OPA726AID [TI]

具有关断功能的单路、12V、20MHz 运算放大器 | D | 8 | -40 to 125;
OPA726AID
型号: OPA726AID
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有关断功能的单路、12V、20MHz 运算放大器 | D | 8 | -40 to 125

放大器 运算放大器
文件: 总31页 (文件大小:1155K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA725, OPA2725  
OPA726, OPA2726  
SBOS278B − SEPTEMBER 2003 − REVISED JANUARY 2004  
Very Low Noise, High-Speed, 12V CMOS  
Operational Amplifier  
FD EATURES  
DESCRIPTION  
The OPA725 and OPA726 series op amps use a  
state-of-the-art 12V analog CMOS process, and combine  
outstanding ac performance with low bias current and  
excellent CMRR, PSRR, and AOL  
Gain-Bandwidth (GBW) Product is achieved by using a  
proprietary and patent-pending output stage design.  
These characteristics allow excellent 16-bit settling times  
for driving 16-bit Analog-to-Digital converters (ADCs).  
BANDWIDTH: 20MHz  
SLEW RATE: 30V/µs  
D
D
D
D
D
D
D
D
D
D
FAST 16-BIT SETTLING TIME  
LOW NOISE: 6nV/Hz (typ) at 100kHz  
EXCELLENT CMRR, PSRR, and A  
OL  
RAIL-TO-RAIL OUTPUT  
.
The 20MHz  
CM RANGE INCLUDES GND  
THD+N: 0.0003% (typ) at 1kHz  
QUIESCENT CURRENT: 5.5mA/ch (max)  
SUPPLY VOLTAGE: 4V to 12V  
SHUTDOWN MODE (OPAx726): 6µA/ch  
Excellent ac characteristics, such as 20MHz GBW, 30V/µs  
slew rate and 0.0003% THD+N make the OPA725 and  
OPA726 well-suited for communication, high-end audio,  
and active filter applications. With a bias current of less  
than 200pA, they are well-suited for use as  
transimpedance (I/V-conversion) amplifiers for monitoring  
optical power in ONET applications.  
AD PPLICATIONS  
OPTICAL NETWORKING  
D
D
D
D
D
D
D
D
TRANSIMPEDANCE AMPLIFIERS  
INTEGRATORS  
ACTIVE FILTERS  
A/D CONVERTER BUFFERS  
I/V CONVERTER FOR DACs  
PORTABLE AUDIO  
PROCESS CONTROL  
TEST EQUIPMENT  
The OPA725 and OPA726 op amps can be used in  
single-supply applications from 4V up to 12V, or  
dual-supply from 2V to 6V. The output swings to within  
150mV of the rails, maximizing dynamic range. The  
shutdown versions (OPAx726) reduce the quiescent  
current to less than 6µA and feature a reference pin for  
easy shutdown operation with standard CMOS logic in  
dual-supply applications.  
OPA725 RELATED PRODUCTS  
FEATURES  
The OPA725 (single) is available in SOT23-5 and SO-8  
packages, and the OPA2725 (dual) is available in MSOP-8  
and SO-8 packages. The OPA726 (single with shutdown)  
is available in MSOP-8 and SO-8. The OPA2726 (dual with  
shutdown) is available in MSOP-10. All versions are  
specified for operation from −40°C to +125°C.  
PRODUCT  
10MHz, 16V, 16V/µs, 8.5nV/Hz at 1kHz  
TLC080  
OPA132  
OPA380  
OPA656  
OPA743  
ADS8342  
8MHz, 36V, FET Input, 20V/µs, 8.5nV/Hz at 1kHz  
100MHz, 5.5V, Precision Transimpedance Amplifier  
500MHz, 5V, FET Input, 290V/µs, 7nV/Hz at 100kHz  
7MHz, 12V, RRIO, 10V/µs, 30nV/Hz at 10kHz  
16-Bit, 250kSPS, 4-Channel, Parallel Output ADC  
+5V  
+5V  
+12V  
75  
OPA725  
AIN  
VIN  
OPA726  
VOUT  
ADS8342  
16Bit ADC  
Common  
λ
2.5V  
330pF  
5V  
Enable  
V
5V  
B
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆꢇ ꢂꢈ ꢃ ꢉꢆꢉ ꢊꢋ ꢌꢍ ꢎ ꢏꢐ ꢑꢊꢍꢋ ꢊꢒ ꢓꢔ ꢎ ꢎ ꢕꢋꢑ ꢐꢒ ꢍꢌ ꢖꢔꢗ ꢘꢊꢓ ꢐꢑꢊ ꢍꢋ ꢙꢐ ꢑꢕꢚ ꢀꢎ ꢍꢙꢔ ꢓꢑꢒ  
ꢓ ꢍꢋ ꢌꢍꢎ ꢏ ꢑꢍ ꢒ ꢖꢕ ꢓ ꢊ ꢌꢊ ꢓ ꢐ ꢑꢊ ꢍꢋꢒ ꢖ ꢕꢎ ꢑꢛꢕ ꢑꢕ ꢎ ꢏꢒ ꢍꢌ ꢆꢕꢜ ꢐꢒ ꢇꢋꢒ ꢑꢎ ꢔꢏ ꢕꢋꢑ ꢒ ꢒꢑ ꢐꢋꢙ ꢐꢎ ꢙ ꢝ ꢐꢎ ꢎ ꢐ ꢋꢑꢞꢚ  
ꢀꢎ ꢍ ꢙꢔꢓ ꢑ ꢊꢍ ꢋ ꢖꢎ ꢍ ꢓ ꢕ ꢒ ꢒ ꢊꢋ ꢟ ꢙꢍ ꢕ ꢒ ꢋꢍꢑ ꢋꢕ ꢓꢕ ꢒꢒ ꢐꢎ ꢊꢘ ꢞ ꢊꢋꢓ ꢘꢔꢙ ꢕ ꢑꢕ ꢒꢑꢊ ꢋꢟ ꢍꢌ ꢐꢘ ꢘ ꢖꢐ ꢎ ꢐꢏ ꢕꢑꢕ ꢎ ꢒꢚ  
Copyright 2003−2004, Texas Instruments Incorporated  
www.ti.com  
ꢂꢀꢉꢠ ꢡꢢ ꢣ ꢂꢀꢉ ꢡꢠꢡ ꢢ  
ꢂꢀꢉ ꢠꢡ ꢤ ꢣ ꢂꢀꢉ ꢡꢠꢡ ꢤ  
www.ti.com  
SBOS278B − SEPTEMBER 2003 − REVISED JANUARY 2004  
ORDERING INFORMATION  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
PACKAGE-LEAD  
(1)  
Non-Shutdown  
OPA725  
SOT23-5  
DBV  
−40°C to +125°C  
OALI  
OPA725A  
OPA725AIDBVT  
OPA725AIDBVR  
OPA725AID  
Tape and Reel, 250  
Tape and Reel, 3000  
Rails, 100  
SO-8  
D
OPA725  
−40°C to +125°C  
OPA725AIDR  
Tape and Reel, 2500  
OPA2725  
SO-8  
MSOP-8  
D
−40°C to +125°C  
OPA2725A  
OPA2725AID  
OPA2725AIDR  
OPA2725AIDGKT  
Rails, 100  
Tape and Reel, 2500  
Tape and Reel, 250  
DGK  
BGM  
OPA2725  
−40°C to +125°C  
OPA2725AIDGKR Tape and Reel, 2500  
Shutdown  
OPA726  
SO-8  
MSOP-8  
D
−40°C to +125°C  
OPA726A  
OPA726AID  
OPA726AIDR  
OPA726AIDGKT  
OPA726AIDGKR Tape and Reel, 2500  
OPA2726AIDGST Tape and Reel, 250  
OPA2726AIDGSR Tape and Reel, 2500  
Rails, 100  
Tape and Reel, 2500  
Tape and Reel, 250  
DGK  
BHC  
OPA726  
−40°C to +125°C  
OPA2726  
MSOP-10  
DGS  
−40°C to +125°C  
BHB  
(1)  
For the most current package and ordering information, see the Package Option Addendum located at the end of this datasheet.  
This integrated circuit can be damaged by ESD. Texas  
Instruments recommends that all integrated circuits be  
handledwith appropriate precautions. Failure to observe  
(1)  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +13.2V  
(2)  
Signal Input Terminals, Voltage  
. . . . . . . . . −0.5V to (V+) + 0.5V  
. . . . . . . . . . . . . . . . . . . 10mA  
proper handling and installation procedures can cause damage.  
(2)  
Current  
(3)  
Output Short Circuit  
ESD damage can range from subtle performance degradation to  
complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could  
cause the device not to meet its published specifications.  
. . . . . . . . . . . . . . . . . . . . . . . . . Continuous  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . −55°C to +125°C  
Storage Termperature . . . . . . . . . . . . . . . . . . . . . . −55°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
Lead Temperature (soldering, 10s) . . . . . . . . . . . . . . . . . . . . +300°C  
ESD Rating (Human Body Model) . . . . . . . . . . . . . . . . . . . . 1000 V  
(1)  
Stresses above these ratings may cause permanent damage.  
Exposure to absolute maximum conditions for extended periods  
may degrade device reliability. These are stress ratings only, and  
functional operation of the device at these or any other conditions  
beyond those specified is not supported.  
(2)  
(3)  
Input terminals are diode-clamped to the power-supply rails.  
Input signals that can swing more than 0.5V beyond the supply  
rails should be current limited to 10mA or less.  
Short-circuit to ground, one amplifier per package.  
2
ꢂ ꢀꢉꢠ ꢡ ꢢ ꢣ ꢂ ꢀꢉ ꢡꢠꢡ ꢢ  
ꢂ ꢀꢉꢠ ꢡ ꢤꢣ ꢂ ꢀꢉ ꢡꢠꢡ ꢤ  
www.ti.com  
SBOS278B − SEPTEMBER 2003 − REVISED JANUARY 2004  
PIN CONFIGURATIONS  
OPA725  
OPA726  
OPA725  
NC(1)  
V+  
Enable  
V+  
NC(1)  
1
2
3
4
8
7
6
5
DGND(2)  
1
2
3
4
8
7
6
5
Out  
1
2
3
5
4
V+  
IN  
IN  
V
OUT  
NC(1)  
OUT  
NC(1)  
+IN  
+IN  
+IN  
IN  
V
V
SOT235  
SO8  
SO8, MSOP8  
OPA2725  
OPA2726  
OUT A  
1
2
3
4
8
V+  
OUT A  
1
2
3
4
5
10 V+  
A
A
IN A  
7
6
5
OUT B  
IN A  
9
8
7
6
OUT B  
B
B
IN B  
+IN A  
IN B  
+IN A  
V
V
+IN B  
+IN B  
DGND(2)  
Enable  
SO8, MSOP8  
MSOP10  
(1)  
(2)  
NC denotes no internal connection.  
DGND = reference voltage for Enable Reference pin. Voltage on this pin  
will be the voltage to which the Enable Reference pin is referenced.  
3
ꢂꢀꢉꢠ ꢡꢢ ꢣ ꢂꢀꢉ ꢡꢠꢡ ꢢ  
ꢂꢀꢉ ꢠꢡ ꢤ ꢣ ꢂꢀꢉ ꢡꢠꢡ ꢤ  
www.ti.com  
SBOS278B − SEPTEMBER 2003 − REVISED JANUARY 2004  
ELECTRICAL CHARACTERISTICS: V = +4V to +12V or V = 2V to 6V  
S
S
Boldface limits apply over the specified temperature range, T = −40°C to +125°C.  
A
At T = +25°C, R = 10kconnected to V /2, and V  
= V /2, unless otherwise noted.  
A
L
S
OUT  
S
OPA725, OPA726, OPA2725, OPA2726  
PARAMETER  
CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
OFFSET VOLTAGE  
Input Offset Voltage  
OPA725, OPA726  
OPA2725, OPA2726  
Drift  
V
OS  
V
V
=
=
6V, V  
6V, V  
= 0V  
= 0V  
1.2  
1.5  
4
3
5
mV  
mV  
S
S
CM  
CM  
dV /dT  
OS  
µV/°C  
µV/V  
mV/V  
µV/V  
vs Power Supply  
Over Temperature  
Channel Separation, DC  
PSRR  
V
=
2V to 6V, V  
= V−  
30  
100  
S
CM  
V
=
2V to 6V, V  
= V−  
150  
S
CM  
1
INPUT BIAS CURRENT  
Input Bias Current  
I
30  
200  
pA  
pA  
B
Over Temperature  
Input Offset Current  
See Typical Characteristics  
I
10  
50  
OS  
NOISE  
Input Voltage Noise, f = 0.1Hz to 10Hz  
Input Voltage Noise Density, f = 10kHz  
Input Voltage Noise Density, f = 100kHz  
Input Current Noise Density, f = 1kHz  
e
n
V
V
V
V
=
=
=
=
6V, V  
6V, V  
6V, V  
6V, V  
= 0V  
= 0V  
= 0V  
= 0V  
10  
10  
6
µV  
S
S
S
S
CM  
CM  
CM  
CM  
PP  
e
n
nV/Hz  
nV/Hz  
fA/Hz  
e
n
i
2.5  
n
INPUT VOLTAGE RANGE  
Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
Over Temperature  
V
(V−)  
88  
(V+) − 2  
V
CM  
CMRR  
(V−) V  
(V−) V  
(V−) V  
(V−) V  
(V+) − 2V  
(V+) − 2V  
(V+) − 3V  
(V+) − 3V  
94  
dB  
dB  
dB  
dB  
CM  
CM  
CM  
CM  
84  
94  
100  
Over Temperature  
84  
INPUT IMPEDANCE  
Differential  
11  
10  5  
Ω pF  
Ω pF  
11  
Common-Mode  
10  4  
OPEN-LOOP GAIN  
Open-Loop Voltage Gain  
OPA725, OPA726  
Over Temperature  
OPA2725, OPA2726  
Over Temperature  
OPA725, OPA726  
Over Temperature  
OPA2725, OPA2726  
Over Temperature  
A
OL  
R = 100k, 0.15V < V < (V+) − 0.15V  
110  
100  
110  
100  
106  
96  
120  
120  
116  
116  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
L
O
R = 100k, 0.15V < V < (V+) − 0.15V  
L
O
R = 100k, 0.175V < V < (V+) − 0.175V  
L
O
R = 100k, 0.175V < V < (V+) − 0.175V  
L
O
R = 1k, 0.25V < V < (V+) − 0.25V  
L
O
R
L
= 1k, 0.25V < V < (V+) − 0.25V  
O
R = 2k, 0.25V < V < (V+) − 0.25V  
106  
96  
L
O
R
L
= 2k, 0.25V < V < (V+) − 0.25V  
O
FREQUENCY RESPONSE  
Gain-Bandwidth Product  
Slew Rate  
C = 20pF  
L
GBW  
SR  
20  
30  
MHz  
V/µs  
ns  
G = +1  
Settling Time, 0.1%  
0.01%  
t
V
V
=
=
6V, 5V Step, G = +1  
6V, 5V Step, G = +1  
350  
450  
50  
S
S
S
ns  
Overload Recovery Time  
Total Harmonic Distortion + Noise  
V
Gain > V  
ns  
IN  
S
THD+N  
V
=
6V, V  
= 2V  
, R = 600,  
0.0003  
%
S
OUT  
RMS  
L
G = +1, f = 1kHz  
4
ꢂ ꢀꢉꢠ ꢡ ꢢ ꢣ ꢂ ꢀꢉ ꢡꢠꢡ ꢢ  
ꢂ ꢀꢉꢠ ꢡ ꢤꢣ ꢂ ꢀꢉ ꢡꢠꢡ ꢤ  
www.ti.com  
SBOS278B − SEPTEMBER 2003 − REVISED JANUARY 2004  
ELECTRICAL CHARACTERISTICS: V = +4V to +12V or V = 2V to 6V (continued)  
S
S
Boldface limits apply over the specified temperature range, T = −40°C to +125°C.  
A
At T = +25°C, R = 10kconnected to V /2, and V  
= V /2, unless otherwise noted.  
A
L
S
OUT  
S
OPA725, OPA726, OPA2725, OPA2726  
PARAMETER  
OUTPUT  
CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
Voltage Output Swing from Rail  
OPA725, OPA726  
R = 100k, A > 110dB  
100  
125  
200  
200  
150  
150  
175  
175  
250  
250  
250  
250  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
L
OL  
Over Temperature  
OPA2725, OPA2726  
Over Temperature  
OPA725, OPA726  
R
L
= 100k, A > 100dB  
OL  
R = 100k, A > 110dB  
L
OL  
R
L
= 100k, A > 100dB  
OL  
R = 1k, A > 106dB  
L
OL  
Over Temperature  
OPA2725, OPA2726  
Over Temperature  
Output Current  
R
L
= 1k, A > 96dB  
OL  
R = 2k, A > 106dB  
L
OL  
R
L
= 2k, A > 96dB  
OL  
I
V − V < 1V  
OUT  
40  
55  
OUT  
S
Short-Circuit Current  
Capacitive Load Drive  
Open-Loop Output Impedance  
I
SC  
LOAD  
C
See Typical Characteristics  
40  
f = 1MHz, I = 0  
O
ENABLE/SHUTDOWN (OPAx726)  
t
5
µs  
µs  
V
OFF  
t
30  
ON  
Enable Reference (DGND) Voltage Range  
V
DGND  
V−  
(V+) − 2  
V (shutdown)  
L
< V  
+0.8V  
V
DGND  
V
(amplifier is active)  
> V  
+2V  
DGND  
V
H
Input Disable Current  
(per amplifier)  
Ref Pin = Enable Pin = V−  
5
6
µA  
µA  
I
15  
12  
QSD  
POWER SUPPLY  
Specified Voltage Range  
Operating Voltage Range  
Quiescent Current (per amplifier)  
Over Temperature  
V
V
4
V
V
S
S
Q
3.5 to 13.2  
4.3  
I
I
= 0  
5.5  
mA  
mA  
O
6
TEMPERATURE RANGE  
Specified Range  
−40  
−55  
−55  
125  
125  
150  
°C  
°C  
°C  
Operating Range  
Storage Range  
Thermal Resistance  
SOT23-5  
q
JA  
200  
150  
°C/W  
°C/W  
MSOP-8, MSOP-10, SO-8  
5
ꢂꢀꢉꢠ ꢡꢢ ꢣ ꢂꢀꢉ ꢡꢠꢡ ꢢ  
ꢂꢀꢉ ꢠꢡ ꢤ ꢣ ꢂꢀꢉ ꢡꢠꢡ ꢤ  
www.ti.com  
SBOS278B − SEPTEMBER 2003 − REVISED JANUARY 2004  
TYPICAL CHARACTERISTICS  
At T = +25°C, V  
=
6V, R = 10kconnected to V /2, and V  
= V /2, unless otherwise noted.  
OUT S  
A
S
L
S
COMMON−MODE REJECTION RATIO vs FREQUENCY  
GAIN AND PHASE vs FREQUENCY  
120  
100  
80  
60  
40  
20  
0
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
Phase  
60  
60  
Gain  
40  
40  
20  
20  
0
0
(V ) VCM (V+) 2V  
20  
20  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
10 100 1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
POWER−SUPPLY REJECTION RATIO vs FREQUENCY  
MAXIMUM OUTPUT VOLTAGE vs FREQUENCY  
VS 6V  
7
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
=
6
5
4
3
2
1
0
Indicates maximum output  
for no visible distortion.  
100k  
10M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10k  
1M  
Frequency (Hz)  
Frequency (Hz)  
INPUT VOLTAGE NOISE SPECTRAL DENSITY  
vs FREQUENCY  
CHANNEL SEPARATION vs FREQUENCY  
140  
120  
100  
80  
1000  
100  
10  
60  
40  
20  
1
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
6
ꢂ ꢀꢉꢠ ꢡ ꢢ ꢣ ꢂ ꢀꢉ ꢡꢠꢡ ꢢ  
ꢂ ꢀꢉꢠ ꢡ ꢤꢣ ꢂ ꢀꢉ ꢡꢠꢡ ꢤ  
www.ti.com  
SBOS278B − SEPTEMBER 2003 − REVISED JANUARY 2004  
TYPICAL CHARACTERISTICS (continued)  
At T = +25°C, V  
=
6V, R = 10kconnected to V /2, and V = V /2, unless otherwise noted.  
OUT S  
A
S
L
S
INPUT BIAS CURRENT vs COMMON MODE VOLTAGE  
OFFSET CURRENT vs TEMPERATURE  
100k  
10k  
1k  
10k  
1k  
_
+125 C  
_
+85 C  
100  
10  
100  
10  
_
+25 C  
IB  
< 10pA  
10  
_
+25 C  
100  
1
1k  
_
+85 C  
0.1  
0.01  
10k  
_
+125 C  
100k  
25  
50  
0
25  
50  
75  
100  
125  
150  
_
Temperature ( C)  
CommonMode Voltage (V)  
OPEN−LOOP GAIN vs TEMPERATURE  
POWER−SUPPLY REJECTION RATIO vs TEMPERATURE  
140  
130  
120  
110  
100  
90  
120  
100  
80  
RL = 100k  
RL = 1k  
80  
60  
25  
50  
25  
50  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
_
_
Temperature ( C)  
Temperature ( C)  
QUIESCENT CURRENT vs TEMPERATURE  
COMMON−MODE REJECTION RATIO vs TEMPERATURE  
5
110  
100  
90  
4
3
2
1
0
80  
70  
(V ) VCM (V+) 2V  
60  
25  
50  
0
25  
50  
75  
100  
125  
150  
25  
50  
0
25  
50  
75  
100  
125  
150  
_
Temperature ( C)  
_
Temperature ( C)  
7
ꢂꢀꢉꢠ ꢡꢢ ꢣ ꢂꢀꢉ ꢡꢠꢡ ꢢ  
ꢂꢀꢉ ꢠꢡ ꢤ ꢣ ꢂꢀꢉ ꢡꢠꢡ ꢤ  
www.ti.com  
SBOS278B − SEPTEMBER 2003 − REVISED JANUARY 2004  
TYPICAL CHARACTERISTICS (continued)  
At T = +25°C, V  
=
6V, R = 10kconnected to V /2, and V = V /2, unless otherwise noted.  
OUT S  
A
S
L
S
SHORT−CIRCUIT CURRENT vs TEMPERATURE  
QUIESCENT CURRENT vs SUPPLY VOLTAGE  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
Sourcing  
Sinking  
25  
50  
0
25  
50  
75  
100  
125  
150  
3
4
5
6
7
8
9
10 11 12 13 14  
_
Temperature ( C)  
Supply Voltage (V)  
SHORT−CIRCUIT CURRENT vs SUPPLY VOLTAGE  
Sourcing  
OUTPUT VOLTAGE SWING vs OUTPUT CURRENT  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
4
2
0
_
40 C  
Sinking  
_
25 C  
_
125 C  
2
4
6
_
40 C  
0
10  
20  
30  
40  
50  
60  
70  
80  
Output Current (mA)  
Supply Voltage (V)  
SETTLING TIME vs GAIN  
TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0.01  
RL = 600  
VOUT = 2Vrms  
BW = 80kHz  
0.001  
0.01%  
0.1%  
0
0.0001  
1
10  
100  
10  
100  
1k  
10k  
100k  
Noninverting Gain (V/V)  
Frequency (Hz)  
8
ꢂ ꢀꢉꢠ ꢡ ꢢ ꢣ ꢂ ꢀꢉ ꢡꢠꢡ ꢢ  
ꢂ ꢀꢉꢠ ꢡ ꢤꢣ ꢂ ꢀꢉ ꢡꢠꢡ ꢤ  
www.ti.com  
SBOS278B − SEPTEMBER 2003 − REVISED JANUARY 2004  
TYPICAL CHARACTERISTICS (continued)  
At T = +25°C, V  
=
6V, R = 10kconnected to V /2, and V = V /2, unless otherwise noted.  
OUT S  
A
S
L
S
OFFSET VOLTAGE PRODUCTION DISTRIBUTION  
SMALL−SIGNAL OVERSHOOT vs CAPACITIVE LOAD  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
G = +1  
G =  
CF = 3pF  
1
G = +5  
CF = 1pF  
10  
100  
Capacitive Load (pF)  
1000  
Offset Voltage (mV)  
VOLTAGE OFFSET DRIFT PRODUCTION DISTRIBUTION  
SMALL−SIGNAL STEP RESPONSE  
G = +1  
Typical production distribution  
of packaged units.  
RL = 10k  
L = 20pF  
C
0
2
4
6
8
10  
12  
14  
16  
100ns/div  
µ
_
Voltage Offset Drift ( V/ C)  
LARGESIGNAL STEP RESPONSE  
SMALLSIGNAL STEP RESPONSE  
CF = 3pF  
G = +1  
RL = 10k  
CF = 2pF  
CL = 20pF  
CF = 4pF  
CF  
G = 1  
R
F
10k  
10k  
O PA725  
CL  
20pF  
400ns/div  
200ns/div  
9
ꢂꢀꢉꢠ ꢡꢢ ꢣ ꢂꢀꢉ ꢡꢠꢡ ꢢ  
ꢂꢀꢉ ꢠꢡ ꢤ ꢣ ꢂꢀꢉ ꢡꢠꢡ ꢤ  
www.ti.com  
SBOS278B − SEPTEMBER 2003 − REVISED JANUARY 2004  
TYPICAL CHARACTERISTICS (continued)  
At T = +25°C, V  
=
6V, R = 10kconnected to V /2, and V = V /2, unless otherwise noted.  
OUT S  
A
S
L
S
LARGE−SIGNAL STEP RESPONSE  
CF  
4pF  
G =  
1
RF  
10k  
10k  
OPA725  
CL  
20pF  
400ns/div  
10  
ꢂ ꢀꢉꢠ ꢡ ꢢ ꢣ ꢂ ꢀꢉ ꢡꢠꢡ ꢢ  
ꢂ ꢀꢉꢠ ꢡ ꢤꢣ ꢂ ꢀꢉ ꢡꢠꢡ ꢤ  
www.ti.com  
SBOS278B − SEPTEMBER 2003 − REVISED JANUARY 2004  
APPLICATIONS INFORMATION  
a) SingleSupply Configuration  
Enable  
OPA725 and OPA726 series 20MHz CMOS op amps have  
a fast slew rate, low noise, and excellent PSRR, CMRR,  
and AOL. These op amps can operate on typically 4.3mA  
quiescent current from a single (or split) supply in the range  
of 4V to 12V ( 2V to 6V), making them highly versatile  
and easy to use. They are stable in a unity-gain  
configuration.  
+12V  
Digital  
Logic  
OPA726  
VOUT  
DGND  
Power-supply pins should be bypassed with 1nF ceramic  
capacitors in parallel with 1µF tantalum capacitors.  
b) DualSupply Configuration  
Enable  
OPERATING VOLTAGE  
OPA725 series op amps are specified from 4V to 12V  
supplies over a temperature range of −40°C to +125°C.  
They will operate well in 5V or +5V to +12V power-supply  
systems. Parameters that vary significantly with operating  
voltage or temperature are shown in the Typical  
Characteristics.  
+5V  
Digital  
Logic  
OPA726  
VOUT  
5V  
DGND  
ENABLE/SHUTDOWN  
OPA725 series op amps require approximately 4.3mA  
quiescent current. The enable/shutdown feature of the  
OPA726 allows the op amp to be shut off to reduce this  
current to approximately 6µA.  
Figure 1. Enable Reference Pin Connection for  
Single- and Dual-Supply Configurations  
The enable/shutdown input is referenced to the Enable  
Reference Pin, DGND (see Pin Configurations). This pin  
can be connected to logic ground in dual-supply op amp  
configurations to avoid level-shifting the enable logic  
signal, as shown in Figure 1.  
INPUT OVER-VOLTAGE PROTECTION  
Device inputs are protected by ESD diodes that will  
conduct if the input voltages exceed the power supplies by  
more than approximately 300mV. Momentary voltages  
greater than 300mV beyond the power supply can be  
tolerated if the current is limited to 10mA. This is easily  
accomplished with an input resistor in series with the op  
amp, as shown in Figure 2. The OPA725 series features  
no phase inversion when the inputs extend beyond  
supplies, if the input is current limited.  
The Enable Reference Pin voltage, VDGND, must not  
exceed (V+) − 2V. It may be set as low as V−. The amplifier  
is enabled when the Enable Pin voltage is greater than  
V
DGND + 2V. The amplifier is disabled (shutdown) if the  
Enable Pin voltage is less than VDGND + 0.8V. The Enable  
Pin is connected to internal pull-up circuitry and will enable  
the device if left unconnected.  
V+  
COMMON-MODE VOLTAGE RANGE  
IOVERLOAD  
The input common-mode voltage range of the OPA725  
and OPA726 series extends from V− to (V+) − 2V.  
10mA max  
VOUT  
OPA725  
R
VIN  
Common-mode rejection is excellent throughout the input  
voltage range from V− to (V+) − 3V. CMRR decreases  
somewhat as the common-mode voltage extends to  
(V+) − 2V, but remains very good and is tested throughout  
this range. See the Electrical Characteristics table for  
details.  
V
Figure 2. Input Current Protection for Voltages  
Exceeding the Supply Voltage  
11  
ꢂꢀꢉꢠ ꢡꢢ ꢣ ꢂꢀꢉ ꢡꢠꢡ ꢢ  
ꢂꢀꢉ ꢠꢡ ꢤ ꢣ ꢂꢀꢉ ꢡꢠꢡ ꢤ  
www.ti.com  
SBOS278B − SEPTEMBER 2003 − REVISED JANUARY 2004  
RAIL-TO-RAIL OUTPUT  
+5V  
OPA725  
5V  
+5V  
A class AB output stage with common-source transistors  
is used to achieve rail-to-rail output. This output stage is  
capable of driving heavy loads connected to any point  
between V+ and V−. For light resistive loads ( > 100k),  
the output voltage can swing to 150mV (175mV for dual)  
from the supply rail, while still maintaining excellent  
linearity (AOL > 110dB). With 1k(2kfor dual) resistive  
loads, the output is specified to swing to within 250mV from  
the supply rails with excellent linearity (see the Typical  
Characteristics curve Output Voltage Swing vs Output  
Current).  
75  
AIN  
VIN  
2.5V  
ADS8342  
16Bit ADC  
330pF  
Common  
5V  
Figure 4. OPA725 Driving an ADC  
CAPACITIVE LOAD AND STABILITY  
TRANSIMPEDANCE AMPLIFIER  
Capacitive load drive is dependent upon gain and the  
overshoot requirements of the application. Increasing the  
gain enhances the ability of the amplifier to drive greater  
capacitive loads (see the Typical Characteristics curve  
Small-Signal Overshoot vs Capacitive Load).  
Wide bandwidth, low input bias current, and low input  
voltage and current noise make the OPA725 an ideal  
wideband photodiode transimpedance amplifier. Low-  
voltage noise is important because photodiode capaci-  
tance causes the effective noise gain of the circuit to  
increase at high frequency.  
One method of improving capacitive load drive in the  
unity-gain configuration is to insert a 10to 20resistor  
inside the feedback loop, as shown in Figure 3. This  
reduces ringing with large capacitive loads while  
maintaining DC accuracy.  
The key elements to a transimpedance design, as shown  
in Figure 5, are the expected diode capacitance (CD),  
which should include the parasitic input common-mode  
and differential-mode input capacitance (4pF + 5pF for the  
OPA725); the desired transimpedance gain (RF); and the  
GBW for the OPA725 (20MHz). With these three variables  
set, the feedback capacitor value (CF) can be set to control  
the frequency response. CF includes the stray capacitance  
of RF, which is 0.2pF for a typical surface-mount resistor.  
V+  
RS  
20  
OPA725  
VOUT  
VIN  
CL  
RL  
(1)  
CF  
< 1pF  
Figure 3. Series Resistor in Unity-Gain Buffer  
Configuration Improves Capacitive Load Drive  
RF  
10M  
DRIVING FAST 16-BIT ADCs  
The OPA725 series is optimized for driving fast 16-bit  
ADCs such as the ADS8342. The OPA725 op amps buffer  
the converter input capacitance and resulting charge  
injection, while providing signal gain. Figure 4 shows the  
OPA725 in a single-ended method of interfacing to the  
ADS8342 16-bit, 250kSPS, 4-channel ADC with an input  
range of 2.5V. The OPA725 has demonstrated excellent  
settling time to the 16-bit level within the 600ns acquisition  
time of the ADS8342. The RC filter, shown in Figure 4, has  
been carefully tuned for best noise and settling  
performance. It may need to be adjusted for different op  
amp configurations. Please refer to the ADS8342 data  
sheet (available for download at www.ti.com) for additional  
information on this product.  
+5V  
λ
VOUT  
CD  
OPA725  
5V  
NOTE: (1) CF is optional to prevent gain peaking.  
It includes the stray capacitance of RF.  
Figure 5. Dual-Supply Transimpedance Amplifier  
12  
ꢂ ꢀꢉꢠ ꢡ ꢢ ꢣ ꢂ ꢀꢉ ꢡꢠꢡ ꢢ  
ꢂ ꢀꢉꢠ ꢡ ꢤꢣ ꢂ ꢀꢉ ꢡꢠꢡ ꢤ  
www.ti.com  
SBOS278B − SEPTEMBER 2003 − REVISED JANUARY 2004  
To achieve a maximally-flat, 2nd-order Butterworth  
frequency response, the feedback pole should be set to:  
For additional information, refer to Application Bulletin  
SBOA055, Compensate Transimpedance Amplifiers  
Intuitively, available for download at www.ti.com.  
GBW  
4pRFCD  
1
+
Ǹ
2pRFCF  
(1)  
OPTIMIZING THE TRANSIMPEDANCE  
CIRCUIT  
Bandwidth is calculated by:  
f*3dB  
To achieve the best performance, components should be  
selected according to the following guidelines:  
GBW  
2pRFCD  
+
Hz  
Ǹ
(2)  
1. For lowest noise, select RF to create the total required  
gain. Using a lower value for RF and adding gain after  
the transimpedance amplifier generally produces  
poorer noise performance. The noise produced by RF  
increases with the square-root of RF, whereas the  
signal increases linearly. Therefore, signal-to-noise  
ratio is improved when all the required gain is placed  
in the transimpedance stage.  
For even higher transimpedance bandwidth, the  
high-speed CMOS OPA354 (100MHz GBW), OPA300  
(180 MHz GBW), OPA355 (200MHz GBW), or OPA656,  
OPA657 (400MHz GBW) may be used.  
For single-supply applications, the +IN input can be biased  
with a positive dc voltage to allow the output to reach true  
zero when the photodiode is not exposed to any light, and  
respond without the added delay that results from coming  
out of the negative rail. (Refer to Figure 6.) This bias  
voltage also appears across the photodiode, providing a  
reverse bias for faster operation.  
2. Minimize photodiode capacitance and stray  
capacitance at the summing junction (inverting input).  
This capacitance causes the voltage noise of the op  
amp to be amplified (increasing amplification at high  
frequency). Using a low-noise voltage source to  
reverse-bias a photodiode can significantly reduce its  
capacitance. Smaller photodiodes have lower  
capacitance. Use optics to concentrate light on a small  
photodiode.  
(1)  
CF  
< 1pF  
RF  
3. Noise increases with increased bandwidth. Limit the  
circuit bandwidth to only that required. Use a capacitor  
across the RF to limit bandwidth, even if not required  
for stability.  
10M  
4. Circuit board leakage can degrade the performance of  
an otherwise well-designed amplifier. Clean the circuit  
board carefully. A circuit board guard trace that  
encircles the summing junction and is driven at the  
same voltage can help control leakage.  
V+  
λ
VOUT  
OPA725  
+VBias  
For additional information, refer to the Application Bulletins  
Noise Analysis of FET Transimpedance Amplifiers  
(SBOA060), and Noise Analysis for High-Speed Op Amps  
(SBOA066), available for download at the TI web site.  
NOTE: (1) CF is optional to prevent gain peaking.  
It includes the stray capacitance of RF.  
Figure 6. Single-Supply Transimpedance  
Amplifier  
13  
ꢂꢀꢉꢠ ꢡꢢ ꢣ ꢂꢀꢉ ꢡꢠꢡ ꢢ  
ꢂꢀꢉ ꢠꢡ ꢤ ꢣ ꢂꢀꢉ ꢡꢠꢡ ꢤ  
www.ti.com  
SBOS278B − SEPTEMBER 2003 − REVISED JANUARY 2004  
C3  
2.2nF  
C1  
1nF  
R3  
2.07k  
R4  
22.3k  
1/2  
OPA2725  
VOUT  
R1  
1.93k  
R2  
15.9k  
1/2  
OPA2725  
C4  
C2  
100pF  
330pF  
DC Gain = 1  
Cutoff Frequency = 50kHz  
NOTE: FilterPro is a low-pass filter design program available for download at no cost from TI’s web site (www.ti.com). The program can be used  
to determine component values for other cutoff frequencies or filter types.  
Figure 7. Four-Pole Butterworth Sallen-Key Low-Pass Filter  
14  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-May-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2725AID  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
75  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
OPA  
2725A  
Samples  
Samples  
OPA2725AIDG4  
ACTIVE  
75  
NIPDAU  
OPA  
2725A  
OPA2725AIDGKR  
OPA2725AIDGKT  
OPA2725AIDR  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
2500 RoHS & Green Call TI | NIPDAUAG  
250 RoHS & Green Call TI | NIPDAUAG  
2500 RoHS & Green NIPDAU  
RoHS & Green Call TI | NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
BGM  
Samples  
Samples  
Samples  
BGM  
OPA  
2725A  
OPA2726AIDGST  
OPA2726AIDGSTG4  
OPA725AID  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
SOIC  
DGS  
DGS  
D
10  
10  
8
250  
250  
75  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
BHB  
Samples  
Samples  
Samples  
RoHS & Green  
RoHS & Green  
Call TI  
BHB  
NIPDAU  
OPA  
725A  
OPA725AIDBVR  
OPA725AIDBVRG4  
OPA725AIDBVT  
OPA725AIDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
DBV  
D
5
5
5
8
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
OALI  
OALI  
OALI  
Samples  
Samples  
Samples  
Samples  
250  
RoHS & Green  
2500 RoHS & Green  
OPA  
725A  
OPA726AID  
ACTIVE  
SOIC  
D
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
OPA  
726A  
Samples  
OPA726AIDGKT  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
250  
250  
RoHS & Green Call TI | NIPDAUAG  
RoHS & Green Call TI  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
BHC  
Samples  
Samples  
OPA726AIDGKTG4  
BHC  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-May-2022  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2725AIDR  
OPA725AIDBVR  
OPA725AIDBVT  
OPA725AIDR  
SOIC  
SOT-23  
SOT-23  
SOIC  
D
8
5
5
8
2500  
3000  
250  
330.0  
178.0  
178.0  
330.0  
12.4  
9.0  
6.4  
3.3  
3.3  
6.4  
5.2  
3.2  
3.2  
5.2  
2.1  
1.4  
1.4  
2.1  
8.0  
4.0  
4.0  
8.0  
12.0  
8.0  
Q1  
Q3  
Q3  
Q1  
DBV  
DBV  
D
9.0  
8.0  
2500  
12.4  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2725AIDR  
OPA725AIDBVR  
OPA725AIDBVT  
OPA725AIDR  
SOIC  
SOT-23  
SOT-23  
SOIC  
D
8
5
5
8
2500  
3000  
250  
356.0  
180.0  
180.0  
356.0  
356.0  
180.0  
180.0  
356.0  
35.0  
18.0  
18.0  
35.0  
DBV  
DBV  
D
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
OPA2725AID  
OPA2725AIDG4  
OPA725AID  
D
D
D
D
SOIC  
SOIC  
SOIC  
SOIC  
8
8
8
8
75  
75  
75  
75  
506.6  
506.6  
506.6  
506.6  
8
8
8
8
3940  
3940  
3940  
3940  
4.32  
4.32  
4.32  
4.32  
OPA726AID  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY