  
VS  
=
1.1 V  
20  
VS  
=
2.75 V  
0
œ20  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
Frequency (Hz)  
VSUPPLY (V)  
C200  
C017  
CL = 15 pF  
5. Open-Loop Gain and Phase vs Frequency  
6. Offset Voltage vs Supply Voltage  
版权 © 2016–2019, Texas Instruments Incorporated  
9
 
OPA325, OPA2325, OPA4325  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VCM = VOUT = midsupply, and RL = 10 kΩ (unless otherwise noted)  
40.0  
40.0  
30.0  
30.0  
20.0  
20.0  
VS  
=
1.1 V  
VS  
=
1.1 V  
10.0  
10.0  
0.0  
0.0  
VS  
= 2.75 V  
VS  
=
2.75 V  
œ10.0  
œ20.0  
œ30.0  
œ40.0  
œ10.0  
œ20.0  
œ30.0  
œ40.0  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
Temperature (°C)  
Temperature (°C)  
C006  
C005  
RL = 2 kΩ  
8. Open-Loop Gain vs Temperature  
RL = 10 kΩ  
7. Open-Loop Gain vs Temperature  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
VS  
=
2.75 V  
VS  
=
1.1 V  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
0.5  
1
1.5  
2
2.5  
3
Temperature (°C)  
Supply Voltage (V)  
C007  
C004  
9. Quiescent Current vs Temperature  
10. Quiescent Current vs Supply Voltage  
20  
10  
8
6
15  
10  
5
4
2
0
œ2  
œ4  
œ6  
œ8  
œ10  
0
0
1
2
3
œ3  
œ2  
œ1  
Input Bias Current (pA)  
VCM (V)  
C013  
C015  
11. Input Bias Current vs Common-Mode Voltage  
12. Input Bias Current Distribution Histogram  
10  
版权 © 2016–2019, Texas Instruments Incorporated  
OPA325, OPA2325, OPA4325  
www.ti.com.cn  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VCM = VOUT = midsupply, and RL = 10 kΩ (unless otherwise noted)  
25  
20  
15  
10  
5
2.0  
1.5  
1.0  
0.5  
0.0  
IOS  
0
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
Input Offset Current (pA)  
Temperature (°C)  
C014  
C016  
14. Input Bias Current vs Temperature  
13. Input Offset Current Distribution Histogram  
3
0
-0.5  
-1  
125°C  
85°C  
2.5  
2
1.5  
1
-1.5  
-2  
25°C  
125°C  
œ40°C  
œ40°C  
85°C  
0.5  
0
-2.5  
-3  
25°C  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
IO (mA)  
IO (mA)  
C009A  
C009B  
15. Output Voltage Swing (Positive) vs  
16. Output Voltage Swing (Negative) vs  
Output Current  
Output Current  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
ISC, Sink  
PSRR+  
CMRR  
PSRR-  
ISC, Source  
1
10  
100  
1k  
10k  
100k  
1M  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
Frequency (Hz)  
Temperature (°C)  
C203  
C008  
18. CMRR and PSRR vs Frequency  
17. Short-Circuit Current vs Temperature  
版权 © 2016–2019, Texas Instruments Incorporated  
11  
OPA325, OPA2325, OPA4325  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VCM = VOUT = midsupply, and RL = 10 kΩ (unless otherwise noted)  
15  
10  
5
20  
15  
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-10  
-15  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
Temperature (°C)  
Temperature (°C)  
C011  
C012  
19. CMRR vs Temperature  
20. PSRR vs Temperature  
1k  
100  
10  
1
1
10  
100  
1k  
10k  
100k  
Time  
(1 s/div)  
Frequency (Hz)  
C205  
C204  
