OPA607-Q1 [TI]

汽车类 50MHz、低功耗、6V/V 稳定增益、轨至轨输出 CMOS 运算放大器;
OPA607-Q1
型号: OPA607-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 50MHz、低功耗、6V/V 稳定增益、轨至轨输出 CMOS 运算放大器

放大器 运算放大器
文件: 总36页 (文件大小:2172K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
OPAx607-Q1 汽车50MHz 轨至轨输CMOS 运算放大器  
1 特性  
3 说明  
• 符合汽车应用要求  
• 具有符AEC-Q100 标准的下列特性:  
OPA607-Q1 OPA2607-Q1 器件是一款解补偿通用  
CMOS 算放大器小稳定增益为 6V/V有  
3.8nV/Hz 的低噪声和 50MHz GBWOPAx607-  
Q1 器件具有低电压温漂 (dVOS/dT) 和高带宽特性因  
此非常适合低成本通用应用如低侧电流感应和 TIA  
跨阻放大器。高阻抗 CMOS 输入使得 OPAx607-  
Q1 放大器非常适合连接具有高输出阻抗的传感器例  
压电式传感器。  
– 温度等140°C +125°CTA  
• 增益带宽(GBW)50MHz  
• 静态电流900µA典型值)  
• 输入温1.5μV/°C上限)  
• 失调电压120µV典型值)  
• 输入偏置电流10pA最大值)  
• 轨到轨输(RRO)  
OPAx607-Q1 器件的轨至轨输出 (RRO) 相对于电源轨  
具有高8mV 的摆幅从而更大限度提高动态范围。  
• 电源电压范围2.2V 5.5V  
2 应用  
OPAx607-Q1 经过优化适合在低至 2.2V (±1.1V) 和  
高达 5.5V (±2.75V) 的低电源电压下工作且额定工作  
温度范围40°C +125°C。  
直流/直流转换器  
逆变器和电机控制  
车载充电(OBC) 和无线充电器  
电动涡轮增压机  
HVAC 压缩机模块  
手势识别  
器件信息(1)  
封装尺寸标称值)  
器件型号  
OPA607-Q1  
OPA2607-Q1  
封装  
SOT23 (5)  
VSSOP (8)  
2.90mm × 1.60mm  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
Transimpedance  
stage  
Short Circuit  
Detection  
LOAD  
VTH  
œ
+
VREF  
RF  
ADS7042  
TLV3201  
OPAx607-Q1  
LED driver  
Þ
+
VS+  
VS+  
RG  
RF  
ISH  
œ
REXT  
OPAx607-Q1  
RG  
ADS7042  
CEXT  
+
Photodiode  
CF  
VREF  
适用于跨阻应用OPAx607-Q1  
适用于电流感应应用OPAx607-Q1  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOSA38  
 
 
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
Table of Contents  
9 Application and Implementation..................................19  
9.1 Application Information............................................. 19  
9.2 Typical Applications.................................................. 19  
10 Power Supply Recommendations..............................25  
11 Layout...........................................................................26  
11.1 Layout Guidelines................................................... 26  
11.2 Layout Examples.....................................................26  
12 Device and Documentation Support..........................27  
12.1 Device Support....................................................... 27  
12.2 Documentation Support.......................................... 27  
12.3 Receiving Notification of Documentation Updates..27  
12.4 支持资源..................................................................27  
12.5 Trademarks.............................................................27  
12.6 Electrostatic Discharge Caution..............................27  
12.7 术语表..................................................................... 27  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison.........................................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings ....................................... 5  
7.2 ESD Ratings .............................................................. 5  
7.3 Recommended Operating Conditions ........................5  
7.4 Thermal Information ...................................................5  
7.5 Electrical Characteristics ............................................6  
7.6 Typical Characteristics................................................8  
8 Detailed Description......................................................14  
8.1 Overview...................................................................14  
8.2 Functional Block Diagram.........................................14  
8.3 Feature Description...................................................15  
8.4 Device Functional Modes..........................................18  
Information.................................................................... 27  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (February 2021) to Revision A (April 2021)  
Page  
• 将版本状态从预告信更新为量产数.............................................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
5 Device Comparison  
5-1. OPA607-Q1 vs OPA2607-Q1  
PACKAGE LEADS  
DEVICE  
NO. OF CHANNELS  
VSSOP (DGK)  
SOT-23 (DBV)  
OPA607-Q1  
1
2
5
OPA2607-Q1  
8
5-2. OPAx607-Q1 vs Other Automotive Op-Amps from TI  
VOLTAGE  
NOISE  
(nV/Hz)  
MINIMUM  
STABLE GAIN  
(V/V)  
OFFSET DRIFT  
(µV/°C, TYP)  
IQ / CHANNEL  
(mA, TYP)  
GBW  
(MHz)  
SLEW RATE  
(V/µs)  
DEVICE  
INPUT  
OPAx365-Q1  
OPAx607-Q1  
OPAx836-Q1  
CMOS  
CMOS  
Bipolar  
1
1
6
1
4.6  
0.9  
50  
50  
25  
24  
4.5  
3.8  
4.6  
0.3  
1.1  
0.95  
110  
240  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
6 Pin Configuration and Functions  
VS+  
IN-  
OUT  
VSœ  
5
IN+  
6-1. DBV Package  
5-Pin SOT-23  
Top View  
Pin Functions Single Channel  
PIN  
I/O  
DESCRIPTION  
NAME  
DBV  
4
3
1
2
5
I
Non Inverting Input  
Inverting Input  
Output  
IN–  
IN+  
I
OUT  
VS–  
VS+  
O
Negative supply or ground (for single-supply operation)  
Positive supply  
1
8
OUT1  
VS+  
7
2
IN1-  
OUT2  
œ
A
3
4
6
IN1+  
+
œ
IN2-  
B
5
VS-  
IN2+  
+
6-2. OPA2607-Q1 DGK  
8-Pin, VSSOP  
Top View  
Pin Functions Dual Channel  
PIN  
I/O  
DESCRIPTION  
NAME  
IN1–  
DGK  
2
3
6
5
1
7
4
8
I
I
Inverting input, channel 1  
IN1+  
IN2–  
IN2+  
OUT1  
OUT2  
VS–  
Noninverting input, channel 1  
Inverting input, channel 2  
I
I
Noninverting input, channel 2  
Output, channel 1  
O
O
Output, channel 2  
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
VS+  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Supply voltage, Vs  
6
(VS+) + 0.5  
±5  
(VS+) (VS–  
)
VIN+, VIN–  
Input voltage  
V
(VS) 0.5  
VID  
II  
Differential input voltage(4)  
Continuous input current(2)  
Continuous output current(3)  
Continuous power dissipation  
Maximum junction temperature  
Operating free-air temperature  
Storage temperature  
V
±10  
mA  
mA  
IO  
±20  
See Thermal Information  
TJ  
150  
150  
150  
°C  
°C  
°C  
TA  
40  
65  
Tstg  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not supported.  
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails  
should be current limited to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
(4) Long term drift of offset voltage (> 1mV) if a differential input in excess of 2V is applied continuously between the IN+ and IN- pins at  
elevated temperatures.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with ANSI/ESDA/JEDEC JS-001 Specification  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.2  
NOM  
MAX  
5.5  
UNIT  
V
VS  
TA  
Supply voltage (VS+) (VS–  
)
±1.1  
40  
±2.75  
125  
Ambient operating temperature  
25  
°C  
7.4 Thermal Information  
OPAx607-Q1  
THERMAL METRIC(1)  
DBV (SOT23)  
DGK (VSSOP8)  
UNIT  
5 PINS  
196.5  
118.7  
64.5  
8 PINS  
179  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
71  
101  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
41.1  
13.7  
100  
64.2  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
 
 
 
 
 
 
 
 
 
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
7.5 Electrical Characteristics  
At TA = 25°C, VS = 2.2 V to 5.5 V, G = 6 V/V(3), RF = 5 kΩ, CF = 2.5 pF, VCM = (VS / 2) 0.5 V, CL = 10 pF, RL = 10 kΩ  
connected to (VS / 2) 0.5 V and PD connected to (VS+) (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
±0.1  
±0.1  
±0.3  
110  
±0.6  
±0.7  
±1.5  
VOS  
Input offset voltage  
mV  
µV/°C  
dB  
TA = 40°C to +125°C(2)  
TA = 40°C to +125°C  
VS = 2.2 V to 5.5 V  
dVOS/dT  
PSRR  
Input offset voltage drift(2)  
Power-supply rejection ratio  
95  
95  
TA = 40°C to +125°C  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
(VS–  
)
V
(VS+) 1.1  
90  
86  
100  
(VS) < VCM < (VS+) 1.1 V  
TA = 40°C to +125°C  
CMRR  
Common-mode rejection ratio  
dB  
INPUT BIAS CURRENT  
±3  
See Figure 7-27  
±3  
±10  
±10  
IB  
Input bias current(2)  
pA  
TA = 40to 125℃  
IOS  
Input offset current(2)  
NOISE  
Input voltage noise (peak-to-peak)  
Input voltage noise density  
Input current noise density  
f = 0.1 Hz to 10 Hz  
f = 10 kHz, 1/f corner at 1 kHz  
f = 1 kHz  
1.6  
3.8  
46  
µVPP  
eN  
iN  
nV/Hz  
fA/Hz  
INPUT IMPEDANCE  
Differential  
Common-mode  
OPEN-LOOP GAIN  
11.5  
5.5  
CIN  
pF  
110  
100  
130  
65  
(VS)+400 mV<VOUT<(VS+)400 mV  
TA = 40°C to +125°C  
AOL  
Open-loop voltage gain  
dB  
°
Phase margin  
AC Characteristics (VS = 5 V)  
SSBW  
GBW  
SR  
Small-signal bandwidth  
VOUT = 20 mVpp  
10  
50  
MHz  
V/µs  
µs  
Gain-bandwidth product  
Slew rate  
G = 20 V/V  
3-V output step (10-90%)  
To 0.1%, 3-V step, G = 40  
To 0.01%, 3-V step, G = 40  
VIN+ × Gain > VS  
24  
1
tS  
Settling time  
1.8  
Overdrive recovery time  
0.25  
-103  
-91.5  
-96  
µs  
VOUT = 2 VPP ,f = 1 kHz ,RL = 10 kΩ  
VOUT = 2 VPP ,f = 20 kHz ,RL = 10 kΩ  
VOUT = 2 VPP ,f = 1 kHz ,RL = 1 kΩ  
VOUT = 2 VPP ,f = 20 kHz ,RL = 1 kΩ  
VOUT = 2 VPP ,f = 20 kHz  
VOUT = 2 VPP ,f = 20 kHz  
THD+N  
Total Harmonic Distortion + Noise(4)  
dB  
-72.8  
-105  
-95  
HD2  
HD3  
Second-order harmonic distortion  
Third-order harmonic distortion  
dBc  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
At TA = 25°C, VS = 2.2 V to 5.5 V, G = 6 V/V(3), RF = 5 kΩ, CF = 2.5 pF, VCM = (VS / 2) 0.5 V, CL = 10 pF, RL = 10 kΩ  
connected to (VS / 2) 0.5 V and PD connected to (VS+) (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
8
12  
12  
Output voltage swing from supply rails  
mV  
TA = 40°C to +125°C  
ISC  
ZO  
Output Short-circuit current  
Open-loop output impedance  
60  
mA  
f = 1 MHz  
500  
Ω
POWER SUPPLY  
IO = 0 mA  
900  
1100  
1200  
IQ Quiescent current per amplifier  
µA  
TA = 40°C to +125°C  
(1) Parameters with minimum or maximum specification limits are 100% production tested at 25ºC, unless otherwise noted. Over  
temperature limits are based on characterization and statistical analysis.  
(2) Specified by design or/and characterization; not production tested.  
(3) All Gains (G) mentioned are in V/V unless otherwise noted.  
(4) Lowpass-filter bandwidth is 92kHz for f = 20 kHz and 20 kHz for f = 1 kHz.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
 
 
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
7.6 Typical Characteristics  
At TA = +25°C, VS = 5.5 V, RL = 10 kΩ, RF= 5 kΩ, CF= 2.5 pF, VCM = midsupply 0.5 V, G = 6 V/V (unless otherwise  
noted).  
140  
120  
100  
80  
180  
150  
120  
90  
100  
10  
1
60  
60  
40  
30  
20  
0
0
-30  
-60  
Magnitude (dB)  
Phase (è)  
-20  
1
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M 100M  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
D002  
D010  
.
.
.
.
.
.
7-1. Open Loop Gain and Phase vs Frequency  
7-2. Input Voltage Noise Density vs Frequency  
100  
3
0
-3  
-6  
10  
1
-9  
0.1  
0.01  
Gain = 6 V/V  
Gain = -5 V/V  
Gain = 10 V/V  
Gain = 20 V/V  
-12  
-15  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
Frequency (Hz)  
D101  
D003  
.
.
.
.
VOUT = 20 mVPP  
.
7-3. Input Current Noise Density vs Frequency  
7-4. Small-Signal Frequency Response vs Gain  
3
3
0
-3  
-6  
0
-3  
-6  
-9  
-9  
CL = 10 pF  
CL = 5 pF  
CL = 22 pF  
-12  
RL = 10 kW  
RL = 2 kW  
-12  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
D005  
D004  
.
VOUT = 20 mVPP  
.
.
VOUT = 20 mVPP  
.
7-5. Small-Signal Frequency Response vs Capacitive Load  
7-6. Small-Signal Frequency Response vs Output Load  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
At TA = +25°C, VS = 5.5 V, RL = 10 kΩ, RF= 5 kΩ, CF= 2.5 pF, VCM = midsupply 0.5 V, G = 6 V/V (unless otherwise  
noted).  
3
0
1
0.8  
0.6  
0.4  
0.2  
0
-3  
-6  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
VO = 200 mVPP  
VO = 1 VPP  
VO = 2 VPP  
VO = 4 VPP  
VO = 200 mVPP  
VO = 1 VPP  
VO = 2 VPP  
VO = 4 VPP  
-9  
-12  
100k  
1M  
10M  
100M  
100k  
1M  
Frequency (Hz)  
10M  
Frequency (Hz)  
D006  
D007  
.
.
.
.
.
.
.
.
.
.
7-7. Large-Signal Frequency Response vs Output Voltage  
7-8. Large-Signal Response Flatness vs Frequency  
-40  
-40  
HD2, RL = 10kW  
HD2  
HD3  
-50  
HD3, RL = 10kW  
-50  
-60  
HD2, RL = 2kW  
-60  
HD3, RL = 2kW  
-70  
-70  
-80  
-90  
-80  
-100  
-110  
-120  
-130  
-140  
-90  
-100  
-110  
-120  
10  
100  
1k 10k  
Freuency (Hz)  
100k  
1M  
1
1.5  
2
2.5  
3
Output Voltage (VPP  
3.5  
4
4.5  
5
)
D008  
DPLO  
.
VOUT = 2 VPP  
.
Frequency = 20 kHz  
7-9. Harmonic Distortion vs Frequency  
7-10. Harmonic Distortion vs Output Voltage  
140  
120  
100  
80  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
CMRR  
PSRR -  
PSRR +  
60  
40  
20  
0
1
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M 100M  
100  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
100M  
D019  
D011  
.
.
.
.
7-11. Rejection Ratio vs frequency  
7-12. Open Loop Output Impedance vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA607-Q1 OPA2607-Q1  
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
At TA = +25°C, VS = 5.5 V, RL = 10 kΩ, RF= 5 kΩ, CF= 2.5 pF, VCM = midsupply 0.5 V, G = 6 V/V (unless otherwise  
noted).  
4
3
2
1.5  
1
VOUT  
VIN ì 6  
2
1
0.5  
0
0
-1  
-2  
-3  
-4  
-0.5  
-1  
-1.5  
-2  
VOUT  
VIN x 6 V/V  
0
500  
1000  
1500  
Time (nsec)  
2000  
2500  
3000  
0
500  
1000  
Time (nsec)  
1500  
2000  
D012  
D013  
.
.
.
.
.
.
TRISE = 1 µsec , TFALL = 0.7 µsec  
7-14. Large-Signal Transient Response  
.
.
.
7-13. Output Overdrive Recovery  
0.15  
0.1  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN ì 6  
VOUT  
VS = 2.2V  
VS = 5.5V  
0.05  
0
-0.05  
-0.1  
-0.15  
0
500  
1000  
Time (nsec)  
1500  
2000  
10p  
100p  
Capacitive Load (F)  
D014  
D020  
.
TRISE = TFALL = 40 nsec  
.
.
7-15. Small-Signal Transient Response  
7-16. Phase Margin vs Capacitive Load  
3.3  
3
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain = 6 V/V  
Gain = 10 V/V  
Gain = 20 V/V  
Gain = 40 V/V  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
VIN  
VOUT Gain = 6 V/V  
VOUT Gain = 10 V/V  
VOUT Gain = 20 V/V  
VOUT Gain = 40 V/V  
Time (100 nsec/div)  
10p  
100p  
1n  
10n  
CLOAD (F)  
D026  
D025  
.
Simulated  
.
.
7-17. Step Settling Time  
7-18. Recommended Isolation Resistor vs Capacitive Load  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
At TA = +25°C, VS = 5.5 V, RL = 10 kΩ, RF= 5 kΩ, CF= 2.5 pF, VCM = midsupply 0.5 V, G = 6 V/V (unless otherwise  
noted).  
27  
24  
21  
18  
15  
12  
9
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
VS = 5.5V  
VS = 2.2V  
VS = 5 V, Overshoot  
VS = 5 V, Undershoot  
VS = 2.2 V, Overshoot  
VS = 2.2 V, Undershoot  
6
3
0
0
10  
20  
30  
40  
50  
60  
Capacitive Load (pF)  
70  
80  
90  
100  
D022  
D015  
Input Offset Voltage (mV)  
.
VOUT = 200 mVPP  
.
.
9000 units  
.
7-19. Overshoot vs Capacitive Load  
7-20. Input Offset Voltage Distribution  
100  
80  
12  
11  
10  
9
60  
40  
8
20  
7
6
0
5
-20  
-40  
-60  
-80  
-100  
4
3
2
1
0
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (èC)  
D024  
D023  
Offset Voltage Drift (mV/èC)  
.
32 Units, Normalized to  
VOS = 0V at 25°C  
.
.
.
32 Units, 40°C to  
+125°C  
7-21. Input Offset Voltage vs Temperature  
7-22. Input Offset Drift Distribution  
8
6
4
2
350  
300  
250  
200  
150  
100  
50  
0
-2  
-50  
-4  
-6  
-8  
-100  
-150  
-200  
-250  
-3 -2.5 -2 -1.5 -1 -0.5  
0
0.5  
Input Common Mode Voltage (V)  
1
1.5  
2
2.5  
3
2
2.5  
3
3.5  
4
VS (V)  
4.5  
5
5.5  
6
D028  
D029  
.
VS = ±2.75 V  
.
.
32 Units  
.
7-23. Input Offset vs Common Mode Voltage  
7-24. Input Offset vs Supply  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
At TA = +25°C, VS = 5.5 V, RL = 10 kΩ, RF= 5 kΩ, CF= 2.5 pF, VCM = midsupply 0.5 V, G = 6 V/V (unless otherwise  
noted).  
120  
117  
114  
111  
108  
105  
102  
99  
100  
90  
80  
70  
60  
50  
40  
96  
VCM = (VS-) to (VS+ - 1.1)  
VCM = (VS- + 0.25) to (VS+ - 1.1)  
VCM = (VS- - 0.1) to (VS+ - 1.1)  
93  
90  
-50  
-25  
0
25  
50  
75  
100  
125  
-75  
-50  
-25  
0
Temperature (°C)  
25  
50  
75  
100  
125  
Temperature (èC)  
D100  
D021  
.
.
.
.
.
.
.
.
7-25. Common Mode Rejection Ratio vs Temperature  
7-26. Short-Circuit Current vs Temperature  
400  
1000  
IB+  
IB-  
IOS  
VS = 2.2 V  
VS = 5.5 V  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
350  
300  
250  
200  
150  
100  
50  
0
-50  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D030  
D031  
.
.
.
.
.
7-27. Input Bias and Offset Current vs Temperature  
7-28. Quiescent Current vs Temperature  
2.75  
2.25  
1.75  
1.25  
0.75  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
-40èC  
0.25  
+25èC  
-0.25  
+125èC  
-0.75  
-1.25  
-1.75  
-2.25  
-2.75  
0
10  
20  
30  
Output Current (mA)  
40  
50  
60  
1M  
10M  
100M  
Frequency (Hz)  
1G  
10G  
D032  
D001  
.
.
.
.
.
7-29. Output Voltage vs Output Current Sourcing and Sinking 7-30. Electromagnetic Interference Rejection Ratio Referred  
to Noninverting Input (EMIRR+) vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
At TA = +25°C, VS = 5.5 V, RL = 10 kΩ, RF= 5 kΩ, CF= 2.5 pF, VCM = midsupply 0.5 V, G = 6 V/V (unless otherwise  
noted).  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
-110  
Ch B to Ch A  
Ch A to Ch B  
-115  
-120  
100k  
1M  
10M  
Frequency (MHz)  
100M  
D001  
.
.
.
7-31. Crosstalk vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The OPAx607-Q1 devices are low-noise, rail-to-rail output (RRO) operational amplifiers (op amp). The devices  
operate from a supply voltage of 2.2 V to 5.5 V. The input common-mode voltage range also extends down to  
the negative rail allowing the OPAx607-Q1 to be used in most single-supply applications. Rail-to-rail output  
swing significantly increases dynamic range, especially in low-supply, voltage-range applications, which results  
in complete usage of the full-scale range of the consecutive analog-to-digital converters (ADCs). The  
decompensated architecture allows for a favorable tradeoff of low-quiescent current for a very-high gain-  
bandwidth product (GBW) and low-distortion performance in high-gain applications.  
8.2 Functional Block Diagram  
V+  
100 k  
Reference  
PD block  
Current  
Internally Pulled up  
VIN+  
VINÛ  
VBIAS1  
Class AB  
Control  
Circuitry  
VO  
VBIAS2  
VÛ  
(Ground)  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
 
