OPA4H014PWTSEP [TI]

采用空间增强型塑料的耐辐射 11MHz 低噪声精密 RRO JFET 放大器 | PW | 14 | -55 to 125;
OPA4H014PWTSEP
型号: OPA4H014PWTSEP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用空间增强型塑料的耐辐射 11MHz 低噪声精密 RRO JFET 放大器 | PW | 14 | -55 to 125

放大器
文件: 总33页 (文件大小:1743K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
OPA4H014-SEP 采用增强型航天塑料11MHz、精密、低噪声、RROJFET 运  
算放大器  
1 特性  
3 说明  
• 抗辐射  
OPA4H014-SEP 是一款低功耗 JFET 输入运算放大  
具有良好漂移性能和较低的输入偏置电流。凭借其  
包括 V– 在内的输入范围和轨至轨输出设计人员可  
以利JFET 放大器的低噪声特性同时还可以连接到  
单电源精密模数转换(ADC) 和数模转换(DAC)。  
– 单粒子锁(SEL) 43MeVcm2/mg 的抗扰  
30 krad(Si) 的条件下ELDRS  
– 每个晶圆批次RLAT 总电离剂(TID) 高达  
30 krad(Si)  
OPA4H014-SEP 可实现 11MHz 单位增益带宽和 20V/  
μs 压摆率同时仅消耗 1.8mA典型值的静态电  
流。此器件4.5V 18V 单电源±2.25V ±9V 双  
电源供电。  
• 增强型航天塑料  
Au 键合线NiPdAu 铅涂层  
– 采用增强型模塑化合物实现低释气  
– 制造、组装和测试一体化基地  
– 延长了产品生命周期  
– 延长了产品变更通知周期  
– 产品可追溯性  
运算放大器采用 14 引脚塑料 TSSOP 封装可抵御高  
43MeVcm2/mg (SET) 辐射且在高达  
30krad(Si) 的条件下ELDRS  
• 非常低的温漂1 μV/°C最大值)  
• 极低的偏移120 μV  
• 低输入偏置电流10 pA最大值)  
• 低噪声5.1 nV/Hz  
封装信息  
封装(1)  
封装尺寸标称值)  
器件型号  
OPA4H014-SEP  
TSSOP (14)  
5.00mm × 4.40mm  
• 压摆率20 V/μs  
(1) 要了解所有可用封装请参见数据表末尾的封装选项附录。  
• 低电源电流2 mA最大值)  
• 输入电压范围包V源  
• 宽电源电压范围4.5V 18V  
2 应用  
• 卫星运行状况监控和遥测  
• 科学勘探有效载荷  
• 姿态和轨道控制系(AOCS)  
卫星电力系(EPS)  
通信负载  
雷达成像有效载荷  
Time (1s/div)  
0.1Hz 10Hz 噪声  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOSA94  
 
 
 
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................14  
8 Application and Implementation..................................15  
8.1 Application Information............................................. 15  
8.2 Typical Application.................................................... 21  
8.3 Power Supply Recommendations.............................22  
8.4 Layout....................................................................... 22  
9 Device and Documentation Support............................24  
9.1 Device Support......................................................... 24  
9.2 Documentation Support............................................ 24  
9.3 接收文档更新通知..................................................... 24  
9.4 支持资源....................................................................24  
9.5 Trademarks...............................................................25  
9.6 Electrostatic Discharge Caution................................25  
9.7 术语表....................................................................... 25  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................13  
7.1 Overview...................................................................13  
7.2 Functional Block Diagram.........................................13  
7.3 Feature Description...................................................14  
Information.................................................................... 25  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (November 2021) to Revision A (April 2022)  
Page  
• 将器件状态从“预告信息预发布”更改为“量产数据正在供货.........................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA4H014-SEP  
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
OUT A  
œIN A  
+IN A  
V+  
1
2
3
4
5
6
7
OUT D  
14  
13  
œIN D  
A
D
12 +IN D  
11  
Vœ  
10  
+ IN B  
œIN B  
OUT B  
+ IN C  
B
C
9
œIN C  
8
OUT C  
5-1. PW (14-Pin TSSOP) Package, Top View  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
3
+IN A  
Input  
Input  
Noninverting input, channel A  
Inverting input, channel A  
Noninverting input, channel B  
Inverting input, channel B  
Noninverting input, channel C  
Inverting input, channel C  
Noninverting input, channel D  
Inverting input, channel D  
Output, channel A  
2
IN A  
+IN B  
IN B  
+IN C  
IN C  
+IN D  
IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V+  
5
Input  
6
Input  
10  
9
Input  
Input  
12  
13  
1
Input  
Input  
Output  
Output  
Output  
Output  
Power  
Power  
7
Output, channel B  
8
Output, channel C  
14  
4
Output, channel D  
Positive (highest) power supply  
Negative (lowest) power supply  
11  
V–  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA4H014-SEP  
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Dual supply  
±10  
20  
VS  
V
Supply voltage, (V+) (V)  
Single supply  
Voltage  
(V+) + 0.5  
±10  
V
(V) 0.5  
Signal input pins(2)  
Current  
mA  
Output short-circuit(3)  
Operating temperature  
Junction temperature  
Storage temperature  
Continuous  
Continuous  
150  
TA  
°C  
°C  
°C  
55  
TJ  
150  
Tstg  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Input pins are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails must be  
current limited to 10 mA or less.  
(3) Short-circuit to VS / 2 (ground in symmetrical dual-supply setups), one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
±2.25  
4.5  
NOM  
MAX  
±9  
UNIT  
Dual supply  
VS  
TA  
V
Supply voltage, (V+) (V)  
Single supply  
18  
Ambient temperature  
25  
125  
°C  
55  
6.4 Thermal Information  
OPA4H014-SEP  
THERMAL METRIC (1)  
PW (TSSOP)  
UNIT  
8 PINS  
135  
45  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
66  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
19  
ΨJT  
60  
ΨJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA4H014-SEP  
 
 
 
 
 
 
 
 
 
 
 
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
at TA = 25°C, RL = 2 kconnected to midsupply, VS = ±2.25 V to ±9 V, and VCM = VOUT = midsupply (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
±30  
±120  
±220  
±4  
μV  
VOS  
Input offset voltage  
VS = ±9 V, TA = 55°C to +125°C  
TA = 55°C to +125°C  
VS = ±9 V, TA = 55°C to +125°C  
TA = 55°C to +125°C  
f = dc  
μV/V  
μV/°C  
μV/V  
dVOS/dT  
PSRR  
Drift  
±0.35  
±0.1  
0.02  
10  
±1  
Power-supply rejection ratio  
±0.5  
Channel separation  
µV/V  
f = 100 kHz  
INPUT BIAS CURRENT  
±0.5  
±0.5  
±10  
±3  
pA  
nA  
pA  
nA  
IB  
Input bias current  
TA = 55°C to +125°C  
TA = 55°C to +125°C  
±10  
±1  
IOS  
Input offset current  
Input voltage noise  
NOISE  
f = 0.1 Hz to 10 Hz  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
250  
42  
nVPP  
nVRMS  
8
en  
Input voltage noise density  
Input current noise density  
f = 100 Hz  
5.8  
5.1  
0.8  
nV/Hz  
fA/Hz  
V
f = 1 kHz  
In  
INPUT VOLTAGE  
f = 1 kHz  
VCM  
Common-mode voltage  
TA = 55°C to +125°C  
(V) 0.1  
(V+) 3.5  
VS = ±9 V,  
VCM = (V) 0.1 V to (V+) 3.5 V  
126  
140  
CMRR  
Common-mode rejection ratio  
dB  
VS = ±9 V,  
VCM = (V) 0.1 V to (V+) 3.5 V,  
TA = 55°C to +125°C  
120  
INPUT IMPEDANCE  
Differential  
Common-mode  
OPEN-LOOP GAIN  
1013 || 10  
1013 || 7  
Ω|| pF  
VCM = (V) 0.1 V to (V+) 3.5 V  
VO = (V) + 0.35 V to (V+) 0.35 V,  
RL = 10 kΩ  
120  
114  
108  
126  
126  
AOL  
Open-loop voltage gain  
dB  
VO = (V) + 0.35 V to (V+) 0.35 V  
VO = (V) + 0.35 V to (V+) 0.35 V,  
TA = 55°C to +125°C  
FREQUENCY RESPONSE  
BW  
SR  
Gain bandwidth product  
11  
20  
MHz  
Slew rate  
V/μs  
12 bits  
16 bits  
10-V step, gain = +1  
0.88  
Settling time  
μs  
10-V step, gain = +1  
1.6  
THD+N  
Total harmonic distortion and noise  
Overload recovery time  
f = 1 kHz, gain = +1, VO = 3.5 VRMS  
0.00005%  
600  
ns  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA4H014-SEP  
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
at TA = 25°C, RL = 2 kconnected to midsupply, VS = ±2.25 V to ±9 V, and VCM = VOUT = midsupply (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
RL = 10 kΩ, AOL 108 dB  
(V) + 0.2  
(V+) 0.2  
Output swing from rail  
Short-circuit current  
V
A
OL 108 dB  
(V) + 0.35  
(V+) 0.35  
Source  
Sink  
36  
ISC  
mA  
30  
CLOAD  
ZO  
Capacitive load drive  
See 6-17 and 6-18  
Open-loop output impedance  
f = 1 MHz, IO = 0 mA  
16  
Ω
POWER SUPPLY  
IO = 0 mA  
1.8  
2
IQ Quiescent current (per amplifier)  
mA  
2.7  
TA = 55°C to +125°C  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA4H014-SEP  
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
6.6 Typical Characteristics  
at TA = 25°C, VS = ±9 V, RL = 2 kconnected to midsupply, and VCM = VOUT = midsupply (unless otherwise noted)  
6-1. Table of Graphs  
DESCRIPTION  
Offset Voltage Production Distribution  
FIGURE  
6-1  
Offset Voltage Drift Distribution  
6-2  
Offset Voltage vs Common-Mode Voltage (Maximum Supply)  
IB vs Common-Mode Voltage  
6-3  
6-4  
Output Voltage Swing vs Output Current  
CMRR and PSRR vs Frequency (RTI)  
Common-Mode Rejection Ratio vs Temperature  
0.1-Hz to 10-Hz Noise  
6-5  
6-6  
6-7  
6-8  
Input Voltage Noise Density vs Frequency  
THD+N Ratio vs Frequency (80-kHz AP Bandwidth)  
Quiescent Current vs Temperature  
6-9  
6-10  
6-11  
6-12  
6-13  
6-14  
6-15  
6-16  
6-17  
6-18  
6-19  
6-20  
6-21  
6-22  
6-23, 6-24  
6-25  
6-26  
6-27  
6-28  
6-29  
6-30  
Quiescent Current vs Supply Voltage  
Gain and Phase vs Frequency  
Closed-Loop Gain vs Frequency  
Open-Loop Gain vs Temperature  
Open-Loop Output Impedance vs Frequency  
Small-Signal Overshoot vs Capacitive Load (G = 1)  
Small-Signal Overshoot vs Capacitive Load (G = 1)  
No Phase Reversal  
Maximum Output Voltage vs Frequency  
Positive Overload Recovery  
Negative Overload Recovery  
Large-Signal Positive and Negative Settling Time  
Small-Signal Step Response (G = 1)  
Small-Signal Step Response (G = 1)  
Large-Signal Step Response (G = 1)  
Large-Signal Step Response (G = 1)  
Short-Circuit Current vs Temperature  
Channel Separation vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA4H014-SEP  
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±9 V, RL = 2 kconnected to midsupply, and VCM = VOUT = midsupply (unless otherwise noted)  
Offset Voltage (mV)  
Offset Voltage Drift (mV/°C)  
6-1. Offset Voltage Production Distribution  
6-2. Offset Voltage Drift Distribution  
120  
10  
8
18 Typical Units Shown  
100  
80  
60  
40  
6
20  
0
-20  
-40  
-60  
-80  
-100  
-120  
4
2
+IB  
‒IB  
0
-9  
-9  
-3  
3
9
-6  
-3  
0
6
9
3
VCM (V)  
VCM (V)  
6-3. Offset Voltage vs Common-Mode Voltage  
6-4. Bias Current vs Common-Mode Voltage  
-9  
8.5  
8
180  
CMRR  
160  
140  
120  
100  
80  
7.5  
7
+25°C  
–40°C  
-PSRR  
+85°C  
+125°C  
+PSRR  
-7  
-7.5  
-8  
60  
40  
20  
-8.5  
-9  
0
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
0
10  
20  
30  
40  
50  
60  
70  
Frequency (Hz)  
Output Current (mA)  
6-6. CMRR and PSRR vs Frequency (Referred to Input)  
6-5. Output Voltage Swing vs Output Current  
(Maximum Supply)  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA4H014-SEP  
 
 
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±9 V, RL = 2 kconnected to midsupply, and VCM = VOUT = midsupply (unless otherwise noted)  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Time (1s/div)  
Temperature (°C)  
6-7. Common-Mode Rejection Ratio vs Temperature  
6-8. 0.1-Hz to 10-Hz Noise  
0.001  
0.0001  
–100  
–120  
–140  
100  
G = –1  
10  
G = +1  
0.00001  
10  
100  
1k  
10k 20k  
1
0.1  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
VOUT = 3 VRMS, BW = 80 kHz, RL = 2 kΩ  
6-9. Input Voltage Noise Density vs Frequency  
6-10. THD+N Ratio vs Frequency  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
Specified Supply-Voltage Range  
8
18  
16  
12  
4
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
0
Temperature (°C)  
Supply Voltage (V)  
6-11. Quiescent Current vs Temperature  
6-12. Quiescent Current vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA4H014-SEP  
 
 
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±9 V, RL = 2 kconnected to midsupply, and VCM = VOUT = midsupply (unless otherwise noted)  
40  
30  
140  
120  
100  
80  
180  
135  
90  
45  
0
G = +10  
Gain  
20  
10  
G = +1  
60  
0
–10  
–20  
–30  
–40  
40  
Phase  
20  
G = –1  
10M  
0
-20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100k  
1M  
100M  
Frequency (Hz)  
Frequency (Hz)  
CL = 30 pF  
6-14. Closed-Loop Gain vs Frequency  
6-13. Gain and Phase vs Frequency  
0
1k  
10-k Load  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
100  
10  
1
2-k Load  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
–75 –50 –25  
0
25  
50  
75  
100 125 150  
Frequency (Hz)  
Temperature (°C)  
6-15. Open-Loop Gain vs Temperature  
6-16. Open-Loop Output Impedance vs Frequency  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
ROUT = 0  
+9 V  
ROUT  
ROUT = 0  
40  
ROUT = 24  
RL CL  
9 V  
35  
30  
25  
20  
ROUT = 24  
RI  
2 k  
RF  
2 k  
ROUT = 51  
15  
10  
5
+9 V  
ROUT  
ROUT = 51  
CL  
–9 V  
0
0
0
200  
400  
600  
800 1000 1200 1400 1600  
0
500  
1000  
1500  
2000  
Capacitive Load (pF)  
Capacitive Load (pF)  
G = +1  
G = 1  
6-17. Small-Signal Overshoot vs Capacitive Load  
6-18. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step)  
(100-mV Output Step)  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA4H014-SEP  
 
 
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±9 V, RL = 2 kconnected to midsupply, and VCM = VOUT = midsupply (unless otherwise noted)  
35  
Maximum Output  
Voltage Range  
Without Slew-Rate  
Induced Distortion  
30  
Output  
25  
VS = ±± V  
20  
+9 V  
15  
VS = ±5 V  
10  
Output  
–9 V  
19-VPP  
Sine Wave  
(±9.5 V)  
VS = ±2ꢀ25 V  
5
0
Time (0.4 µs/div)  
10k  
100k  
Frequency (Hz)  
1M  
10M  
6-19. No Phase Reversal  
6-20. Maximum Output Voltage vs Frequency  
VOUT  
VIN  
20 k  
20 k  
2 k  
2 k  
VIN  
VOUT  
VOUT  
VIN  
V
IN  
VOUT  
Time (0.4 µs/div)  
Time (0.4 µs/div)  
G = 10  
G = 10  
6-21. Positive Overload Recovery  
6-22. Negative Overload Recovery  
1000  
800  
1000  
800  
600  
600  
400  
400  
16-bit Settling  
16-bit Settling  
200  
200  
0
0
-200  
-400  
-600  
-800  
-1000  
-200  
-400  
-600  
-800  
-1000  
( 1/2LSB = 0.00075%)  
( 1/2LSB = 0.00075%)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Time (ms)  
Time (ms)  
6-23. Large-Signal Positive Settling Time (10-V Step)  
6-24. Large-Signal Negative Settling Time (10-V Step)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA4H014-SEP  
 
 
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±9 V, RL = 2 kconnected to midsupply, and VCM = VOUT = midsupply (unless otherwise noted)  
RI  
2 k  
RF  
2 k  
+9 V  
–9 V  
+9 V  
RL  
CL  
CL  
–9 V  
Time (100 ns/div)  
Time (100 ns/div)  
G = +1, CL = 100 pF  
G = 1, CL = 100 pF  
6-25. Small-Signal Step Response (100 mV)  
6-26. Small-Signal Step Response (100 mV)  
Time (400 ns/div)  
Time (400 ns/div)  
6-27. Large-Signal Step Response  
6-28. Large-Signal Step Response  
60  
50  
40  
30  
20  
10  
0
–90  
ISC, Source  
ISC, Sink  
–100  
–110  
–120  
–130  
–140  
–150  
RL = 2 k  
RL = 5 k  
10k  
10  
100  
1k  
100k  
–75 –50 –25  
0
25  
50  
75  
100 125 150  
Frequency (Hz)  
Temperature (°C)  
VOUT = 3 VRMS  
G = +1  
Short-circuiting may cause thermal shutdown;  
see Application Information section  
6-30. Channel Separation vs Frequency  
6-29. Short Circuit Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA4H014-SEP  
 
 
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPA4H014-SEP low-power, JFET-input operational amplifier features superior drift performance and low  
input bias current. Additional features include capacitive load stability, an output current limit, phase-reversal  
protection, and thermal protection. The rail-to-rail output swing and input range that includes Vallows for the  
low-noise characteristics of JFET amplifiers while also interfacing to modern, single-supply, precision ADCs and  
DACs.  
7.2 shows the simplified diagram of the OPA4H014-SEP.  
7.2 Functional Block Diagram  
V+  
Pre-Output Driver  
OUT  
IN–  
IN+  
V–  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA4H014-SEP  
 
 
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Capacitive Load and Stability  
The dynamic characteristics of the OPA4H014-SEP are optimized for commonly encountered gains, loads, and  
operating conditions. The combination of low closed-loop gain and high capacitive loads decreases the phase  
margin of the amplifier and can lead to gain peaking or oscillations. As a result, heavier capacitive loads must be  
isolated from the output. The simplest way to achieve this isolation is to add a small resistor (ROUT equal to 50  
Ω, for example) in series with the output.  
7.3.2 Output Current Limit  
The output current of the OPA4H014-SEP is limited by internal circuitry to 36 mA (sourcing) and 30 mA  
(sinking), to protect the device if the output is accidentally shorted. This short-circuit current depends on  
temperature.  
7.3.3 Phase-Reversal Protection  
The OPA4H014-SEP family has internal phase-reversal protection. Many FET- and bipolar-input op amps exhibit  
a phase reversal when the input is driven beyond its linear common-mode range. This condition is most often  
encountered in noninverting circuits when the input is driven beyond the specified common-mode voltage range,  
causing the output to reverse into the opposite rail. The input circuitry of the OPA4H014-SEP prevents phase  
reversal with excessive common-mode voltage; instead, the output limits into the appropriate rail.  
7.3.4 Thermal Protection  
Although the output current of the OPA4H014-SEP is limited by internal protection circuitry, accidental shorting of  
one or more output channels of a device can result in excessive heating. For instance, when an output is shorted  
to midsupply, the typical short-circuit current of 36 mA leads to an internal power dissipation of over 300 mW at a  
supply of ±9 V.  
To prevent excessive heating leading to device damage, the OPA4H014-SEP series has an internal thermal  
shutdown circuit that shuts down the device if the die temperature exceeds approximately 180°C. When this  
thermal shutdown circuit activates, a built-in hysteresis of 15°C makes sure that the die temperature must drop  
to approximately 165°C before the device switches on again.  
7.4 Device Functional Modes  
The OPA4H014-SEP has a single functional mode and is operational when the power-supply voltage is greater  
than 4.5 V (±2.25 V). The maximum power supply voltage for the OPA4H014-SEP is 18 V (±9 V).  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA4H014-SEP  
 
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The OPA4H014-SEP is a unity-gain stable, operational amplifier with very low noise, input bias current, and input  
offset voltage. Applications with noisy or high-impedance power supplies require decoupling capacitors placed  
close to the device pins. In most cases, 0.1-μF capacitors are adequate. Designers can easily use the rail-to-rail  
output swing and input range that includes Vto take advantage of the low-noise characteristics of JFET  
amplifiers while also interfacing to modern, single-supply, precision data converters.  
8.1.1 Noise Performance  
The OPA4H014-SEP contributes both a voltage noise component and a current noise component. The voltage  
noise is commonly modeled as a time-varying component of the offset voltage. The current noise is modeled as  
the time-varying component of the input bias current and reacts with the source resistance to create a voltage  
component of noise. Therefore, the lowest noise op amp for a given application depends on the source  
impedance. For low source impedance, current noise is negligible, and voltage noise generally dominates. The  
OPA4H014-SEP has both low voltage noise and extremely low current noise because of the FET input of the op  
amp. As a result, the current noise contribution of the OPA4H014-SEP is negligible for any practical source  
impedance, which makes it the better choice for applications with high source impedance.  
方程1 shows the calculation of the total circuit noise:  
2
2
2
E
= e + i R  
+ 4kTR  
S
(1)  
O
n
n S  
where  
en = voltage noise  
In = current noise  
RS = source impedance  
k = Boltzmann's constant = 1.38 × 1023 J/K  
T = temperature in kelvins (K)  
For more details on calculating noise, see 8.1.1.1.  
10k  
EO  
1k  
100  
10  
RS  
OPA4H014-SEP  
Resistor Noise  
1
100  
1k  
10k  
100k  
)
1M  
Source Resistance, RS  
(
8-1. Noise Performance of the OPA4H014-SEP in Unity-Gain Buffer Configuration  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA4H014-SEP  
 
 
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
8.1.1.1 Basic Noise Calculations  
Low-noise circuit design requires careful analysis of all noise sources. External noise sources can dominate in  
many cases; consider the effect of source resistance on overall op amp noise performance. Total noise of the  
circuit is the root-sum-square combination of all noise components.  
The resistive portion of the source impedance produces thermal noise proportional to the square root of the  
resistance. The source impedance is usually fixed; consequently, select an op amp and feedback resistors that  
minimize the respective contributions to the total noise.  
8-2 illustrates both noninverting (A) and inverting (B) op amp circuit configurations with gain. In circuit  
configurations with gain, the feedback network resistors also contribute noise. In general, the current noise of the  
op amp reacts with the feedback resistors to create additional noise components. However, the extremely low  
current noise of the OPA4H014-SEP means that its current noise contribution can be neglected.  
Choose feedback resistor values that make these noise sources negligible. Low impedance feedback resistors  
load the output of the amplifier. The equations for total noise are shown for both configurations.  
A) Noise in Noninverting Gain Configuration  
Noise at the output:  
R2  
2
2
2
R2  
R1  
R2  
R1  
R2  
R1  
2
EO  
2
en  
2
2
es  
e12 + e2  
+
R1  
1 +  
1 +  
=
+
EO  
4kTRS  
4kTR1  
4kTR2  
Where eS  
=
= thermal noise of RS  
= thermal noise of R1  
= thermal noise of R2  
RS  
e1 =  
e2 =  
VS  
B) Noise in Inverting Gain Configuration  
Noise at the output:  
R2  
2
2
2
R2  
R2  
R2  
R1 + RS  
2
EO  
2
2
2
e12 + e2  
+
es  
= 1 +  
en  
+
R1  
R1 + RS  
R1 + RS  
EO  
RS  
4kTRS  
4kTR1  
4kTR2  
Where eS  
=
= thermal noise of RS  
= thermal noise of R1  
= thermal noise of R2  
VS  
e1 =  
e2 =  
Note: For the OPA4H014-SEP operational amplifier at 1 kHz, en = 5.1 nV/Hz.  
8-2. Noise Calculation in Gain Configurations  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA4H014-SEP  
 
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
8.1.2 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress.  
These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output  
pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly.  
A good understanding of this basic ESD circuitry and the relevance to an electrical overstress event is extremely  
helpful. 8-3 shows an illustration of the ESD circuits contained in the OPA4H014-SEP (indicated by the larger  
boxed area). The ESD protection circuitry involves several current-steering diodes connected from the input and  
output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device  
internal to the operational amplifier. This protection circuitry is intended to remain inactive during normal circuit  
operation.  
RF  
TVS(2)  
+VS  
+V  
ESD Current-  
Steering  
Diodes  
RI  
–IN  
+IN  
OUT  
Op Amp  
Core  
(3)  
RS  
Edge-Triggered ESD  
Absorption Circuit  
RL  
ID  
+
(1)  
VIN  
–V  
–VS  
TVS(2)  
(1) VIN = +VS + 500 mV.  
(2) TVS: +VS(max) > VTVSBR (Min) > +VS  
(3) Suggested value approximately 1 kΩ.  
8-3. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
An ESD event produces a short-duration, high-voltage pulse that is transformed into a short-duration, high-  
current pulse while discharging through a semiconductor device. The ESD protection circuits are designed to  
provide a current path around the operational amplifier core to prevent damage. The energy absorbed by the  
protection circuitry is then dissipated as heat.  
When an ESD voltage develops across two or more of the amplifier device pins, current flows through one or  
more of the steering diodes. Depending on the path that the current takes, the absorption device may activate.  
The absorption device has a trigger, or threshold voltage, that is greater than the normal operating voltage of the  
OPA4H014-SEP but less than the device breakdown voltage level. When this threshold is exceeded, the  
absorption device quickly activates and clamps the voltage across the supply rails to a safe level.  
8-3 shows that when the operational amplifier connects into a circuit, the ESD protection components are  
intended to remain inactive and not become involved in the application circuit operation. However, circumstances  
may arise where an applied voltage exceeds the operating voltage range of a given pin. If this condition occurs,  
there is a risk that some of the internal ESD protection circuits may be biased on, and conduct current. Any such  
current flow occurs through steering diode paths and rarely involves the absorption device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA4H014-SEP  
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
8-3 shows a specific example where the input voltage (VIN) exceeds the positive supply voltage (+VS) by 500  
mV or more. Much of what happens in the circuit depends on the supply characteristics. If +VS can sink the  
current, one of the upper input steering diodes conducts and directs current to +VS. Excessively high current  
levels can flow with increasingly higher VIN. As a result, the data sheet specifications recommend that  
applications limit the input current to 10 mA.  
If the supply is not capable of sinking the current, VIN may begin sourcing current to the operational amplifier,  
and then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise  
to levels that exceed the operational amplifier absolute maximum ratings.  
Another common question involves what happens to the amplifier if an input signal is applied to the input while  
the power supplies +VS or VS are at 0 V. Again, the answer depends on the supply characteristic while at 0 V,  
or at a level below the input signal amplitude. If the supplies appear as high impedance, then the operational  
amplifier supply current may be supplied by the input source through the current steering diodes. This state is  
not a normal bias condition; the amplifier most likely will not operate normally. If the supplies are low impedance,  
then the current through the steering diodes can become quite high. The current level depends on the ability of  
the input source to deliver current, and any resistance in the input path.  
If there is an uncertainty about the ability of the supply to absorb this current, external Zener diodes may be  
added to the supply pins, as shown in 8-3. The Zener voltage must be selected such that the diode does not  
turn on during normal operation. However, the Zener voltage must be low enough so that the Zener diode  
conducts if the supply pin begins to rise above the safe operating supply voltage level.  
8.1.3 EMI Rejection  
The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational  
amplifiers. An adverse effect that is common to many op amps is a change in the offset voltage as a result of RF  
signal rectification. An op amp that is more efficient at rejecting this change in offset as a result of EMI has a  
higher EMIRR and is quantified by a decibel value. Measuring EMIRR can be performed in many ways, but this  
section provides the EMIRR IN+, which specifically describes the EMIRR performance when the RF signal is  
applied to the noninverting input pin of the op amp. In general, only the noninverting input is tested for EMIRR for  
the following three reasons:  
Op amp input pins are known to be the most sensitive to EMI, and typically rectify RF signals better than the  
supply or output pins.  
The noninverting and inverting op amp inputs have symmetrical physical layouts and exhibit nearly matching  
EMIRR performance  
EMIRR is easier to measure on noninverting pins than on other pins because the noninverting input terminal  
can be isolated on a PCB. This isolation allows the RF signal to be applied directly to the noninverting input  
pin with no complex interactions from other components or connecting PCB traces.  
The EMIRR IN+ of the OPA4H014-SEP is plotted versus frequency as shown in 8-4. If available, any dual and  
quad op-amp device versions have nearly similar EMIRR IN+ performance. The OPA4H014-SEP unity-gain  
bandwidth is 11 MHz. EMIRR performance less than this frequency denotes interfering signals that fall within the  
op-amp bandwidth.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA4H014-SEP  
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
120  
100  
80  
60  
40  
20  
0
PRF = –10 dBm  
VS = ±9 V  
VCM = 0 V  
10  
100  
Frequency (MHz)  
1k  
10k  
8-4. OPA4H014-SEP EMIRR  
For more information, see the EMI Rejection Ratio of Operational Amplifiers application report, available for  
download from www.ti.com.  
8-1 lists the EMIRR IN+ values for the OPA4H014-SEP at particular frequencies commonly encountered in  
real-world applications. Applications listed in 8-1 may be centered on or operated near the particular  
frequency shown. This information may be of special interest to designers working with these types of  
applications, or working in other fields likely to encounter RF interference from broad sources, such as the  
industrial, scientific, and medical (ISM) radio band.  
8-1. OPA4H014-SEP EMIRR IN+ for Frequencies of Interest  
FREQUENCY  
APPLICATION OR ALLOCATION  
EMIRR IN+  
400 MHz  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF) applications  
53.1 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation, GPS  
(to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
5 GHz  
72.2 dB  
80.7 dB  
86.8 dB  
91.7 dB  
96.6 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite  
operation, C-band (4 GHz to 8 GHz)  
8.1.4 EMIRR +IN Test Configuration  
8-5 shows the circuit configuration for testing the EMIRR IN+. An RF source is connected to the op-amp  
noninverting input pin using a transmission line. The op amp is configured in a unity gain buffer topology with the  
output connected to a low-pass filter (LPF) and a digital multimeter (DMM). A large impedance mismatch at the  
op amp input causes a voltage reflection; however, this effect is characterized and accounted for when  
determining the EMIRR IN+. The resulting dc offset voltage is sampled and measured by the multimeter. The  
LPF isolates the multimeter from residual RF signals that may interfere with multimeter accuracy.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA4H014-SEP  
 
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
Ambient temperature: 25 C  
Low-Pass Filter  
+VS  
–VS  
+
50 Ω  
RF source  
DC Bias: 0 V  
Modulation: None (CW)  
Frequency Sweep: 201 pt. Log  
Sample  
or  
Average  
Digital Multimeter  
Not shown: 0.1-µF and  
10-µF supply decoupling  
8-5. EMIRR +IN Test Configuration  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA4H014-SEP  
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
8.2 Typical Application  
C5  
1 nF  
R4  
2.94 k  
R1  
590  
R3  
499  
TI Device  
Output  
C2  
39 nF  
Input  
+
8-6. 25-kHz Low-Pass Filter  
8.2.1 Design Requirements  
Low-pass filters are commonly employed in signal processing applications to reduce noise and prevent aliasing.  
The OPA4H014-SEP is an excellent choice to construct high-speed, high-precision active filters. 8-6 shows a  
second-order, low-pass filter commonly encountered in signal processing applications.  
Use the following parameters for this design example:  
Gain = 5 V/V (inverting gain)  
Low-pass cutoff frequency = 25 kHz  
Second-order Chebyshev filter response with 3-dB gain peaking in the pass band  
8.2.2 Detailed Design Procedure  
8-6 shows the infinite-gain multiple-feedback circuit for a low-pass network function. Use 方程2 to calculate  
the voltage transfer function.  
-1 R1R3C2C5  
Output  
Input  
s =  
( )  
s2 + s C 1 R +1 R +1 R +1 R R C C  
(
)
(
)
2
1
3
4
3 4 2 5  
(2)  
This circuit produces a signal inversion. For this circuit, the gain at dc and the low-pass cutoff frequency are  
calculated by 方程3:  
R4  
Gain =  
R1  
1
fC  
=
1 R R C C  
(
3 4 2 5  
)
2p  
(3)  
Software tools are readily available to simplify filter design. The Filter Design Tool is a simple, powerful, and  
easy-to-use active filter design program. The Filter Design Tool helps create optimized filter designs using a  
selection of TI operational amplifiers and passive components from TI's vendor partners.  
Available as a web-based tool from the Design tools and simulation web page, the Filter Design Tool helps to  
design, optimize, and simulate complete multistage active filter solutions within minutes.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA4H014-SEP  
 
 
 
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
8.2.3 Application Curve  
20  
0
–20  
–40  
–60  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
8-7. OPA4H014-SEP Second-Order, 25-kHz, Chebyshev, Low-Pass Filter  
8.3 Power Supply Recommendations  
The OPA4H014-SEP op amp is used with single or dual supplies from an operating range of VS = 4.5 V (±2.25  
V) to VS = 18 V (±9 V). This device does not require symmetrical supplies, but only a minimum supply voltage of  
4.5 V (±2.25 V). For VS less than ±3.5 V, the common-mode input range does not include midsupply.  
CAUTION  
Supply voltages higher than 20 V can permanently damage the device; see 6.1.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see 8.4.  
Key parameters are specified over the operating temperature range, TA = 55°C to +125°C.  
8.4 Layout  
8.4.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the op amp.  
Use bypass capacitors to reduce the coupled noise by providing low-impedance power sources local to the  
analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close as possible to the device. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds paying attention to the flow of the ground current.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed  
to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As illustrated in 8-8, keep RF and RG  
close to the inverting input to minimize parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA4H014-SEP  
 
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
For best performance, clean the PCB following board assembly.  
Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic  
package. Following any aqueous PCB cleaning process, bake the PCB assembly to remove moisture  
introduced into the device packaging during the cleaning process. A low temperature, post cleaning bake at  
85°C for 30 minutes is sufficient for most circumstances.  
8.4.2 Layout Example  
Place components close  
to device and to each  
other to reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
RF  
OUT A  
OUT D  
RG  
GND  
–IN A  
+IN A  
–IN D  
+IN D  
VIN  
V+  
V–  
+IN B  
+IN C  
Use low-ESR,  
ceramic bypass  
capacitor  
V+  
V–  
GND  
GND  
8-8. Operational Amplifier Board Layout for Noninverting Configuration  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA4H014-SEP  
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Development Support  
9.1.1.1 PSpice® for TI  
PSpice® for TI 是可帮助评估模拟电路性能的设计和仿真环境。在进行布局和制造之前创建子系统设计和原型解决  
方案可降低开发成本并缩短上市时间。  
9.1.1.2 TINA-TI™ Simulation Software (Free Download)  
TINA-TIsimulation software is a simple, powerful, and easy-to-use circuit simulation program based on a  
SPICE engine. TINA-TI simulation software is a free, fully-functional version of the TINAsoftware, preloaded  
with a library of macromodels, in addition to a range of both passive and active models. TINA-TI simulation  
software provides all the conventional dc, transient, and frequency domain analysis of SPICE, as well as  
additional design capabilities.  
Available as a free download from the Design tools and simulation web page, TINA-TI simulation software offers  
extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments  
offer the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic  
quick-start tool.  
备注  
These files require that either the TINA software or TINA-TI software be installed. Download the free  
TINA-TI simulation software from the TINA-TI™ software folder.  
9.1.1.3 Filter Design Tool  
The Filter Design Tool is a simple, powerful, and easy-to-use active filter design program. The Filter Design Tool  
helps create optimized filter designs using a selection of TI operational amplifiers and passive components from  
TI's vendor partners.  
Available as a web-based tool from the Design tools and simulation web page, The Filter Design Tool helps to  
design, optimize, and simulate complete multistage active filter solutions within minutes.  
9.2 Documentation Support  
9.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Compensate Transimpedance Amplifiers Intuitively application report  
Texas Instruments, Operational amplifier gain stability, Part 3: AC gain-error analysis  
Texas Instruments, Operational amplifier gain stability, Part 2: DC gain-error analysis  
Texas Instruments, Using infinite-gain, MFB filter topology in fully differential active filters  
Texas Instruments, Op Amp Performance Analysis application bulletin  
Texas Instruments, Single-Supply Operation of Operational Amplifiers application bulletin  
Texas Instruments, Shelf-Life Evaluation of Lead-Free Component Finishes application report  
Texas Instruments, Feedback Plots Define Op Amp AC Performance application bulletin  
Texas Instruments, EMI Rejection Ratio of Operational Amplifiers Application Report application report  
9.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA4H014-SEP  
 
 
 
 
 
OPA4H014-SEP  
ZHCSOR9A NOVEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.5 Trademarks  
TINA-TIand TI E2Eare trademarks of Texas Instruments.  
TINAis a trademark of DesignSoft, Inc.  
Bluetooth® is a registered trademark of Bluetooth SIG, Inc.  
PSpice® is a registered trademark of Cadence Design Systems, Inc.  
所有商标均为其各自所有者的财产。  
9.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA4H014-SEP  
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Jul-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA4H014PWSEP  
OPA4H014PWTSEP  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
14  
14  
90  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-55 to 125  
-55 to 125  
O4H01A  
O4H01A  
Samples  
Samples  
250  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Jul-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA4H014PWTSEP  
TSSOP  
PW  
14  
250  
180.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 14  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
OPA4H014PWTSEP  
250  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
PW TSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
OPA4H014PWSEP  
14  
90  
530  
10.2  
3600  
3.5  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

OPA4H199-SEP

航天增强型产品四路 40V 4.5MHz 轨到轨输入和输出运算放大器
TI

OPA4H199MDYYTSEP

航天增强型产品四路 40V 4.5MHz 轨到轨输入和输出运算放大器 | DYY | 14 | -55 to 125
TI

OPA501

High Current, High Power OPERATIONAL AMPLIFIER
BB

OPA501AM

High Current, High Power OPERATIONAL AMPLIFIER
BB

OPA501BM

High Current, High Power OPERATIONAL AMPLIFIER
BB

OPA501RM

High Current, High Power OPERATIONAL AMPLIFIER
BB

OPA501SM

High Current, High Power OPERATIONAL AMPLIFIER
BB

OPA501UM

Operational Amplifier, 1 Func, 10000uV Offset-Max, Hybrid, MBCY8,
BB

OPA501VM

Operational Amplifier, 1 Func, 5000uV Offset-Max, Hybrid, MBCY8,
BB

OPA502

High Current, High Power OPERATIONAL AMPLIFIER
BB

OPA502BM

High Current, High Power OPERATIONAL AMPLIFIER
BB

OPA502BM

OP-AMP, 5000uV OFFSET-MAX, 2MHz BAND WIDTH, MBFM8
TI