21. Input Voltage Noise Spectral Density vs Frequency  
22. 0.1-Hz to 10-Hz Input Voltage Noise  
60  
60  
40  
20  
0
G = +100  
G = +100  
G = +10  
40  
G = +10  
20  
G = +1  
G = +1  
0
-20  
-20  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
C201  
C202  
VS = 1.8 V, RL = 10 kΩ, CL = 15 pF  
23. Closed-Loop Gain vs Frequency  
VS = 5.5 V, RL = 10 kΩ, CL = 15 pF  
24. Closed-Loop Gain vs Frequency  
12  
版权 © 2016–2019, Texas Instruments Incorporated  
OPA325, OPA2325, OPA4325  
www.ti.com.cn  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VCM = VOUT = midsupply, and RL = 10 kΩ (unless otherwise noted)  
10k  
7
6
VS  
=
2.5 V  
5
4
3
2
1
0
1k  
VS  
= 0.9 V  
100  
100  
1k  
10k  
100k  
1M  
10M  
10m 100m  
1
10 100 1k 10k 100k 1M 10M 100M 1G  
Frequency (Hz)  
Frequency (Hz)  
C218  
C025  
25. Maximum Output Voltage vs Frequency  
26. Open-Loop Output Impedance vs Frequency  
70  
0.1  
-60  
G = -1, RL = 600  
G = +1, RL = 600 Ω  
60  
50  
40  
30  
20  
10  
0
0.01  
-80  
G = -1,  
RL = 2 kΩ  
G = 1, VS = 5.5 V  
G = 10, VS = 5.5 V  
G = 1, VS = 1.8 V  
0.001  
0.0001  
-100  
-120  
G = -1,  
RL = 10 kΩ  
G = 10, VS = 5.5 V  
G = +1, RL = 10 kΩ  
0.1  
G = +1, RL = 2 kΩ  
0
200  
400  
600  
800  
1000  
0.001  
0.01  
1
Capacitive Load (pF)  
Output Amplitude (VRMS  
)
C209  
C208  
f = 10 kHz, VS = ±2.5 V, filter bandwidth = 500 kHz  
27. Small-Signal Overshoot vs Load Capacitance  
28. THD+N vs Amplitude  
1
-40  
1
0.1  
-40  
G = -1, RL = 600  
G = -1, RL = 600  
G = +1, RL = 600 Ω  
G = -1, RL = 2 kΩ  
-60  
G = +1, RL = 600 Ω  
G = -1, RL = 2 kΩ  
0.1  
-60  
-80  
-80  
G = -1, RL = 10 kΩ  
G = +1, RL = 2 kΩ  
0.01  
0.01  
G = -1, RL = 10 kΩ  
G = +1, RL = 2 kΩ  
-100  
-120  
-140  
0.001  
0.0001  
0.001  
0.0001  
-100  
-120  
G = +1,  
RL = 10 kΩ  
G = +1, RL = 10 kΩ  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
C206  
C004  
VIN = 2 VPP, VS = ±2.5 V, filter bandwidth = 500 kHz  
VIN = 4 VPP, VS = ±2.5 V, filter bandwidth = 500 kHz  
29. THD+N vs Frequency  
30. THD+N vs Frequency  
版权 © 2016–2019, Texas Instruments Incorporated  
13  
OPA325, OPA2325, OPA4325  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VCM = VOUT = midsupply, and RL = 10 kΩ (unless otherwise noted)  
VIN  
VOUT  
VIN  
VOUT  
Time (50 ms/div)  
Time (100 µs/div)  
C210  
C212  
31. No Phase Reversal  
32. Positive Overload Recovery  
6
Slew Rate (Rising)  
5.8  
VIN  
5.6  
5.4  
5.2  
5
Slew Rate (Falling)  
VOUT  
Time (100 µs/div)  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Supply Voltage (V)  
C211  
C219  
CL = 15 pF  
33. Negative Overload Recovery  
34. Slew Rate vs Supply Voltage  
VOUT  
VIN  
0.01% Settling = ±200 µV  
Time (1 µs/div)  
Time (2.5 µs/div)  
C217  
C213  
VIN = 2-V step  
VIN = 10 mVPP, G = +1, CL = 15 pF  
36. 0.01% Positive Settling Time  
35. Small-Signal Step Response  
14  
版权 © 2016–2019, Texas Instruments Incorporated  
OPA325, OPA2325, OPA4325  
www.ti.com.cn  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VCM = VOUT = midsupply, and RL = 10 kΩ (unless otherwise noted)  
0.01% Settling = ±200 µV  
VOUT  
VIN  
Time (1 µs/div)  
Time (2.5 µs/div)  
C216  
C215  
VIN = 2-V step  
VIN = 4 VPP, G = +1, CL = 15 pF  
37. 0.01% Negative Settling Time  
38. Large-Signal Step Response  
VOUT  
VIN  
Time (2.5 µs/div)  
C214  
VIN = 4 VPP, G = –1, CL = 15 pF  
39. Large-Signal Step Response  
版权 © 2016–2019, Texas Instruments Incorporated  
15  
OPA325, OPA2325, OPA4325  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPA325, OPA2325, and OPA4325 (OPAx325) belong to a new generation of low-noise, e-trim™ operational  
amplifiers that provide outstanding dc precision. The OPAx325 also have a highly linear input stage with zero-  
crossover distortion that delivers excellent CMRR and distortion performance across the full rail-to-rail input  
range. In addition, this device has a wide supply range with excellent PSRR. This feature, combined with low  
quiescent current, makes the OPAx325 an excellent choice for applications that are battery-powered without  
regulation.  
7.2 Functional Block Diagram  
V+  
OPAx325  
Charge  
pump  
-IN  
OUT  
+IN  
POR  
e-trim™  
V-  
16  
版权 © 2016–2019, Texas Instruments Incorporated  
OPA325, OPA2325, OPA4325  
www.ti.com.cn  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
7.3 Feature Description  
7.3.1 Zero-Crossover Input Stage  
Traditional complementary metal-oxide semiconductor (CMOS) rail-to-rail input amplifiers use a complementary  
input stage: an N-channel input differential pair in parallel with a P-channel differential pair. This configuration  
results in sudden change in offset voltage when the input stage transitions from the p-channel metal-oxide-  
semiconductor field effect transistor (PMOS) to the n-type field effect transistor (NMOS), or vice-versa, as shown  
in 40. This transition results in significant degradation of CMRR and PSRR performance of the amplifier.  
.
3
2
1
0
-1  
-2  
-V  
+V  
-3  
-0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Input Common-Mode Voltage (V)  
40. Input Common-Mode Voltage vs Input Offset Voltage  
(Traditional Rail-to-Rail Input CMOS Amplifiers)  
The OPAx325 series of amplifiers includes an internal charge pump that powers the amplifier input stage with an  
internal supply rail that is higher than the external power supply. The internal supply rail allows a single  
differential pair to operate and to be linear across the entire input common-mode voltage range, thus eliminating  
crossover distortion. Rail-to-rail amplifiers that use this technique to eliminate crossover distortion are called  
zero-crossover amplifiers.  
The single differential pair combined with the charge pump allows the OPAx325 to provide superior CMRR  
across the entire common-mode input range, which extends 100 mV beyond both power-supply rails. 41  
shows the input offset voltage versus input common-mode voltage plot for the OPAx325. Note that unlike  
traditional rail-to-rail CMOS amplifiers, there is no transition region for the OPAx325.  
150  
125  
100  
75  
50  
25  
0
œ25  
œ50  
œ75  
VCM = œ2.85 V  
œ100  
VCM = 2.85 V  
œ125  
œ150  
0
1
2
3
œ3  
œ2  
œ1  
VCM (V)  
C003  
41. Offset Voltage vs Common-Mode Voltage (Zero-Crossover)  
版权 © 2016–2019, Texas Instruments Incorporated  
17  
 
 
OPA325, OPA2325, OPA4325  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2 Low Input Offset Voltage  
The OPAx325 are manufactured using TI's e-trim technology. Each amplifier is trimmed in production, thereby  
minimizing errors associated with input offset voltage. The e-trim technology is a TI proprietary method of  
trimming internal device parameters during either wafer probing or final testing. This process allows the  
OPAx325 to have an excellent offset specification of 150 µV (maximum). 42 shows the offset voltage  
distribution for the OPAx325.  
15  
10  
5
0
Offset Voltage (µV)  
C002  
42. Offset Voltage Distribution  
7.3.3 Input and ESD Protection  
The OPAx325 incorporate internal electrostatic discharge (ESD) protection circuits on all pins. In the case of  
input and output pins, this protection primarily consists of current-steering diodes connected between the input  
and power-supply pins. These ESD protection diodes also provide in-circuit, input overdrive protection, as long  
as the current is limited to 10 mA as stated in the Absolute Maximum Ratings table. 43 shows how a series  
input resistor can be added to the driven input to limit the input current. The added resistor contributes thermal  
noise at the amplifier input; thus, keep the value to a minimum in noise-sensitive applications.  
Current-limiting resistor  
required if input voltage  
exceeds supply rails by  
> 0.3V.  
+5V  
IOVERLOAD  
10 mA max  
VOUT  
VIN  
5 kΩ  
Copyright © 2016, Texas Instruments Incorporated  
43. Input Current Protection  
7.4 Device Functional Modes  
The OPAx325 have a single functional mode and are operational when the power-supply voltage is greater than  
2.2 V (±1.1 V). The maximum power-supply voltage for the OPAx325 is 5.5 V (±2.75 V).  
18  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
OPA325, OPA2325, OPA4325  
www.ti.com.cn  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The OPAx325 series features e-trim, a proprietary technique in which the offset voltage is adjusted during the  
final steps of manufacturing. As a result, the OPAx325 deliver excellent offset voltage (40 μV, typical).  
Additionally, the amplifier boasts a fast slew rate, low drift, low noise, and excellent PSRR and AOL. The  
OPAx325 also feature a linear input stage with zero-crossover distortion, resulting in excellent CMRR over the  
entire input range, which extends from 100 mV below the negative rail to 100 mV above the positive rail.  
8.1.1 Operating Characteristics  
The OPAx325 family of amplifiers has parameters that are fully specified from 2.2 V to 5.5 V (±1.1 V to ±2.75 V).  
Many of the specifications apply from –40°C to +125°C. Parameters that can exhibit significant variance with  
regard to operating voltage or temperature are presented in the Typical Characteristics section.  
8.1.2 Basic Amplifier Configurations  
The OPAx325 are unity-gain stable. The devices do not exhibit output phase inversion when the input is  
overdriven. A typical single-supply connection is shown in 44. The OPAx325 are configured as a basic  
inverting amplifier with a gain of –10 V/V. This single-supply connection has an output centered on the common-  
mode voltage, VCM. For the circuit shown, this voltage is 2.5 V, but can be any value within the common-mode  
input voltage range.  
R1  
1 k  
R2  
10 kꢀ  
+5V  
0 F  
+
VIN  
œ
œ
OPAx325  
+
OUT  
+
VCM = 2.5 V  
œ
Copyright © 2017, Texas Instruments Incorporated  
44. Basic Single-Supply Connection  
版权 © 2016–2019, Texas Instruments Incorporated  
19  
 
OPA325, OPA2325, OPA4325  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
www.ti.com.cn  
Application Information (接下页)  
8.1.3 Driving an Analog-to-Digital Converter  
The low-noise and wide-gain bandwidth of the OPAx325, combined with rail-to-rail input/output and zero-  
crossover distortion, make these devices an excellent input driver for ADCs. 45 shows the OPAx325 driving  
an ADC. The amplifier is connected as a unity-gain, noninverting buffer.  
3.3 V  
VREF  
R
ADC  
OPAx325  
Input  
+
VSS  
VDD  
5 V  
C
45. The OPAx325 as an Input Driver for ADCs  
8.2 Typical Application  
Operational amplifiers are commonly used as unity-gain buffers. 46 shows the schematic for an amplifier  
configured as a unity-gain buffer. If the input signal range to the amplifier is very close to the rails or includes the  
rails, a rail-to-rail amplifier must be used. However, regular rail-to-rail amplifiers introduce significant distortion to  
the signal. This design compares the distortion introduced by a typical CMOS input amplifier with that of the  
OPAx325 (a zero-crossover amplifier).  
+2.5 V  
œ
VOUT  
+
OPAx325  
4 VPP  
-2.5 V  
Sine Wave  
GND  
46. The OPAx325 Configured as a Unity-Gain Buffer Amplifier  
8.2.1 Design Requirements  
The following parameters are used for this design example:  
Gain = +1 V/V (inverting gain)  
V+ = 2.5 V, V– = –2.5 V  
Input signal = 4 VPP, f = 1-kHz sine wave  
20  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
OPA325, OPA2325, OPA4325  
www.ti.com.cn  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
Typical Application (接下页)  
8.2.2 Detailed Design Procedure  
Traditional CMOS rail-to-rail input amplifiers use a complementary input stage: an N-channel input differential  
pair in parallel with a P-channel differential pair, as shown in 47.  
+Vsupply  
IS1  
VINœ  
PCH1  
PCH2  
NCH3  
NCH4  
VIN+  
e-trim™  
œVsupply  
47. Complementary Input Stage (Traditional Rail-to-Rail Input CMOS Amplifiers)  
版权 © 2016–2019, Texas Instruments Incorporated  
21  
 
OPA325, OPA2325, OPA4325  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
www.ti.com.cn  
Typical Application (接下页)  
The N-channel pair is active for input voltages close to the positive rail, typically (V+) – 1 V to 200 mV above the  
positive supply, and the P-channel pair is on for inputs from 200 mV below the negative supply to approximately  
(V+) – 1 V. There is a small transition region, typically (V+) – 1.1 V to (V+) – 0.9 V, in which both pairs are on.  
This transition region is shown in 48 for a traditional rail-to-rail input CMOS amplifier. Within this transition  
region, PSRR, CMRR, offset voltage, offset drift, and THD can be degraded when compared to device operation  
outside of this region.  
3
2
1
0
-1  
-2  
-V  
+V  
-3  
-0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Input Common-Mode Voltage (V)  
48. Input Offset Voltage vs Common-Mode Voltage  
(For Traditional Rail-to-Rail Input CMOS Amplifiers)  
The OPAx325 amplifiers include an internal charge pump that powers the amplifier input stage with an internal  
supply rail that is higher than the external power supply. The internal supply rail allows a single differential pair to  
operate and to be linear across the entire input common-mode voltage range, as shown in 1.  
+VSUPPLY  
Charge Pump  
IS1  
PCH1  
PCH2  
VIN+  
VINœ  
e-trimTM  
œVsupply  
49. Single Differential Input Pair with a Charge Pump (Zero-Crossover)  
22  
版权 © 2016–2019, Texas Instruments Incorporated  
 
OPA325, OPA2325, OPA4325  
www.ti.com.cn  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
Typical Application (接下页)  
The unique zero-crossover topology shown in 1 eliminates the input offset transition region, typical of most  
rail-to-rail input operational amplifiers. This topology allows the OPAx325 to provide superior CMRR across the  
entire common-mode input range that extends 100 mV beyond both power-supply rails. 50 shows the input  
offset voltage versus input common-mode voltage plot for the OPAx325.  
150  
125  
100  
75  
50  
25  
0
œ25  
œ50  
œ75  
VCM = œ2.85 V  
œ100  
VCM = 2.85 V  
œ125  
œ150  
0
1
2
3
œ3  
œ2  
œ1  
VCM (V)  
C003  
50. Offset Voltage vs Common-Mode Voltage (OPAx325, Zero-Crossover Amplifier)  
The OPAx325 and a typical CMOS amplifier were used in identical circuits where these amplifiers were  
configured as a unity-gain buffer amplifier; see 51 and 52. A pure sine wave with an amplitude of 2 V (4  
VPP) was given as input to the two identical circuits of 51 and 52. The outputs of these circuits were  
captured on a spectrum analyzer. 53 and 54 illustrate the output voltage spectrum for the OPAx325 and a  
typical CMOS rail-to-rail amplifier, respectively. The output of the OPAx325 has very few spurs and harmonics  
when compared to the typical rail-to-rail CMOS amplifier, as illustrated in 55.  
+2.5 V  
œ
VOUT  
+
OPAx325  
4 VPP  
-2.5 V  
Sine Wave  
GND  
51. OPAx325 as a Unity-Gain Buffer  
2.5 V  
œ
VOUT  
+
Typical CMOS  
4-VPP  
-2.5 V  
rail-to-rail amplifiers  
Sine Wave  
GND  
52. Typical CMOS Rail-to-Rail Amplifier as a Unity-Gain Buffer  
版权 © 2016–2019, Texas Instruments Incorporated  
23  
 
 
 
OPA325, OPA2325, OPA4325  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
www.ti.com.cn  
Typical Application (接下页)  
8.2.3 Application Curves  
20  
0
20  
0
œ20  
œ20  
œ40  
œ40  
œ60  
œ60  
œ80  
œ80  
œ100  
œ120  
œ140  
œ160  
œ180  
œ100  
œ120  
œ140  
œ160  
œ180  
0.  
5k  
10k  
15k  
20k  
0.  
5k  
10k  
15k  
20k  
Frequency (Hz)  
Frequency (Hz)  
C051  
C053  
53. Output Voltage Spectrum (OPAx325)  
54. Output Voltage Spectrum  
(Typical CMOS Rail-to-Rail Amplifier)  
0
œ20  
œ40  
œ60  
œ80  
Typical rail-to-rail CMOS amplifier  
OPA2325  
œ100  
œ120  
0.  
5k  
10k  
15k  
20k  
Frequency (Hz)  
C052  
55. THD+N vs Frequency  
24  
版权 © 2016–2019, Texas Instruments Incorporated  
OPA325, OPA2325, OPA4325  
www.ti.com.cn  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
9 Power Supply Recommendations  
The OPAx325 are specified for operation from 2.2 V to 5.5 V (±1.1 V to ±2.75 V); many specifications apply from  
–40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in the Typical Characteristics section.  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and of op amp  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources  
local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close as possible to the device. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup. Make sure  
to physically separate digital and analog grounds, paying attention to the flow of the ground current. For more  
detailed information refer to, see Circuit Board Layout Techniques.  
In order to reduce parasitic coupling, run the input traces as far away as possible from the supply or output  
traces. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as  
opposed to in parallel with the noisy trace.  
Place the external components as close as possible to the device. As illustrated in 57, keeping RF and RG  
close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
For best performance, clean the PCB following board assembly.  
Any precision integrated circuit can experience performance shifts resulting from moisture ingress into the  
plastic package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended to  
remove moisture introduced into the device packaging during the cleaning process. A low-temperature, post-  
cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
版权 © 2016–2019, Texas Instruments Incorporated  
25  
OPA325, OPA2325, OPA4325  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
www.ti.com.cn  
10.2 Layout Example  
VIN A  
VIN B  
+
+
VOUT A  
VOUT B  
RG  
RG  
RF  
RF  
56. Schematic Representation for 57  
Place components  
close to device and to  
each other to reduce  
parasitic errors.  
OUT A  
Use low-ESR,  
ceramic bypass  
capacitor. Place as  
close to the device  
as possible.  
VS+  
GND  
OUT A  
V+  
RF  
OUT B  
GND  
-IN A  
+IN A  
Vœ  
OUT B  
-IN B  
RF  
RG  
GND  
VIN A  
RG  
+IN B  
VIN B  
Keep input traces short  
and run the input traces  
as far away from  
the supply lines  
Use low-ESR,  
GND  
ceramic bypass  
capacitor. Place as  
close to the device  
as possible.  
VSœ  
Ground (GND) plane on another layer  
as possible.  
57. Layout Example  
26  
版权 © 2016–2019, Texas Instruments Incorporated  
 
OPA325, OPA2325, OPA4325  
www.ti.com.cn  
ZHCSFL2D OCTOBER 2016REVISED JUNE 2019  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《电路板布局技巧》 应用报告  
11.2 相关链接  
1 列出了快速访问链接。类别包括技术文档、支持和社区资源、工具与软件,以及立即订购快速访问。  
1. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
单击此处  
OPA325  
OPA2325  
OPA4325  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
e-trim, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016–2019, Texas Instruments Incorporated  
27  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2325ID  
OPA2325IDGKR  
OPA2325IDGKT  
OPA2325IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
VSSOP  
VSSOP  
SOIC  
D
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
O2325  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
DGK  
DGK  
D
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG | SN  
NIPDAUAG | SN  
NIPDAU  
18L6  
18L6  
O2325  
1UEV  
1UEV  
4325  
4325  
8
8
2500 RoHS & Green  
3000 RoHS & Green  
OPA325IDBVR  
OPA325IDBVT  
OPA4325IPW  
OPA4325IPWR  
SOT-23  
SOT-23  
TSSOP  
TSSOP  
DBV  
DBV  
PW  
PW  
5
NIPDAU  
5
250  
90  
RoHS & Green  
RoHS & Green  
NIPDAU  
14  
14  
NIPDAU  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-May-2023  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2325IDGKR  
OPA2325IDGKR  
OPA2325IDGKT  
OPA2325IDGKT  
OPA2325IDR  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
8
2500  
2500  
250  
330.0  
330.0  
330.0  
330.0  
330.0  
180.0  
180.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
8.4  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
8.0  
8.0  
8.0  
4.0  
4.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q3  
Q3  
Q1  
8
5.3  
3.4  
1.4  
8
250  
5.3  
3.4  
1.4  
8
2500  
3000  
250  
6.4  
5.2  
2.1  
OPA325IDBVR  
OPA325IDBVT  
OPA4325IPWR  
SOT-23  
SOT-23  
TSSOP  
DBV  
DBV  
PW  
5
3.23  
3.23  
6.9  
3.17  
3.17  
5.6  
1.37  
1.37  
1.6  
5
8.4  
8.0  
14  
2000  
12.4  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2325IDGKR  
OPA2325IDGKR  
OPA2325IDGKT  
OPA2325IDGKT  
OPA2325IDR  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
8
2500  
2500  
250  
366.0  
366.0  
366.0  
366.0  
356.0  
213.0  
213.0  
356.0  
364.0  
364.0  
364.0  
364.0  
356.0  
191.0  
191.0  
356.0  
50.0  
50.0  
50.0  
50.0  
35.0  
35.0  
35.0  
35.0  
8
8
250  
8
2500  
3000  
250  
OPA325IDBVR  
OPA325IDBVT  
OPA4325IPWR  
SOT-23  
SOT-23  
TSSOP  
DBV  
DBV  
PW  
5
5
14  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-May-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
OPA2325ID  
D
SOIC  
8
75  
90  
506.6  
530  
8
3940  
3600  
4.32  
3.5  
OPA4325IPW  
PW  
TSSOP  
14  
10.2  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY