OPA607IDBVR [TI]

适用于成本敏感型系统的低功耗、精密、50MHz 解补偿 CMOS 运算放大器 | DBV | 5 | -40 to 125;
OPA607IDBVR
型号: OPA607IDBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于成本敏感型系统的低功耗、精密、50MHz 解补偿 CMOS 运算放大器 | DBV | 5 | -40 to 125

放大器 运算放大器
文件: 总49页 (文件大小:2899K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
适用于成本敏感型系统OPAx607 50MHz、低功耗、轨至轨输CMOS 运算  
放大器  
1 特性  
3 说明  
• 增益带宽(GBW)50MHz  
• 静态电流900µA典型值)  
• 宽带噪声3.8nV/Hz  
• 输入温漂1.5μV/°C最大值)  
• 失调电压120µV典型值)  
• 输入偏置电流10pA最大值)  
• 轨至轨输(RRO)  
OPA607 OPA2607 器件是一款解补偿通用 CMOS  
运算放大器最小稳定增益为 6V/V具有 3.8nV/Hz  
的低噪声和 50MHz GBWOPAx607 器件具有低噪  
声和高带宽特性因此非常适合要求在成本和性能之间  
达到良好平衡的通用应用。高阻抗 CMOS 输入使得  
OPAx607 放大器适合连接具有高输出阻抗的传感器  
例如压电式传感器。  
• 解补偿增6V/V稳定)  
• 关断电流1µA最大值)  
• 电源电压范围2.2V 5.5V  
OPAx607 件具有断电模式大静态电流小于  
1µA因此该器件适用于便携式电池供电型应用。  
OPAx607 器件的轨至轨输出 (RRO) 相对于电源轨具有  
8mV 的摆幅从而更大限度提高动态范围。  
2 应用  
OPAx607 经过优化适合在低至 2.2V (±1.1V) 和高达  
5.5V (±2.75V) 的低电源电压下工作且额定工作温度  
范围40°C +125°C。  
电流感应  
探鱼器和声纳  
超声波流量计  
园艺和电动工具  
打印机  
器件信息(1)  
封装尺寸标称值)  
器件型号  
OPA607  
封装  
SC70 (6)  
光幕和安全防护装置  
光学模块  
手持测试设备  
PM2.5 PM10 颗粒传感器  
2.00mm × 1.25mm  
2.90mm × 1.60mm  
4.90mm × 3.91mm  
3.00mm × 3.00mm  
1.50mm x 2.00mm  
SOT23 (5)  
SOIC (8)  
OPA2607  
VSSOP (8)  
X2QFN (10)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
Short Circuit  
Detection  
Transimpedance  
stage  
VTH  
œ
LOAD  
+
VREF  
RF  
TLV3201  
OPA607  
ADS7042  
LED driver  
+
Þ
VS+  
VS+  
RG  
RF  
ISH  
œ
REXT  
ADS7042  
OPA607  
RG  
CEXT  
+
Photodiode  
CF  
VREF  
适用于跨阻应用OPAx607  
适用于电流感应应用OPAx607  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS981  
 
 
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
Table of Contents  
9 Application and Implementation..................................22  
9.1 Application Information............................................. 22  
9.2 Typical Applications.................................................. 22  
10 Power Supply Recommendations..............................29  
11 Layout...........................................................................30  
11.1 Layout Guidelines................................................... 30  
11.2 Layout Examples.....................................................30  
12 Device and Documentation Support..........................31  
12.1 Device Support....................................................... 31  
12.2 Documentation Support.......................................... 31  
12.3 Related Links.......................................................... 31  
12.4 Receiving Notification of Documentation Updates..31  
12.5 支持资源..................................................................31  
12.6 Trademarks.............................................................31  
12.7 Electrostatic Discharge Caution..............................31  
12.8 Glossary..................................................................31  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison.........................................................4  
6 Pin Configuration and Functions...................................5  
7 Specifications.................................................................. 7  
7.1 Absolute Maximum Ratings ....................................... 7  
7.2 ESD Ratings .............................................................. 7  
7.3 Recommended Operating Conditions ........................7  
7.4 Thermal Information ...................................................8  
7.5 Electrical Characteristics ............................................9  
7.6 Typical Characteristics.............................................. 11  
8 Detailed Description......................................................17  
8.1 Overview...................................................................17  
8.2 Functional Block Diagram.........................................17  
8.3 Feature Description...................................................18  
8.4 Device Functional Modes..........................................21  
Information.................................................................... 31  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision I (February 2021) to Revision J (April 2021)  
Page  
• 删除了器件信VSSOP (8) X2QFN (10) 封装的预发布声明.................................................................1  
Removed the preview statement from the OPA2607 X2QFN (RUG) package and VSSOP (DGK) in the  
Device Comparison section................................................................................................................................4  
Removed the preview statement from the OPA2607 D, DGK and OPA2607 RUG package in the Pin  
Configuration and Functions section.................................................................................................................. 5  
Changes from Revision H (December 2020) to Revision I (February 2021)  
Page  
• 更新了数据表标题。........................................................................................................................................... 1  
Changes from Revision G (October 2020) to Revision H (December 2020)  
Page  
Updated the I/O and Descriptions in the Pin FunctionsSingle Channel table................................................. 5  
Changes from Revision F (September 2020) to Revision G (October 2020)  
Page  
Removed the RUG Package 8-Pin X2QFN pinout to the Pin Configuration and Functions section...................5  
Removed the N/C pin decription from the Pin Functions Single Channel table.............................................5  
Changed Overdrive Recovery Time from 0.25µs to 0.3µs ...............................................................................9  
Updated the Turn-On and Turn-Off Time figure in the Typical Characteristics section.....................................11  
Updated the Power Down Pin Bias Current vs Power Down Pin Voltage figure in the Typical Characteristics  
section...............................................................................................................................................................11  
Updated the Input Offset Voltage vs Temperature figure in the Typical Characteristics section.......................11  
Updated the Common Mode Rejection Ratio vs Temperature figure in the Typical Characteristics section.....11  
Updated the Short-Circuit Current vs Temperature figure in the Typical Characteristics section......................11  
Updated the Input Bias and Offset Current vs Temperature figure in the Typical Characteristics section........11  
Updated the Output Voltage vs Output Current Sourcing and Sinking figure in the Typical Characteristics  
section...............................................................................................................................................................11  
Added the Electromagnetic Interference Rejection Ratio Referred to Noninverting Input (EMIRR+) vs  
Frequency figure to the Typical Characteristics section....................................................................................11  
Added the Crosstalk vs Frequency figure to the Typical Characteristics section..............................................11  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA607 OPA2607  
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
Added the Quiescent Current vs Temperature figure to the Typical Characteristics section............................ 11  
Updated the Simulated Closed-Loop Bandwidth of TIA figure in the Application Curves section.................... 23  
Updated the Simulated Time Domain Response figures in the Application Curves section.............................23  
Updated the Small-Signal Frequency Response in Gains of 3V/V (a) and 6V/V (b) figure in the Noninverting  
Gain of 3 V/V section........................................................................................................................................24  
Updated the Small-Signal Frequency Response of Difference Amplifier (c) With and Without Noise Gain  
Shaping figures in the Noninverting Gain of 3 V/V section...............................................................................24  
Changes from Revision E (August 2020) to Revision F (September 2020)  
Page  
Deleted blank CMRR specifications from Electrical Characteristics table..........................................................9  
Changes from Revision D (May 2020) to Revision E (August 2020)  
Page  
• 更新了整个文档的表、图和交叉参考的编号格式................................................................................................ 1  
OPA2607 SOIC (8) 封装的状态从预发更改为正在供............................................................................ 1  
Changes from Revision C (April 2020) to Revision D (May 2020)  
Page  
• 将状态从预告信更改为量产数....................................................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA607 OPA2607  
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
SOT-23 (DBV)  
5 Device Comparison  
PACKAGE LEADS  
VSSOP (DGK)  
NO. OF  
CHANNELS  
DEVICE  
SOIC  
(D)  
X2QFN  
SC-70  
(RUG)(1)  
(DCK)(1)  
OPA607  
1
2
6(1)  
5
OPA2607  
8
10(1)  
8
(1) Package with Power Down mode.  
VOLTAGE  
NOISE  
(nV/Hz)  
OFFSET  
DRIFT  
(µV/°C, TYP)  
MINIMUM  
STABLE GAIN  
(V/V)  
IQ / CHANNEL  
(mA, TYP)  
GBW  
(MHz)  
SLEW RATE  
(V/µs)  
DEVICE  
INPUT  
OPAx365  
OPAx607  
OPAx837  
CMOS  
CMOS  
Bipolar  
1
1
6
1
4.6  
0.9  
0.6  
50  
50  
50  
25  
24  
4.5  
3.8  
4.7  
0.3  
0.4  
105  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA607 OPA2607  
 
