OPA593DNTT [TI]

85V、100µV、宽带宽 (10MHz)、高输出电流 (250mA) 精密运算放大器 | DNT | 12 | -40 to 125;
OPA593DNTT
型号: OPA593DNTT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

85V、100µV、宽带宽 (10MHz)、高输出电流 (250mA) 精密运算放大器 | DNT | 12 | -40 to 125

放大器 运算放大器
文件: 总41页 (文件大小:3030K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA593  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
OPA593 85V250mA 输出电流、精密、功率运算放大器  
1 特性  
3 说明  
• 宽电源范围  
OPA593 一款高压 (85V) 高精度、宽带宽  
(10MHz)、高输出电流 (250mA)、单位增益稳定功率运  
算放大器。  
8V (±4V) 85V (±42.5V)  
• 低失调电压±20µV  
• 低失调电压漂移±0.4µV/°C  
• 高输出电流250mA  
• 宽增益带宽10MHz  
• 高压摆率45V/µs上升  
• 低噪声10 kHz 7nV/Hz  
• 多路复用器友好型输入  
• 轨到轨输出  
OPA593 采用激光修整技术来改善失调电压20µV,  
典型值和失调电压温漂0.4µV/°C典型值),因  
此无需校准。该器件具有多路复用器友好型 输入可  
实现电源轨的差分输入电压范围并有助于提高多通道  
系统的稳定性能。  
可以使用一个外部电阻器来限制具有指定精度的电流,  
从而提供更为精确的测量。在过流或过热条件下该器  
件会通过状态标志来指示错误操作。所含的禁用功能用  
于关断该器件从而实现省电并将输出置于高阻抗状  
态。  
• 静态电流:  
– 启用3.25mA  
– 禁用250μA  
• 额定电流限制精度  
• 过热和过流标志  
• 温度范围40°C +125°C  
• 封装12 WSON  
该器件具有单位增益稳定特性可用作高阻抗缓冲器。  
宽带宽和高压摆率可实现高信号增益。由于具有高输出  
电流和容性驱动该器件能够驱动用于提供更高系统电  
流的外部场效应晶体(FET)例如在数字电源中。  
2 应用  
封装信息  
封装(1)  
半导体测试  
半导体制造  
可编程直流电源  
LCD 测试  
封装尺寸标称值)  
器件型号  
OPA593  
DNT (WSON, 12)  
4.00mm × 4.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
CT PET 扫描仪  
1.47 k  
10 k  
45 V  
260  
220  
180  
140  
100  
60  
GND  
+
Output  
+
20  
–5 V  
Input  
-20  
-60  
GND  
-100  
-140  
-180  
-220  
-260  
配置为增8 的输出驱动器  
0
50 100 150 200 250 300 350 400 450 500 550  
Current Limit Resistor, RCL (k)  
输出电流与电流限制电阻器配置  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS659  
 
 
 
 
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
Table of Contents  
7.4 Device Functional Modes..........................................26  
8 Application and Implementation..................................27  
8.1 Application Information............................................. 27  
8.2 Typical Application.................................................... 27  
8.3 Power Supply Recommendations.............................30  
8.4 Layout....................................................................... 30  
9 Device and Documentation Support............................33  
9.1 Device Support......................................................... 33  
9.2 接收文档更新通知..................................................... 33  
9.3 支持资源....................................................................33  
9.4 Trademarks...............................................................33  
9.5 Electrostatic Discharge Caution................................33  
9.6 术语表....................................................................... 33  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................6  
6.6 Typical Characteristics................................................9  
7 Detailed Description......................................................22  
7.1 Overview...................................................................22  
7.2 Functional Block Diagram.........................................22  
7.3 Feature Description...................................................23  
Information.................................................................... 33  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (August 2022) to Revision C (November 2022)  
Page  
• 从预告信息预发布更改为量产数据正在供货.........................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA593  
 
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
5 Pin Configuration and Functions  
E/D Com  
NC  
1
2
3
4
5
6
12  
11  
10  
9
E/D  
ILIMIT  
IN  
+IN  
V+  
Thermal Pad  
OUT  
NC  
8
Thermal Flag  
Current Flag  
V–  
7
Not to scale  
5-1. DNT (12-Pin WSON) Package, Top View  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
Current Flag  
E/D  
NO.  
7
Output  
Input  
Input  
Input  
Input  
Input  
Overcurrent status flag  
Enable and disable  
Enable and disable common  
Current limit  
12  
1
E/D Com  
ILIMIT  
+IN  
11  
4
Noninverting input  
Inverting input  
3
IN  
NC  
2, 5  
9
No internal connection  
Output  
OUT  
Output  
Output  
Thermal Flag  
8
Overtemperature status flag  
The thermal pad is internally connected to V. The thermal pad must be soldered to a  
printed-circuit board (PCB) connected to V, even with applications that have low  
power dissipation.  
Thermal Pad  
Thermal pad  
V+  
10  
6
Power  
Power  
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA593  
 
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
(V) 0.3  
V–  
MAX  
93  
UNIT  
V
VS  
Supply voltage, VS = (V+) (V)  
Signal input pin voltage(2)  
Status flag and E/D pin voltage(3)  
ILIMIT pin voltage  
(V+) + 0.3  
E/D Com + 7  
(V) + 3.35  
3
V
V
V
Status flag pins current(3)  
Input current, all pins(2)  
mA  
mA  
±10  
Output short circuit current(4)  
Continuous  
150  
TJ  
Junction temperature  
°C  
°C  
55  
65  
TSTG  
Storage temperature  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Input, E/D Com, and output pins are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the  
supply rails must be current-limited to less 10 mA.  
(3) Status flag and E/D pins are diode clamped to E/D Com 0.3 V and E/D Com + 7 V. Pullup signals must be current-limited to < 3 mA.  
(4) Short-circuit to ground.  
6.2 ESD Ratings  
VALUE  
±1500  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
8
NOM  
MAX  
85  
UNIT  
Single supply voltage  
Dual supply voltage  
VS  
V
Supply voltage, VS = (V+) (V)  
±4  
±42.5  
5.5  
VE/D  
E/D pin voltage(1)  
V
V
Status flag pin voltage(1)  
Current limit set  
5.5  
ILIMIT  
TA  
±25  
±250  
125  
mA  
°C  
Operating temperature  
40  
(1) Recommended voltage must be current limited to below the listed value in the Absolute Maximum Ratings.  
6.4 Thermal Information  
OPA593  
THERMAL METRIC(1)  
DNT (WSON)  
12 PINS  
40.8  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
/W  
/W  
/W  
/W  
/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
30.2  
17.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.3  
17.7  
ψJB  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA593  
 
 
 
 
 
 
 
 
 
 
 
 
 
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
OPA593  
THERMAL METRIC(1)  
DNT (WSON)  
12 PINS  
4.3  
UNIT  
RθJC(bot)  
Junction-to-case (bottom) thermal resistance  
/W  
(1) For information on traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA593  
 
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
6.5 Electrical Characteristics  
at VS = 85 V, TA = 25°C, RL = 10 kto mid-supply, IOUT limit set to 100 mA, and VCM = VOUT = mid-supply (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VOS  
Input offset voltage  
±20  
±100  
±2  
µV  
Input offset voltage  
drift  
dVOS/dT  
±0.4  
µV/°C  
TA = 40°C to +125°C  
Power supply  
rejection ratio  
PSRR  
VS = ±4 V to ±42.5 V  
0.1  
±1  
1
µV/V  
INPUT BIAS CURRENT  
±10  
±350  
±5  
pA  
nA  
pA  
nA  
IB  
Input bias current  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
±1  
±5  
±250  
±1  
IOS  
Input offset current TA = 40°C to +85°C  
TA = 40°C to +125°C  
NOISE  
Input voltage noise f = 0.1 Hz to 10 Hz  
f = 10 Hz  
2.9  
75  
10  
7
µVPP  
Input voltage noise  
density  
en  
f = 1 kHz  
nV/Hz  
f = 10 kHz  
Current noise  
f = 1 kHz  
in  
12  
fA/Hz  
density  
INPUT VOLTAGE  
Common-mode  
voltage  
VCM  
Linear operation  
V
(V) 0.1  
124  
(V+) 3.5  
140  
124  
Common-mode  
rejection  
CMRR  
dB  
(V) VCM (V+) 3.5 V  
TA = 40°C to  
+125°C  
108  
INPUT IMPEDANCE  
Differential  
1013 || 0.3  
1013 || 9.4  
|| pF  
|| pF  
Common-mode  
OPEN-LOOP GAIN  
134  
130  
132  
130  
130  
125  
140  
140  
140  
135  
135  
130  
(V) + 0.3 V < VO < (V+) 0.3  
V,  
RL = 10 kΩ  
TA = 40°C to  
+125°C  
Open-loop voltage (V) + 1 V < VO < (V+) 1 V,  
AOL  
dB  
TA = 40°C to  
+125°C  
gain  
RL = 2 kΩ  
(V) + 2.5 V < VO < (V+) 2.5  
V,  
RL = 600 Ω  
TA = 40°C to  
+125°C  
FREQUENCY RESPONSE  
Gain-bandwidth  
product  
GBW  
10  
MHz  
Rising  
Falling  
45  
35  
SR  
Slew rate  
Gain = ±1, VOUT = 70-V step  
V/µs  
µs  
tS  
Settling time  
2.9  
To ±0.01%, gain = 1, VOUT = 70-V step, CL = 100 pF  
RL = 600 Ω  
RL = 2 kΩ  
105  
110  
Total harmonic  
distortion + noise  
Gain = +1, VOUT = 70 VPP  
f = 1 kHz  
,
THD+N  
OUTPUT  
dB  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA593  
 
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
6.5 Electrical Characteristics (continued)  
at VS = 85 V, TA = 25°C, RL = 10 kto mid-supply, IOUT limit set to 100 mA, and VCM = VOUT = mid-supply (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
No load  
MIN  
TYP  
10  
MAX  
25  
UNIT  
IOUT = 50 mA  
IOUT = 100 mA  
IOUT = 250 mA  
50  
125  
750  
2
mV  
Voltage output  
swing from rail  
VO  
RCL = 0 connected to V–  
400  
1.2  
V
Continuous output  
current, dc  
±250  
See typical curves  
See typical curves  
mA  
VS = 85 V, RCL = 2.29 k, ILIMIT = 250 mA  
Capacitive load  
drive  
CLOAD  
ZO  
pF  
Open-loop output  
impedance  
Ω
Output impedance  
100  
56  
Output disabled, V< VOUT < V+  
MΩ  
Output capacitance Output disabled  
CURRENT LIMIT  
ILIMIT Current limit  
pF  
±25  
17  
±250  
29  
mA  
ILIMIT = 25 mA,  
VLIMIT = 3.33 V  
ILIMIT = 50 mA,  
VLIMIT = 2.98 V  
42  
94  
55  
107  
263  
45  
Sourcing,  
RL = 10 to mid-supply  
ILIMIT = 100 mA,  
VLIMIT = 2.27V  
ILIMIT = 250 mA,  
VLIMIT = 0.14 V  
237  
10  
Current limit  
accuracy(3)  
mA  
ILIMIT = 25 mA,  
VLIMIT = 3.33 V  
ILIMIT = 50 mA,  
VLIMIT = 2.98 V  
35  
68  
Sinking,  
RL = 10 to mid-supply  
ILIMIT = 100 mA,  
VLIMIT = 2.27 V  
85  
115  
275  
ILIMIT = 250 mA,  
VLIMIT = 0.14 V  
235  
Resistor set, RCL connected between ILIMIT pin and V–  
(3.687 V × 4000) / (56.7 k+ RCL)  
Current limit  
equation  
mA  
Voltage set, VLIMIT connected to ILIMIT pin and  
referenced to V–  
4000 × (3.687 V VLIMIT) / 56.7 kΩ  
STATUS FLAG PIN (Referenced to E/D Com)  
Overcurrent delay  
Status flag delay  
10  
10  
µs  
°C  
Overcurrent recovery delay  
Alarm (status flag high)  
170  
150  
Thermal shutdown  
Return to normal operation (status flag low)  
Status flag output  
voltage  
Normal operation  
See typical curves  
E/D PIN  
VE/D  
Enable, pin open or forced high(2)  
Disable, pin forced low(2)  
E/D Com + 1.5  
E/D Com  
E/D Com + 5.5  
E/D Com + 0.5  
E/D voltage(1)  
V
IE/D  
E/D input current  
Output disable time  
Output enable time  
50  
12  
18  
µA  
µs  
µs  
E/D COM PIN  
E/D Com voltage  
POWER SUPPLY  
V
(V)  
(V+) 6  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA593  
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
6.5 Electrical Characteristics (continued)  
at VS = 85 V, TA = 25°C, RL = 10 kto mid-supply, IOUT limit set to 100 mA, and VCM = VOUT = mid-supply (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
3.75  
4
UNIT  
3.25  
IQ  
Quiescent current  
mA  
TA = 40°C to +125°C  
Output disabled  
0.25  
(1) For information on the output enable and disable feature see 7.3.4.  
(2) Enable and disable voltage thresholds can vary near the maximum temperature range; see 6-67.  
(3) Proper output swing headroom is necessary to maintain current limit accuracy; see 6-19. to 6-34.  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA593  
 
 
 
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
6.6 Typical Characteristics  
at TA = 25°C, VS = (V+) (V) = 85 V, ILIMIT = 100 mA, VCM = VOUT = VS/2, and RL = 10 kΩconnected to VS/2 (unless  
otherwise noted)  
12  
9
6
3
0
-100  
-75  
-50  
-25  
0
25  
50  
75  
100  
300  
10  
Offset Voltage (µV)  
VS = 85 V, 160 typical units  
VS = 8 V, 160 typical units  
6-2. Input Offset Production Distribution  
6-1. Input Offset Production Distribution  
25  
20  
15  
10  
5
0
-300 -225 -150  
-75  
0
75  
150  
225  
Offset Voltage (µV)  
TA = 125ºC, 30 typical units  
6-4. Input Offset Production Distribution  
TA = 40ºC, 30 typical units  
6-3. Input Offset Production Distribution  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
-10  
-5  
0
5
-2  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
2
Input Bias Current (pA)  
Offset Voltage Drift (µV/°C)  
360 typical units  
TA = 40ºC to +125ºC  
6-6. Input Bias Current Production Distribution  
6-5. Input Offset Voltage Drift Distribution  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA593  
 
 
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 85 V, ILIMIT = 100 mA, VCM = VOUT = VS/2, and RL = 10 kΩconnected to VS/2 (unless  
otherwise noted)  
100  
75  
100  
75  
50  
50  
25  
25  
0
0
-25  
-50  
-75  
-100  
-25  
-50  
-75  
-100  
-42  
-33  
-24  
-15  
-6  
3
12  
21  
30  
39  
8
18  
28  
38  
48  
58  
68  
78 85  
Common-Mode voltage (V)  
Supply Voltage (V)  
5 typical units  
6-7. Input Offset Voltage vs Common-Mode Voltage  
6-8. Input Offset Voltage vs Supply Voltage  
100  
180  
160  
140  
120  
0.001  
0.01  
0.1  
VS = 85 V  
VS = 8 V  
75  
50  
25  
0
-25  
-50  
-75  
-100  
1
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
5 typical units  
6-9. Input Offset Voltage vs Temperature  
6-10. CMRR vs Temperature  
180  
160  
140  
120  
0.001  
0.01  
0.1  
40  
20  
0
-20  
1
-40  
-50  
-25  
0
25  
50  
75  
100  
125  
-40  
-30  
-20  
-10  
0
10  
20  
30  
39  
Temperature (°C)  
Common-Mode Voltage (V)  
6-11. PSRR vs Temperature  
6-12. Input Bias Current vs Common-Mode Voltage  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA593  
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 85 V, ILIMIT = 100 mA, VCM = VOUT = VS/2, and RL = 10 kΩconnected to VS/2 (unless  
otherwise noted)  
10  
5
180  
160  
140  
120  
100  
80  
IB-  
IB+  
IOS  
CMRR  
PSRR  
PSRR  
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
60  
0.002  
0.001  
40  
0.0005  
20  
0.0002  
0.0001  
0
-40  
-15  
10  
35  
60  
85  
110 125  
10m 100m  
1
10 100 1k 10k 100k 1M 10M  
Frequency (Hz)  
Temperature (°C)  
6-13. Input Bias Current and Current Offset vs Temperature  
6-14. PSRR and CMRR vs Frequency  
180  
160  
140  
0.001  
0.01  
0.1  
RL = 10 k  
RL = 2 kꢀ  
RL = 600 ꢀ  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
6-15. Open-Loop Gain and Phase vs Frequency  
6-16. Open Loop Gain vs Temperature  
60  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VS = 85 V  
VS = 8 V  
40  
20  
0
-20  
-40  
Gain = 1 V/V  
Gain = 1 V/V  
-60  
Gain = 10 V/V  
Gain = 100 V/V  
-80  
100  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
6-18. Maximum Output Voltage vs Frequency  
6-17. Closed-Loop Gain vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA593  
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 85 V, ILIMIT = 100 mA, VCM = VOUT = VS/2, and RL = 10 kΩconnected to VS/2 (unless  
otherwise noted)  
4
3.5  
3
-1.5  
-2  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
-2.5  
-3  
2.5  
2
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
-3.5  
-4  
1.5  
0
20  
40  
60  
80  
100  
120  
140  
140  
140  
0
20  
40  
60  
80  
100  
120  
140  
Output current (mA)  
Output current (mA)  
VS = 8 V, ILIMIT = 100 mA  
VS = 8 V, ILIMIT = 100 mA  
6-20. Output Voltage vs Output Sinking Current  
6-19. Output Voltage vs Output Sourcing Current  
24  
-21.5  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
23.5  
-22  
-22.5  
-23  
23  
22.5  
22  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
-23.5  
-24  
21.5  
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
Output current (mA)  
Output current (mA)  
VS = 48 V, ILIMIT = 100 mA  
VS = 48 V, ILIMIT = 100 mA  
6-21. Output Voltage vs Output Sourcing Current  
42.5  
6-22. Output Voltage vs Output Sinking Current  
42  
41.5  
41  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
40.5  
40  
0
20  
40  
60  
80  
100  
120  
Output current (mA)  
VS = 85 V, ILIMIT = 100 mA  
VS = 85 V, ILIMIT = 100 mA  
6-24. Output Voltage vs Output Sinking Current  
6-23. Output Voltage vs Output Sourcing Current  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA593  
 
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 85 V, ILIMIT = 100 mA, VCM = VOUT = VS/2, and RL = 10 kΩconnected to VS/2 (unless  
otherwise noted)  
4
3
1
0
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
2
-1  
-2  
-3  
-4  
1
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
0
-1  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300 325  
Output Current (mA)  
Output Current (mA)  
VS = 8 V, ILIMIT = 250 mA  
6-25. Output Voltage vs Output Sourcing Current  
24  
VS = 8 V, ILIMIT = 250 mA  
6-26. Output Voltage vs Output Sinking Current  
-19  
-20  
-21  
-22  
-23  
-24  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
23  
22  
21  
20  
19  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300 325  
Output Current (mA)  
Output Current (mA)  
VS = 48 V, ILIMIT = 250 mA  
6-27. Output Voltage vs Output Sourcing Current  
43  
VS = 48 V, ILIMIT = 250 mA  
6-28. Output Voltage vs Output Sinking Current  
-37.5  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
42  
41  
40  
39  
38  
37  
-38.5  
-39.5  
-40.5  
-41.5  
-42.5  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
0
50  
100  
150  
200  
250  
300 325  
0
50  
100  
150  
200  
250  
300 325  
Output Current (mA)  
Output Current (mA)  
VS = 85 V, ILIMIT = 250 mA  
VS = 85 V, ILIMIT = 250 mA  
6-29. Output Voltage vs Output Sourcing Current  
6-30. Output Voltage vs Output Sinking Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA593  
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 85 V, ILIMIT = 100 mA, VCM = VOUT = VS/2, and RL = 10 kΩconnected to VS/2 (unless  
otherwise noted)  
4
3
4
3
ILIMIT = 50 mA  
ILIMIT = 100 mA  
ILIMIT = 150 mA  
ILIMIT = 200 mA  
ILIMIT = 250 mA  
2
2
1
1
0
0
-1  
-2  
-3  
-4  
ILIMIT = 50 mA  
ILIMIT = 100 mA  
ILIMIT = 150 mA  
ILIMIT = 200 mA  
ILIMIT = 250 mA  
-1  
-2  
-3  
0
25 50 75 100 125 150 175 200 225 250 275 300  
Output Current (mA)  
0
25 50 75 100 125 150 175 200 225 250 275 300  
Output Current (mA)  
VS = 8 V, RL = 10 Ωto mid-supply  
VS = 8 V, RL = 10 Ωto mid-supply  
6-31. Output Voltage vs Current Limit Set  
6-32. Output Voltage vs Current Limit Set  
44  
42  
40  
38  
36  
34  
32  
-32.5  
-35  
ILIMIT = 50 mA  
ILIMIT = 100 mA  
ILIMIT = 150 mA  
ILIMIT = 200 mA  
ILIMIT = 250 mA  
-37.5  
-40  
ILIMIT = 50 mA  
ILIMIT = 100 mA  
ILIMIT = 150 mA  
ILIMIT = 200 mA  
ILIMIT = 250 mA  
-42.5  
0
25 50 75 100 125 150 175 200 225 250 275 300  
Output Current (mA)  
0
25 50 75 100 125 150 175 200 225 250 275 300  
Output Current (mA)  
VS = 85 V, RL = 10 Ωto mid-supply  
VS = 85 V, RL = 10 Ωto mid-supply  
6-33. Output Voltage vs Output Sourcing Current  
25  
6-34. Output Voltage vs Output Sinking Current  
20  
TA = 40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
20  
15  
10  
5
15  
10  
5
0
0
-5  
-5  
20 40 60 80 100 120 140 160 180 200 220 240 260  
Current Limit Set (mA)  
20 40 60 80 100 120 140 160 180 200 220 240 260  
Current Limit Set (mA)  
VS = 8 V, RL = 10 Ωto mid-supply  
VS = 8 V, RL = 10 Ωto mid-supply  
6-35. Output Sourcing Current Error vs Current Limit Set  
6-36. Output Sinking Current Error vs Current Limit Set  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA593  
 
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 85 V, ILIMIT = 100 mA, VCM = VOUT = VS/2, and RL = 10 kΩconnected to VS/2 (unless  
otherwise noted)  
15  
13  
11  
9
8
7
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
6
5
4
3
7
2
5
1
3
0
-1  
-2  
-3  
-4  
-5  
1
-1  
-3  
-5  
20 40 60 80 100 120 140 160 180 200 220 240 260  
Current Limit Set (mA)  
20 40 60 80 100 120 140 160 180 200 220 240 260  
Current Limit Set (mA)  
VS = 85 V, RL = 10 Ωto mid-supply  
VS = 85 V, RL = 10 Ωto mid-supply  
6-37. Output Sourcing Current Error vs Current Limit Set  
6-38. Output Sinking Current Error vs Current Limit Set  
97  
258  
Sinking  
Sourcing  
96.9  
96.8  
96.7  
96.6  
257  
256  
255  
254  
253  
Sinking  
Sourcing  
96.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
ILIMIT = 250 mA  
ILIMIT = 100 mA  
6-40. Short Circuit Current vs Temperature  
6-39. Short Circuit Current vs Temperature  
10000  
5000  
3000  
2000  
1000  
500  
300  
200  
100  
50  
30  
20  
10  
1m 10m 100m  
1
10 100 1k 10k 100k 1M 10M  
Frequency (Hz)  
Time (1 s/div)  
6-41. Open-Loop Output Impedance vs Frequency  
6-42. 0.1-Hz to 10-Hz Noise  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA593  
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 85 V, ILIMIT = 100 mA, VCM = VOUT = VS/2, and RL = 10 kΩconnected to VS/2 (unless  
otherwise noted)  
1000  
500  
1000  
500  
300  
200  
300  
200  
100  
100  
50  
50  
30  
20  
30  
20  
10  
10  
5
5
3
2
3
2
1
1
100m  
1
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
6-43. Input Voltage Noise Spectral Density  
6-44. Input Current Noise Spectral Density  
1
-40  
0.1  
-60  
0.01  
-80  
0.001  
0.0001  
1E-5  
1E-6  
-100  
-120  
-140  
-160  
Gain = 1, 10-kLoad  
Gain = 1, 600-Load  
Gain = 1, 25-Load  
Gain = 1, 10-kLoad  
Gain = 1, 600-Load  
Gain = 1, 25-Load  
1m  
10m  
100m  
1
10  
Output Amplitude (VRMS  
)
VOUT = 3 VRMS  
VOUT = 3 VRMS  
6-46. Total Harmonic Distortion + Noise vs Amplitude  
6-45. Total Harmonic Distortion + Noise vs Frequency  
1
-40  
0.5  
0.2  
0.1  
-60  
0.05  
0.02  
0.01  
-80  
0.005  
0.002  
0.001  
0.0005  
-100  
-120  
-140  
VS= 85 V, 10-kLoad  
VS = 85 V, 2-kLoad  
VS = 85 V, 100-Load  
VS = 48 V, 10-kLoad  
VS = 48 V, 2-kLoad  
VS = 48 V, 100-Load  
0.0002  
0.0001  
5E-5  
2E-5  
1E-5  
10m  
100m  
1
10  
Output Amplitude (VRMS  
)
Gain = 10 V/V, VOUT = 15 VRMS  
Gain = 10 V/V, VOUT = 15 VRMS  
6-48. Total Harmonic Distortion + Noise vs Amplitude  
6-47. Total Harmonic Distortion + Noise vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA593  
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 85 V, ILIMIT = 100 mA, VCM = VOUT = VS/2, and RL = 10 kΩconnected to VS/2 (unless  
otherwise noted)  
120  
VIN  
VOUT  
100  
80  
60  
40  
20  
10M  
100M  
Frequency (Hz)  
1G  
10G  
Time (200 ms/div)  
6-50. No Phase Reversal  
6-49. EMIRR vs Frequency  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
RISO = 0  
RISO = 25 ꢁ  
RISO = 50 ꢁ  
20  
30 40 50 70 100  
200 300  
500 700 1000  
Capacitance (pF)  
Gain = 1 V/V  
Gain = 10 V/V  
6-52. Small-Signal Overshoot vs Capacitive Load  
6-51. Phase Margin vs Capacitive Load  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
VIN  
VOUT  
RISO = 0  
RISO = 25 ꢁ  
RISO = 50 ꢁ  
0
20  
30 40 50 70 100  
200 300  
500 700 1000  
Time (2 µs/div)  
Capacitance (pF)  
10-mV step, f = 100 kHz, gain = 1 V/V  
Gain = 1 V/V  
6-54. Small-Signal Step Response  
6-53. Small-Signal Overshoot vs Capacitive Load  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA593  
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 85 V, ILIMIT = 100 mA, VCM = VOUT = VS/2, and RL = 10 kΩconnected to VS/2 (unless  
otherwise noted)  
VIN  
VIN  
VOUT  
VOUT  
Time (2 µs/div)  
Time (200 ns/div)  
10-mV step, f = 100 kHz, gain = 1 V/V  
6-55. Small-Signal Step Response  
10-mV step, f = 1 MHz, gain = 1 V/V  
6-56. Small-Signal Step Response  
VIN  
VOUT  
VIN  
VOUT  
Time (200 ns/div)  
Time (2 µs/div)  
10-V step, f = 100 kHz, gain = 1 V/V  
10-mV step, f = 1 MHz, gain = 1 V/V  
6-58. Large-Signal Step Response  
6-57. Small-Signal Step Response  
VIN  
VOUT  
VIN  
VOUT  
Time (2 µs/div)  
Time (2 µs/div)  
70-V step, f = 100 kHz, gain = 1 V/V  
10-V step, f = 100 kHz, gain = 1 V/V  
6-60. Large-Signal Step Response  
6-59. Large-Signal Step Response  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA593  
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 85 V, ILIMIT = 100 mA, VCM = VOUT = VS/2, and RL = 10 kΩconnected to VS/2 (unless  
otherwise noted)  
Rising  
VIN  
Falling  
VOUT  
Time (2 µs/div)  
Time (1 µs/div)  
70-V step, f = 100 kHz, gain = 1 V/V  
12-bit settling (0.01%), 70-V step  
6-61. Large-Signal Step Response  
6-62. Settling Time  
VIN  
VOUT  
VIN  
VOUT  
Time (200 ns/div)  
Time (200 ns/div)  
Gain = 10 V/V  
Gain = 10 V/V  
6-63. Positive Overload Recovery  
6-64. Negative Overload Recovery  
3.5  
3.4  
3.3  
3.2  
3.1  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
3.5  
3
Cooling  
Heating  
2.5  
2
Thermal shutdown  
1.5  
1
0.5  
0
140  
145  
150  
155  
160  
165  
170  
175  
180  
8
16  
24  
32  
40  
48  
56  
64  
72  
80 85  
Temperature (°C)  
Supply Voltage (V)  
5 typical units  
6-66. Quiescent Current Temperature Response  
6-65. Quiescent Current vs Supply Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA593  
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 85 V, ILIMIT = 100 mA, VCM = VOUT = VS/2, and RL = 10 kΩconnected to VS/2 (unless  
otherwise noted)  
3.5  
3
140  
130  
120  
110  
100  
90  
3.5  
3
Output Current  
Flag Voltage  
2.5  
2
2.5  
2
1.5  
1
1.5  
1
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
0.5  
0
80  
0.5  
0
70  
0
1
2
3
4
5
5.5  
Time (5 µs/div)  
Enable/Disable Voltage (V)  
ILIMIT = 100 mA  
6-68. Current Limit Response  
6-67. Quiescent Current vs Enable Voltage  
60  
50  
40  
30  
20  
10  
0
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
-10  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Enable/Disable Pin Voltage (V)  
VE/D = 5 V  
6-69. Enable/Disable Pin Current vs Temperature  
6-70. Enable Pin Current vs Enable Pin Voltage  
0.8  
Output  
Enable  
0.6  
0.4  
0.2  
0
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08  
Overcurrent Flag Pin Volage (V)  
Time (200 s/div)  
Flag is asserted  
6-71. Enable Response  
6-72. Current-Limit Flag Pin vs Current-Limit Flag Pin Voltage  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA593  
 
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 85 V, ILIMIT = 100 mA, VCM = VOUT = VS/2, and RL = 10 kΩconnected to VS/2 (unless  
otherwise noted)  
6
5
1
0.8  
0.6  
0.4  
0.2  
0
Cooling  
Heating  
4
3
2
1
0
-1  
140  
145  
150  
155  
160  
165  
170  
175  
180  
0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1  
Overtemperature Flag Pin Voltage (V)  
Temperature (°C)  
E/D Com = 0 V  
Flag is asserted  
6-73. Overtemperature Flag Pin Voltage vs Temperature  
6-74. Overtemperature Flag Pin Current vs Overtemperature  
Flag Pin Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA593  
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
7 Detailed Description  
7.1 Overview  
The OPA593 is a precision, high-voltage (85 V), wide bandwidth (10 MHz), power operational amplifier (op amp)  
with a high output current drive of ±250 mA. The device features a current limit that helps protect the system in  
the event of an output short to ground. Unlike other power op amps, the current limit is specified for specific  
current ranges from ±25 mA to ±250 mA. Additionally, the device has two flags that indicate an overcurrent fault  
condition (beyond the configured limit) and an overtemperature fault condition (when the output stage shuts  
down to protect the device from overheating). Lastly, the output can be disabled to save system power and  
reduce thermal dissipation.  
The unity-gain stable OPA593 has no phase inversion, a common-mode voltage range that includes the negative  
rail, a wide output swing range, and high dc precision. All these features make the OPA593 an excellent choice  
as an output driver for a device under test (DUT) in automated test equipment (ATE) systems, or for signal  
processing in industrial systems using signals greater than 36 V.  
7.2 Functional Block Diagram  
V+  
OPA593  
Slew  
Thermal  
Flag  
Boost  
Current  
Flag  
Status  
Control  
Current  
Limit  
Control  
IN  
E/D Com  
Vbias 1  
Class-AB  
Biasing  
OUT  
Mux  
Friendly  
Mux  
Friendly  
Vbias 2  
+IN  
Current  
Limit  
Set  
ILIMIT  
Current  
Limit  
Control  
Laser  
Trim  
Enable/  
Disable  
Control  
E/D  
V–  
E/D Com  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA593  
 
 
 
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
7.3 Feature Description  
7.3.1 Current Limit  
The OPA593 current limit is set through the ILIMIT pin and is programmable from ±25 mA to ±250 mA, typical.  
The device is specified and tested for current limits of ±25 mA, ±50 mA, ±100 mA, ±250 mA. A resistor can be  
used to limit the current to a fixed value or a digital-to-analog converter (DAC) can be used to vary the current  
limit during operation. 7-1 shows a simplified diagram of the current-limit mirror configurations, as well as  
common resistor or DAC settings and the respective output current limit.  
56.7 k  
56.7 k  
3.687 V  
V–  
3.687 V  
V–  
ILIMIT  
ILIMIT  
DAC  
RCL  
V– Supply  
V– Supply  
7-1. OPA593 Internal Current Limit Configurations  
The most common configuration is to set the current limit using a resistor (RCL) connected between the ILIMIT  
pin and the negative supply (V). With this configuration, 方程式 1 and 方程式 2 are used to calculate the  
current limit based on the external resistor value or the resistor needed given the desired current limit value:  
3.687 V × 4000  
I
=
(1)  
(2)  
LIMIT  
56.7 + R  
CL  
3.687 V × 4000  
R
=
–56.7 kΩ  
CL  
I
LIMIT  
An alternative to fixing the current limit to a single value using an external resistor is to use a source measure  
unit (SMU) or digital-to-analog converter (DAC), which enables a variable current limit.  
CAUTION  
With this configuration, the output of the SMU or DAC must not exceed the ILIMIT specification in 节  
6.1 to avoid reverse biasing the internal current limit circuitry and potentially damaging the device.  
Use 方程3 to set the current limit when a DAC is used (VLIMIT = DAC output voltage):  
I
× 56.7 kΩ  
LIMIT  
V
= 3.687 V –  
(3)  
LIMIT  
4000  
Be aware that the SMU or DAC output voltage must be referenced to the negative supply of the OPA593.  
Several nominal current-limit values along with the respective external resistor values and DAC output voltages  
are listed in 7-1.  
7-1. Nominal Current-Limit Values  
CURRENT LIMIT, ILIMIT(mA)  
DAC VOLTAGE, VLIMIT (V)(1)  
RESISTOR, RCL (kΩ)  
25  
50  
536  
237  
3.33  
2.98  
2.27  
0.85  
0.14  
100  
200  
250  
90.9  
16.9  
2.29  
(1) Voltages are referenced to the negative supply, V−  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA593  
 
 
 
 
 
 
 
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
While the current limit tolerance of the OPA593 is specified for specific current limit levels, any resistor, SMU, or  
DAC inaccuracies add to the listed tolerance. To achieve the desired system level accuracy, take care when  
selecting these external components. 7-2 shows a correlation between the ideal or calculated output current  
limit and the actual current limit as measured on the OPA593.  
260  
220  
180  
140  
100  
60  
20  
-20  
-60  
-100  
-140  
-180  
-220  
-260  
0
50 100 150 200 250 300 350 400 450 500 550  
Current Limit Resistor, RCL (k)  
7-2. Typical Output Current vs Current-Limit Resistor Value  
7.3.2 Overcurrent Flag  
The OPA593 features an overcurrent flag (Current Flag pin) that indicates a condition where the output current  
exceeds the limit established by the ILIMIT pin. For example, in an output short-to-ground fault condition, the  
overcurrent flag asserts, which pulls the flag pin low to E/D Com, and the output current is limited to the value set  
by ILIMIT. This flag is an open-drain output compatible with standard low-voltage logic circuitry, such as a  
microcontroller (MCU). Use a 5kΩto 10kΩpullup resistor to limit the input current when the flag is asserted. If  
this feature is not used, leave this pin floating.  
7.3.3 Overtemperature Flag  
The OPA593 has internal thermal protection. When the junction temperature reaches approximately 170°C, the  
op amp output stage disables and the overtemperature flag (Thermal Flag pin) is asserted, which pulls the flag  
pin low to E/D Com. When the junction temperature cools to a safe operating temperature, approximately 150°C,  
the output stage is enabled, and the op amp resumes normal operation. This flag is an open-drain output  
compatible with standard low-voltage logic circuitry, such as an MCU. Use a 5kΩ to 10kΩ pullup resistor to  
limit the input current when the flag is asserted. If this feature is not used, leave this pin floating.  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA593  
 
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
7.3.4 Output Enable and Disable  
The OPA593 incorporates an enable and disable feature that uses the E/D pin to disable the output stage of the  
amplifier, which reduces the power consumption of the op amp and switches the output to a high-impedance  
state.  
The E/D pin is referenced to the E/D Com pin. If left floating, the E/D pin is internally pulled up to enable the  
device. If externally controlled, the E/D pin must be supplied with a voltage between 1.5 V and 5.5 V greater than  
the E/D Com pin voltage. Even though the OPA593 output is enabled with a floating E/D pin, a moderately fast,  
negative-going signal capacitively coupled to the E/D pin can overpower the internal pullup and cause device  
shutdown. If the enable function is not used, a conservative and recommended approach is to connect E/D  
through a 47-pF capacitor to E/D Com. 7-3 shows different ways to connect the E/D and E/D Com pins.  
DVDD  
(Digital Supply)  
3-V or  
5-V  
Logic  
V+  
V+  
GND  
47 pF  
VIN+  
VIN+  
+
+
GND  
E/D  
E/D  
VOUT  
VOUT  
E/D  
OPA593  
E/D  
OPA593  
Com  
Com  
VIN  
VIN  
GND  
GND  
V
V
7-3. E/D and E/D Com Pin Connections  
When the E/D pin is dropped to a voltage between 0 V and 0.5 V greater than the E/D Com pin voltage, the  
output of the OPA593 is disabled. When disabled, the output of the OPA593 is set to a high-impedance state.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA593  
 
 
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
7.3.5 Mux-Friendly Inputs  
The OPA593 uses a unique input architecture to eliminate the need for input protection diodes but still provides  
robust input protection under transient conditions. Conventional input diode protection schemes shown in 7-4  
can be activated by fast transient step responses and can introduce signal distortion and settling time delays  
because of alternate current paths, as shown in 7-5. For low-gain circuits, these fast-ramping input signals  
forward-bias back-to-back diodes that cause an increase in input current, resulting in extended settling time.  
V+  
V+  
VIN+  
VIN+  
VOUT  
VOUT  
OPA593  
~0.7 V  
85 V  
VIN-  
VIN-  
V-  
V-  
OPA593 Provides Full 85-V Differential Input Range  
Conventional Input Protection Limits Differential Input Range  
7-4. OPA593 Input Protection Does Not Limit Differential Input Capability  
1
Ron_mux  
Vn = 10 V  
RFILT  
10 V  
Sn  
D
1
2
~–9.3 V  
10 V  
CFILT  
CS  
CD  
VIN–  
2
Ron_mux  
Sn+1  
V
n+1 = –10 V RFILT  
–10 V  
~0.7 V  
VOUT  
CFILT  
CS  
Idiode_transient  
VIN+  
–10 V  
Input Low-Pass Filter  
Simplified Mux Model  
Buffer Amplifier  
7-5. Back-to-Back Diodes Create Settling Issues  
The OPA593 a true high-impedance differential input capability for high-voltage applications. This patented input  
protection architecture does not introduce additional signal distortion or delayed settling time, making this device  
an excellent choice for multichannel, high-switched, input applications. The OPA593 tolerates a maximum  
differential swing (voltage between inverting and noninverting pins of the op amp) of up to 85 V, making this  
device a great choice for use as a comparator or in applications with fast-ramping or switched input signals.  
7.4 Device Functional Modes  
The OPA593 has two modes of operation. The first mode is normal operation where the amplifier is enabled,  
either by supplying a voltage to the enable-disable (E/D) pin that is between 2.5 V and 5 V greater than the E/D  
Com pin or by leaving the E/D pin floating. The second mode of operation is a low-power, disabled state where  
the E/D pin is driven between 0 V and 0.65 V greater than the E/D Com pin. In this state, the amplifier output is  
disabled and enters a high-output-impedance state.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: OPA593  
 
 
 
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The OPA593 is a precision, high-voltage, high-output-current op amp. The device is capable of operating with  
supplies as low as ±4 V (8 V) and as high as ±42.5 V (85 V). The current limit feature limits the output current, up  
to ±250 mA, to a specified accuracy. With a small size, high operating voltage range, output current, and high dc  
precision, the device is designed to operate as a high-gain stage, capable of driving heavy loads and condition  
large signals. The additional features of the OPA593, including the current limit, overcurrent and  
overtemperature flags, thermal protection, output disable, and mux-friendly inputs, help protect both the op amp  
and the system from potential damage due to various fault conditions.  
8.2 Typical Application  
8.2.1 Output Driver  
1.47 k  
10 k  
45 V  
GND  
+
Output  
+
–5 V  
Input  
GND  
8-1. Output Driver Configured With a Gain of 8  
8.2.1.1 Design Requirements  
The OPA593 is designed for use as an output driver stage with gain and provides a wide supply voltage and high  
output current with programmable current limit. Combined with the small size of the 4-mm × 4-mm WSON  
package, these features make this device a great choice for high-channel density systems, such as  
semiconductor test and manufacturing platforms where many channels are present. In this design example, the  
OPA593 is configured for a gain of 8 V/V. A small negative supply is provided if the application requires a small  
output voltage. For example, in the case of a device under test (DUT) continuity check, the amplifier is able to  
provide the output without being limited by the negative rail (that is, saturating the output).  
8-1. Design Parameters  
PARAMETER  
Supply voltage  
Input voltage  
Output voltage  
System gain  
VALUE  
+45 V, 5 V  
0 V to 5 V  
0 V to 40 V  
8
Output current  
Up to 250 mA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: OPA593  
 
 
 
 
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
8.2.1.2 Detailed Design Procedure  
In this design example, the OPA593 is configured as both a gain stage and output driver. The input signal to the  
amplifier is 0 V to 5 V, and the device is configured with a positive gain of 8. This configuration results in an  
output voltage of 0 V to 40 V. Select supply voltages that provide adequate headroom so that the amplifier can  
sink or source up to 250 mA without slamming the output into the rail. Minimize the swing from the supply to the  
output to minimize the thermal dissipation of the device.  
This simple design example is common in many systems that use a DAC to provide the input signal and require  
a wide output signal with high output current. Such systems include test and measurement platforms and power  
supplies.  
8-2 shows the input and output signal of this OPA593 circuit.  
8.2.1.3 Application Curve  
40  
Input  
Output  
35  
30  
25  
20  
15  
10  
5
0
0
0.004  
0.008  
0.012  
0.016  
0.02  
Time (s)  
8-2. OPA593 Output Driver Circuit, Input and Output Signals  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: OPA593  
 
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
8.2.2 High Voltage 2:1 Multiplexer With Unity Gain  
V+  
GND  
E/D Com  
VOUT  
OPA593  
E/D  
600  
VIN_1  
+
ILIMIT  
10 k  
V
GND  
GND  
DVDD  
SN74LVC1G04  
Select:  
3-V or  
5-V logic  
GND  
V+  
VIN_2  
10 k  
E/D  
OPA593  
GND  
E/D Com  
+
ILIMIT  
V
GND  
8-3. High Voltage 2:1 Multiplexer With Unity Gain  
8.2.2.1 Design Requirements  
The OPA593 operates on high-voltage supplies up to 85 V and is used to create a high voltage multiplexer  
(MUX) with a gain of 1 or higher. This design example uses two OPA593 op amps and makes use of the disable  
function. The high-impedance state of the output while the amplifier is disabled allows for the outputs of two  
OPA593 op amps to be connected together.  
8.2.2.2 Detailed Design Procedure  
In this design example, two OPA593 precision op amps are configured as a unity gain buffers powered with a  
±42.5-V dual supply. The input signal to either amplifier can range from 40 V to +39 V to remain in linear  
operation. The output of the amplifiers are connected together and a 3-V or 5-V logic signal, serving as the  
output select, is used to toggle between the enable and disable modes of operation. The logic control signal is  
directly applied to one OPA593 E/D pin, and an inverter gate is used to drive the other OPA593 E/D pin. 8-3  
shows a simplified representation of this circuit.  
A clear benefit of this design is the high-voltage capability, along with the thermal protection, overcurrent  
protection, and current-limit features. The mux-friendly input of the OPA593 provides a full input differential  
range, avoiding the pitfalls of other amplifiers with traditional back-to-back diodes in this configuration. This  
design can also be reconfigured to include signal gain, but careful selection of the input and feedback resistors is  
required to minimize current leakage paths.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: OPA593  
 
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
8.3 Power Supply Recommendations  
The OPA593 operates from power supplies up to ±42.5 V, or a total of 85 V, with excellent performance. Most  
behavior remains unchanged throughout the full operating voltage range. A power-supply bypass capacitor of at  
least 0.1 µF is required for proper operation. Make sure that the capacitor voltage is rated for high voltage across  
the full operating temperature range. Parameters that vary significantly with operating voltage are shown in 节  
6.6.  
Some applications do not require an equal positive and negative output voltage swing. Power-supply voltages do  
not have to be equal. The OPA593 operates with as little as 8 V between the supplies, and with up to 85 V  
between the supplies.  
8.4 Layout  
8.4.1 Layout Guidelines  
During the surface-mount solder operation (when the pins are being soldered), the thermal pad must be  
soldered to a copper area underneath the package. Through the use of thermal paths within this copper area,  
heat is conducted away from the package into a Vplane. Always solder the thermal pad to the PCB, even with  
applications that have low power dissipation. Follow these steps to attach the device to the PCB:  
1. Connect the thermal pad to the most negative supply voltage on the device, V.  
2. Prepare the PCB with a top-side pattern. There must be patterning for the pins and thermal pad.  
3. Thermal vias improve heat dissipation, but are not required.  
4. Place recommended vias in the area of the thermal pad. Recommended thermal land size and thermal via  
patterns for the SON-12 DNT package are shown in the thermal land pattern mechanical drawing appended  
at the end of this document. Keep the vias small, so that solder wicking through the vias is not a problem  
during reflow. Use a 0.2-mm size via with a minimum of five connected directly below the thermal pad.  
5. Additional vias can be placed anywhere along the thermal plane outside of the thermal pad area. These vias  
help dissipate the heat generated by the OPA593 device. These additional vias can be larger than the vias  
directly under the thermal pad because the additional vias are not in the thermal pad area to be soldered;  
thus, wicking is not a problem.  
6. Connect all vias to the internal power plane of the correct voltage potential, V.  
7. When connecting these vias to the plane, do not use the typical web or spoke via connection methodology.  
Web connections have a high thermal resistance connection that is useful for slowing the heat transfer  
during soldering operations, making the soldering of vias that have plane connections easier. In this  
application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore, the  
vias under the OPA593 WSON package must make the connections to the internal plane with a complete  
connection around the entire circumference of the plated-through hole.  
8. The top-side solder mask must leave the pins of the package and the thermal pad area exposed. The  
bottom-side solder mask must cover the vias of the thermal pad area. This masking prevents solder from  
being pulled away from the thermal pad area during the reflow process.  
9. Apply solder paste to the exposed thermal pad area and all of the device pins.  
10. With these preparatory steps in place, simply place the device in position, and run through the solder reflow  
operation as with any standard surface-mount component.  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: OPA593  
 
 
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
8.4.1.1 Thermal Considerations  
Through normal operation, the OPA593 self-heats. Self-heating is a natural increase in the die junction  
temperature that occurs in every amplifier. The maximum allowed junction temperature sets the maximum  
allowed internal power dissipation (PD) as described in the following paragraph. Design efforts should be made  
to prevent TJ from exceedeing the maximum temperature listed in the Absolute Maximum Ratings table.  
Operating junction temperature (TJ) is determined by the ambient temperature (TA), the internal PD under the  
operating conditions, and the junction-to-ambient thermal resistance (RθJA). This relationship is given by TA +  
(PD × RθJA). PD is the sum of quiescent power (PDQ) and additional power dissipated in the output stage (PDL)  
when delivering power to the load. PDQ is the specified no-load supply current times the total supply voltage  
across the part. PDL depends on the required output signal and load, but for a grounded resistive load the PDL is  
at a maximum when the output is fixed at a voltage equal to 1/2 of either supply voltage (for balanced bipolar  
supplies, V+ and V). Under this condition PDL = (V+)2 / (4 × RL), where RL includes feedback network loading.  
The power in the output stage and not into the load determines internal power dissipation.  
As a worst-case example, compute the maximum TJ using the OPA593 in the circuit of 8-1 operating at a  
maximum specified temperature of 125°C and driving a grounded 600-Ωload.  
P
= P  
+ P  
DL  
(4)  
D
DQ  
2
22.5  
V
P
T
= 50 V × 4 mA +  
(5)  
(6)  
D
4 × 600 Ω  
11.47 kΩ  
max = 125°C + 0.422 W × 40.8°C/W = 142.2°C  
J
To enhance semiconductor long-term operating life, minimize TJ. Take proper measures to provide maximum  
heat removal through both heat conduction and radiation to help keep TJ to the lowest possible level. These  
proper measures include maximizing the PCB copper area to which the package thermal pad is soldered. The  
copper area serves as the traditional heat sink. The top layer copper is often easiest to route and is most often  
exposed to open air. PCB internal planes and the exposed bottom plane can also be used as heat sinks, but the  
connections are made with vias having higher thermal resistance. The OPA593EVM uses a board design that  
provides a highly effective thermal layout. The board design encompasses a large top-side copper area, and has  
heat conduction paths to other planes on the board. Additionally, other higher power-dissipating components are  
kept physically distant from the OPA593 to better accommodate heat removal by radiation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: OPA593  
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
8.4.2 Layout Example  
V
V+  
ILIMIT  
E/D  
+IN  
+
OUT  
E/D  
Com  
TFlag  
IFlag  
RG  
V
RF  
8-4. Schematic Representation  
RF  
E/D Com  
Typically V– or GND  
E/D  
V–  
GND  
E/D Com  
E/D  
ILIMIT  
V+  
NC  
RG  
V+  
–IN  
+IN  
–IN  
Thermal Pad  
(must connect to  
V–)  
OUT  
OUT  
+IN  
Thermal  
Flag  
(Tflag)  
Thermal  
Flag  
NC  
Current  
Flag  
(Iflag)  
Current  
Flag  
V–  
V–  
Thermal  
Plane  
GND  
8-5. OPA593 Board Layout for Noninverting Configuration  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: OPA593  
OPA593  
www.ti.com.cn  
ZHCSMD4C JANUARY 2022 REVISED DECEMBER 2022  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Development Support  
9.1.1.1 PSpice® for TI  
PSpice® for TI 是可帮助评估模拟电路性能的设计和仿真环境。在进行布局和制造之前创建子系统设计和原型解决  
方案可降低开发成本并缩短上市时间。  
9.1.1.2 TINA-TI™ 仿真软件免费下载)  
TINA-TI仿真软件是一款简单易用、功能强大且基于 SPICE 引擎的电路仿真程序。TINA-TI 仿真软件是 TINA™  
软件的一款免费全功能版本除了一系列无源和有源模型外此版本软件还预先载入了一个宏模型库。TINA-TI 仿  
真软件提供所有传统SPICE 直流、瞬态和频域分析以及其他设计功能。  
TINA-TI 仿真软件提供全面的后处理能力便于用户以多种方式获得结果用户可从设计工具和仿真网页免费下  
。虚拟仪器提供选择输入波形和探测电路节点、电压以及波形的能力从而构建一个动态的快速启动工具。  
备注  
必须安装 TINA 软件或者 TINA-TI 软件后才能使用这些文件。请从 TINA-TI™ 软件文件夹中下载免费的  
TINA-TI 仿真软件。  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
TINA-TIand TI E2Eare trademarks of Texas Instruments.  
TINAis a trademark of DesignSoft, Inc.  
PSpice® is a registered trademark of Cadence Design Systems, Inc.  
所有商标均为其各自所有者的财产。  
9.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: OPA593  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA593DNTR  
OPA593DNTT  
XOPA593DNTR  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
DNT  
DNT  
DNT  
12  
12  
12  
5000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
OPA593  
OPA593  
Samples  
Samples  
Samples  
250  
RoHS & Green  
TBD  
NIPDAU  
Call TI  
5000  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Jan-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA593DNTR  
OPA593DNTT  
WSON  
WSON  
DNT  
DNT  
12  
12  
5000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA593DNTR  
OPA593DNTT  
WSON  
WSON  
DNT  
DNT  
12  
12  
5000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DNT0012B  
WSON - 0.8 mm max height  
SCALE 3.000  
PLASTIC SMALL OUTLINE - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
4.1  
3.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
(0.1) TYP  
2.6 0.1  
6
7
2X  
2.5  
3
0.1  
10X 0.5  
12  
1
0.3  
0.2  
12X  
0.1  
C A B  
C
0.5  
0.3  
PIN 1 ID  
(45 X 0.25)  
12X  
0.05  
4214928/C 10/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DNT0012B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(2.6)  
SYMM  
12X (0.6)  
1
12  
12X (0.25)  
(1.25)  
SYMM  
(3)  
10X (0.5)  
7
6
(R0.05) TYP  
(
0.2) VIA  
TYP  
(1.05)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214928/C 10/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DNT0012B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
METAL  
TYP  
(0.68)  
12X (0.6)  
1
12  
12X (0.25)  
(0.76)  
SYMM  
10X (0.5)  
4X  
(1.31)  
(R0.05) TYP  
6
7
4X (1.15)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
77% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4214928/C 10/2021  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA600

Fast-Settling Wideband OPERATIONAL AMPLIFIER
BB

OPA600BM

Fast-Settling Wideband OPERATIONAL AMPLIFIER
BB

OPA600CM

Fast-Settling Wideband OPERATIONAL AMPLIFIER
BB

OPA600SM

Fast-Settling Wideband OPERATIONAL AMPLIFIER
BB

OPA600TM

Fast-Settling Wideband OPERATIONAL AMPLIFIER
BB

OPA600UM

Operational Amplifier, 1 Func, 15000uV Offset-Max, MDIP16,
BB

OPA600UM/883B

Operational Amplifier, 1 Func, 15000uV Offset-Max, MDIP16,
BB

OPA600VM

Operational Amplifier, 1 Func, 8000uV Offset-Max, MDIP16,
BB

OPA600VM/BBC

Operational Amplifier, 1 Func, 8000uV Offset-Max, MDIP16,
BB

OPA600VM/MIL

Operational Amplifier, 1 Func, 6000uV Offset-Max, MDIP16,
BB

OPA602

High-Speed Precision Difet OPERATIONAL AMPLIFIER
BB

OPA602AM

High-Speed Precision Difet OPERATIONAL AMPLIFIER
BB