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Operating Voltage  
The OPAx607-Q1 operational amplifiers are fully specified and assured for operation from 2.2 V to 5.5 V,  
applicable from 40°C to +125°C. The OPAx607-Q1 devices are completely operational with asymmetric,  
symmetric and single supply voltages applied across the supply pins. The total voltage (that is, (VS+) (VS))  
must be less than the supply voltage mentioned in 7.1.  
8.3.2 Rail-to-Rail Output and Driving Capacitive Loads  
Designed as a low-power, low-voltage operational amplifier, the OPAx607-Q1 devices are capable of delivering a  
robust output drive. For resistive loads of 10 kΩ, the output swings to within a few millivolts of either supply rail,  
regardless of the applied power-supply voltage. Different load conditions change the ability of the amplifier to  
swing close to the rails. The OPAx607-Q1 devices drive up to a nominal capacitive load of 47 pF on the output  
with no special consideration and without the need of a series isolation resistor RISO while still being able to  
achieve 45° of phase margin. When driving capacitive loads greater than 47 pF, TI recommends using RISO as  
shown in 8-1 in series with the output as close to the device as possible. Refer to 7-18 for looking up  
different values of RISO required for CL to achieve 45° phase margin. Without RISO, the external capacitance (CL)  
interacts with the output impedance (ZO) of the amplifier, resulting in stability issues. Inserting RISO isolates CL  
from ZO and restores the phase margin. 8-1 shows the test circuit.  
IOVERLOAD  
10 mA max  
OPAx607-Q1  
RISO  
+
VIN  
VOUT  
10 k  
œ
Rg  
Rf  
Cf  
CL  
8-1. Input Current Protection and Driving Capacitive Loads  
8-2 and 8-3 show the phase margin achieved with varying RISO with different values of CL.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10pF  
22pF  
47pF  
0.1nF  
1nF  
10pF  
22pF  
47pF  
0.1nF  
1nF  
10nF  
10nF  
0
50 100 150 200 250 300 350 400 450 500  
RISO (W)  
0
50 100 150 200 250 300 350 400 450 500  
RISO (W)  
D018  
D017  
Gain = 10 V/V,  
Cf = 2.5 pF,  
Gain = 20 V/V,  
Cf = 2.5 pF,  
RL = 10 kΩ  
RL = 10 kΩ  
8-2. Phase Margin vs. Series Isolation Resistor 8-3. Phase Margin vs. Series Isolation Resistor  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
 
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
8.3.3 Input and ESD Protection  
When the primary design goal is a linear amplifier with high CMRR, do not exceed the op amp input common-  
mode voltage range (VCM). This CMRR is used to set the common-mode input range specifications in 7.1.  
The typical VCM specifications for the OPAx607-Q1 devices are from the negative rail to 1.1 V below the positive  
rail. Assuming the op amp is in linear operation, the voltage difference between the input pins is small (ideally 0  
V) and the input common-mode voltage can be analyzed at either input pin; the other input pin is assumed to be  
at the same potential. The voltage at VIN+ is easy to evaluate. In a noninverting configuration (8-1) the input  
signal, VIN+, must not exceed the VCM rating. However, in an inverting amplifier configuration, VIN+ must be  
connected to the voltage within VCM. The input signal applied at VIN- can be any voltage, such that the output  
voltage swings with a headroom of 10 mV from either of the supply rails.  
The input voltage limits have fixed headroom to the power rails and track the power-supply voltages. For single  
5-V supply, the linear input voltage range is 0 V to 3.9 V and with a 2.2-V supply this range is 0 V to 1.1 V. The  
headroom to each power-supply rail is the same in either case: 0 V and 1.1 V. A weak NMOS input pair from  
V
IN+ to VIN+ 1.1 V ensures that an output phase reversal issue does not occur when the VCM is violated.  
VS+  
TVS  
OPAx607-Q1  
VDD  
IN+  
IN-  
œ
OUT  
+
Power-Supply  
ESD Cell  
VSS  
VS¤  
8-4. Internal ESD Structure  
The OPAx607-Q1 devices also incorporate internal electrostatic discharge (ESD) protection circuits on all pins.  
For the input and output pins, this protection primarily consists of current-steering diodes connected between the  
input and power-supply pins. These ESD protection diodes provides input overdrive protection, as long as the  
current is limited with a series resistor to 10 mA, as stated in 7.1. 8-1 shows a series input resistor can be  
added to the driven input to limit the input current.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
8.3.4 Decompensated Architecture with Wide Gain-Bandwidth Product  
Amplifiers such as the OPAx607-Q1 devices are not unity-gain stable are referred to as decompensated  
amplifiers. The decompensated architecture typically allows for higher GBW, higher slew rate, and lower noise  
compared to a unity-gain stable amplifier with similar quiescent currents. The increased available bandwidth  
reduces the rise time and the settling time of the op amp, allowing for sampling at faster rates in an ADC-based  
signal chain.  
As shown in 8-5, the dominant pole fd is moved to the frequency f1 in the case of a decompensated op amp.  
The solid AOL plot is the open-loop gain plot of a traditional unity-gain stable op amp. The change in internal  
compensation in a decompensated amp such as the OPAx607-Q1, increase the bandwidth for the same amount  
of power. That is, the decompensated op amp has an increased bandwidth to power ratio when compared to a  
unity-gain stable op amp of equivalent architecture. Besides the advantages in the above mentioned  
parameters, an increased slew rate and a better distortion (HD2 and HD3) value is achieved because of the  
higher available loop-gain, compared to its unity-gain counterpart. The most important factor to consider is  
ensuring that the op amp is in a noise gain (NG) greater than Gmin. A value of NG lower than Gmin results in  
instability, as shown in 8-5, because the 1/ß curve intersects the AOL curve at 40 dB/decade. This method of  
analyzing stability is called the rate of closure method. See the precision lab training videos from TI for a better  
understanding on device stability and for different techniques of ensuring stability.  
Unity Gain Stable Op Amp  
Decompensated Op Amp  
A
OL  
G
min  
GBP  
d  
1  
u  
2  
Å
u  
8-5. Gain vs Frequency Characteristics for a Unity-Gain Stable Op Amp and a Decompensated Op  
Amp  
The OPAx607-Q1 devices are stable in a noise gain of 6 V/V (15.56 dB) or higher in conventional gain circuits;  
see 8-6. The device has 9 MHz of small-signal bandwidth (SSBW) in this gain configuration with  
approximately 65° of phase margin. The high GBW and low voltage noise of the OPAx607-Q1 devices make  
them suitable for general-purpose, high-gain applications.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
8.4 Device Functional Modes  
The Automotive grade of the OPAx607-Q1 family has only one functional modes: normal operating mode. The  
PD mode exists only in some of the packages made available in the industrial grade of the OPAx607-Q1 family.  
8.4.1 Normal Operating Mode  
The OPAx607-Q1 devices are operational when the power-supply voltage is between 2.2 V (±1.1 V) and 5.5 V  
(±2.75 V). Most newer systems use a single power supply to improve efficiency and simplify the power tree  
design. The OPAx607-Q1 devices can be used with a single-supply power (VSconnected to GND) with no  
change in performance from split supply, as long as the input and output pins are biased within the linear  
operating region of the device. The valid input and output voltage ranges are given in 7.5. The outputs  
nominally swing rail-to-rail with approximately 10-mV headroom required for linear operation. The inputs can  
typically swing up to the negative rail (typically ground) and to within 1.1 V from the positive supply. 8-6 shows  
changing from a ±2.5-V split supply to a 5-V single-supply.  
VSIG  
VSIG  
Bias  
Bias  
5 V  
2.5 V  
Signal and bias from  
previous stage  
Signal and bias from  
previous stage  
OPAx607-Q1  
VOUT  
Gain × VSIG  
Gain × Bias  
OPAx607-Q1  
VOUT  
+
+
œ
œ
Gain × VSIG  
Gain × Bias  
-2.5 V  
RF  
Signal and bias to  
next stage  
Signal and bias to  
next stage  
RG  
RF  
RG  
8-6. Single-Supply and Dual-Supply Operation  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The OPAx607-Q1 devices feature a 50-MHz GBW with 900 µA of supply current, providing good AC  
performance at low-power consumption. The low input noise voltage of 3.8 nV/Hz, the approximate pA of bias  
current, and a typical input offset voltage of 0.1 mV make the device very suitable for both AC and DC  
applications.  
9.2 Typical Applications  
9.2.1 100-kΩGain Transimpedance Design  
The high GBW and low input voltage and current noise for the OPAx607-Q1 devices make it an excellent  
wideband transimpedance amplifier for moderate to high transimpedance gains.  
Supply decoupling  
not shown  
+5 V  
OPAx607-Q1  
+0.5 V  
+
VOUT  
œ
GND  
RF  
100 k  
CD  
3 pF  
IPD  
CCM  
5.5 pF  
CDIFF  
11.5 pF  
CF  
1.1 pF  
VOUT = IPD X RF  
OPA607's input differential and  
common-mode capacitance  
9-1. Wideband, High-Sensitivity, Transimpedance Amplifier  
9.2.1.1 Design Requirements  
Design a high-bandwidth, high-transimpedance-gain amplifier with the design requirements shown in 9-1.  
9-1. Design Requirements  
PHOTODIODE CAPACITANCE  
TARGET BANDWIDTH (MHz)  
TRANSIMPEDANCE-GAIN (kΩ)  
(pF)  
2
100  
3
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
 
 
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
9.2.1.2 Detailed Design Procedure  
Designs that require high bandwidth from a large area detector with relatively high transimpedance-gain benefit  
from the low input voltage noise of the OPAx607-Q1 devices. Use the Excelcalculator available at What You  
Need To Know About Transimpedance Amplifiers Part 1 to help with the component selection based on total  
input capacitance and CTOT. CTOT is referred as CIN in the calculator. CTOT is the sum of CD, CDIFF, and CCM  
which is 20 pF. Using this value of CTOT, and the targeted closed-loop bandwidth (f3dB) of 2 MHz and  
transimpedance gain of 100 kΩ results in amplifier GBW of approximately 50 MHz and a feedback capacitance  
(CF) of 1.1 pF as shown in 9-2. These results are for a Butterworth response with a Q = 0.707 and a phase  
margin of approximately 65° which corresponds to 4.3% overshoot.  
Calculator II  
Closed-loop TIA Bandwidth (f-3dB  
Feedback Resistance (RF)  
Input Capacitance (CIN)  
)
2.00  
100.00  
20.00  
50.27  
1.110  
MHz  
kOhm  
pF  
Opamp Gain Bandwidth Product (GBP)  
Feedback Capacitance (CF)  
MHz  
pF  
9-2. Results of Inputting Design Parameters in the TIA Calculator  
The OPA607-Q1's 50 MHz GBW, is suitable for the above design requirements. If the required feedback  
capacitance CF comes out to be a very low value capacitor to be practically achievable, a T-Network capacitor  
circuit as shown below can be used. A very low capacitor value (CEQ) can be achieved between Port1 and Port2  
using standard value capacitors in a T-Network circuit as shown in 9-3.  
C1 ì C2  
C1 + C2 + CT  
CEQ  
=
(1)  
Port1  
Port2  
C1  
C2  
CT  
GND  
9-3. T-Network  
9.2.1.3 Application Curves  
120  
110  
100  
90  
80  
6
5
4
3
2
1
0
VOUT  
IPD  
40  
0
-40  
80  
-80  
70  
-120  
-160  
-200  
-240  
-280  
-320  
-360  
-400  
60  
50  
40  
30  
20  
Gain (dB)  
Phase (è)  
10  
0
10k  
100k  
1M  
Frequency (Hz)  
10M  
100M  
Time (50 msec/Div)  
TIA_  
OPA6  
9-5. Simulated Time Domain Response  
9-4. Simulated Closed-Loop Bandwidth of TIA  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
9.2.2 Noninverting Gain of 3 V/V  
The OPAx607-Q1 devices are normally stable in noise gain configurations (see SBOA066) of greater than 6 V/V  
when conventional feedback networks are used, which is discussed in 8.3.4. The OPAx607-Q1 devices can  
be configured in noise gains of less than 6 V/V by using capacitors in the feedback path and between the inputs  
to maintain the desired gain at lower frequencies and increase the gain greater that 6 V/V at higher frequencies  
such that the amplifier is stable. Configuration (a) in 9-6 shows OPAx607-Q1 devices configured in a gain of 3  
V/V by using capacitors and resistors to shape the noise gain and achieve a phase margin of approximately 56°  
that is very close to the phase margin achieved for the conventional 6 V/V configuration (b) in 9-6.  
The key benefit of using a decompensated amplifier (such as the OPAx607-Q1) below the minimum stable gain,  
is that it takes advantage of the low noise and low distortion performance at quiescent powers smaller than  
comparable unity-gain stable architectures. By reducing the 100-pF input capacitor, higher closed-loop  
bandwidth can be achieved at the expense of increased peaking and reduced phase margin. Ensure that low  
parasitic capacitance layout techniques on the INpin are as small as 1 pF to 2 pF of parasitic capacitance on  
the inverting input, which will require tweaking the noise-shaping component values to get a flat frequency  
response and the desired phase margin. Configurations in 9-6 does not take into account this parasitic  
capacitance but it must be considered for practical purposes. Details on the benefits of decompensated  
architectures are discussed in Using a decompensated op amp for improved performance. The one-capacitor,  
externally compensated type method is used for noise gain shaping in the below circuit.  
In a difference amplifier circuit, typically used for low side current sensing applications, the (noise gain) = (signal  
gain + 1).  
2.5 pF  
2 kΩ  
LOAD  
GND  
+5 V  
+5 V  
+5 V  
1kΩ  
ISH  
OPAx607-Q1  
OPAx607-Q1  
VO  
OPAx607-Q1  
VIN  
VIN  
+
+
+
100 pF  
VO  
RSH  
œ
œ
470  
œ
470 ꢀ  
100 pF  
0 V  
0 V  
0V  
2 kΩ  
1 kΩ  
1 kꢀ  
5 kꢀ  
2 kꢀ  
1 kꢀ  
GND  
2.5 pF  
2.5 pF  
2.5 pF  
(b) G = 6 V/V  
(c) G = 2 V/V  
(a) G = 3 V/V  
9-6. Noninverting Gain of 3 V/V, 6 V/V Configurations, and Difference Amplifier in Signal Gain of 2 V/V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
30  
24  
18  
12  
6
18  
12  
6
0
0
-6  
-6  
-12  
-12  
-18  
-24  
-30  
-18  
Gain = 3 V/V with Noise Gain Shaping  
Gain = 3 V/V without Noise Gain Shaping  
Gain = 6 V/V  
-24  
-30  
Without Noise Gain Shaping  
With Noise Gain Shaping  
100k  
1M  
10M  
100M  
Freq  
100k  
1M  
10M  
100M  
OPA6  
Frequency (Hz)  
Frequency (Hz)  
9-7. Small-Signal Frequency Response in Gains  
9-8. Small-Signal Frequency Response of  
Difference Amplifier (c) With and Without Noise  
Gain Shaping  
of 3V/V (a) and 6V/V (b)  
9.2.3 High-Input Impedance (Hi-Z), High-Gain Signal Front-End  
0.4 nF  
9 kΩ  
SW  
300 Ω  
1.8 kΩ  
40 kΩ  
+2.5 V  
+2.5 V  
0.4 nF  
œ
2 kΩ  
0.1 F  
OPAx607-Q1  
+
œ
To ADC/FDA  
OPA837  
+
105 Ω  
-2.5 V  
100 kΩ  
Ultrasonic Sensor  
-2.5 V  
9-9. Hi-Z, High-Gain Front-End Circuit  
9.2.3.1 Design Requirements  
The objective is to design a high-input impedance, high-dynamic range, signal-conditioning front-end. An  
example application for such a front-end circuit is the receive signal chain in an ultrasonic-based end equipment  
(EE) such as fish finders, printers and flow meters. 9-2 lists the design requirements for this application.  
9-2. Design Parameters  
PARAMETER  
Amplifier supply  
DESIGN REQUIREMENT  
±2.5 V  
Input signal frequency  
Minimum voltage  
200 kHz  
300 µVrms  
40 dB  
Minimum SNR at 300 µVrms  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
9.2.3.2 Detailed Design Procedure  
To achieve a SNR of greater than 40 dB for signals from 300 µVrms to 30 mV the front-end stage has two gain  
settings: 6 V/V and 31 V/V. The SW (switch, relay, or analog mux) can be dynamically toggled to ensure  
maximum sensitively to the receiving signal. The OPAx607-Q1 devices prove to be an attractive solution for this  
front-end signal chain because of the right balance of low noise and high input impedance. The ultrasonic  
sensors (for example, piezo crystal) have high output impedance. The OPAx607-Q1 devices have an input bias  
current of 20 pA (maximum). This small bias current results in reduced distortion and signal loss across the  
source impedance when compared with a bipolar amplifier with input bias currents in the range of a few  
hundreds of nano-amperes. The OPAx607-Q1's high-gain front-end is followed by a narrowband band-pass filter  
that is tuned to a 200-kHz center frequency. The narrowband filter is designed using the OPA837. OPA837 can  
be used as a variable gain mux / PGA as shown in TIDA-01565. In this application section the OPA837-based  
band-pass filter was designed using the techniques mentioned in the Filter Design in Thirty Seconds application  
report.  
9-11 shows the frequency response of circuit in 9-9. As shown in 9-11, the frequency response is a  
high-Q factor band-pass filter centered around 200 kHz. Designing such a high-Q band-pass filter helps  
eliminate white band noise along with other interferences present in the circuitry, resulting in a high SNR signal  
chain. The OPAx607-Q1's front-end combined with the OPA837-based band-pass filter help to achieve a total  
gain of 33 dB (44 V/V) or 50 dB (316 V/V) based on the SW (switch) position.  
9.2.3.3 Application Curves  
100  
90  
60  
50  
Gain setting = 33 dB  
Gain setting = 50 dB  
50 dB Gain  
33 dB Gain  
80  
40  
70  
60  
30  
20  
50  
40  
10  
0
-10  
-20  
-30  
-40  
-50  
30  
20  
100m  
1m  
Input RMS voltage (V)  
10m  
100m  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D001  
D005  
9-10. Hi-Z, High-Gain Front-End Circuit SNR vs 9-11. Hi-Z, High-Gain Front-End Circuit Gain vs  
Input  
Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
9.2.4 Low-Cost, Low Side, High-Speed Current Sensing  
VREF =1.24 V  
LOAD  
CF  
3.3 V  
3.3 V  
ISH  
+
688 Ω  
VOUT  
VADC  
1kΩ  
1kΩ  
ADS7042  
OPAx607-Q1  
RSH  
œ
GND  
GND  
240 pF  
GND  
GND  
20 kΩ  
CF  
9-12. Low Side Current Sensing  
9.2.4.1 Design Requirements  
The objective is to design a high-speed, high-gain bidirectional current-sensing circuit for power systems and  
motor drive systems. 9.2.4.2 lists the design requirements of this application.  
9-3. Design Parameters  
PARAMETER  
DESIGN REQUIREMENT  
Amplifier and ADC supply  
3.3 V  
20 A  
Peak current to be measured from load to ground  
Peak current to be measured from ground to load  
Required Accuracy of current measurement  
Signal-Setting time at ADC input  
12 A  
0.1%  
< 1 µs  
Current sensing direction  
Bidirectional  
9.2.4.2 Detailed Design Procedure  
The aim of this application section is to measure bidirectional current with relatively high accuracy in a low-side-  
sensing-based, high-frequency switching system.  
As shown in 9-12, a single op amp of high bandwidth is capable of sensing current in a high gain  
configuration as well as have the required effective bandwidth to drive the consecutive SAR ADC input. The SAR  
ADC can be a standalone ADC or integrated inside a Micro-controller.  
VOUT = (20 kΩ/ 1 kΩ× VDIFF) + VREF, where VDIFF = ISH X RSH  
(2)  
The reference voltage is 1.24 V. When the ISH flowing across RSH equals zero, the VOUT of the difference  
amplifier sits ideal at 1.24 V.  
When the current (ISH) flows from LOAD to GND, the output of the OPAx607-Q1 increase above 1.24 V with a  
value equal to 20 × VSH and when the current flows from GND to LOAD (in the opposite direction) the output of  
the OPAx607-Q1 decrease below 1.24 V with a value proportional to 20 × VSH  
.
One of the main challenges in a high speed current sensing design is to choose an op amp of with sufficient  
GBW that can drive a SAR ADC, while still being able to gain the signal by the required amount. The 0.1% and  
0.01% settling of OPAx607-Q1 can found in 7.5. Another key care about is to ensure the op amp output rises  
in less than 1 µs so as to feed the output to a comparator for short-circuit protection. This comparator based  
short circuit protection loop is extremely fast and enables to turn off the switching devices very quickly. This  
requirement makes a low cost high speed part like the OPAx607-Q1 very desirable in a current-sensing circuit.  
Equation of the rise time as a function of bandwidth is shown below.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
tR (10% to 90%) = 0.35 Hz / BW  
(3)  
For an ADC like ADS7042 running at a sampling rate of 500 kSPS of a clock of 12.5 MHz, the effective  
bandwidth of the op amp required to drive such an ADC is approximately 2.7 MHz. See the TI precision lab  
videos on driving SAR ADCs to understand the underlying calculation. The OPAx607-Q1 has a GBW of 50 MHz.  
With a gain of 20 V/V, the closed loop bandwidth turns out to approximately 2.5 MHz, making this device the  
most suitable, cost-optimized amplifier for this application. The RC charge bucket (240 Ωand 688 pF in 9-12)  
designed at the input of the SAR ADC is derived from the calculations provided in the SAR ADC precision lab  
videos. The fundamental concept behind the design of this charge bucket filter is to ensure that the sample and  
hold capacitor is charged to the required final voltage within the acquisition window of the ADC.  
As shown in 9-14, a DC accuracy of higher than 0.05% is achieved with the OPAx607-Q1. The simulations  
are captured with and without voltage offset calibration. Frequency response shown in 9-13 indicate different  
signal bandwidth at VOUT, VADC and with and without CF of 220 pF.  
9.2.4.3 Application Curves  
6
5.2  
4.4  
3.6  
2.8  
2
0.2  
30  
24  
18  
12  
6
0.16  
0.12  
0.08  
0.04  
0
0
1.2  
0.4  
-0.4  
-1.2  
-2  
-0.04  
-0.08  
-0.12  
-0.16  
-0.2  
-6  
-12  
-18  
-24  
-30  
Measured Output  
Ideal Output  
% Error w/o callibration  
% Error with callibration  
VADC  
VOUT  
VOUT , CF = 220 pF  
-20 -15 -10  
-5  
0
5
10  
Current across RSH (A)  
15  
20  
25  
30  
100  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
100M  
D003  
D010  
9-14. DC Current-Sense Transfer Function  
9-13. Frequency Response of Low Side Current  
Sensing  
10 Power Supply Recommendations  
The OPAx607-Q1 devices are specified for operation from 2.2 V to 5.5 V (±1.1 V to ±2.75 V), applicable from –  
40°C to +125°C. Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in  
from noisy or high-impedance power supplies.  
CAUTION  
Supply voltages larger than 6 V can permanently damage the device (see 7.1).  
For more detailed information on bypass capacitor placement, see 11.1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power-supply pins of the circuit as a whole and of the  
operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low-impedance  
power sources local to the analog circuitry.  
Connect low-equivalent series resistance (ESR), 0.1-µF ceramic bypass capacitors between each supply  
pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is  
applicable for single-supply applications.  
Separate grounding for analog and digital portions of the circuitry is one of the simplest and most effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup. Make  
sure to physically separate digital and analog grounds, paying attention to the flow of the ground current.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicularly is much better than  
crossing in parallel with the noisy trace.  
Place the external components as close to the device as possible. Keeping RF and RG close to the inverting  
input minimizes parasitic capacitance; see 11-1 and 11-2.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
11.2 Layout Examples  
V-  
U1  
INPUT  
C3  
4
OPAx607-Q1  
OUTPUT  
GND  
GND  
2
6
1
3
R3  
+
OUTPUT  
V-  
5
œ
C4  
C2  
V+  
R1  
GND  
R2  
C1  
11-1. Operational Amplifier Board Layout for a  
Noninverting Configuration  
11-2. Layout Example Schematic  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
 
 
 
OPA607-Q1, OPA2607-Q1  
ZHCSNC5A FEBRUARY 2021 REVISED APRIL 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
Texas Instruments, precision lab videos  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, ADS7042 Ultra-Low Power, Ultra-Small Size, 12-Bit, 1-MSPS, SAR ADC data sheet  
Texas Instruments, Filter Design in Thirty Seconds application report  
Texas Instruments, OPA2834 50-MHz, 170-μA, Negative-Rail In, Rail-to-Rail Out, Voltage-Feedback  
Amplifier data sheet  
Texas Instruments, OPAx836 Very-Low-Power, Rail-to-Rail Out, Negative Rail In, Voltage-Feedback  
Operational Amplifiers data sheet  
Texas Instruments, Ultrasonic Sensing Subsystem Reference Design For Gas Flow Measurement design  
guide  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
Excelis a trademark of Microsoft Coproration.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: OPA607-Q1 OPA2607-Q1  
 
 
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Jun-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2607QDGKRQ1  
OPA607QDBVRQ1  
ACTIVE  
ACTIVE  
VSSOP  
SOT-23  
DGK  
DBV  
8
5
2500 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
2FST  
6QBV  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Jun-2021  
OTHER QUALIFIED VERSIONS OF OPA2607-Q1, OPA607-Q1 :  
Catalog : OPA2607, OPA607  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA607IDBVR

适用于成本敏感型系统的低功耗、精密、50MHz 解补偿 CMOS 运算放大器 | DBV | 5 | -40 to 125
TI

OPA607IDBVT

适用于成本敏感型系统的低功耗、精密、50MHz 解补偿 CMOS 运算放大器 | DBV | 5 | -40 to 125
TI

OPA607IDCKR

适用于成本敏感型系统的低功耗、精密、50MHz 解补偿 CMOS 运算放大器 | DCK | 6 | -40 to 125
TI

OPA607IDCKT

适用于成本敏感型系统的低功耗、精密、50MHz 解补偿 CMOS 运算放大器 | DCK | 6 | -40 to 125
TI

OPA607QDBVRQ1

汽车类 50MHz、低功耗、6V/V 稳定增益、轨至轨输出 CMOS 运算放大器 | DBV | 5 | -40 to 125
TI

OPA607_V02

OPAx607 50-MHz, Low-Power, Gain of 6-V/V Stable, Rail-to-Rail Output CMOS Operational Amplifier
TI

OPA607_V03

OPAx607 50-MHz, Low-Power, Rail-to-Rail Output CMOS Operational Amplifier for Cost Sensitive Systems
TI

OPA607_V04

OPAx607 50-MHz, Low-Power, Rail-to-Rail Output CMOS Operational Amplifier for Cost Sensitive Systems
TI

OPA615

Wide-Bandwidth, DC Restoration Circuit
TI

OPA615ID

Wide-Bandwidth, DC Restoration Circuit
TI

OPA615IDG4

Wide-Bandwidth, DC Restoration Circuit
TI

OPA615IDGSR

Wide-Bandwidth, DC Restoration Circuit
TI