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
6 Pin Configuration and Functions  
VS+  
IN-  
VS+  
6
OUT  
VSœ  
5
VSœ  
5
PD  
IN+  
OUT  
6-1. DBV Package  
6-2. DCK Package  
6-Pin SC70  
5-Pin SOT-23  
Top View  
Top View  
Pin Functions Single Channel  
PIN  
I/O  
DESCRIPTION  
NAME  
DBV  
DCK  
4
3
1
3
1
4
5
2
6
I
I
Inverting input  
IN–  
IN+  
Non inverting input  
Output  
OUT  
PD  
O
I
Power down (can be left floating)  
2
VS–  
VS+  
Negative supply or ground (for single-supply operation)  
Positive supply  
5
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA607 OPA2607  
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
VS+  
10  
1
8
7
OUT1  
IN1-  
VS+  
OUT1  
IN1-  
1
2
3
4
OUT2  
IN2-  
9
8
2
3
OUT2  
œ
A
6
5
IN1+  
+
œ
IN2-  
B
B
A
IN1+  
VS-  
IN2+  
4
+
IN2+  
PD2  
7
6
PD1  
6-3. OPA2607 D, DGK Package  
8-Pin SOIC, VSSOP  
Top View  
5
VS-  
6-4. OPA2607 RUG Package  
10-Pin X2QFN  
Top View  
Pin Functions Dual Channel  
PIN  
I/O  
DESCRIPTION  
NAME  
IN1–  
D, DGK  
RUG  
2
3
6
5
1
7
4
8
2
3
I
I
Inverting input, channel 1  
IN1+  
IN2–  
IN2+  
OUT1  
OUT2  
VS–  
Noninverting input, channel 1  
Inverting input, channel 2  
8
I
7
I
Noninverting input, channel 2  
Output, channel 1  
1
O
O
9
Output, channel 2  
5
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
VS+  
10  
Low = amplifier 1 disabled, high = amplifier 1 enabled; see the Power Down  
Mode section for more information.  
PD1  
PD2  
4
6
I
I
Low = amplifier 2 disabled, high = amplifier 2 enabled; see the Power Down  
Mode section for more information.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA607 OPA2607  
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Supply voltage, Vs  
6
(VS+) (VS–  
)
VIN+, VIN–  
Input voltage  
(VS+) + 0.5  
V
(VS) 0.5  
(VS) 0.5  
VPD  
VID  
II  
PD voltage  
6
±5  
V
Differential input voltage(4)  
Continuous input current(2)  
Continuous output current(3)  
Continuous power dissipation  
Maximum junction temperature  
Operating free-air temperature  
Storage temperature  
V
±10  
±20  
mA  
mA  
IO  
See Thermal Information  
TJ  
150  
125  
150  
°C  
°C  
°C  
TA  
40  
65  
Tstg  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not supported.  
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails  
should be current limited to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
(4) Long term drift of offset voltage (> 1mV) if a differential input in excess of 2V is applied continuously between the IN+ and IN- pins at  
elevated temperatures.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
V
D Package , Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.2  
NOM  
MAX  
5.5  
UNIT  
V
VS  
TA  
Supply voltage (VS+) (VS–  
)
±1.1  
40  
±2.75  
125  
Ambient operating temperature  
25  
°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA607 OPA2607  
 
 
 
 
 
 
 
 
 
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
7.4 Thermal Information  
OPAx607  
DGK  
(VSSOP)  
DBV  
(SOT23)  
RUG  
THERMAL METRIC(1)  
D (SOIC)  
DCK (SC70)  
UNIT  
(X2QFN)  
10 PINS  
152  
8 PINS  
131.1  
73.2  
8 PINS  
179  
71  
5 PINS  
196.5  
118.7  
64.5  
6 PINS  
219.7  
182.6  
105.7  
87  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
58  
RθJB  
ψJT  
Junction-to-board thermal resistance  
74.5  
101  
13  
77  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
24.5  
41.1  
1.2  
73.3  
100  
64.2  
105.4  
77  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA607 OPA2607  
 
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
7.5 Electrical Characteristics  
At TA = 25°C, VS = 2.2 V to 5.5 V, G = 6 V/V(5), RF = 5 kΩ, CF = 2.5 pF, VCM = (VS / 2) 0.5 V, CL = 10 pF,  
kconnected to (VS / 2) 0.5 V, and, PD connected to (VS+) (unless otherwise noted)(1)  
RL = 10  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
Input offset voltage  
Input offset voltage  
0.12  
0.12  
±0.3  
120  
0.6  
0.7  
0.6  
0.7  
VOS  
mV  
TA = 40°C to +125°C  
dVOS/dT  
PSRR  
Input offset voltage drift  
±1.5 µV/°C  
dB  
TA = 40°C to +125°C  
Power-supply rejection ratio  
VS = 2.2 V to 5.5 V  
95  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
Common-mode rejection ratio(3)  
(VS–  
)
V
(VS+)1.1  
CMRR  
90  
100  
dB  
(VS) < VCM < (VS+) 1.1 V  
INPUT BIAS CURRENT  
±3  
See Fig. 29  
±3  
±10  
±10  
IB  
Input bias current(2)  
pA  
TA = 40to 125℃  
IOS  
Input offset current(2)  
NOISE  
Input voltage noise (peak-to-peak)  
Input voltage noise density  
Input current noise density  
f = 0.1 Hz to 10 Hz  
f = 10 kHz, 1/f corner at 1 kHz  
f = 1 kHz  
1.6  
3.8  
46  
µVPP  
eN  
iN  
nV/Hz  
fA/Hz  
INPUT IMPEDANCE  
Differential  
Common-mode  
OPEN-LOOP GAIN  
AOL  
Open-loop voltage gain(3)  
Phase margin  
AC Characteristics (VS = 5 V)  
11.5  
5.5  
CIN  
pF  
110  
130  
65  
dB  
°
(VS) + 400 mV < VOUT < (VS+) 400 mV  
SSBW  
GBW  
SR  
Small-signal bandwidth  
VOUT = 20 mVpp  
9
50  
MHz  
V/µs  
µs  
Gain-bandwidth product  
Slew rate  
G = 20 V/V  
3-V output step (10-90%), VOCM = mid-supply  
To 0.1%, 3-V step, G = 40, VOCM = mid-supply  
To 0.01%, 3-V step, G = 40, VOCM = mid-supply  
VIN+ × Gain > VS  
24  
1
tS  
Settling time  
1.8  
Overdrive recovery time  
0.3  
µs  
-103  
-91.5  
-96  
VOUT = 2 VPP, f = 1 kHz , RL = 10 k  
VOUT = 2 VPP, f = 20 kHz , RL = 10 kΩ  
VOUT = 2 VPP, f = 1 kHz , RL = 1 kΩ  
VOUT = 2 VPP, f = 20 kHz , RL = 1 kΩ  
VOUT = 2 VPP f = 20 kHz  
THD + N  
Total Harmonic Distortion + Noise(6)  
dB  
-72.8  
-105  
-95  
HD2  
HD3  
Second-order harmonic distortion  
Third-order harmonic distortion  
Channel-to-channel crosstalk  
dBc  
dBc  
VOUT = 2 VPP f = 20 kHz  
VOUT = 2 VPP, f = 100 kHz  
-114  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA607 OPA2607  
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
At TA = 25°C, VS = 2.2 V to 5.5 V, G = 6 V/V(5), RF = 5 kΩ, CF = 2.5 pF, VCM = (VS / 2) 0.5 V, CL = 10 pF,  
kconnected to (VS / 2) 0.5 V, and, PD connected to (VS+) (unless otherwise noted)(1)  
RL = 10  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
8
12  
12  
Output voltage swing from supply rails  
mV  
TA = 40to +125℃  
ISC  
ZO  
Output Short-circuit current  
Open-loop output impedance  
60  
mA  
f = 1 MHz  
500  
Ω
POWER SUPPLY  
IO = 0 mA  
900  
1100  
1200  
IQ  
Quiescent current per amplifier  
µA  
IO = 0 mA, TA = 40°C to +125°C  
POWER DOWN (Device Enabled When Floating)  
Power Down quiescent current per amplifier(4) PD = VS–  
750  
1000  
1000  
0.7 x VS  
nA  
V
Power Down pin bias current per amplifier(7)  
Enable voltage threshold  
PD = VS–  
750  
Logic-High threshold  
Logic-Low threshold  
Disable voltage threshold  
0.2 x VS  
tON  
Turn-on time delay(2)  
Turn-off time delay  
10  
15  
µs  
tOFF  
0.5  
(1) Parameters with minimum or maximum specification limits are 100% production tested at 25ºC, unless otherwise noted. Over  
temperature limits are based on characterization and statistical analysis.  
(2) Specified by design and characterization or both ; not production tested.  
(3) Production Tested at VS = 5.5V  
(4) In Power Down mode current drawn by the opamp is equal to the bias current sourced on the PD pin  
(5) All Gains (G) mentioned are in V/V unless otherwise noted.  
(6) Lowpass-filter bandwidth is 92kHz for f = 20 kHz and 20 kHz for f = 1 kHz.  
(7) Negative value of the Power Down bias current indicates current being sourced from the opamp's PD pin towards external circuit.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA607 OPA2607  
 
 
 
 
 
 
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
7.6 Typical Characteristics  
At TA = +25°C, VS = 5.5 V, RL = 10 kΩ, RF= 5 kΩ, CF= 2.5 pF, VCM = midsupply 0.5 V, G = 6 V/V (unless otherwise  
noted).  
140  
120  
100  
80  
180  
150  
120  
90  
100  
10  
1
60  
60  
40  
30  
20  
0
0
-30  
-60  
Magnitude (dB)  
Phase (è)  
-20  
1
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M 100M  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
D002  
D010  
.
.
.
.
.
.
7-1. Open Loop Gain and Phase vs Frequency  
7-2. Input Voltage Noise Density vs Frequency  
100  
3
0
-3  
-6  
10  
1
-9  
0.1  
0.01  
Gain = 6 V/V  
Gain = -5 V/V  
Gain = 10 V/V  
Gain = 20 V/V  
-12  
-15  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
Frequency (Hz)  
D003  
D101  
.
.
.
.
VOUT = 20 mVPP  
.
7-3. Input Current Noise Density vs Frequency  
7-4. Small-Signal Frequency Response vs Gain  
3
3
0
-3  
-6  
0
-3  
-6  
-9  
-9  
CL = 10 pF  
CL = 5 pF  
CL = 22 pF  
-12  
RL = 10 kW  
RL = 2 kW  
-12  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
D005  
D004  
.
VOUT = 20 mVPP  
.
.
VOUT = 20 mVPP  
.
7-5. Small-Signal Frequency Response vs Capacitive Load  
7-6. Small-Signal Frequency Response vs Output Load  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA607 OPA2607  
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
At TA = +25°C, VS = 5.5 V, RL = 10 kΩ, RF= 5 kΩ, CF= 2.5 pF, VCM = midsupply 0.5 V, G = 6 V/V (unless otherwise  
noted).  
3
0
1
0.8  
0.6  
0.4  
0.2  
0
-3  
-6  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
VO = 200 mVPP  
VO = 1 VPP  
VO = 2 VPP  
VO = 4 VPP  
VO = 200 mVPP  
VO = 1 VPP  
VO = 2 VPP  
VO = 4 VPP  
-9  
-12  
100k  
1M  
10M  
100M  
100k  
1M  
Frequency (Hz)  
10M  
Frequency (Hz)  
D006  
D007  
.
.
.
.
.
.
.
.
7-7. Large-Signal Frequency Response vs Output Voltage  
7-8. Large-Signal Response Flatness vs Frequency  
-40  
-40  
HD2, RL = 10kW  
HD2  
HD3  
-50  
HD3, RL = 10kW  
-50  
-60  
HD2, RL = 2kW  
-60  
HD3, RL = 2kW  
-70  
-70  
-80  
-90  
-80  
-100  
-110  
-120  
-130  
-140  
-90  
-100  
-110  
-120  
10  
100  
1k 10k  
Freuency (Hz)  
100k  
1M  
1
1.5  
2
2.5  
3
Output Voltage (VPP  
3.5  
4
4.5  
5
)
D008  
DPLO  
.
VOUT = 2 VPP  
.
.
Frequency = 20 kHz  
7-9. Harmonic Distortion vs Frequency  
7-10. Harmonic Distortion vs Output Voltage  
140  
120  
100  
80  
1000  
CMRR  
PSRR -  
PSRR +  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
60  
40  
20  
0
1
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M 100M  
100  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
100M  
D019  
D011  
.
.
.
.
.
7-11. Rejection Ratio vs frequency  
7-12. Open Loop Output Impedance vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA607 OPA2607  
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
At TA = +25°C, VS = 5.5 V, RL = 10 kΩ, RF= 5 kΩ, CF= 2.5 pF, VCM = midsupply 0.5 V, G = 6 V/V (unless otherwise  
noted).  
4
3
2
1.5  
1
VOUT  
VIN ì 6  
2
1
0.5  
0
0
-1  
-2  
-3  
-4  
-0.5  
-1  
-1.5  
-2  
VOUT  
VIN x 6 V/V  
0
500  
1000  
1500  
Time (nsec)  
2000  
2500  
3000  
0
500  
1000  
Time (nsec)  
1500  
2000  
D012  
D013  
.
.
.
.
.
.
TRISE = 1 µsec , TFALL = 0.7 µsec  
7-14. Large-Signal Transient Response  
.
.
.
7-13. Output Overdrive Recovery  
0.15  
0.1  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN ì 6  
VOUT  
VS = 2.2V  
VS = 5.5V  
0.05  
0
-0.05  
-0.1  
-0.15  
0
500  
1000  
Time (nsec)  
1500  
2000  
10p  
100p  
Capacitive Load (F)  
D014  
D020  
.
TRISE = TFALL = 40 nsec  
.
.
7-15. Small-Signal Transient Response  
7-16. Phase Margin vs Capacitive Load  
3.3  
3
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain = 6 V/V  
Gain = 10 V/V  
Gain = 20 V/V  
Gain = 40 V/V  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
VIN  
VOUT Gain = 6 V/V  
VOUT Gain = 10 V/V  
VOUT Gain = 20 V/V  
VOUT Gain = 40 V/V  
10p  
100p  
1n  
10n  
Time (100 nsec/div)  
CLOAD (F)  
D026  
D025  
.
Simulated  
.
.
7-17. Step Settling Time  
7-18. Recommended Isolation Resistor vs Capacitive Load  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA607 OPA2607  
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
At TA = +25°C, VS = 5.5 V, RL = 10 kΩ, RF= 5 kΩ, CF= 2.5 pF, VCM = midsupply 0.5 V, G = 6 V/V (unless otherwise  
noted).  
27  
24  
21  
18  
15  
12  
9
6
5
VS = 5 V, Overshoot  
VS = 5 V, Undershoot  
VS = 2.2 V, Overshoot  
VS = 2.2 V, Undershoot  
4
3
2
1
6
0
VOUT  
PD  
3
0
-1  
10  
20  
30  
40  
50  
60  
Capacitive Load (pF)  
70  
80  
90  
100  
0
5
10  
Time (msec)  
15  
20  
D015  
D016  
.
VOUT = 200 mVPP  
.
.
.
.
7-19. Overshoot vs Capacitive Load  
7-20. Turn-On and Turn-Off Time  
0
-0.5  
-1  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
VS = 5.5V  
VS = 2.2V  
-1.5  
-2  
-2.5  
-3  
PD Sweep from VS- to VS+  
PD Sweep from VS+ to VS-  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
D033  
D022  
PD Pin Voltage (V)  
Input Offset Voltage (mV)  
.
.
.
.
9000 units  
.
7-21. Power Down Pin Bias Current vs Power Down Pin  
7-22. Input Offset Voltage Distribution  
Voltage  
100  
80  
12  
11  
10  
9
60  
40  
8
20  
7
6
0
5
-20  
-40  
-60  
-80  
-100  
4
3
2
1
0
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (èC)  
D024  
D023  
Offset Voltage Drift (mV/èC)  
.
32 Units, Normalized to  
VOS = 0V at 25°C  
.
.
.
32 Units, 40°C to  
+125°C  
7-23. Input Offset Voltage vs Temperature  
7-24. Input Offset Drift Distribution  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA607 OPA2607  
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
At TA = +25°C, VS = 5.5 V, RL = 10 kΩ, RF= 5 kΩ, CF= 2.5 pF, VCM = midsupply 0.5 V, G = 6 V/V (unless otherwise  
noted).  
8
6
4
2
350  
300  
250  
200  
150  
100  
50  
0
-2  
-4  
-6  
-8  
-50  
-100  
-150  
-200  
-250  
-3 -2.5 -2 -1.5 -1 -0.5  
0
0.5  
Input Common Mode Voltage (V)  
1
1.5  
2
2.5  
3
2
2.5  
3
3.5  
4
VS (V)  
4.5  
5
5.5  
6
D028  
D029  
.
VS = ±2.75 V  
.
.
.
.
32 Units  
.
.
.
7-25. Input Offset vs Common Mode Voltage  
7-26. Input Offset vs Supply  
120  
100  
90  
80  
70  
60  
50  
40  
117  
114  
111  
108  
105  
102  
99  
96  
VCM = (VS-) to (VS+ - 1.1)  
VCM = (VS- + 0.25) to (VS+ - 1.1)  
VCM = (VS- - 0.1) to (VS+ - 1.1)  
93  
90  
-50  
-25  
0
25  
50  
75  
100  
125  
-75  
-50  
-25  
0
Temperature (°C)  
25  
50  
75  
100  
125  
Temperature (èC)  
D100  
D021  
.
.
.
.
7-27. Common Mode Rejection Ratio vs Temperature  
7-28. Short-Circuit Current vs Temperature  
400  
1000  
IB+  
IB-  
IOS  
VS = 2.2 V  
VS = 5.5 V  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
350  
300  
250  
200  
150  
100  
50  
0
-50  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D030  
D031  
.
.
.
.
7-29. Input Bias and Offset Current vs Temperature  
7-30. Quiescent Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA607 OPA2607  
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
At TA = +25°C, VS = 5.5 V, RL = 10 kΩ, RF= 5 kΩ, CF= 2.5 pF, VCM = midsupply 0.5 V, G = 6 V/V (unless otherwise  
noted).  
2.75  
2.25  
1.75  
1.25  
0.75  
0.25  
-0.25  
-0.75  
-1.25  
-1.75  
-2.25  
-2.75  
120  
110  
100  
90  
80  
-40èC  
+25èC  
+125èC  
70  
60  
50  
40  
30  
20  
0
10  
20  
30  
Output Current (mA)  
40  
50  
60  
1M  
10M  
100M  
Frequency (Hz)  
1G  
10G  
D032  
D001  
.
.
.
.
.
.
7-31. Output Voltage vs Output Current Sourcing and Sinking 7-32. Electromagnetic Interference Rejection Ratio Referred  
to Noninverting Input (EMIRR+) vs Frequency  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
-110  
Ch B to Ch A  
Ch A to Ch B  
-115  
-120  
100k  
1M  
10M  
Frequency (MHz)  
100M  
D001  
.
.
.
7-33. Crosstalk vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA607 OPA2607  
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The OPAx607 devices are low-noise, rail-to-rail output (RRO) operational amplifiers (op amp). The devices  
operate from a supply voltage of 2.2 V to 5.5 V. The input common-mode voltage range also extends down to  
the negative rail allowing the OPAx607 to be used in most single-supply applications. Rail-to-rail output swing  
significantly increases dynamic range, especially in low-supply, voltage-range applications, which results in  
complete usage of the full-scale range of the consecutive analog-to-digital converters (ADCs). The  
decompensated architecture allows for a favorable tradeoff of low-quiescent current for a very-high gain-  
bandwidth product (GBW) and low-distortion performance in high-gain applications.  
8.2 Functional Block Diagram  
V+  
7.5M  
Reference  
PD block  
PD  
Current  
VIN+  
VINÛ  
NMOS input pair  
for phase reversal  
protection only  
VBIAS1  
Class AB  
Control  
Circuitry  
VO  
VBIAS2  
VÛ  
(Ground)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA607 OPA2607  
 
 
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Operating Voltage  
The OPAx607 operational amplifiers are fully specified and assured for operation from 2.2 V to 5.5 V, applicable  
from 40°C to +125°C. The OPAx607 devices are completely operational with asymmetric, symmetric and  
single supply voltages applied across the supply pins. The total voltage (that is, (VS+) (VS)) must be less  
than the supply voltage mentioned in 7.1.  
8.3.2 Rail-to-Rail Output and Driving Capacitive Loads  
Designed as a low-power, low-voltage operational amplifier, the OPAx607 devices are capable of delivering a  
robust output drive. For resistive loads of 10 kΩ, the output swings to within a few millivolts of either supply rail,  
regardless of the applied power-supply voltage. Different load conditions change the ability of the amplifier to  
swing close to the rails. The OPAx607 devices drive up to a nominal capacitive load of 47 pF on the output with  
no special consideration and without the need of a series isolation resistor RISO while still being able to achieve  
45° of phase margin. When driving capacitive loads greater than 47 pF, TI recommends using RISO as shown in  
8-1 in series with the output as close to the device as possible. Refer to 7-18 for looking up different values  
of RISO required for CL to achieve 45° phase margin. Without RISO, the external capacitance (CL) interacts with  
the output impedance (ZO) of the amplifier, resulting in stability issues. Inserting RISO isolates CL from ZO and  
restores the phase margin. 8-1 shows the test circuit.  
IOVERLOAD  
10mA max  
RISO  
OPAx607  
Rf  
+
VIN  
VOUT  
10 k  
œ
Rg  
CL  
Cf  
8-1. Input Current Protection and Driving Capacitive Loads  
8-2 and 8-3 show the phase margin achieved with varying RISO with different values of CL.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10pF  
22pF  
47pF  
0.1nF  
1nF  
10pF  
22pF  
47pF  
0.1nF  
1nF  
10nF  
10nF  
0
50 100 150 200 250 300 350 400 450 500  
RISO (W)  
0
50 100 150 200 250 300 350 400 450 500  
RISO (W)  
D018  
D017  
Gain = 10 V/V,  
Cf = 2.5 pF,  
Gain = 20 V/V,  
Cf = 2.5 pF,  
RL = 10 kΩ  
RL = 10 kΩ  
8-2. Phase Margin vs. Series Isolation Resistor 8-3. Phase Margin vs. Series Isolation Resistor  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA607 OPA2607  
 
 
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
8.3.3 Input and ESD Protection  
When the primary design goal is a linear amplifier with high CMRR, do not exceed the op amp input common-  
mode voltage range (VCM). This CMRR is used to set the common-mode input range specifications in 7.5.  
The typical VCM specifications for the OPAx607 devices are from the negative rail to 1.1 V below the positive rail.  
Assuming the op amp is in linear operation, the voltage difference between the input pins is small (ideally 0 V)  
and the input common-mode voltage can be analyzed at either input pin; the other input pin is assumed to be at  
the same potential. The voltage at VIN+ is easy to evaluate. In a noninverting configuration (8-1) the input  
signal, VIN+, must not exceed the VCM rating. However, in an inverting amplifier configuration, VIN+ must be  
connected to the voltage within VCM. The input signal applied at VIN- can be any voltage, such that the output  
voltage swings with a headroom of 10 mV from either of the supply rails.  
The input voltage limits have fixed headroom to the power rails and track the power-supply voltages. For single  
5-V supply, the linear input voltage range is 0 V to 3.9 V and with a 2.2-V supply this range is 0 V to 1.1 V. The  
headroom to each power-supply rail is the same in either case: 0 V and 1.1 V. A weak NMOS input pair from  
VIN+ to VIN+ 1.1 V ensures that an output phase reversal issue does not occur when the VCM is violated.  
VS+  
TVS  
VDD  
OPAx607  
PD  
IN+  
œ
OUT  
IN-  
+
Power-Supply  
ESD Cell  
VSS  
VS¤  
8-4. Internal ESD Structure  
The OPAx607 devices also incorporate internal electrostatic discharge (ESD) protection circuits on all pins. For  
the input and output pins, this protection primarily consists of current-steering diodes connected between the  
input and power-supply pins. These ESD protection diodes provides input overdrive protection, as long as the  
current is limited with a series resistor to 10 mA, as stated in 7.1. 8-1 shows a series input resistor can be  
added to the driven input to limit the input current.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA607 OPA2607  
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
8.3.4 Decompensated Architecture with Wide Gain-Bandwidth Product  
Amplifiers such as the OPAx607 devices are not unity-gain stable are referred to as decompensated amplifiers.  
The decompensated architecture typically allows for higher GBW, higher slew rate, and lower noise compared to  
a unity-gain stable amplifier with similar quiescent currents. The increased available bandwidth reduces the rise  
time and the settling time of the op amp, allowing for sampling at faster rates in an ADC-based signal chain.  
As shown in 8-5, the dominant pole fd is moved to the frequency f1 in the case of a decompensated op amp.  
The solid AOL plot is the open-loop gain plot of a traditional unity-gain stable op amp. The change in internal  
compensation in a decompensated amp such as the OPAx607, increase the bandwidth for the same amount of  
power. That is, the decompensated op amp has an increased bandwidth to power ratio when compared to a  
unity-gain stable op amp of equivalent architecture. Besides the advantages in the above mentioned  
parameters, an increased slew rate and a better distortion (HD2 and HD3) value is achieved because of the  
higher available loop-gain, compared to its unity-gain counterpart. The most important factor to consider is  
ensuring that the op amp is in a noise gain (NG) greater than Gmin. A value of NG lower than Gmin results in  
instability, as shown in 8-5, because the 1/ß curve intersects the AOL curve at 40 dB/decade. This method of  
analyzing stability is called the rate of closure method. See the precision lab training videos from TI for a better  
understanding on device stability and for different techniques of ensuring stability.  
Unity Gain Stable Op Amp  
Decompensated Op Amp  
A
OL  
G
min  
GBP  
d  
1  
u  
2  
Å
u  
8-5. Gain vs Frequency Characteristics for a Unity-Gain Stable Op Amp and a Decompensated Op  
Amp  
The OPAx607 devices are stable in a noise gain of 6 V/V (15.56 dB) or higher in conventional gain circuits; see  
8-6. The device has 9 MHz of small-signal bandwidth (SSBW) in this gain configuration with approximately  
65° of phase margin. The high GBW and low voltage noise of the OPAx607 devices make them suitable for  
general-purpose, high-gain applications.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA607 OPA2607  
 
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
8.4 Device Functional Modes  
The OPAx607 devices have two functional modes: normal operating mode and Power Down ( PD) mode.  
8.4.1 Normal Operating Mode  
The OPAx607 devices are operational when the power-supply voltage is between 2.2 V (±1.1 V) and 5.5 V  
(±2.75 V). Most newer systems use a single power supply to improve efficiency and simplify the power tree  
design. The OPAx607 devices can be used with a single-supply power (VSconnected to GND) with no change  
in performance from split supply, as long as the input and output pins are biased within the linear operating  
region of the device. The valid input and output voltage ranges are given in 7.5. The outputs nominally swing  
rail-to-rail with approximately 10-mV headroom required for linear operation. The inputs can typically swing up to  
the negative rail (typically ground) and to within 1.1 V from the positive supply. 8-6 shows changing from a  
±2.5-V split supply to a 5-V single-supply.  
VSIG  
VSIG  
Bias  
Bias  
5 V  
2.5 V  
Signal and bias from  
previous stage  
Signal and bias from  
previous stage  
OPA607  
OPA607  
+
+
VOUT  
Gain × VSIG  
Gain × Bias  
VOUT  
œ
œ
Gain × VSIG  
-2.5 V  
Gain × Bias  
Signal and bias to  
next stage  
Signal and bias to  
next stage  
RG  
RF  
RG  
RF  
8-6. Single-Supply and Dual-Supply Operation  
8.4.2 Power Down Mode  
The OPAx607 devices feature a Power Down mode for power critical applications. Under logic control, the  
amplifier can be switched from normal operation (consuming 1 mA) to a Power Down current of less than 1  
µA. When the PD pin is connected high, the amplifier is active. Connecting the PD pin to logic low disables the  
amplifier and places the output in a high-impedance state. The output of an op amp is high impedance similar to  
a tri-state high-impedance gate under a Power Down condition; however, the feedback network behaves as a  
parallel load.  
If the Power Down mode is not used, connect PD to the positive supply pin or leave floating. See the Power  
Down (Device Enabled When Floating) section in 7.5 table for the enable and disable threshold voltages. The  
PD pin can be left floating to keep the op amp always enabled, which is primarily possible because of the  
presence of an internal pullup resistor within the op amp that, by default, always keeps the PD pin weakly tied to  
VS+. However it is also acceptable to strengthen the pull up from the PD pin by connecting a low value  
resistance from the PD pin to VS+. This helps make the part less susceptible to noise and transient pick up on  
the PD pin. Looking at the PD pin bias current in 7-21 can help us get an accurate understanding of the  
voltage required to be applied on the PD pin for enabling and powering down. Note: the hysteresis present in 图  
7-21 help with single shot power up and power down of OPAx607 devices.  
The PD pin exhibits a special type of ESD protection which allows users to apply any voltage between VSto 6  
V irrespective of the voltage at the VS+. Special ESD structure at the PD pin helps in relaxing the requirements  
on power sequencing during power up and power down condition. Refer to 8-4 for details of the internal ESD  
structure. The absolute voltage limits applicable on PD pin can be found in 7.1 table. Another key care about  
in PD condition is to ensure the IN+ and INare not exposed to a high differential voltage continuously. In a  
power up condition the op-amp's loop gain ensure the IN+ pin and the INtrack each other closely. However in  
PD condition the op-amp is inactive and INwill be usually weakly tied to GND through the RG resistor.  
Exposing the IN+ pin continuously to a high voltage in such a condition will result in irreversible offset voltage  
(VOS) shift.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA607 OPA2607  
 
 
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The OPAx607 devices feature a 50-MHz GBW with 900 µA of supply current, providing good AC performance at  
low-power consumption. The low input noise voltage of 3.8 nV/Hz, the approximate pA of bias current, and a  
typical input offset voltage of 0.1 mV make the device very suitable for both AC and DC applications.  
9.2 Typical Applications  
9.2.1 100-kΩGain Transimpedance Design  
The high GBW and low input voltage and current noise for the OPAx607 devices make it an excellent wideband  
transimpedance amplifier for moderate to high transimpedance gains.  
Supply decoupling  
not shown  
+5 V  
OPAx607  
+0.5 V  
+
VOUT  
œ
GND  
RF  
100 k  
CD  
3 pF  
IPD  
CCM  
5.5 pF  
CDIFF  
11.5 pF  
CF  
1.1 pF  
VOUT = IPD X RF  
OPA607's input differential and  
common-mode capacitance  
9-1. Wideband, High-Sensitivity, Transimpedance Amplifier  
9.2.1.1 Design Requirements  
Design a high-bandwidth, high-transimpedance-gain amplifier with the design requirements shown in 9-1.  
9-1. Design Requirements  
PHOTODIODE CAPACITANCE  
TARGET BANDWIDTH (MHz)  
TRANSIMPEDANCE-GAIN (kΩ)  
(pF)  
2
100  
3
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA607 OPA2607  
 
 
 
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
9.2.1.2 Detailed Design Procedure  
Designs that require high bandwidth from a large area detector with relatively high transimpedance-gain benefit  
from the low input voltage noise of the OPAx607 devices. Use the Excelcalculator available at What You Need  
To Know About Transimpedance Amplifiers Part 1 to help with the component selection based on total input  
capacitance and CTOT. CTOT is referred as CIN in the calculator. CTOT is the sum of CD, CDIFF, and CCM which is  
20 pF. Using this value of CTOT, and the targeted closed-loop bandwidth (f3dB) of 2 MHz and transimpedance  
gain of 100 kΩresults in amplifier GBW of approximately 50 MHz and a feedback capacitance (CF) of 1.1 pF as  
shown in 9-2. These results are for a Butterworth response with a Q = 0.707 and a phase margin of  
approximately 65° which corresponds to 4.3% overshoot.  
Calculator II  
Closed-loop TIA Bandwidth (f-3dB  
Feedback Resistance (RF)  
Input Capacitance (CIN)  
)
2.00  
100.00  
20.00  
50.27  
1.110  
MHz  
kOhm  
pF  
Opamp Gain Bandwidth Product (GBP)  
Feedback Capacitance (CF)  
MHz  
pF  
9-2. Results of Inputting Design Parameters in the TIA Calculator  
The OPA607's 50 MHz GBW, is suitable for the above design requirements. If the required feedback  
capacitance CF comes out to be a very low value capacitor to be practically achievable, a T-Network capacitor  
circuit as shown below can be used. A very low capacitor value (CEQ) can be achieved between Port1 and Port2  
using standard value capacitors in a T-Network circuit as shown in 9-3.  
C1 ì C2  
C1 + C2 + CT  
CEQ  
=
(1)  
Port1  
Port2  
C1  
C2  
CT  
GND  
9-3. T-Network  
9.2.1.3 Application Curves  
120  
110  
100  
90  
80  
6
5
4
3
2
1
0
VOUT  
IPD  
40  
0
-40  
80  
-80  
70  
-120  
-160  
-200  
-240  
-280  
-320  
-360  
-400  
60  
50  
40  
30  
20  
Gain (dB)  
Phase (è)  
10  
0
10k  
100k  
1M  
Frequency (Hz)  
10M  
100M  
Time (50 msec/Div)  
TIA_  
OPA6  
9-5. Simulated Time Domain Response  
9-4. Simulated Closed-Loop Bandwidth of TIA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA607 OPA2607  
 
 
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
9.2.2 Noninverting Gain of 3 V/V  
The OPAx607 devices are normally stable in noise gain configurations (see SBOA066) of greater than 6 V/V  
when conventional feedback networks are used, which is discussed in 8.3.4. The OPAx607 devices can be  
configured in noise gains of less than 6 V/V by using capacitors in the feedback path and between the inputs to  
maintain the desired gain at lower frequencies and increase the gain greater that 6 V/V at higher frequencies  
such that the amplifier is stable. Configuration (a) in 9-6 shows OPAx607 devices configured in a gain of 3  
V/V by using capacitors and resistors to shape the noise gain and achieve a phase margin of approximately 56°  
that is very close to the phase margin achieved for the conventional 6 V/V configuration (b) in 9-6.  
The key benefit of using a decompensated amplifier (such as the OPAx607) below the minimum stable gain, is  
that it takes advantage of the low noise and low distortion performance at quiescent powers smaller than  
comparable unity-gain stable architectures. By reducing the 100-pF input capacitor, higher closed-loop  
bandwidth can be achieved at the expense of increased peaking and reduced phase margin. Ensure that low  
parasitic capacitance layout techniques on the INpin are as small as 1 pF to 2 pF of parasitic capacitance on  
the inverting input, which will require tweaking the noise-shaping component values to get a flat frequency  
response and the desired phase margin. Configurations in 9-6 does not take into account this parasitic  
capacitance but it must be considered for practical purposes. Details on the benefits of decompensated  
architectures are discussed in Using a decompensated op amp for improved performance. The one-capacitor,  
externally compensated type method is used for noise gain shaping in the below circuit.  
In a difference amplifier circuit, typically used for low side current sensing applications, the (noise gain) = (signal  
gain + 1).  
2.5 pF  
2 kΩ  
LOAD  
GND  
OPAx607  
+5 V  
+5 V  
+5 V  
1kΩ  
ISH  
OPAx607  
OPAx607  
VIN  
VIN  
+
+
+
VO  
100 pF  
VO  
RSH  
œ
œ
470  
œ
470 ꢀ  
100 pF  
0 V  
0 V  
0V  
2 kΩ  
1kΩ  
1 kꢀ  
5 kꢀ  
2 kꢀ  
1 kꢀ  
GND  
2.5 pF  
2.5 pF  
2.5 pF  
(b) G = 6 V/V  
(c) G = 2 V/V  
(a) G = 3 V/V  
9-6. Noninverting Gain of 3 V/V, 6 V/V Configurations and Difference Amplifier in Signal Gain of 2 V/V  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA607 OPA2607  
 
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
30  
24  
18  
12  
6
18  
12  
6
0
0
-6  
-6  
-12  
-18  
-24  
-30  
-12  
-18  
-24  
-30  
Gain = 3 V/V with Noise Gain Shaping  
Gain = 3 V/V without Noise Gain Shaping  
Gain = 6 V/V  
Without Noise Gain Shaping  
With Noise Gain Shaping  
100k  
1M  
10M  
100M  
Freq  
100k  
1M  
10M  
100M  
OPA6  
Frequency (Hz)  
Frequency (Hz)  
9-7. Small-Signal Frequency Response in Gains  
9-8. Small-Signal Frequency Response of  
Difference Amplifier (c) With and Without Noise  
Gain Shaping  
of 3V/V (a) and 6V/V (b)  
9.2.3 High-Input Impedance (Hi-Z), High-Gain Signal Front-End  
0.4 nF  
9 kΩ  
SW  
300 Ω  
1.8 kΩ  
40 kΩ  
+2.5V  
+2.5V  
0.4 nF  
œ
2 kΩ  
0.1 F  
œ
OPA607  
+
To ADC/FDA  
OPA837  
+
105 Ω  
-2.5V  
100 kΩ  
Ultrasonic Sensor  
-2.5V  
9-9. Hi-Z, High-Gain Front-End Circuit  
9.2.3.1 Design Requirements  
The objective is to design a high-input impedance, high-dynamic range, signal-conditioning front-end. An  
example application for such a front-end circuit is the receive signal chain in an ultrasonic-based end equipment  
(EE) such as fish finders, printers and flow meters. 9-2 lists the design requirements for this application.  
9-2. Design Parameters  
PARAMETER  
Amplifier supply  
DESIGN REQUIREMENT  
±2.5 V  
Input signal frequency  
Minimum voltage  
200 kHz  
300 µVrms  
40 dB  
Minimum SNR at 300 µVrms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA607 OPA2607  
 
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
9.2.3.2 Detailed Design Procedure  
To achieve a SNR of greater than 40 dB for signals from 300 uVrms to 30 mV the front-end stage has two gain  
settings: 6 V/V and 31 V/V. The SW (switch, relay, or analog mux) can be dynamically toggled to ensure  
maximum sensitively to the receiving signal. The OPAx607 devices prove to be an attractive solution for this  
front-end signal chain because of the right balance of low noise and high input impedance. The ultrasonic  
sensors (Ex. piezo crystal) have high output impedance. The OPAx607 devices have an input bias current of 20  
pA (maximum). This small bias current results in reduced distortion and signal loss across the source impedance  
when compared with a bipolar amplifier with input bias currents in the range of a few hundreds of nano-amperes.  
The OPAx607's high-gain front-end is followed by a narrowband band-pass filter that is tuned to a 200-kHz  
center frequency. The narrowband filter is designed using the OPA837. OPA837 can be used as a variable gain  
mux / PGA as shown in TIDA-01565. In this application section the OPA837-based band-pass filter was  
designed using the techniques mentioned in the Filter Design in Thirty Seconds application report.  
9-11 shows the frequency response of circuit in 9-9. As shown in 9-11, the frequency response is a  
high-Q factor band-pass filter centered around 200 kHz. Designing such a high-Q band-pass filter helps  
eliminate white band noise along with other interferences present in the circuitry, resulting in a high SNR signal  
chain. The OPAx607's front-end combined with the OPA837-based band-pass filter help to achieve a total gain  
of 33 dB (44 V/V) or 50 dB (316 V/V) based on the SW (switch) position.  
9.2.3.3 Application Curves  
100  
90  
60  
50  
Gain setting = 33 dB  
Gain setting = 50 dB  
50 dB Gain  
33 dB Gain  
80  
40  
70  
60  
30  
20  
50  
40  
10  
0
-10  
-20  
-30  
-40  
-50  
30  
20  
100m  
1m  
Input RMS voltage (V)  
10m  
100m  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D001  
D005  
9-10. Hi-Z, High-Gain Front-End Circuit SNR vs 9-11. Hi-Z, High-Gain Front-End Circuit Gain vs  
Input  
Frequency  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: OPA607 OPA2607  
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
9.2.4 Low-Cost, Low Side, High-Speed Current Sensing  
VREF =1.24V  
LOAD  
CF  
3.3V  
3.3V  
ISH  
+
688 Ω  
VOUT  
VADC  
1kΩ  
1kΩ  
ADS7042  
RSH  
OPA607  
œ
GND  
GND  
240 pF  
GND  
GND  
20 kΩ  
CF  
9-12. Low Side Current Sensing  
9.2.4.1 Design Requirements  
The objective is to design a high-speed, high-gain bidirectional current-sensing circuit for power systems and  
motor drive systems. 9.2.4.2 lists the design requirements of this application.  
9-3. Design Parameters  
PARAMETER  
DESIGN REQUIREMENT  
Amplifier and ADC supply  
3.3 V  
20 A  
Peak current to be measured from load to ground  
Peak current to be measured from ground to load  
Required Accuracy of current measurement  
Signal-Setting time at ADC input  
12 A  
0.1%  
< 1 µs  
Current sensing direction  
Bidirectional  
9.2.4.2 Detailed Design Procedure  
The aim of this application section is to measure bidirectional current with relatively high accuracy in a low-side-  
sensing-based, high-frequency switching system.  
As shown in 9-12, a single op amp of high bandwidth is capable of sensing current in a high gain  
configuration as well as have the required effective bandwidth to drive the consecutive SAR ADC input. The SAR  
ADC can be a standalone ADC or integrated inside a Micro-controller.  
VOUT = (20 kΩ/ 1 kΩ× VDIFF) + VREF, where VDIFF = ISH X RSH  
(2)  
The reference voltage is 1.24 V. When the ISH flowing across RSH equals zero, the VOUT of the difference  
amplifier sits ideal at 1.24 V.  
When the current (ISH) flows from LOAD to GND, the output of the OPAx607 increase above 1.24 V with a value  
equal to 20 × VSH and when the current flows from GND to LOAD (in the opposite direction) the output of the  
OPAx607 decrease below 1.24 V with a value proportional to 20 × VSH  
.
One of the main challenges in a high speed current sensing design is to choose an op amp of with sufficient  
GBW that can drive a SAR ADC, while still being able to gain the signal by the required amount. The 0.1% and  
0.01% settling of OPAx607 can found in 7.5. Another key care about is to ensure the op amp output rises in  
less than 1 µs so as to feed the output to a comparator for short-circuit protection. This comparator based short  
circuit protection loop is extremely fast and enables to turn off the switching devices very quickly. This  
requirement makes a low cost high speed part like the OPAx607 very desirable in a current-sensing circuit.  
Equation of the rise time as a function of bandwidth is shown below.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: OPA607 OPA2607  
 
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
tR (10% to 90%) = 0.35 Hz / BW  
(3)  
For an ADC like ADS7042 running at a sampling rate of 500 kSPS of a clock of 12.5 MHz, the effective  
bandwidth of the op amp required to drive such an ADC is approximately 2.7 MHz. See the TI precision lab  
videos on driving SAR ADCs to understand the underlying calculation. The OPAx607 has a GBW of 50 MHz.  
With a gain of 20 V/V, the closed loop bandwidth turns out to approximately 2.5 MHz, making this device the  
most suitable, cost-optimized amplifier for this application. The RC charge bucket (240 Ωand 688 pF in 9-12)  
designed at the input of the SAR ADC is derived from the calculations provided in the SAR ADC precision lab  
videos. The fundamental concept behind the design of this charge bucket filter is to ensure that the sample and  
hold capacitor is charged to the required final voltage within the acquisition window of the ADC.  
As shown in 9-14, a DC accuracy of higher than 0.05% is achieved with the OPAx607. The simulations are  
captured with and without voltage offset calibration. Frequency response shown in 9-13 indicate different  
signal bandwidth at VOUT, VADC and with and without CF of 220 pF.  
9.2.4.3 Application Curves  
6
5.2  
4.4  
3.6  
2.8  
2
0.2  
30  
24  
18  
12  
6
0.16  
0.12  
0.08  
0.04  
0
0
1.2  
0.4  
-0.4  
-1.2  
-2  
-0.04  
-0.08  
-0.12  
-0.16  
-0.2  
-6  
-12  
-18  
-24  
-30  
Measured Output  
Ideal Output  
% Error w/o callibration  
% Error with callibration  
VADC  
VOUT  
VOUT , CF = 220 pF  
-20 -15 -10  
-5  
0
5
10  
Current across RSH (A)  
15  
20  
25  
30  
100  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
100M  
D003  
D010  
9-14. DC Current-Sense Transfer Function  
9-13. Frequency Response of Low Side Current  
Sensing  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: OPA607 OPA2607  
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
9.2.5 Ultrasonic Flow Meters  
OPA607  
OPA607  
9-15. High-Gain Ultrasonic Front-End  
9.2.5.1 Design Requirements  
The OPAx607 devices have a wide operating voltage range of 2.2 V to 5.5 V with a maximum quiescent current  
of 1 mA. The availability of the inbuilt shutdown function enables designers to power cycle the front-end signal  
chain, reducing the net quiescent current even further. The minimum operating voltage range of 2.2 V proves to  
be very suitable for battery-powered and power sensitive applications such as the ultrasonic-based flow meters.  
The high GBW of the OPAx607 devices enable the gain stages and the ADC drive stages to be designed and  
combined, thereby reducing component count. A schematic similar to that of 9-12 can be used in ultrasonic  
flow meters for the front-end signal chain.  
The Ultrasonic sensing subsystem reference design for gas flow measurement design guide has a detailed  
design procedure for ultrasonic-based sensing for gas flow measurement. The OPAx607 devices are very  
suitable op amps for the discrete front-end design described in this design guide.  
10 Power Supply Recommendations  
The OPAx607 devices are specified for operation from 2.2 V to 5.5 V (±1.1 V to ±2.75 V), applicable from 40°C  
to +125°C. Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from  
noisy or high-impedance power supplies.  
CAUTION  
Supply voltages larger than 6 V can permanently damage the device (see 7.1).  
For more detailed information on bypass capacitor placement, see 11.1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: OPA607 OPA2607  
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power-supply pins of the circuit as a whole and of the  
operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low-impedance  
power sources local to the analog circuitry.  
Connect low-equivalent series resistance (ESR), 0.1-µF ceramic bypass capacitors between each supply  
pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is  
applicable for single-supply applications.  
Separate grounding for analog and digital portions of the circuitry is one of the simplest and most effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup. Make  
sure to physically separate digital and analog grounds, paying attention to the flow of the ground current.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicularly is much better than  
crossing in parallel with the noisy trace.  
Place the external components as close to the device as possible. Keeping RF and RG close to the inverting  
input minimizes parasitic capacitance; see 11-1 and 11-2.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
11.2 Layout Examples  
U1  
OPAx607  
INPUT  
V-  
C3  
4
OUTPUT  
2
GND  
GND  
1
3
R3  
+
5
œ
OUTPUT  
C4  
6
V-  
C2  
V+  
R1  
GND  
R2  
C1  
11-1. Operational Amplifier Board Layout for a  
11-2. Layout Example Schematic  
Noninverting Configuration  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: OPA607 OPA2607  
 
 
 
 
OPA607, OPA2607  
ZHCSKG0J OCTOBER 2019 REVISED APRIL 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
Texas Instruments, precision lab videos  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, OPA2834 50-MHz, 170-μA, Negative-Rail In, Rail-to-Rail Out, Voltage-Feedback  
Amplifier data sheet  
Texas Instruments, ADS7042 Ultra-Low Power, Ultra-Small Size, 12-Bit, 1-MSPS, SAR ADC data sheet  
Texas Instruments, Ultrasonic Sensing Subsystem Reference Design For Gas Flow Measurement design  
guide  
Texas Instruments, OPAx836 Very-Low-Power, Rail-to-Rail Out, Negative Rail In, Voltage-Feedback  
Operational Amplifiers data sheet  
Texas Instruments, Filter Design in Thirty Seconds application report  
12.3 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
12.4 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.5 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.6 Trademarks  
Excelis a trademark of Microsoft Coproration.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.8 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: OPA607 OPA2607  
 
 
 
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Jul-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2607IDGKR  
OPA2607IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
SOIC  
DGK  
D
8
8
2500 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2FRT  
NIPDAU  
NIPDAUAG  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
OP2607  
KJF  
OPA2607SIRUGR  
OPA607IDBVR  
OPA607IDBVT  
OPA607IDCKR  
OPA607IDCKT  
X2QFN  
SOT-23  
SOT-23  
SC70  
RUG  
DBV  
DBV  
DCK  
DCK  
10  
5
O6BV  
O6BV  
1G4  
5
250  
3000 RoHS & Green  
250 RoHS & Green  
RoHS & Green  
6
SC70  
6
1G4  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Jul-2021  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF OPA2607, OPA607 :  
Automotive : OPA2607-Q1, OPA607-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2607IDGKR  
OPA2607IDR  
VSSOP  
SOIC  
DGK  
D
8
8
2500  
2500  
3000  
3000  
250  
330.0  
330.0  
178.0  
180.0  
180.0  
180.0  
180.0  
12.4  
12.4  
8.4  
5.3  
6.4  
3.4  
5.2  
2.25  
3.2  
3.2  
2.3  
2.3  
1.4  
2.1  
8.0  
8.0  
4.0  
4.0  
4.0  
4.0  
4.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q1  
Q3  
Q3  
Q3  
Q3  
OPA2607SIRUGR  
OPA607IDBVR  
OPA607IDBVT  
OPA607IDCKR  
OPA607IDCKT  
X2QFN  
SOT-23  
SOT-23  
SC70  
RUG  
DBV  
DBV  
DCK  
DCK  
10  
5
1.75  
3.2  
0.56  
1.4  
8.4  
8.0  
5
8.4  
3.2  
1.4  
8.0  
6
3000  
250  
8.4  
2.47  
2.47  
1.25  
1.25  
8.0  
SC70  
6
8.4  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2607IDGKR  
OPA2607IDR  
VSSOP  
SOIC  
DGK  
D
8
8
2500  
2500  
3000  
3000  
250  
366.0  
356.0  
205.0  
210.0  
210.0  
213.0  
213.0  
364.0  
356.0  
200.0  
185.0  
185.0  
191.0  
191.0  
50.0  
35.0  
33.0  
35.0  
35.0  
35.0  
35.0  
OPA2607SIRUGR  
OPA607IDBVR  
OPA607IDBVT  
OPA607IDCKR  
OPA607IDCKT  
X2QFN  
SOT-23  
SOT-23  
SC70  
RUG  
DBV  
DBV  
DCK  
DCK  
10  
5
5
6
3000  
250  
SC70  
6
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY