OPA4342 [TI]

四路、5.5V、1MHz、低偏置电流 (0.2pA)、RRIO 运算放大器;
OPA4342
型号: OPA4342
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

四路、5.5V、1MHz、低偏置电流 (0.2pA)、RRIO 运算放大器

放大器 运算放大器
文件: 总16页 (文件大小:468K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA342  
OPA2342  
OPA4342  
OPA4342  
O
P
A
3
4
2
O
P
A
2
3
4
2
O
P
A
43  
42  
®
OPA342  
www.ti.com  
Low-Cost, Low-Power, Rail-to-Rail  
OPERATIONAL AMPLIFIERS  
MicroAmplifier Series  
FEATURES  
DESCRIPTION  
The OPA342 series rail-to-rail CMOS operational  
amplifiers are designed for low-cost, low-power, min-  
iature applications. They are optimized to operate on  
a single supply as low as 2.5V with an input common-  
mode voltage range that extends 300mV beyond the  
supplies.  
LOW QUIESCENT CURRENT: 150µA typ  
RAIL-TO-RAIL INPUT  
RAIL-TO-RAIL OUTPUT (within 1mV)  
SINGLE SUPPLY CAPABILITY  
LOW COST  
MicroSIZE PACKAGE OPTIONS:  
SOT23-5  
Rail-to-rail input/output and high-speed operation make  
them ideal for driving sampling Analog-to-Digital Con-  
verters (ADC). They are also well suited for general-  
purpose and audio applications and providing I/V con-  
version at the output of Digital-to-Analog Converters  
(DAC). Single, dual, and quad versions have identical  
specs for design flexibility.  
MSOP-8  
TSSOP-14  
BANDWIDTH: 1MHz  
SLEW RATE: 1V/µs  
THD + NOISE: 0.006%  
The OPA342 series offers excellent dynamic response  
with a quiescent current of only 250µA max. Dual and  
quad designs feature completely independent circuitry  
for lowest crosstalk and freedom from interaction.  
APPLICATIONS  
COMMUNICATIONS  
PCMCIA CARDS  
SINGLE  
OPA342  
DUAL  
QUAD  
DATA ACQUISITION  
PROCESS CONTROL  
AUDIO PROCESSING  
ACTIVE FILTERS  
TEST EQUIPMENT  
CONSUMER ELECTRONICS  
PACKAGE  
SOT23-5  
MSOP-8  
SO-8  
OPA2342  
OPA4342  
TSSOP-14  
SO-14  
DIP-14  
SPICE MODEL available at www.burr-brown.com.  
Copyright © 2000, Texas Instruments Incorporated  
SBOS106A  
Printed in U.S.A. August, 2000  
SPECIFICATIONS: VS = 2.7V to 5.5V  
At TA = +25°C, RL = 10kconnected to VS /2 and VOUT = VS /2, unless otherwise noted.  
Boldface limits apply over the temperature range, TA = –40°C to +85°C.  
OPA342NA, UA  
OPA2342EA, UA  
OPA4342EA, UA, PA  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNITS  
OFFSET VOLTAGE  
Input Offset Voltage  
TA = –40°C to +85°C  
vs Temperature  
VOS  
VCM = VS /2  
±1  
±1  
±3  
30  
±6  
±6  
mV  
mV  
dVOS/dT  
PSRR  
µV/°C  
µV/V  
µV/V  
µV/V  
dB  
vs Power Supply  
VS = 2.7V to 5.5V, VCM < (V+) -1.8V  
VS = 2.7V to 5.5V, VCM < (V+) -1.8V  
200  
250  
TA = –40°C to +85°C  
Channel Separation, dc  
f = 1kHz  
0.2  
132  
INPUT BIAS CURRENT  
Input Bias Current  
TA = –40°C to +85°C  
Input Offset Current  
IB  
±0.2  
See Typical Curve  
±0.2  
±10  
±10  
pA  
pA  
pA  
IOS  
NOISE  
Input Voltage Noise, f = 0.1Hz to 50kHz  
Input Voltage Noise Density, f = 1kHz  
Current Noise Density, f = 1kHz  
8
30  
0.5  
µVrms  
nV/Hz  
fA/Hz  
en  
in  
INPUT VOLTAGE RANGE  
Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
TA = –40°C to +85°C  
Common-Mode Rejection Ratio  
TA = –40°C to +85°C  
VCM  
CMRR  
–0.3  
76  
74  
66  
64  
(V+) + 0.3  
V
VS = +5.5V, –0.3V < VCM < (V+) - 1.8  
VS = +5.5V, –0.3V < VCM < (V+) - 1.8  
VS = +5.5V, –0.3V < VCM < 5.8V  
VS = +5.5V, –0.3V < VCM < 5.8V  
VS = +2.7V, –0.3V < VCM < 3V  
VS = +2.7V, –0.3V < VCM < 3V  
88  
78  
74  
dB  
dB  
dB  
dB  
dB  
dB  
CMRR  
CMRR  
Common-Mode Rejection Ratio  
TA = –40°C to +85°C  
62  
60  
INPUT IMPEDANCE  
Differential  
Common-Mode  
1013 || 3  
1013 || 6  
|| pF  
|| pF  
OPEN-LOOP GAIN  
Open-Loop Voltage Gain  
TA = –40°C to +85°C  
AOL  
RL = 100k, 10mV < VO < (V+) – 10mV  
RL = 100k, 10mV < VO < (V+) – 10mV  
RL = 5k, 400mV < VO < (V+) – 400mV  
RL = 5k, 400mV < VO < (V+) – 400mV  
104  
100  
96  
124  
114  
dB  
dB  
dB  
dB  
TA = –40°C to +85°C  
90  
FREQUENCY RESPONSE  
Gain-Bandwidth Product  
Slew Rate  
Settling Time, 0.1%  
0.01%  
CL = 100pF  
G = 1  
GBW  
SR  
1
1
5
MHz  
V/µs  
µs  
VS = 5.5V, 2V Step  
VS = 5.5V, 2V Step  
8
µs  
Overload Recovery Time  
Total Harmonic Distortion + Noise, f = 1kHz THD+N  
VIN • G = VS  
VS = 5.5V, VO = 3Vp-p(1), G = 1  
2.5  
0.006  
µs  
%
OUTPUT  
Voltage Output Swing from Rail(2)  
RL = 100k, AOL 96dB  
RL = 100kΩ, AOL 104dB  
RL = 100kΩ, AOL 100dB  
RL = 5k, AOL 96dB  
RL = 5kΩ, AOL 90dB  
Per Channel  
1
3
mV  
mV  
mV  
mV  
mV  
mA  
10  
10  
400  
400  
TA = –40°C to +85°C  
TA = –40°C to +85°C  
20  
Short-Circuit Current  
ISC  
±15  
Capacitive Load Drive  
CLOAD  
See Typical Curve  
POWER SUPPLY  
Specified Voltage Range  
Operating Voltage Range  
Quiescent Current (per amplifier)  
TA = –40°C to +85°C  
VS  
IQ  
2.7  
5.5  
V
V
µA  
µA  
2.5 to 5.5  
150  
IO = 0A  
250  
300  
TEMPERATURE RANGE  
Specified Range  
Operating Range  
–40  
–55  
–65  
+85  
+125  
+150  
°C  
°C  
°C  
Storage Range  
Thermal Resistance  
SOT23-5 Surface Mount  
MSOP-8 Surface Mount  
SO-8 Surface Mount  
TSSOP-14 Surface Mount  
SO-14 Surface Mount  
DIP-14  
θJA  
200  
150  
150  
100  
100  
100  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
NOTES: (1) VOUT = 0.25V to 3.25V. (2) Output voltage swings are measured between the output and power-supply rails.  
OPA342, 2342, 4342  
2
SBOS106A  
ABSOLUTE MAXIMUM RATINGS(1)  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
Supply Voltage, V+ to V- ................................................................... 7.5V  
Signal Input Terminals, Voltage(2) .....................(V–) –0.5V to (V+) +0.5V  
Current(2) .................................................... 10mA  
This integrated circuit can be damaged by ESD. Burr-Brown  
recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
Output Short-Circuit(3) .............................................................. Continuous  
Operating Temperature ..................................................55°C to +125°C  
Storage Temperature .....................................................65°C to +150°C  
Junction Temperature ...................................................................... 150°C  
Lead Temperature (soldering, 10s) ................................................. 300°C  
ESD Tolerance (Human Body Model) ............................................ 4000V  
ESD damage can range from subtle performance degrada-  
tion to complete device failure. Precision integrated circuits  
may be more susceptible to damage because very small  
parametric changes could cause the device not to meet its  
published specifications.  
NOTES: (1) Stresses above these ratings may cause permanent damage.  
Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only. Functional opera-  
tion of the device at these conditions, or beyond the specified operating  
conditions, is not implied. (2) Input terminals are diode-clamped to the power  
supply rails. Input signals that can swing more than 0.5V beyond the supply  
rails should be current-limited to 10mA or less. (3) Short-circuit to ground,  
one amplifier per package.  
PACKAGE/ORDERING INFORMATION  
PACKAGE  
DRAWING  
NUMBER  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER(1)  
TRANSPORT  
MEDIA  
PRODUCT  
PACKAGE  
OPA342NA  
SOT23-5  
331  
"
182  
"
–40°C to +85°C  
B42  
"
OPA342UA  
OPA342NA/250  
OPA342NA/3K  
OPA342UA  
Tape and Reel  
Tape and Reel  
Rails  
"
"
SO-8  
"
"
OPA342UA  
–40°C to +85°C  
"
"
"
OPA342UA/2K5  
Tape and Reel  
OPA2342EA  
MSOP-8  
337  
"
182  
"
–40°C to +85°C  
C42  
"
OPA2342UA  
OPA2342EA/250  
OPA2342EA/2K5  
OPA2342UA  
Tape and Reel  
Tape and Reel  
Rails  
"
"
SO-8  
"
"
OPA2342UA  
–40°C to +85°C  
"
"
"
OPA2342UA/2K5  
Tape and Reel  
OPA4342EA  
TSSOP-14  
357  
"
–40°C to +85°C  
OPA4342EA  
OPA4342EA/250  
OPA4342EA/2K5  
OPA4342UA  
OPA4342UA/2K5  
OPA4342PA  
Tape and Reel  
Tape and Reel  
Rails  
Tape and Reel  
Rails  
"
"
"
"
OPA4342UA  
"
SO-14  
"
235  
"
–40°C to +85°C  
"
OPA4342UA  
"
OPA4342PA  
DIP-14  
010  
–40°C to +85°C  
OPA4342PA  
NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /3K indicates 3000 devices per reel). Ordering 3000 pieces  
of “OPA342NA/3K” will get a single 3000-piece Tape and Reel.  
PIN CONFIGURATIONS  
OPA342  
OPA4342  
Out  
V–  
1
2
3
5
4
V+  
Out A  
In A  
+In A  
+V  
1
2
3
4
5
6
7
14 Out D  
13 In D  
12 +In D  
11 V  
+In  
In  
A
B
D
C
SOT23-5  
OPA342  
OPA2342  
+In B  
In B  
Out B  
10 +In C  
NC  
V+  
NC  
In  
+In  
V–  
1
2
3
4
8
7
6
5
Out A  
1
8
7
6
5
V+  
9
8
In C  
A
In A  
+In A  
V–  
2
3
4
Out B  
In B  
+In B  
Out C  
B
Out  
NC  
TSSOP-14, SO-14, DIP-14  
SO-8  
SO-8, MSOP-8  
OPA342, 2342, 4342  
3
SBOS106A  
TYPICAL PERFORMANCE CURVES  
At TA = +25°C, VS = +5V, and RL = 10kconnected to VS/2, unless otherwise noted.  
POWER SUPPLY AND COMMON-MODE  
REJECTION RATIO vs FREQUENCY  
OPEN-LOOP GAIN/PHASE vs FREQUENCY  
100  
80  
60  
40  
20  
10  
120  
100  
80  
60  
40  
20  
0
0
+PSRR  
30  
CMRR  
Phase  
60  
PSRR  
90  
120  
150  
180  
Gain  
100  
10  
100  
1k  
10k  
100k  
0.1  
1
10  
1k  
10k 100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
CHANNEL SEPARATION vs FREQUENCY  
MAXIMUM OUTPUT VOLTAGE vs FREQUENCY  
VS = +5.5V  
140  
120  
100  
80  
6
5
4
3
2
1
0
VS = +5V  
Dual and quad devices.  
G = 1, all channels.  
Quad measured channel  
A to D or B to Cother  
combinations yield improved  
rejection.  
VS = +2.7V  
60  
100  
1k  
10k  
100k  
1M  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
VOLTAGE AND CURRENT NOISE  
SPECTRAL DENSITY vs FREQUENCY  
TOTAL HARMONIC DISTORTION + NOISE  
vs FREQUENCY  
10000  
1000  
100  
100  
10  
1
1
0.1  
IN  
VN  
0.010  
0.001  
10  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
OPA342, 2342, 4342  
4
SBOS106A  
TYPICAL PERFORMANCE CURVES (Cont.)  
At TA = +25°C, VS = +5V, and RL = 10kconnected to VS/2, unless otherwise noted.  
OPEN-LOOP GAIN, COMMON-MODE REJECTION RATIO,  
AND POWER SUPPLY REJECTION vs TEMPERATURE  
INPUT BIAS CURRENT vs TEMPERATURE  
140  
120  
100  
80  
10000  
1000  
100  
10  
AOL  
CMRR  
PSRR  
60  
40  
1
20  
0
0.1  
75 50 25  
0
25  
50  
75  
100 125 150  
75  
50  
25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
QUIESCENT CURRENT AND  
SHORT-CIRCUIT CURRENT vs TEMPERATURE  
SLEW RATE vs TEMPERATURE  
1.2  
1
200  
175  
150  
135  
100  
75  
40  
35  
30  
25  
20  
15  
10  
5
SR  
IQ  
0.8  
0.6  
0.4  
0.2  
0
+SR  
+ISC  
ISC  
50  
25  
0
0
75 50  
25  
0
25  
50  
75  
100  
125  
75  
50  
25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
QUIESCENT CURRENT AND  
INPUT BIAS CURRENT  
SHORT-CIRCUIT CURRENT vs SUPPLY VOLTAGE  
vs COMMON-MODE VOLTAGE  
160  
155  
150  
145  
140  
20  
6
+ISC  
4
2
V–  
Supply  
V+  
Supply  
15  
10  
5
ISC  
0
IQ  
2  
4  
6  
Input voltage 0.3V  
can cause op amp output  
to lock up. See text.  
0
2
3
4
5
6
1  
0
1
2
3
4
5
6
Supply Voltage (V)  
Common-Mode Voltage (V)  
OPA342, 2342, 4342  
5
SBOS106A  
TYPICAL PERFORMANCE CURVES (Cont.)  
At TA = +25°C, VS = +5V, and RL = 10kconnected to VS/2, unless otherwise noted.  
OPEN-LOOP GAIN vs OUTPUT VOLTAGE SWING  
OUTPUT VOLTAGE SWING vs OUTPUT CURRENT  
V+  
120  
110  
100  
90  
(V+) 1  
RL = 100kΩ  
RL = 5kΩ  
40°C  
40°C  
85°C  
85°C  
25°C  
25°C  
(V+) 2  
2
1
0
80  
0
5
10  
15  
20  
120  
100  
80  
60  
40  
20  
0
Output Current (mA)  
Output Voltage Swing from Rail (mV)  
OFFSET VOLTAGE  
OFFSET VOLTAGE DRIFT  
PRODUCTION DISTRIBUTION  
PRODUCTION DISTRIBUTION  
24  
20  
16  
12  
8
18  
16  
14  
12  
10  
8
Typical production  
distribution of  
packaged units.  
Typical production  
distribution of  
packaged units.  
6
4
4
2
0
0
Offset Voltage Drift (µV/°C)  
Offset Voltage (mV)  
QUIESCENT CURRENT  
PRODUCTION DISTRIBUTION  
SETTLING TIME vs CLOSED-LOOP GAIN  
24  
20  
16  
12  
8
400  
350  
300  
250  
200  
150  
100  
50  
0.01%  
0.1%  
4
0
0
1
10  
100  
1000  
Closed-Loop Gain (V/V)  
Quiescent Current (µA)  
OPA342, 2342, 4342  
6
SBOS106A  
TYPICAL PERFORMANCE CURVES (Cont.)  
At TA = +25°C, VS = +5V, and RL = 10kconnected to VS/2, unless otherwise noted.  
LARGE-SIGNAL STEP RESPONSE  
G = +1, RL = 10k, CL = 100pF  
SMALL-SIGNAL OVERSHOOT vs LOAD CAPACITANCE  
50  
45  
40  
35  
G = +1  
30  
25  
G = +5  
G = 1  
20  
15  
10  
G = 5  
5
0
1
10  
100  
1k  
10k  
5µs/div  
Load Capacitance (pF)  
SMALL-SIGNAL STEP RESPONSE  
G = +1, RL = 10k, CL = 100pF  
5µs/div  
OPA342, 2342, 4342  
7
SBOS106A  
OPERATING VOLTAGE  
APPLICATIONS INFORMATION  
OPA342 series op amps are unity gain stable and can operate  
on a single supply, making them highly versatile and easy to  
use.  
OPA342 series op amps are fully specified and guaranteed  
from +2.7V to +5.5V. In addition, many specifications apply  
from –40ºC to +85ºC. Parameters that vary significantly  
with operating voltages or temperature are shown in the  
Typical Performance Curves.  
Rail-to-rail input and output swing significantly increases  
dynamic range, especially in low supply applications. Figure  
1 shows the input and output waveforms for the OPA342 in  
unity-gain configuration. Operation is from VS = +5V with  
a 10kload connected to VS/2. The input is a 5Vp-p  
sinusoid. Output voltage is approximately 4.997Vp-p.  
RAIL-TO-RAIL INPUT  
The input common-mode voltage range of the OPA342  
series extends 300mV beyond the supply rails. This is  
achieved with a complementary input stage—an N-channel  
input differential pair in parallel with a P-channel differen-  
tial pair (see Figure 2). The N-channel pair is active for input  
voltages close to the positive rail, typically (V+) – 1.3V to  
300mV above the positive supply, while the P-channel pair  
is on for inputs from 300mV below the negative supply to  
approximately (V+) –1.3V. There is a small transition re-  
gion, typically (V+) – 1.5V to (V+) – 1.1V, in which both  
pairs are on. This 400mV transition region can vary 300mV  
with process variation. Thus, the transition region (both  
stages on) can range from (V+) – 1.8V to (V+) – 1.4V on the  
low end, up to (V+) – 1.2V to (V+) – 0.8V on the high end.  
Within the 400mV transition region PSRR, CMRR, offset  
voltage, offset drift, and THD may be degraded compared to  
operation outside this region. For more information on  
designing with rail-to-rail input op amps, see Figure 3  
“Design Optimization with Rail-to-Rail Input Op Amps.”  
Power supply pins should be by passed with 0.01µF ceramic  
capacitors.  
G = +1, VS = +5V  
Input  
5V  
0V  
Output (inverted on scope)  
5µs/div  
FIGURE 1. Rail-to-Rail Input and Output.  
V+  
Reference  
Current  
VIN+  
VIN–  
VBIAS1  
Class AB  
Control  
VO  
Circuitry  
VBIAS2  
V–  
(Ground)  
FIGURE 2. Simplified Schematic.  
8
OPA342, 2342, 4342  
SBOS106A  
DESIGN OPTIMIZATION WITH RAIL-TO-RAIL INPUT OP AMPS  
Rail-to-rail op amps can be used in virtually any op amp  
With a unity-gain buffer, for example, signals will traverse  
this transition at approximately 1.3V below V+ supply  
and may exhibit a small discontinuity at this point.  
configuration. To achieve optimum performance, how-  
ever, applications using these special double-input-stage  
op amps may benefit from consideration of their special  
behavior.  
The common-mode voltage of the non-inverting ampli-  
fier is equal to the input voltage. If the input signal always  
remains less than the transition voltage, no discontinuity  
will be created. The closed-loop gain of this configura-  
tion can still produce a rail-to-rail output.  
In many applications, operation remains within the com-  
mon-mode range of only one differential input pair.  
However some applications exercise the amplifier through  
the transition region of both differential input stages.  
Although the two input stages are laser trimmed for  
excellent matching, a small discontinuity may occur in  
this transition. Careful selection of the circuit configura-  
tion, signal levels and biasing can often avoid this transi-  
tion region.  
Inverting amplifiers have a constant common-mode volt-  
age equal to VB. If this bias voltage is constant, no  
discontinuity will be created. The bias voltage can gener-  
ally be chosen to avoid the transition region.  
G = 1 Buffer  
Non-Inverting Gain  
Inverting Amplifier  
V+  
V+  
V+  
VB  
VIN  
VO  
VO  
VO  
VIN  
VIN  
VB  
V
V
CM = VIN = VO  
V
CM = VIN  
CM = VB  
FIGURE 3. Design Optimization with Rail-to-Rail Input Op Amps.  
COMMON-MODE REJECTION  
between V+ and ground. For light resistive loads (> 50k),  
the output voltage can typically swing to within 1mV from  
supply rail. With moderate resistive loads (2kto 50k),  
the output can swing to within a few tens of milli-volts from  
the supply rails while maintaining high open-loop gain. See  
the typical performance curve “Output Voltage Swing vs  
Output Current.”  
The CMRR for the OPA342 is specified in several ways so  
the best match for a given application may be used. First, the  
CMRR of the device in the common-mode range below the  
transition region (VCM < (V+) – 1.8V) is given. This speci-  
fication is the best indicator of the capability of the device  
when the application requires use of one of the differential  
input pairs. Second, the CMRR at VS = 5.5V over the entire  
common-mode range is specified. Third, the CMRR at VS =  
2.7V over the entire common-mode range is provided. These  
last two values include the variations seen through the  
transition region.  
V+  
IOVERLOAD  
10mA max  
VOUT  
OPA342  
INPUT VOLTAGE BEYOND THE RAILS  
VIN  
1kΩ  
If the input voltage can go more than 0.3V below the  
negative power supply rail (single-supply ground), special  
precautions are required. If the input voltage goes suffi-  
ciently negative, the op amp output may lock up in an  
inoperative state. A Schottky diode clamp circuit will pre-  
vent this—see Figure 4. The series resistor prevents exces-  
sive current (greater than 10mA) in the Schottky diode and  
in the internal ESD protection diode, if the input voltage can  
exceed the positive supply voltage. If the signal source is  
limited to less than 10mA, the input resistor is not required.  
IN5818  
Schottky diode is required only  
if input voltage can go more  
than 0.3V below ground.  
FIGURE 4. Input Current Protection for Voltages Exceed-  
ing the Supply Voltage.  
CAPACITIVE LOAD AND STABILITY  
RAIL-TO-RAIL OUTPUT  
The OPA342 in a unity-gain configuration can directly drive  
up to 250pF pure capacitive load. Increasing the gain en-  
hances the amplifier’s ability to drive greater capacitive  
loads. See the typical performance curve “Small-Signal  
A class AB output stage with common-source transistors is  
used to achieve rail-to-rail output. This output stage is  
capable of driving 600loads connected to any potential  
OPA342, 2342, 4342  
9
SBOS106A  
Overshoot vs Capacitive Load.” In unity-gain configura-  
tions, capacitive load drive can be improved by inserting a  
small (10to 20) resistor, RS, in series with the output, as  
shown in Figure 5. This significantly reduces ringing while  
maintaining dc performance for purely capacitive loads.  
However, if there is a resistive load in parallel with the  
capacitive load, a voltage divider is created, introducing a dc  
error at the output and slightly reducing the output swing.  
The error introduced is proportional to the ratio RS/RL, and  
DRIVING A/D CONVERTERS  
The OPA342 series op amps are optimized for driving  
medium-speed sampling ADCs. The OPA342 op amps buffer  
the ADC’s input capacitance and resulting charge injection  
while providing signal gain.  
Figures 6 shows the OPA342 in a basic noninverting con-  
figuration driving the ADS7822. The ADS7822 is a 12-bit,  
micro-power sampling converter in the MSOP-8 package.  
When used with the low-power, miniature packages of the  
OPA342, the combination is ideal for space-limited, low-  
power applications. In this configuration, an RC network at  
the ADC’s input can be used to filter charge injection.  
is generally negligible.  
V+  
Figure 7 shows the OPA2342 driving an ADS7822 in a  
speech bandpass filtered data acquisition system. This small,  
low-cost solution provides the necessary amplification and  
signal conditioning to interface directly with an electret  
microphone. This circuit will operate with VS = +2.7V to  
RS  
VOUT  
OPA342  
10to  
20Ω  
VIN  
CL  
RL  
+5V with less than 500µA quiescent current.  
FIGURE 5. Series Resistor in Unity-Gain Configuration  
Improves Capacitive Load Drive.  
+5V  
0.1µF  
0.1µF  
1
VREF  
8
V+  
7
6
5
DCLOCK  
DOUT  
500Ω  
+In  
2
Serial  
Interface  
ADS7822  
12-Bit A/D  
OPA342  
VIN  
In  
CS/SHDN  
3
3300pF  
GND  
4
VIN = 0V to 5V for  
0V to 5V output.  
NOTE: A/D Input = 0 to VREF  
RC network filters high frequency noise.  
FIGURE 6. OPA342 in Noninverting Configuration Driving ADS7822.  
V+ = +2.7V to 5V  
Passband 300Hz to 3kHz  
R9  
510kΩ  
R1  
R4  
R2  
1.5kΩ  
20kΩ  
1MΩ  
C3  
C
1
33pF  
1000pF  
R7  
51kΩ  
R8  
150kΩ  
V
8
+
1
VREF  
1/2  
7
6
DCLOCK  
DOUT  
OPA2342  
+IN  
2
IN  
1/2  
OPA2342  
R3  
1MΩ  
ADS7822  
12-Bit A/D  
Electret  
Microphone(1)  
Serial  
Interface  
R6  
100kΩ  
1000pF  
C2  
5
CS/SHDN  
3
4
G = 100  
NOTE: (1) Electret microphone  
powered by R1.  
R5  
20kΩ  
GND  
FIGURE 7. Speech Bandpass Filtered Data Acquisition System.  
10  
OPA342, 2342, 4342  
SBOS106A  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2342EA/250  
OPA2342EA/2K5  
OPA2342UA  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
250  
RoHS & Green Call TI | NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
C42  
C42  
OPA  
Samples  
Samples  
Samples  
2500 RoHS & Green Call TI | NIPDAUAG  
75  
2500 RoHS & Green  
250 RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
2342UA  
OPA2342UA/2K5  
ACTIVE  
SOIC  
D
8
Level-2-260C-1 YEAR  
-40 to 85  
OPA  
2342UA  
Samples  
OPA342NA/250  
OPA342NA/3K  
OPA342NA/3KG4  
OPA342UA  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
DBV  
D
5
5
5
8
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
B42  
B42  
B42  
Samples  
Samples  
Samples  
Samples  
3000 RoHS & Green  
3000 RoHS & Green  
75  
75  
RoHS & Green  
RoHS & Green  
RoHS & Green  
OPA  
342UA  
OPA342UAG4  
ACTIVE  
ACTIVE  
SOIC  
D
8
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
OPA  
342UA  
Samples  
Samples  
OPA4342EA/250  
TSSOP  
PW  
14  
250  
OPA  
4342EA  
OPA4342UA  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
14  
14  
50  
50  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
OPA4342UA  
Samples  
Samples  
OPA4342UAG4  
OPA4342UA  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2342UA/2K5  
OPA342NA/250  
OPA342NA/3K  
OPA4342EA/250  
SOIC  
D
8
5
2500  
250  
330.0  
178.0  
178.0  
180.0  
12.4  
8.4  
6.4  
3.3  
3.3  
6.9  
5.2  
3.2  
3.2  
5.6  
2.1  
1.4  
1.4  
1.6  
8.0  
4.0  
4.0  
8.0  
12.0  
8.0  
Q1  
Q3  
Q3  
Q1  
SOT-23  
SOT-23  
TSSOP  
DBV  
DBV  
PW  
5
3000  
250  
8.4  
8.0  
14  
12.4  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2342UA/2K5  
OPA342NA/250  
OPA342NA/3K  
OPA4342EA/250  
SOIC  
D
8
5
2500  
250  
356.0  
445.0  
445.0  
210.0  
356.0  
220.0  
220.0  
185.0  
35.0  
345.0  
345.0  
35.0  
SOT-23  
SOT-23  
TSSOP  
DBV  
DBV  
PW  
5
3000  
250  
14  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
OPA2342UA  
OPA342UA  
D
D
D
D
D
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
8
8
75  
75  
75  
50  
50  
506.6  
506.6  
506.6  
506.6  
506.6  
8
8
8
8
8
3940  
3940  
3940  
3940  
3940  
4.32  
4.32  
4.32  
4.32  
4.32  
OPA342UAG4  
OPA4342UA  
OPA4342UAG4  
8
14  
14  
Pack Materials-Page 3  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY