OPA4990IRUCR [TI]

OPAx990 40-V Rail-to-Rail Input/Output, Low Offset Voltage, Low Power Op Amp;
OPA4990IRUCR
型号: OPA4990IRUCR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

OPAx990 40-V Rail-to-Rail Input/Output, Low Offset Voltage, Low Power Op Amp

文件: 总81页 (文件大小:6040K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
OPAx990 40-V Rail-to-Rail Input/Output, Low Offset Voltage, Low Power Op Amp  
1 Features  
3 Description  
Low offset voltage: ±300 µV  
The OPAx990 family (OPA990, OPA2990, and  
OPA4990) is a family of high voltage (40-V) general  
purpose operational amplifiers. These devices offer  
excellent DC precision and AC performance, including  
rail-to-rail input/output, low offset (±300 µV, typ), and  
low offset drift (±0.6 µV/°C, typ).  
Low offset voltage drift: ±0.6 µV/°C  
Low noise: 30 nV/√Hz at 1 kHz  
High common-mode rejection: 115 dB  
Low bias current: ±10 pA  
Rail-to-rail input and output  
MUX-friendly/comparator inputs  
– Amplifier operates with differential inputs up to  
supply rail  
– Amplifier can be used in open-loop or as  
comparator  
Unique features such as differential and common-  
mode input voltage range to the supply rail, high  
short-circuit current (±80 mA), high slew rate (4.5 V/  
µs), and shutdown make the OPAx990 an extremely  
flexible, robust, and high-performance op amp for  
high-voltage industrial applications.  
Wide bandwidth: 1.1-MHz GBW  
High slew rate: 4.5 V/µs  
The OPAx990 family of op amps is available in  
micro-size packages (such as X2QFN, WSON, and  
SOT-553), as well as standard packages (such as  
SOT-23, SOIC, and TSSOP), and is specified from  
–40°C to 125°C.  
Low quiescent current: 120 µA per amplifier  
Wide supply: ±1.35 V to ±20 V, 2.7 V to 40 V  
Robust EMIRR performance: 78 dB at 1.8 GHz  
Differential and common-mode input voltage range  
to supply rail  
Device Information  
2 Applications  
PART NUMBER(1)  
PACKAGE  
BODY SIZE (NOM)  
2.90 mm × 1.60 mm  
2.90 mm × 1.60 mm  
2.00 mm × 1.25 mm  
1.60 mm × 1.20 mm  
4.90 mm × 3.90 mm  
2.90 mm × 1.60 mm  
3.00 mm × 4.40 mm  
3.00 mm × 3.00 mm  
3.00 mm × 3.00 mm  
2.00 mm × 2.00 mm  
2.00 mm × 1.50 mm  
8.65 mm × 3.90 mm  
5.00 mm × 4.40 mm  
3.00 mm × 3.00 mm  
2.00 mm × 2.00 mm  
Multiplexed data-acquisition systems  
Test and measurement equipment  
Motor drive: power stage and control modules  
Power delivery: UPS, server, and merchant  
network power  
ADC driver and reference buffer amplifier  
Programmable logic controllers  
Analog input and output modules  
High-side and low-side current sensing  
High precision comparator  
SOT-23 (5)  
SOT-23 (6)  
SC70 (5)  
OPA990  
SOT-553 (5)(2)  
SOIC (8)  
SOT-23 (8)  
TSSOP (8)  
VSSOP (8)(2)  
VSSOP (10)  
WSON (8)  
X2QFN (10)  
SOIC (14)  
OPA2990  
OPA4990  
TSSOP (14)  
WQFN (16)  
X2QFN (14)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
(2) This package is preview only.  
Analog Inputs  
REF3140  
RC Filter  
OPA375  
RC Filter  
Bridge Sensor  
Reference Driver  
Gain Network  
Gain Network  
OPA990  
+
MUX509  
Thermocouple  
REF  
+
OPA990  
VINP  
Gain Network  
Antialiasing  
Filter  
OPA990  
+
ADS8860  
Current Sensing  
VINM  
Photo  
Detector  
LED  
High-Voltage Multiplexed Input  
High-Voltage Level Translation  
VCM  
Optical Sensor  
OPAx990 in a High-Voltage, Multiplexed, Data-Acquisition System  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specifications................................................................ 10  
6.1 Absolute Maximum Ratings ..................................... 10  
6.2 ESD Ratings ............................................................ 10  
6.3 Recommended Operating Conditions ......................10  
6.4 Thermal Information for Single Channel .................. 11  
6.5 Thermal Information for Dual Channel .....................11  
6.6 Thermal Information for Quad Channel ................... 12  
6.7 Electrical Characteristics ..........................................13  
6.8 Typical Characteristics..............................................16  
7 Detailed Description......................................................24  
7.1 Overview...................................................................24  
7.2 Functional Block Diagram.........................................24  
7.3 Feature Description...................................................25  
7.4 Device Functional Modes..........................................33  
8 Application and Implementation..................................34  
8.1 Application Information............................................. 34  
8.2 Typical Applications.................................................. 34  
9 Power Supply Recommendations................................36  
10 Layout...........................................................................36  
10.1 Layout Guidelines................................................... 36  
10.2 Layout Example...................................................... 36  
11 Device and Documentation Support..........................39  
11.1 Device Support........................................................39  
11.2 Documentation Support.......................................... 39  
11.3 Receiving Notification of Documentation Updates..39  
11.4 Support Resources................................................. 39  
11.5 Trademarks............................................................. 39  
11.6 Electrostatic Discharge Caution..............................39  
11.7 Glossary..................................................................39  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 40  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision G (December 2020) to Revision H (May 2021)  
Page  
Removed preview notation from OPA4990 WQFN (16) package from Device Information table.......................1  
Removed preview notation from OPA4990 X2QFN (14) package from Device Information table......................1  
Removed preview notation from OPA4990 and OPA4990S RTE package (WQFN) in the Pin Configuration  
and Functions section.........................................................................................................................................4  
Removed Table of Graphs from Specifications section.................................................................................... 10  
Clarified threshold and maximum voltage levels of the shutdown pin in the Shutdown section.......................32  
Removed Related Links from Device and Documentation section...................................................................39  
Changes from Revision F (May 2020) to Revision G (December 2020)  
Page  
Updated the numbering format for tables, figures and cross-references throughout the document ..................1  
Removed preview notation from OPA2990 SOT-23 (8) package from Device Information table....................... 1  
Added OPA2990 VSSOP (10) package to Device Information table..................................................................1  
Clarified SHDN notation on OPA990S Pin Functions ........................................................................................ 4  
Removed preview notation from OPA2990 DDF package (SOT-23) in the Pin Configuration and Functions  
section................................................................................................................................................................ 4  
Removed preview notation from OPA2990S DGS package (VSSOP) in the Pin Configuration and Functions  
section ............................................................................................................................................................... 4  
Clarified SHDN notation for OPA2990S in the Pin Functions section ................................................................4  
Clarified SHDN notation for OPA4990S in the Pin Functions section ................................................................4  
Changes from Revision E (December 2019) to Revision F (May 2020)  
Page  
Removed preview notation from OPA2990 X2QFN (10) package from Device Information table .....................1  
Removed preview notation from OPA2990S RUG package (X2QFN) in the Pin Configuration and Functions  
section ............................................................................................................................................................... 4  
Changed RUG (X2QFN) in Thermal Information for Dual Channel section....................................................... 4  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
Changes from Revision D (July 2019) to Revision E (December 2019)  
Page  
Changed the OPA990 and OPA4990 device statuses from Advance Information to Production Data ..............1  
Removed preview notation from OPA990 SOT-23 (5) package from Device Information table......................... 1  
Removed preview notation from OPA990S SOT-23 (6) package from Device Information table.......................1  
Removed preview notation from OPA990 SC70 (5) package from Device Information table.............................1  
Removed preview notation from OPA4990 SOIC (14) package from Device Information table.........................1  
Removed preview notation from OPA4990 TSSOP (14) package from Device Information table..................... 1  
Removed preview notation from OPA990 DBV package (SOT-23) in the Pin Configuration and Functions  
section................................................................................................................................................................ 4  
Removed preview notation from OPA990 DCK package (SC70) in the Pin Configuration and Functions  
section................................................................................................................................................................ 4  
Removed preview notation from OPA4990 D (SOIC) and TSSOP (PW) packages in the Pin Configuration and  
Functions section................................................................................................................................................4  
Removed preview notation from OPA990S DBV package (SOT-23) in the Pin Configuration and Functions  
section................................................................................................................................................................ 4  
Changes from Revision C (May 2019) to Revision D (July 2019)  
Page  
Removed preview notation from OPA2990 WSON (8) package from Device Information table........................ 1  
Removed preview notation from OPA2990 DSG package (WSON) in the Pin Configuration and Functions  
section................................................................................................................................................................ 4  
Added SHUTDOWN to Electrical Characteristics table....................................................................................13  
Added Shutdown section to the Detailed Description section.......................................................................... 32  
Changes from Revision B (April 2019) to Revision C (May 2019)  
Page  
Removed preview notation from OPA2990 TSSOP (8) package from Device Information table....................... 1  
Removed preview notation from OPA2990 PW package (TSSOP) in the Pin Configuration and Functions  
section................................................................................................................................................................ 4  
Changes from Revision A (March 2019) to Revision B (April 2019)  
Page  
Removed preview notation from OPA2990 SOIC (8) package from Device Information table...........................1  
Removed preview notation from OPA2990 D package (SOIC) in the Pin Configuration and Functions section..  
4
Changes from Revision * (February 2019) to Revision A (March 2019)  
Page  
Changed the OPA2990 device status from Advance Information to Production Data .......................................1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA990 OPA2990 OPA4990  
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
5 Pin Configuration and Functions  
OUT  
Vœ  
1
2
3
5
V+  
IN+  
Vœ  
1
2
3
5
V+  
IN+  
4
INœ  
INœ  
4
OUT  
Not to scale  
Not to scale  
A. DRL package is preview only.  
OPA990 DCK Package  
5-Pin SC70  
OPA990 DBV and DRL Package(A)  
5-Pin SOT-23 and SOT-553  
Top View  
Top View  
Table 5-1. Pin Functions: OPA990  
PIN  
I/O  
DESCRIPTION  
NAME  
DBV and DRL  
DCK  
IN+  
IN–  
3
4
1
5
2
1
3
4
5
2
I
Noninverting input  
Inverting input  
Output  
I
OUT  
V+  
O
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
OUT  
V–  
1
6
5
4
V+  
2
3
SHDN  
–IN  
+IN  
Not to scale  
A. DRL package is preview only.  
Figure 5-1. OPA990S DBV and DRL Package(A)  
6-Pin SOT-23 and SOT-563  
Top View  
Table 5-2. Pin Functions: OPA990S  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
3
IN+  
I
I
Noninverting input  
Inverting input  
Output  
IN–  
4
OUT  
1
O
Shutdown: low = amplifier enabled, high = amplifier disabled. See Shutdown  
section for more information.  
SHDN  
5
I
V+  
V–  
6
2
Positive (highest) power supply  
Negative (lowest) power supply  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
OUT1  
IN1œ  
IN1+  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT1  
IN1œ  
IN1+  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT2  
IN2œ  
IN2+  
OUT2  
IN2œ  
IN2+  
Thermal  
Pad  
Not to scale  
Not to scale  
A. DGK package is preview only.  
A. Connect thermal pad to V–. See Packages with an Exposed  
Thermal Pad section for more information.  
Figure 5-3. OPA2990 DSG Package(A)  
8-Pin WSON With Exposed Thermal Pad  
Top View  
Figure 5-2. OPA2990 D, DDF, DGK, PW, and TDDF  
Package(A)  
8-Pin SOIC, SOT-23-8, TSSOP, and VSSOP  
Top View  
Table 5-3. Pin Functions: OPA2990  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
3
IN1+  
IN1–  
IN2+  
IN2–  
OUT1  
OUT2  
V+  
I
I
Noninverting input, channel 1  
2
Inverting input, channel 1  
Noninverting input, channel 2  
Inverting input, channel 2  
Output, channel 1  
5
I
6
I
1
O
O
7
Output, channel 2  
8
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
4
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA990 OPA2990 OPA4990  
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
OUT1  
IN1–  
1
2
3
4
5
10  
9
V+  
V–  
SHDN1  
SHDN2  
IN2+  
1
2
3
4
9
8
7
6
IN1–  
OUT1  
V+  
OUT2  
IN2–  
IN1+  
8
V–  
7
IN2+  
SHDN1  
6
SHDN2  
Not to scale  
OUT2  
Figure 5-4. OPA2990S DGS Package  
10-Pin VSSOP  
Not to scale  
Top View  
Figure 5-5. OPA2990S RUG Package  
10-Pin X2QFN  
Top View  
Table 5-4. Pin Functions: OPA2990S  
PIN  
I/O  
DESCRIPTION  
NAME  
VSSOP  
X2QFN  
IN1+  
IN1–  
IN2+  
IN2–  
3
2
7
8
1
9
10  
9
I
I
Noninverting input, channel 1  
Inverting input, channel 1  
Noninverting input, channel 2  
Inverting input, channel 2  
Output, channel 1  
4
I
5
I
OUT1  
OUT2  
8
O
O
6
Output, channel 2  
Shutdown, channel 1: low = amplifier enabled, high = amplifier  
disabled. See Shutdown section for more information.  
SHDN1  
SHDN2  
5
6
2
3
I
I
Shutdown, channel 2: low = amplifier enabled, high = amplifier  
disabled. See Shutdown section for more information.  
V+  
V–  
10  
4
7
1
Positive (highest) power supply  
Negative (lowest) power supply  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA990 OPA2990 OPA4990  
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
OUT1  
IN1œ  
IN1+  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT4  
IN4œ  
IN4+  
Vœ  
IN1+  
V+  
1
2
3
4
12  
11  
10  
9
IN4+  
Vœ  
IN2+  
IN2œ  
OUT2  
IN3+  
IN3œ  
OUT3  
Thermal  
Pad  
IN2+  
IN2œ  
IN3+  
IN3œ  
8
Not to scale  
Figure 5-6. OPA4990 D and PW Package  
14-Pin SOIC and TSSOP  
Top View  
Not to scale  
A. Connect thermal pad to V–. See Packages with an Exposed  
Thermal Pad section for more information.  
Figure 5-7. OPA4990 RTE Package(A)  
16-Pin WQFN With Exposed Thermal Pad  
Top View  
IN1œ  
IN1+  
V+  
1
2
3
4
5
12  
11  
10  
9
IN4œ  
IN4+  
Vœ  
IN2+  
IN2œ  
IN3+  
IN3œ  
8
Not to scale  
Figure 5-8. OPA4990 RUC Package  
14-Pin X2QFN With Exposed Thermal Pad  
Top View  
Table 5-5. Pin Functions: OPA4990  
PIN  
I/O  
DESCRIPTION  
SOIC and  
TSSOP  
NAME  
IN1+  
WQFN  
X2QFN  
3
2
5
1
16  
3
2
1
4
I
I
I
Noninverting input, channel 1  
IN1–  
IN2+  
Inverting input, channel 1  
Noninverting input, channel 2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA990 OPA2990 OPA4990  
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
Table 5-5. Pin Functions: OPA4990 (continued)  
PIN  
I/O  
DESCRIPTION  
SOIC and  
TSSOP  
NAME  
IN2–  
WQFN  
X2QFN  
6
10  
9
4
10  
9
5
9
I
I
Inverting input, channel 2  
IN3+  
IN3–  
IN4+  
IN4–  
NC  
Noninverting input, channel 3  
Inverting input, channel 3  
Noninverting input, channel 4  
Inverting input, channel 4  
Do not connect  
8
I
12  
13  
1
12  
13  
6, 7  
15  
5
11  
12  
14  
6
I
I
O
O
O
O
OUT1  
OUT2  
OUT3  
OUT4  
V+  
Output, channel 1  
7
Output, channel 2  
8
8
7
Output, channel 3  
14  
4
14  
2
13  
3
Output, channel 4  
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
11  
11  
10  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA990 OPA2990 OPA4990  
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
IN1+  
V+  
1
2
3
4
12  
11  
10  
9
IN4+  
V–  
Thermal  
Pad  
IN2+  
IN2–  
IN3+  
IN3–  
Not to scale  
A. Connect thermal pad to V–. See Packages with an Exposed Thermal Pad section for more information.  
Figure 5-9. OPA4990S RTE Package(A)  
16-Pin WQFN With Exposed Thermal Pad  
Top View  
Table 5-6. Pin Functions: OPA4990S  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
1
IN1+  
IN1–  
IN2+  
IN2–  
IN3+  
IN3–  
IN4+  
IN4–  
OUT1  
OUT2  
OUT3  
OUT4  
I
I
Noninverting input, channel 1  
Inverting input, channel 1  
Noninverting input, channel 2  
Inverting input, channel 2  
Noninverting input, channel 3  
Inverting input, channel 3  
Noninverting input, channel 4  
Inverting input, channel 4  
Output, channel 1  
16  
3
I
4
I
10  
9
I
I
12  
13  
15  
5
I
I
O
O
O
O
Output, channel 2  
8
Output, channel 3  
14  
Output, channel 4  
Shutdown, channels 1 and 2: low = amplifiers enabled, high = amplifiers  
disabled. See Shutdown section for more information.  
SHDN12  
SHDN34  
6
7
I
I
Shutdown, channels 3 and 4: low = amplifiers enabled, high = amplifiers  
disabled. See Shutdown section for more information.  
VCC+  
VCC–  
2
Positive (highest) power supply  
Negative (lowest) power supply  
11  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA990 OPA2990 OPA4990  
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
0
MAX  
42  
UNIT  
V
Supply voltage, VS = (V+) – (V–)  
Common-mode voltage(3)  
(V–) – 0.5  
(V+) + 0.5  
VS + 0.2  
10  
V
Signal input pins  
Differential voltage(3)  
Current(3)  
V
–10  
V–  
mA  
V
Shutdown pin voltage(4)  
(V–) + 20  
Output short-circuit(2)  
Continuous  
Operating ambient temperature, TA  
Junction temperature, TJ  
Storage temperature, Tstg  
–55  
–65  
150  
150  
150  
°C  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Short-circuit to ground, one amplifier per package. Extended short-circuit current, especially with higher supply voltage, can cause  
excessive heating and eventual destruction. See the Thermal Protection section for more information.  
(3) Input pins are diode-clamped to the power-supply rails. Input signals that may swing more than 0.5 V beyond the supply rails must be  
current limited to 10 mA or less.  
(4) Cannot exceed V+.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
2.7  
MAX  
UNIT  
VS  
VI  
Supply voltage, (V+) – (V–)  
40  
(V+) + 0.2  
(V–) + 20 V(1)  
(V–) + 0.2  
125  
V
V
Input voltage range  
(V–) – 0.2  
(V–) + 1.1  
(V–)  
VIH  
VIL  
TA  
High level input voltage at shutdown pin (amplifier enabled)  
Low level input voltage at shutdown pin (amplifier disabled)  
Specified temperature  
V
V
–40  
°C  
(1) Cannot exceed V+.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
 
 
 
 
 
 
 
 
 
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
6.4 Thermal Information for Single Channel  
OPA990, OPA990S  
DBV  
(SOT-23)  
DCK  
(SC70)  
DRL(2)  
(SOT-553)  
THERMAL METRIC(1)  
UNIT  
5 PINS  
6 PINS  
1174.5  
113.4  
55.8  
5 PINS  
204.6  
116.5  
51.8  
5 PINS  
6 PINS  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
192.1  
113.6  
60.5  
37.2  
60.3  
N/A  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
39.6  
24.9  
ψJB  
55.6  
51.5  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) This package option is preview for OPA990.  
6.5 Thermal Information for Dual Channel  
OPA2990, OPA2990S  
D
DDF  
(SOT-23-8)  
DGK(2)  
(VSSOP)  
DGS  
(VSSOP)  
DSG  
(WSON)  
PW  
(TSSOP)  
RUG  
(X2QFN)  
THERMAL METRIC(1)  
UNIT  
(SOIC)  
8 PINS  
8 PINS  
8 PINS  
10 PINS  
8 PINS  
8 PINS  
10 PINS  
Junction-to-ambient  
thermal resistance  
RθJA  
RθJC(top)  
138.7  
150.4  
189.3  
152.2  
81.6  
188.4  
149.6  
°C/W  
°C/W  
°C/W  
Junction-to-case (top)  
thermal resistance  
78.7  
82.2  
85.6  
70.0  
75.8  
67.3  
95.5  
101.6  
48.3  
77.1  
58.3  
77.7  
Junction-to-board thermal  
resistance  
RθJB  
111.0  
119.1  
Junction-to-top  
characterization  
parameter  
ψJT  
27.8  
8.1  
15.4  
67.9  
6.0  
14.2  
1.3  
°C/W  
Junction-to-board  
characterization  
parameter  
ψJB  
81.4  
N/A  
69.6  
N/A  
109.3  
N/A  
94.3  
N/A  
48.3  
22.8  
117.4  
N/A  
77.5  
N/A  
°C/W  
°C/W  
Junction-to-case (bottom)  
thermal resistance  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) This package option is preview for OPA2990.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
 
 
 
 
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
6.6 Thermal Information for Quad Channel  
OPA4990, OPA4990S  
D
PW  
RTE(2)  
(WQFN)  
RUC  
(WQFN)  
THERMAL METRIC(1)  
UNIT  
(SOIC)  
14 PINS  
105.2  
61.2  
(TSSOP)  
14 PINS  
134.7  
55.0  
16 PINS  
53.5  
58.3  
28.6  
2.1  
14 PINS  
143.0  
46.4  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
61.1  
79.0  
81.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
21.4  
9.2  
1.0  
ψJB  
60.7  
78.1  
28.6  
12.6  
81.5  
RθJC(bot)  
N/A  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) This package option is preview for OPA4990.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
 
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
6.7 Electrical Characteristics  
For VS = (V+) – (V–) = 2.7 V to 40 V (±1.35 V to ±20 V) at TA = 25°C, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and  
VO UT = VS / 2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
±0.3  
±1.5  
VOS  
Input offset voltage  
VCM = V–  
mV  
TA = –40°C to 125°C  
±1.75  
dVOS/dT  
PSRR  
Input offset voltage drift  
TA = –40°C to 125°C  
±0.6  
±0.1  
±0.75  
5
µV/  
µV/V  
µV/V  
VCM = V–, VS = 4 V to 40 V  
VCM = V–, VS = 2.7 V to 40 V(2)  
f = 0 Hz  
±1.3  
±6.6  
Input offset voltage versus  
power supply  
TA = –40°C to 125°C  
Channel separation  
INPUT BIAS CURRENT  
IB  
Input bias current  
±10  
±5  
pA  
pA  
IOS  
Input offset current  
NOISE  
6
1
µVPP  
EN  
Input voltage noise  
f = 0.1 Hz to 10 Hz  
µVRMS  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
30  
28  
2
eN  
iN  
Input voltage noise density  
Input current noise  
nV/√Hz  
fA/√Hz  
INPUT VOLTAGE RANGE  
Common-mode voltage  
range  
VCM  
(V–) – 0.2  
(V+) + 0.2  
V
VS = 40 V, (V–) – 0.1 V < VCM  
(V+) – 2 V (PMOS pair)  
<
100  
75  
115  
90  
VS = 4 V, (V–) – 0.1 V < VCM  
(V+) – 2 V (PMOS pair)  
<
dB  
Common-mode rejection  
ratio  
VS = 2.7 V, (V–) – 0.1 V < VCM  
(V+) – 2 V (PMOS pair)(2)  
<
CMRR  
TA = –40°C to 125°C  
70  
90  
VS = 2.7 – 40 V, (V+) – 1 V < VCM  
< (V+) + 0.1 V (NMOS pair)  
80  
See Offset Voltage (Transition Region) in the Typical  
Characteristics section  
(V+) – 2 V < VCM < (V+) – 1 V  
INPUT CAPACITANCE  
ZID  
Differential  
540 || 3  
6 || 1  
GΩ || pF  
TΩ || pF  
ZICM  
Common-mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
6.7 Electrical Characteristics (continued)  
For VS = (V+) – (V–) = 2.7 V to 40 V (±1.35 V to ±20 V) at TA = 25°C, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and  
VO UT = VS / 2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
120  
104  
101  
TYP  
MAX  
UNIT  
OPEN-LOOP GAIN  
145  
142  
130  
125  
118  
VS = 40 V, VCM = VS / 2,  
(V–) + 0.1 V < VO < (V+) – 0.1 V  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
dB  
VS = 4 V, VCM = VS / 2,  
(V–) + 0.1 V < VO < (V+) – 0.1 V  
AOL  
Open-loop voltage gain  
VS = 2.7 V, VCM = VS / 2,  
(V–) + 0.1 V < VO < (V+) – 0.1  
V(2)  
dB  
dB  
TA = –40°C to 125°C  
117  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
1.1  
4.5  
4
MHz  
V/μs  
Slew rate  
VS = 40 V, G = +1, CL = 20 pF  
To 0.1%, VS = 40 V, VSTEP = 10 V , G = +1, CL = 20 pF  
To 0.1%, VS = 40 V, VSTEP = 2 V , G = +1, CL = 20 pF  
To 0.01%, VS = 40 V, VSTEP = 10 V , G = +1, CL = 20 pF  
To 0.01%, VS = 40 V, VSTEP = 2 V , G = +1, CL = 20 pF  
G = +1, RL = 10 kΩ, CL = 20 pF  
2
tS  
Settling time  
µs  
5
3
Phase margin  
60  
600  
°
Overload recovery time  
VIN × gain > VS  
ns  
Total harmonic distortion +  
noise  
THD+N  
VS = 40 V, VO = 1 VRMS, G = 1, f = 1 kHz  
0.00162%  
OUTPUT  
VS = 40 V, RL = no load  
VS = 40 V, RL = 10 kΩ  
VS = 40 V, RL = 2 kΩ  
2
45  
60  
200  
300  
Voltage output swing from Positive and negative  
mV  
mA  
VS = 2.7 V, RL = no  
load  
rail  
rail headroom  
1
VS = 2.7 V, RL = 10 kΩ  
VS = 2.7 V, RL = 2 kΩ  
5
25  
20  
50  
ISC  
Short-circuit current  
Capacitive load drive  
±80  
See Small-Signal Overshoot vs Capacitive Load in the  
CLOAD  
Typical Characteristics section  
Open-loop output  
impedance  
ZO  
f = 1 MHz, IO = 0 A  
575  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA990 OPA2990 OPA4990  
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
6.7 Electrical Characteristics (continued)  
For VS = (V+) – (V–) = 2.7 V to 40 V (±1.35 V to ±20 V) at TA = 25°C, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and  
VO UT = VS / 2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
120  
130  
40  
MAX  
UNIT  
POWER SUPPLY  
150  
160  
170  
175  
OPA2990, OPA4990, IO = 0 A  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
Quiescent current per  
amplifier  
IQ  
µA  
μs  
OPA990, IO = 0 A  
Turn-on time  
At TA = 25°C, VS = 40 V, VS ramp rate > 0.3 V/µs  
SHUTDOWN  
Quiescent current per  
amplifier  
VS = 2.7 V to 40 V, all amplifiers disabled, SHDN = V– + 2  
V
IQSD  
20  
30  
µA  
Output impedance during  
shutdown  
ZSHDN  
VS = 2.7 V to 40 V, amplifier disabled, SHDN = V– + 2 V  
10 || 12  
GΩ || pF  
For valid input high, the SHDN pin voltage should be  
greater than the maximum threshold but less than or equal  
to (V–) + 20 V  
Logic high threshold  
voltage (amplifier disabled)  
VIH  
(V–) + 0.8  
(V–) + 0.8  
(V–) + 1.1  
V
V
For valid input low, the SHDN pin voltage should be less  
than the minimum threshold but greater than or equal to  
V–  
Logic low threshold voltage  
(amplifier enabled)  
VIL  
(V–) + 0.2  
tON  
Amplifier enable time (1)  
Amplifier disable time (1)  
G = +1, VCM = V–, VO = 0.1 × VS / 2  
11  
2.5  
µs  
µs  
tOFF  
VCM = V–, VO = VS / 2  
VS = 2.7 V to 40 V, (V–) + 20 V ≥ SHDN ≥ (V–) + 0.9 V  
VS = 2.7 V to 40 V, (V–) ≤ SHDN ≤ (V–) + 0.7 V  
500  
150  
SHDN pin input bias  
current (per pin)  
nA  
(1) Disable time (tOFF) and enable time (tON) are defined as the time interval between the 50% point of the signal applied to the SHDN pin  
and the point at which the output voltage reaches the 10% (disable) or 90% (enable) level.  
(2) Specified by characterization only.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
6.8 Typical Characteristics  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 10 pF (unless otherwise noted)  
25%  
20%  
15%  
10%  
5%  
25%  
20%  
15%  
10%  
5%  
0
0
D001  
Offset Voltage (mV)  
Offset Voltage Drift (mV/èC)  
D002  
Distribution from 15526 amplifiers, TA = 25°C  
Distribution from 190 amplifiers  
Figure 6-1. Offset Voltage Production Distribution  
Figure 6-2. Offset Voltage Drift Distribution  
1000  
800  
800  
600  
400  
200  
0
600  
400  
200  
0
-200  
-400  
-600  
-800  
-1000  
-200  
-400  
-600  
-800  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D003  
D004  
VCM = V+  
VCM = V–  
Each color represents one sample device.  
Each color represents one sample device.  
Figure 6-3. Offset Voltage vs Temperature  
Figure 6-4. Offset Voltage vs Temperature  
800  
800  
600  
400  
200  
0
600  
400  
200  
0
-200  
-400  
-600  
-800  
-200  
-400  
-600  
-800  
-20 -16 -12  
-8  
-4  
Common Mode Voltage (V)  
0
4
8
12  
16  
20  
16  
16.5  
17  
17.5  
Common Mode Voltage (V)  
18  
18.5  
19  
19.5  
20  
D005  
D005  
TA = 25°C  
TA = 25°C  
Each color represents one sample device.  
Each color represents one sample device.  
Figure 6-5. Offset Voltage vs Common-Mode Voltage  
Figure 6-6. Offset Voltage vs Common-Mode Voltage (Transition  
Region)  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
 
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 10 pF (unless otherwise noted)  
1000  
800  
800  
600  
600  
400  
400  
200  
200  
0
0
-200  
-400  
-600  
-800  
-1000  
-1200  
-200  
-400  
-600  
-800  
-1000  
-20 -16 -12  
-8  
-4  
Common Mode Voltage (V)  
0
4
8
12  
16  
20  
-20 -16 -12  
-8  
-4  
Common Mode Voltage (V)  
0
4
8
12  
16  
20  
D006  
D007  
TA = 125°C  
TA = –40°C  
Each color represents one sample device.  
Each color represents one sample device.  
Figure 6-8. Offset Voltage vs Common-Mode Voltage  
Figure 6-7. Offset Voltage vs Common-Mode Voltage  
100  
80  
60  
40  
20  
0
150  
125  
100  
75  
750  
600  
450  
300  
150  
0
Gain  
Phase  
-150  
-300  
-450  
-600  
-750  
50  
25  
-20  
100  
0
1k  
10k  
Frequency (Hz)  
100k  
1M  
0
4
8
12 16 20 24 28 32 36 40 44  
Supply Voltage (V)  
C002  
D008  
CL = 20 pF  
VCM = V–  
Figure 6-10. Open-Loop Gain and Phase vs Frequency  
Each color represents one sample device.  
Figure 6-9. Offset Voltage vs Power Supply  
70  
60  
50  
40  
30  
20  
10  
0
3
G = 1  
G = -1  
G = 10  
G = 100  
G = 1000  
IB-  
2.5  
IB+  
IOS  
2
1.5  
1
0.5  
0
-0.5  
-1  
-10  
-20  
-30  
-1.5  
-2  
-2.5  
-20 -16 -12  
-8  
-4  
0
4
8
Common Mode Voltage (V)  
12  
16  
20  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
D010  
C001  
Figure 6-12. Input Bias Current vs Common-Mode Voltage  
Figure 6-11. Closed-Loop Gain vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA990 OPA2990 OPA4990  
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 10 pF (unless otherwise noted)  
V+  
V+ 1 V  
V+ 2 V  
V+ 3 V  
V+ 4 V  
V+ 5 V  
V+ 6 V  
V+ 7 V  
V+ 8 V  
V+ 9 V  
V+ 10 V  
320  
280  
240  
200  
160  
120  
80  
IB-  
IB+  
IOS  
-40°C  
25°C  
85°C  
125°C  
40  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
-40  
Output Current (mA)  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D012  
D011  
Figure 6-14. Output Voltage Swing vs Output Current (Sourcing)  
Figure 6-13. Input Bias Current vs Temperature  
V+ 10 V  
V+ 9 V  
V+ 8 V  
V+ 7 V  
V+ 6 V  
V+ 5 V  
V+ 4 V  
V+ 3 V  
V+ 2 V  
V+ 1 V  
Vꢀ  
5
-40°C  
25°C  
85°C  
125°C  
-40èC  
4.5  
4
3.5  
3
25èC  
125èC  
85èC  
2.5  
2
1.5  
1
0.5  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
Output Current (mA)  
D012  
D013  
VS = 5 V  
Figure 6-15. Output Voltage Swing vs Output Current (Sinking)  
Figure 6-16. Output Voltage Swing vs Output Current (Sourcing)  
5
4.5  
4
110  
PSRR+  
PSRR-  
CMRR  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.5  
3
85èC  
2.5  
125èC  
2
1.5  
1
-40èC  
25èC  
0.5  
0
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D013  
C003  
VS = 5 V  
Figure 6-17. Output Voltage Swing vs Output Current (Sinking)  
Figure 6-18. CMRR and PSRR vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA990 OPA2990 OPA4990  
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 10 pF (unless otherwise noted)  
124  
120  
116  
112  
108  
104  
100  
96  
145  
144  
143  
142  
141  
140  
139  
138  
137  
136  
135  
VS = 40 V  
VS = 4 V  
92  
88  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D015  
D016  
f = 0 Hz  
f = 0 Hz  
Figure 6-20. PSRR vs Temperature (dB)  
Figure 6-19. CMRR vs Temperature (dB)  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Time (1s/Div)  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
C015  
C017  
Figure 6-21. 0.1-Hz to 10-Hz Noise  
Figure 6-22. Input Voltage Noise Spectral Density vs Frequency  
-40  
-50  
-30  
RL = 10 kW  
RL = 2 kW  
RL = 600 W  
RL = 128 W  
-40  
-50  
-60  
-70  
-60  
-70  
-80  
-90  
-80  
RL = 10 kW  
RL = 2 kW  
-100  
-110  
-90  
RL = 549 W  
RL = 128 W  
-100  
100  
1k  
Frequency (Hz)  
10k  
0.001  
0.01  
0.1  
Amplitude (VRMS)  
1
10 20  
C012  
C023  
BW = 80 kHz, VOUT = 1 VRMS  
BW = 80 kHz, f = 1 kHz  
Figure 6-24. THD+N vs Output Amplitude  
Figure 6-23. THD+N Ratio vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA990 OPA2990 OPA4990  
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 10 pF (unless otherwise noted)  
130  
125  
120  
115  
110  
105  
100  
95  
127.5  
125  
122.5  
120  
117.5  
115  
112.5  
110  
107.5  
105  
90  
102.5  
85  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
0
4
8
12  
16  
20  
24  
Supply Voltage (V)  
28  
32  
36  
40  
D022  
D021  
VCM = V–  
Figure 6-25. Quiescent Current vs Supply Voltage  
Figure 6-26. Quiescent Current vs Temperature  
146  
780  
720  
660  
600  
540  
480  
420  
360  
300  
240  
180  
120  
144  
142  
140  
138  
136  
134  
132  
130  
128  
126  
124  
VS = 40 V  
VS = 4 V  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D023  
C013  
Figure 6-27. Open-Loop Voltage Gain vs Temperature (dB)  
Figure 6-28. Open-Loop Output Impedance vs Frequency  
200  
180  
160  
140  
120  
100  
80  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-220  
60  
40  
20  
0
0
4
8
12  
16  
20  
24  
Supply Voltage (V)  
28  
32  
36  
40  
0
4
8
12  
16  
20  
24  
Supply Voltage (V)  
28  
32  
36  
40  
D026  
D026  
RL = 2 kΩ  
RL = 2 kΩ  
Figure 6-30. Output Swing vs Supply Voltage, Negative Swing  
Figure 6-29. Output Swing vs Supply Voltage, Positive Swing  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA990 OPA2990 OPA4990  
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 10 pF (unless otherwise noted)  
40  
36  
32  
28  
24  
20  
16  
12  
8
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
4
0
0
4
8
12  
16  
20  
24  
Supply Voltage (V)  
28  
32  
36  
40  
0
4
8
12  
16  
20  
24  
Supply Voltage (V)  
28  
32  
36  
40  
D027  
D027  
RL = 10 kΩ  
RL = 10 kΩ  
Figure 6-32. Output Swing vs Supply Voltage, Negative Swing  
Figure 6-31. Output Swing vs Supply Voltage, Positive Swing  
33  
30  
27  
24  
21  
18  
15  
55  
50  
45  
40  
35  
30  
25  
12  
20  
RISO = 0 W, Positive Overshoot  
RISO = 0 W, Positive Overshoot  
9
15  
RISO = 0 W, Negative Overshoot  
RISO = 0 W, Negative Overshoot  
RISO = 50 W, Positive Overshoot  
RISO = 50 W, Negative Overshoot  
RISO = 50 W, Positive Overshoot  
RISO = 50 W, Negative Overshoot  
6
10  
3
5
0
40  
80  
120 160 200 240 280 320 360  
Cap Load (pF)  
0
40  
80  
120 160 200 240 280 320 360  
Cap Load (pF)  
C007  
C008  
G = –1, 10-mV output step  
G = 1, 10-mV output step  
Figure 6-33. Small-Signal Overshoot vs Capacitive Load  
Figure 6-34. Small-Signal Overshoot vs Capacitive Load  
64  
60  
56  
52  
48  
44  
40  
36  
32  
28  
24  
20  
Input  
Output  
Time (20µs/Div)  
0
100 200 300 400 500 600 700 800 900 1000  
Cap Load (pF)  
C016  
C009  
VIN = ±20 V; VS = VOUT = ±17 V  
Figure 6-36. No Phase Reversal  
Figure 6-35. Phase Margin vs Capacitive Load  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 10 pF (unless otherwise noted)  
Input  
Output  
Input  
Output  
Time (500ns/div)  
Time (500ns/div)  
C018  
C010  
C005  
C018  
C011  
C005  
G = –10  
G = –10  
Figure 6-37. Positive Overload Recovery  
Figure 6-38. Negative Overload Recovery  
Input  
Output  
Input  
Output  
Time (2ms/div)  
Time (1µs/div)  
CL = 20 pF, G = 1, 20-mV step response  
CL = 20 pF, G = 1, 20-mV step response  
Figure 6-39. Small-Signal Step Response  
Figure 6-40. Small-Signal Step Response  
Input  
Output  
Input  
Output  
Time (1µs/div)  
Time (1µs/div)  
CL = 20 pF, G = 1  
CL = 20 pF, G = 1  
Figure 6-41. Large-Signal Step Response (Falling)  
Figure 6-42. Large-Signal Step Response (Rising)  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA990 OPA2990 OPA4990  
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 10 pF (unless otherwise noted)  
100  
80  
60  
Input  
Output  
40  
20  
Sourcing  
Sinking  
0
-20  
-40  
-60  
-80  
-100  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
Time (2µs/div)  
D038  
C021  
CL = 20 pF, G = 1  
Figure 6-44. Short-Circuit Current vs Temperature  
Figure 6-43. Large-Signal Step Response  
-60  
20  
15  
10  
5
VS = 15 V  
VS = 2.7 V  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
0
1k  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10k  
100k  
1M  
10M  
C014  
Frequency (Hz)  
C020  
Figure 6-46. Channel Separation vs Frequency  
Figure 6-45. Maximum Output Voltage vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
1M  
10M  
100M  
Frequency (Hz)  
1G  
C004  
Figure 6-47. EMIRR (Electromagnetic Interference Rejection Ratio) vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA990 OPA2990 OPA4990  
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The OPAx990 family (OPA990, OPA2990, and OPA4990) is a family of high voltage (40-V) general purpose  
operational amplifiers.  
These devices offer excellent DC precision and AC performance, including rail-to-rail input/output, low offset  
(±300 µV, typ), and low offset drift (±0.6 µV/°C, typ).  
Unique features such as differential and common-mode input voltage range to the supply rail, high short-circuit  
current (±80 mA), high slew rate (4.5 V/µs), and shutdown make the OPAx990 an extremely flexible, robust, and  
high-performance operational amplifier for high-voltage industrial applications.  
7.2 Functional Block Diagram  
+
NCH Input  
Stage  
œ
IN+  
+
40-V  
OUT  
Output  
Stage  
Differential  
MUX-Friendly  
Front End  
Slew  
Boost  
Shutdown  
Circuitry  
œ
IN-  
+
PCH Input  
Stage  
œ
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
 
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
7.3 Feature Description  
7.3.1 Input Protection Circuitry  
The OPAx990 uses a unique input architecture to eliminate the requirement for input protection diodes but still  
provides robust input protection under transient conditions. Figure 7-1 shows conventional input diode protection  
schemes that are activated by fast transient step responses and introduce signal distortion and settling time  
delays because of alternate current paths, as shown in Figure 7-2. For low-gain circuits, these fast-ramping input  
signals forward-bias back-to-back diodes, causing an increase in input current and resulting in extended settling  
time.  
V+  
V+  
VIN+  
VIN+  
VOUT  
VOUT  
OPAx990  
~0.7 V  
40 V  
VIN-  
VIN-  
V-  
V-  
OPAx990 Provides Full 40-V  
Differential Input Range  
Conventional Input Protection  
Limits Differential Input Range  
Figure 7-1. OPAx990 Input Protection Does Not Limit Differential Input Capability  
1
Ron_mux  
Vn = 10 V  
RFILT  
10 V  
Sn  
D
1
2
~œ9.3 V  
10 V  
CFILT  
CS  
CD  
VINœ  
2
Ron_mux  
Sn+1  
Vn+1 = œ10 V RFILT  
œ10 V  
~0.7 V  
VOUT  
CFILT  
CS  
Idiode_transient  
VIN+  
œ10 V  
Input Low-Pass Filter  
Simplified Mux Model  
Buffer Amplifier  
Figure 7-2. Back-to-Back Diodes Create Settling Issues  
The OPAx990 family of operational amplifiers provides a true high-impedance differential input capability for  
high-voltage applications using a patented input protection architecture that does not introduce additional signal  
distortion or delayed settling time, making the device an optimal op amp for multichannel, high-switched, input  
applications. The OPA990 tolerates a maximum differential swing (voltage between inverting and non-inverting  
pins of the op amp) of up to 40 V, making the device suitable for use as a comparator or in applications  
with fast-ramping input signals such as data-acquisition systems; see the TI TechNote MUX-Friendly Precision  
Operational Amplifiers for more information.  
7.3.2 EMI Rejection  
The OPAx990 uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from  
sources such as wireless communications and densely-populated boards with a mix of analog signal chain and  
digital components. EMI immunity can be improved with circuit design techniques; the OPAx990 benefits from  
these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the  
immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. Figure  
7-3 shows the results of this testing on the OPAx990. Table 7-1 shows the EMIRR IN+ values for the OPAx990 at  
particular frequencies commonly encountered in real-world applications. The EMI Rejection Ratio of Operational  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
 
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
Amplifiers application report contains detailed information on the topic of EMIRR performance as it relates to op  
amps and is available for download from www.ti.com.  
100  
90  
80  
70  
60  
50  
40  
30  
1M  
10M  
100M  
Frequency (Hz)  
1G  
C004  
Figure 7-3. EMIRR Testing  
Table 7-1. OPA990 EMIRR IN+ For Frequencies of Interest  
FREQUENCY  
APPLICATION OR ALLOCATION  
EMIRR IN+  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF)  
applications  
400 MHz  
59.5 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation,  
GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
5 GHz  
68.9 dB  
77.8 dB  
78.0 dB  
88.8 dB  
87.6 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite  
operation, C-band (4 GHz to 8 GHz)  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
7.3.3 Thermal Protection  
The internal power dissipation of any amplifier causes its internal (junction) temperature to rise. This  
phenomenon is called self heating. The absolute maximum junction temperature of the OPAx990 is 150°C.  
Exceeding this temperature causes damage to the device. The OPAx990 has a thermal protection feature that  
reduces damage from self heating. The protection works by monitoring the temperature of the device and turning  
off the op amp output drive for temperatures above 170°C. Figure 7-4 shows an application example for the  
OPA990 that has significant self heating because of its power dissipation (0.81 W). Thermal calculations indicate  
that for an ambient temperature of 65°C, the device junction temperature must reach 177°C. The actual device,  
however, turns off the output drive to recover towards a safe junction temperature. Figure 7-4 shows how the  
circuit behaves during thermal protection. During normal operation, the device acts as a buffer so the output is  
3 V. When self heating causes the device junction temperature to increase above the internal limit, the thermal  
protection forces the output to a high-impedance state and the output is pulled to ground through resistor RL.  
If the condition that caused excessive power dissipation is not removed, the amplifier will oscillate between a  
shutdown and enabled state until the output fault is corrected.  
3 V  
TA = 65°C  
30 V  
PD = 0.81W  
JA = 138.7°C/W  
TJ = 138.7°C/W × 0.81W + 65°C  
0 V  
TJ = 177.3°C (expected)  
-
OPA990  
170ºC  
+
IOUT = 30 mA  
+
3 V  
œ
RL  
100 Ω  
+
VIN  
3 V  
œ
Figure 7-4. Thermal Protection  
7.3.4 Capacitive Load and Stability  
The OPAx990 features a resistive output stage capable of driving moderate capacitive loads, and by leveraging  
an isolation resistor, the device can easily be configured to drive large capacitive loads. Increasing the gain  
enhances the ability of the amplifier to drive greater capacitive loads; see Figure 7-5 and Figure 7-6. The  
particular op amp circuit configuration, layout, gain, and output loading are some of the factors to consider when  
establishing whether an amplifier will be stable in operation.  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
33  
30  
27  
24  
21  
18  
15  
12  
9
RISO = 0 W, Positive Overshoot  
RISO = 0 W, Negative Overshoot  
RISO = 50 W, Positive Overshoot  
RISO = 50 W, Negative Overshoot  
RISO = 0 W, Positive Overshoot  
RISO = 0 W, Negative Overshoot  
RISO = 50 W, Positive Overshoot  
RISO = 50 W, Negative Overshoot  
6
3
0
40  
80  
120 160 200 240 280 320 360  
Cap Load (pF)  
0
40  
80  
120 160 200 240 280 320 360  
Cap Load (pF)  
C008  
C007  
Figure 7-5. Small-Signal Overshoot vs Capacitive  
Load (10-mV Output Step, G = 1)  
Figure 7-6. Small-Signal Overshoot vs Capacitive  
Load (10-mV Output Step, G = –1)  
For additional drive capability in unity-gain configurations, improve capacitive load drive by inserting a small  
resistor, RISO, in series with the output, as shown in Figure 7-7. This resistor significantly reduces ringing  
and maintains DC performance for purely capacitive loads. However, if a resistive load is in parallel with the  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
capacitive load, then a voltage divider is created, thus introducing a gain error at the output and slightly reducing  
the output swing. The error introduced is proportional to the ratio RISO / RL, and is generally negligible at low  
output levels. A high capacitive load drive makes the OPAx990 well suited for applications such as reference  
buffers, MOSFET gate drives, and cable-shield drives. The circuit shown in Figure 7-7 uses an isolation resistor,  
RISO, to stabilize the output of an op amp. RISO modifies the open-loop gain of the system for increased phase  
margin.  
+Vs  
Vout  
Riso  
+
Cload  
+
Vin  
-Vs  
œ
Figure 7-7. Extending Capacitive Load Drive With the OPA990  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
7.3.5 Common-Mode Voltage Range  
The OPAx990 is a 40-V, true rail-to-rail input operational amplifier with an input common-mode range that  
extends 200 mV beyond either supply rail. This wide range is achieved with paralleled complementary N-channel  
and P-channel differential input pairs, as shown in Figure 7-8. The N-channel pair is active for input voltages  
close to the positive rail, typically (V+) – 1 V to 100 mV above the positive supply. The P-channel pair is active  
for inputs from 100 mV below the negative supply to approximately (V+) – 2 V. There is a small transition region,  
typically (V+) – 2 V to (V+) – 1 V in which both input pairs are on. This transition region can vary modestly with  
process variation, and within this region PSRR, CMRR, offset voltage, offset drift, noise, and THD performance  
may be degraded compared to operation outside this region.  
Figure 6-5 shows this transition region for a typical device in terms of input voltage offset in more detail.  
For more information on common-mode voltage range and PMOS/NMOS pair interaction, see Op Amps With  
Complementary-Pair Input Stages application note.  
V+  
IN-  
PMOS  
PMOS  
NMOS  
IN+  
NMOS  
V-  
Figure 7-8. Rail-to-Rail Input Stage  
7.3.6 Phase Reversal Protection  
The OPAx990 family has internal phase-reversal protection. Many op amps exhibit a phase reversal when the  
input is driven beyond its linear common-mode range. This condition is most often encountered in non-inverting  
circuits when the input is driven beyond the specified common-mode voltage range, causing the output to  
reverse into the opposite rail. The OPAx990 is a rail-to-rail input op amp; therefore, the common-mode range can  
extend up to the rails. Input signals beyond the rails do not cause phase reversal; instead, the output limits into  
the appropriate rail. This performance is shown in Figure 7-9. For more information on phase reversal, see Op  
Amps With Complementary-Pair Input Stages application note.  
Input  
Output  
Time (20µs/Div)  
C016  
Figure 7-9. No Phase Reversal  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
7.3.7 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress  
(EOS). These questions tend to focus on the device inputs, but may involve the supply voltage pins or even  
the output pin. Each of these different pin functions have electrical stress limits determined by the voltage  
breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to  
the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them  
from accidental ESD events both before and during product assembly.  
Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is  
helpful. Figure 7-10 shows an illustration of the ESD circuits contained in the OPAx990 (indicated by the dashed  
line area). The ESD protection circuitry involves several current-steering diodes connected from the input and  
output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device  
or the power-supply ESD cell, internal to the operational amplifier. This protection circuitry is intended to remain  
inactive during normal circuit operation.  
TVS  
RF  
+VS  
VDD  
OPAx990  
100 Ω  
100 Ω  
R1  
RS  
INœ  
œ
IN+  
+
Power-Supply  
ESD Cell  
RL  
ID  
+
VIN  
œ
VSS  
œVS  
TVS  
Figure 7-10. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
An ESD event is very short in duration and very high voltage (for example; 1 kV, 100 ns), whereas an EOS event  
is long duration and lower voltage (for example; 50 V, 100 ms). The ESD diodes are designed for out-of-circuit  
ESD protection (that is, during assembly, test, and storage of the device before being soldered to the PCB).  
During an ESD event, the ESD signal is passed through the ESD steering diodes to an absorption circuit  
(labeled ESD power-supply circuit). The ESD absorption circuit clamps the supplies to a safe level.  
Although this behavior is necessary for out-of-circuit protection, excessive current and damage is caused if  
activated in-circuit. A transient voltage suppressors (TVS) can be used to prevent against damage caused by  
turning on the ESD absorption circuit during an in-circuit ESD event. Using the appropriate current limiting  
resistors and TVS diodes allows for the use of device ESD diodes to protect against EOS events.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
7.3.8 Overload Recovery  
Overload recovery is defined as the time required for the op amp output to recover from a saturated state to  
a linear state. The output devices of the op amp enter a saturation region when the output voltage exceeds  
the rated operating voltage, either due to the high input voltage or the high gain. After the device enters the  
saturation region, the charge carriers in the output devices require time to return back to the linear state. After  
the charge carriers return back to the linear state, the device begins to slew at the specified slew rate. Thus, the  
propagation delay in case of an overload condition is the sum of the overload recovery time and the slew time.  
The overload recovery time for the OPAx990 is approximately 600 ns.  
7.3.9 Typical Specifications and Distributions  
Designers often have questions about a typical specification of an amplifier in order to design a more robust  
circuit. Due to natural variation in process technology and manufacturing procedures, every specification of an  
amplifier will exhibit some amount of deviation from the ideal value, like an amplifier's input offset voltage. These  
deviations often follow Gaussian ("bell curve"), or normal distributions, and circuit designers can leverage this  
information to guardband their system, even when there is not a minimum or maximum specification in the  
Electrical Characteristics table.  
0.00312% 0.13185%  
0.13185% 0.00312%  
0.00002%  
0.00002%  
2.145% 13.59% 34.13% 34.13% 13.59% 2.145%  
1
1 1 1 1 1 1 1 1  
1
1
1
-61 -51 -41 -31 -21 -1  
+1 +21 +31 +41 +51 +61  
Figure 7-11. Ideal Gaussian Distribution  
Figure 7-11 shows an example distribution, where µ, or mu, is the mean of the distribution, and where σ,  
or sigma, is the standard deviation of a system. For a specification that exhibits this kind of distribution,  
approximately two-thirds (68.26%) of all units can be expected to have a value within one standard deviation, or  
one sigma, of the mean (from µ–σ to µ+σ).  
Depending on the specification, values listed in the typical column of the Electrical Characteristics table are  
represented in different ways. As a general rule of thumb, if a specification naturally has a nonzero mean  
(for example, like gain bandwidth), then the typical value is equal to the mean (µ). However, if a specification  
naturally has a mean near zero (like input offset voltage), then the typical value is equal to the mean plus one  
standard deviation (µ + σ) in order to most accurately represent the typical value.  
You can use this chart to calculate approximate probability of a specification in a unit; for example, for OPAx990,  
the typical input voltage offset is 300 µV, so 68.2% of all OPAx990 devices are expected to have an offset from  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
–300 µV to +300 µV. At 4 σ (±1200 µV), 99.9937% of the distribution has an offset voltage less than ±1200 µV,  
which means 0.0063% of the population is outside of these limits, which corresponds to about 1 in 15,873 units.  
Specifications with a value in the minimum or maximum column are assured by TI, and units outside these limits  
will be removed from production material. For example, the OPAx990 family has a maximum offset voltage of  
1.5 mV at 25°C, and even though this corresponds to 5 σ (≈1 in 1.7 million units), which is extremely unlikely, TI  
assures that any unit with larger offset than 1.5 mV will be removed from production material.  
For specifications with no value in the minimum or maximum column, consider selecting a sigma value of  
sufficient guardband for your application, and design worst-case conditions using this value. For example, the 6σ  
value corresponds to about 1 in 500 million units, which is an extremely unlikely chance, and could be an option  
as a wide guardband to design a system around. In this case, the OPAx990 family does not have a maximum  
or minimum for offset voltage drift, but based on Figure 6-2 and the typical value of 0.6 µV/°C in the Electrical  
Characteristics table, it can be calculated that the 6-σ value for offset voltage drift is about 3.6 µV/°C. When  
designing for worst-case system conditions, this value can be used to estimate the worst possible offset across  
temperature without having an actual minimum or maximum value.  
However, process variation and adjustments over time can shift typical means and standard deviations, and  
unless there is a value in the minimum or maximum specification column, TI cannot assure the performance of a  
device. This information should be used only to estimate the performance of a device.  
7.3.10 Packages With an Exposed Thermal Pad  
The OPAx990 family is available in packages such as the WSON-8 (DSG) and WQFN-16 (RTE) which feature  
an exposed thermal pad. Inside the package, the die is attached to this thermal pad using an electrically  
conductive compound. For this reason, when using a package with an exposed thermal pad, the thermal pad  
must either be connected to V– or left floating. Attaching the thermal pad to a potential other than V– is not  
allowed, and performance of the device is not assured when doing so.  
7.3.11 Shutdown  
The OPAx990S devices feature one or more shutdown pins (SHDN) that disable the op amp, placing it into a  
low-power standby mode. In this mode, the op amp typically consumes about 20 µA. The SHDN pins are active  
high, meaning that shutdown mode is enabled when the input to the SHDN pin is a valid logic high.  
The SHDN pins are referenced to the negative supply rail of the op amp. The threshold of the shutdown feature  
lies around 800 mV (typical) and does not change with respect to the supply voltage. Hysteresis has been  
included in the switching threshold to ensure smooth switching characteristics. To ensure optimal shutdown  
behavior, the SHDN pins should be driven with valid logic signals. A valid logic low is defined as a voltage  
between V– and V– + 0.2 V. A valid logic high is defined as a voltage between V– + 1.1 V and V– + 20 V.  
The shutdown pin circuitry includes a pull-down resistor, which will inherently pull the voltage of the pin to the  
negative supply rail if not driven. Thus, to enable the amplifier, the SHDN pins should either be left floating or  
driven to a valid logic low. To disable the amplifier, the SHDN pins must be driven to a valid logic high. The  
maximum voltage allowed at the SHDN pins is V– + 20 V or V+, whichever is lower. Exceeding V– + 20V or V+,  
whichever is lower, will damage the device.  
The SHDN pins are high-impedance CMOS inputs. Channels of single and dual op amp packages are  
independently controlled, and channels of quad op amp packages are controlled in pairs. For battery-operated  
applications, this feature may be used to greatly reduce the average current and extend battery life. The  
typical enable time out of shutdown is 30 µs; disable time is 3 µs. When disabled, the output assumes a  
high-impedance state. This architecture allows the OPAx990S family to operate as a gated amplifier, multiplexer,  
or programmable-gain amplifier. Shutdown time (tOFF) depends on loading conditions and increases as load  
resistance increases. To ensure shutdown (disable) within a specific shutdown time, the specified 10-kΩ load  
to midsupply (VS / 2) is required. If using the OPAx990S without a load, the resulting turnoff time significantly  
increases.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
7.4 Device Functional Modes  
The OPAx990 has a single functional mode and is operational when the power-supply voltage is greater than or  
equal to 2.7 V (±1.35 V). The maximum power supply voltage for the OPAx990 is 40 V (±20 V).  
The OPAx990S devices feature a shutdown pin, which can be used to place the op amp into a low-power mode.  
See Shutdown section for more information.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The OPAx990 family offers excellent DC precision and AC performance. These devices operate up to 40-V  
supply rails and offer true rail-to-rail input/output, low offset voltage and offset voltage drift, as well as 1.1-MHz  
bandwidth and high output drive. These features make the OPAx990 a robust, high-performance operational  
amplifier for high-voltage industrial applications.  
8.2 Typical Applications  
8.2.1 High Voltage Buffered Multiplexer  
The OPAx990S shutdown devices can be configured to create a high voltage, buffered multiplexer. Outputs can  
be connected together on a common bus and the shutdown pins can be used to select the desired channel to  
pass through. Since the amplifier circuitry has been designed such that disable transitions occur significantly  
faster than enable transitions, the amplifier naturally exhibits a "break before make" switch topology. Amplifier  
outputs enter a high impedance state when placed in shutdown, so there is no risk of bus contention when  
connecting multiple channel outputs together. Additionally, because outputs are isolated from inputs, there is no  
concern about the impedance at the input of each channel interacting undesirably with the impedance at the  
output, like an amplifier gain stage or ADC driver circuit. Also, because this topology uses amplifiers instead of  
MOSFET switches, other common issues with multiplexers such as charge injection or signal error due to RON  
effects are eliminated.  
Figure 8-1 shows an example topology for a basic 2:1 multiplexer. When SEL is low, channel 1 is selected and  
active; when SEL is high, channel 2 is selected and active. For more information on how to use the OPAx990S  
shutdown function, see the shutdown section in the Electrical Characteristics table.  
œ
Channel 1  
Channel 1  
Input  
+
SEL  
Output  
Channel 2  
Input  
+
Channel 2  
œ
Figure 8-1. High Voltage Buffered Multiplexer  
8.2.2 Slew Rate Limit for Input Protection  
In control systems for valves or motors, abrupt changes in voltages or currents can cause mechanical damages.  
By controlling the slew rate of the command voltages into the drive circuits, the load voltages ramps up and  
down at a safe rate. For symmetrical slew-rate applications (positive slew rate equals negative slew rate), one  
additional op amp provides slew-rate control for a given analog gain stage. The unique input protection and high  
output current and slew rate of the OPAx990 make the device an optimal amplifier to achieve slew rate control  
for both dual- and single-supply systems. Figure 8-2 shows the OPA990 in a slew-rate limit design.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
 
 
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
Op Amp Gain Stage  
Slew Rate Limiter  
C1  
470 nF  
R1  
1.69 k  
VEE  
VEE  
R2  
-
1.6 MΩ  
OPAx990  
-
VIN  
V+  
+
OPAx990  
VOUT  
V+  
+
VCC  
RL  
VCC  
10 kΩ  
Figure 8-2. Slew Rate Limiter Uses One Op Amp  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
9 Power Supply Recommendations  
The OPAx990 is specified for operation from 2.7 V to 40 V (±1.35 V to ±20 V); many specifications apply from  
–40°C to 125°C or with specific supply voltages and test conditions. Parameters that can exhibit significant  
variance with regard to operating voltage or temperature are presented in the Typical Characteristics section.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see the Absolute Maximum  
Ratings.  
Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or  
high-impedance power supplies. For more detailed information on bypass capacitor placement, refer to the  
Layout section.  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp itself.  
Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to  
the analog circuitry.  
– Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds paying attention to the flow of the ground current.  
In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as  
opposed to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As illustrated in Figure 10-2, keeping RF  
and RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
Cleaning the PCB following board assembly is recommended for best performance.  
Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic  
package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended to  
remove moisture introduced into the device packaging during the cleaning process. A low temperature, post  
cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
10.2 Layout Example  
VIN  
+
VOUT  
RG  
RF  
Figure 10-1. Schematic Representation  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
 
 
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
Place components close  
to device and to each  
other to reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
VS+  
RF  
NC  
NC  
Use a low-ESR,  
ceramic bypass  
capacitor  
RG  
GND  
œIN  
+IN  
Vœ  
V+  
OUTPUT  
NC  
VIN  
GND  
GND  
VSœ  
VOUT  
Ground (GND) plane on another layer  
Use low-ESR,  
ceramic bypass  
capacitor  
Figure 10-2. Operational Amplifier Board Layout for Noninverting Configuration  
GND  
GND  
OUT  
V-  
GND  
Figure 10-3. Example Layout for SC70 (DCK) Package  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
GND  
GND  
GND  
V+  
INPUT A  
OUTPUT B  
V-  
GND  
GND  
GND  
Figure 10-4. Example Layout for VSSOP-8 (DGK) Package  
GND  
GND  
GND  
-
+
OUT B  
+
-
+IN A  
GND  
GND  
GND  
Figure 10-5. Example Layout for WSON-8 (DSG) Package  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: OPA990 OPA2990 OPA4990  
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 TINA-TI(Free Software Download)  
TINAis a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI is a  
free, fully-functional version of the TINA software, preloaded with a library of macro models in addition to a range  
of both passive and active models. TINA-TI provides all the conventional dc, transient, and frequency domain  
analysis of SPICE, as well as additional design capabilities.  
Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing  
capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select  
input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.  
Note  
These files require that either the TINA software (from DesignSoft) or TINA-TI software be installed.  
Download the free TINA-TI software from the TINA-TI folder.  
11.2 Documentation Support  
11.2.1 Related Documentation  
Texas Instruments, MUX-Friendly, Precision Operational Amplifiers application brief  
Texas Instruments, EMI Rejection Ratio of Operational Amplifiers application report  
Texas Instruments, Op Amps With Complementary-Pair Input Stages application note  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 Trademarks  
TINA-TIare trademarks of Texas Instruments, Inc and DesignSoft, Inc.  
TINAand DesignSoftare trademarks of DesignSoft, Inc.  
TI E2Eis a trademark of Texas Instruments.  
Bluetooth® is a registered trademark of Bluetooth SIG, Inc.  
All trademarks are the property of their respective owners.  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
 
 
 
 
 
 
 
OPA990, OPA2990, OPA4990  
SBOS933H – FEBRUARY 2019 – REVISED MAY 2021  
www.ti.com  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: OPA990 OPA2990 OPA4990  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jun-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2990IDDFR  
OPA2990IDR  
ACTIVE SOT-23-THIN  
DDF  
D
8
8
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
2000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
2000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
O90F  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAUAG  
NIPDAUAG  
NIPDAU  
NIPDAU  
SN  
OP2990  
O29G  
OPA2990IDSGR  
OPA2990IPWR  
OPA2990SIDGSR  
OPA2990SIRUGR  
OPA2990TIDDFR  
OPA4990IDR  
WSON  
TSSOP  
VSSOP  
X2QFN  
DSG  
PW  
8
8
O2990P  
OP29  
DGS  
RUG  
DDF  
D
10  
10  
8
H9F  
ACTIVE SOT-23-THIN  
O90F  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
TSSOP  
WQFN  
QFN  
14  
14  
16  
14  
16  
5
OPA4990D  
OPA49PW  
O49RT  
FMF  
OPA4990IPWR  
OPA4990IRTER  
OPA4990IRUCR  
OPA4990SIRTER  
OPA990IDBVR  
OPA990IDCKR  
OPA990SIDBVR  
PW  
RTE  
RUC  
RTE  
DBV  
DCK  
DBV  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SN  
WQFN  
SOT-23  
SC70  
O4990S  
O90V  
5
1FL  
SOT-23  
6
NIPDAU  
O90S  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jun-2021  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jun-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2990IDDFR  
SOT-  
DDF  
8
3000  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
23-THIN  
OPA2990IDR  
OPA2990IDSGR  
OPA2990IPWR  
SOIC  
D
8
8
2500  
3000  
2000  
2500  
3000  
3000  
330.0  
180.0  
330.0  
330.0  
178.0  
180.0  
12.4  
8.4  
6.4  
2.3  
7.0  
5.3  
1.75  
3.2  
5.2  
2.3  
3.6  
3.4  
2.25  
3.2  
2.1  
1.15  
1.6  
8.0  
4.0  
8.0  
8.0  
4.0  
4.0  
12.0  
8.0  
Q1  
Q2  
Q1  
Q1  
Q1  
Q2  
WSON  
TSSOP  
VSSOP  
X2QFN  
DSG  
PW  
8
12.4  
12.4  
8.4  
12.0  
12.0  
8.0  
OPA2990SIDGSR  
OPA2990SIRUGR  
OPA2990TIDDFR  
DGS  
RUG  
DDF  
10  
10  
8
1.4  
0.56  
1.4  
SOT-  
8.4  
8.0  
23-THIN  
OPA4990IDR  
OPA4990IPWR  
OPA4990IRTER  
OPA4990IRUCR  
OPA4990SIRTER  
OPA990IDBVR  
OPA990IDCKR  
OPA990SIDBVR  
SOIC  
TSSOP  
WQFN  
QFN  
D
14  
14  
16  
14  
16  
5
2500  
2000  
3000  
3000  
3000  
3000  
3000  
3000  
330.0  
330.0  
330.0  
180.0  
330.0  
180.0  
178.0  
180.0  
16.4  
12.4  
12.4  
9.5  
6.5  
6.9  
3.3  
2.16  
3.3  
3.2  
2.4  
3.2  
9.0  
5.6  
3.3  
2.16  
3.3  
3.2  
2.5  
3.2  
2.1  
1.6  
1.1  
0.5  
1.1  
1.4  
1.2  
1.4  
8.0  
8.0  
8.0  
4.0  
8.0  
4.0  
4.0  
4.0  
16.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q2  
Q2  
Q2  
Q3  
Q3  
Q3  
PW  
RTE  
RUC  
RTE  
DBV  
DCK  
DBV  
WQFN  
SOT-23  
SC70  
12.4  
8.4  
12.0  
8.0  
5
9.0  
8.0  
SOT-23  
6
8.4  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jun-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2990IDDFR  
OPA2990IDR  
SOT-23-THIN  
SOIC  
DDF  
D
8
8
3000  
2500  
3000  
2000  
2500  
3000  
3000  
2500  
2000  
3000  
3000  
3000  
3000  
3000  
3000  
210.0  
853.0  
210.0  
853.0  
366.0  
205.0  
210.0  
853.0  
366.0  
367.0  
205.0  
367.0  
210.0  
190.0  
210.0  
185.0  
449.0  
185.0  
449.0  
364.0  
200.0  
185.0  
449.0  
364.0  
367.0  
200.0  
367.0  
185.0  
190.0  
185.0  
35.0  
35.0  
35.0  
35.0  
50.0  
33.0  
35.0  
35.0  
50.0  
35.0  
30.0  
35.0  
35.0  
30.0  
35.0  
OPA2990IDSGR  
OPA2990IPWR  
OPA2990SIDGSR  
OPA2990SIRUGR  
OPA2990TIDDFR  
OPA4990IDR  
WSON  
DSG  
PW  
8
TSSOP  
VSSOP  
X2QFN  
SOT-23-THIN  
SOIC  
8
DGS  
RUG  
DDF  
D
10  
10  
8
14  
14  
16  
14  
16  
5
OPA4990IPWR  
OPA4990IRTER  
OPA4990IRUCR  
OPA4990SIRTER  
OPA990IDBVR  
OPA990IDCKR  
OPA990SIDBVR  
TSSOP  
WQFN  
PW  
RTE  
RUC  
RTE  
DBV  
DCK  
DBV  
QFN  
WQFN  
SOT-23  
SC70  
5
SOT-23  
6
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDF0008A  
SOT-23 - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE  
C
2.95  
2.65  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
6X 0.65  
8
1
2.95  
2.85  
NOTE 3  
2X  
1.95  
4
5
0.4  
0.2  
8X  
0.1  
C A  
B
1.65  
1.55  
B
1.1 MAX  
0.20  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.1  
0.0  
0 - 8  
0.6  
0.3  
DETAIL A  
TYPICAL  
4222047/B 11/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
1
8
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(R0.05)  
TYP  
(2.6)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222047/B 11/2015  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
(R0.05) TYP  
8
1
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4222047/B 11/2015  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/B 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/B 03/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/B 03/2018  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
2X 0.95  
1.9  
3.05  
2.75  
1.9  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/E 09/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/E 09/2019  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/E 09/2019  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
PIN 1 INDEX AREA  
2.1  
1.9  
0.32  
0.18  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
8X  
0.4  
0.2  
PIN 1 ID  
8X  
0.1  
C A B  
C
0.05  
4218900/D 04/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/D 04/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/D 04/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
PW0008A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
8
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
A
0.1 C  
6X 0.65  
8
5
1
3.1  
2.9  
NOTE 3  
2X  
1.95  
4
0.30  
0.19  
8X  
4.5  
4.3  
1.2 MAX  
B
0.1  
C A  
B
NOTE 4  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
0 - 8  
DETAIL A  
TYPICAL  
4221848/A 02/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0008A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.5)  
SYMM  
8X (0.45)  
(R0.05)  
1
4
TYP  
8
SYMM  
6X (0.65)  
5
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221848/A 02/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0008A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.5)  
SYMM  
(R0.05) TYP  
8X (0.45)  
1
4
8
SYMM  
6X (0.65)  
5
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221848/A 02/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RUC0014A  
A
2.1  
1.9  
B
2.1  
1.9  
PIN 1 INDEX AREA  
0.4 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.15) TYP  
2X 0.4  
6
7
8X 0.4  
5
8
SYMM  
1.6  
12  
1
0.25  
0.15  
14  
13  
14X  
0.5  
PIN 1 ID  
SYMM  
(45oX0.1)  
0.1  
C A B  
C
14X  
0.3  
0.05  
4220584/A 05/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RUC0014A  
SYMM  
14X (0.6)  
14X (0.2)  
8X (0.4)  
SYMM  
(1.6) (1.8)  
(R0.05)  
2X (0.4)  
(1.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 23X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
EXPOSED METAL  
EXPOSED METAL  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220584/A 05/2019  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
X2QFN - 0.4 mm max height  
RUC0014A  
PLASTIC QUAD FLAT PACK- NO LEAD  
SYMM  
14X (0.6)  
14X (0.2)  
8X (0.4)  
SYMM  
(1.6) (1.8)  
(R0.05)  
2X (0.4)  
(1.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.100mm THICK STENCIL  
SCALE: 23X  
4220584/A 05/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY