OPA735AIDBVT [TI]

SINGLE-SUPPLY CMOS OPERATIONAL AMPLIFIERS Zero-Drift Series; 单电源CMOS运算放大器零漂移系列
OPA735AIDBVT
型号: OPA735AIDBVT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SINGLE-SUPPLY CMOS OPERATIONAL AMPLIFIERS Zero-Drift Series
单电源CMOS运算放大器零漂移系列

运算放大器
文件: 总18页 (文件大小:468K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA734, OPA2734  
OPA735, OPA2735  
SBOS282A − DECEMBER 2003 − REVISED FEBRUARY 2004  
0.05µV/°C max, SINGLE-SUPPLY CMOS  
OPERATIONAL AMPLIFIERS  
Zer-Drift Series  
FD EATURES  
DESCRIPTION  
The OPA734 and OPA735 series of CMOS operational  
amplifiers use auto-zeroing techniques to simultaneously  
provide low offset voltage (5µV max) and near-zero drift  
over time and temperature. These miniature, high-preci-  
sion, low quiescent current amplifiers offer high input  
impedance and rail-to-rail output swing within 50mV of the  
rails. Either single or bipolar supplies can be used in the  
range of +2.7V to +12V ( 1.35V to 6V). They are  
optimized for low-voltage, single-supply operation.  
LOW OFFSET VOLTAGE: 5µV (max)  
ZERO DRIFT: 0.05µV/°C max  
QUIESCENT CURRENT: 750µA (max)  
SINGLE-SUPPLY OPERATION  
LOW BIAS CURRENT: 200pA (max)  
SHUTDOWN  
D
D
D
D
D
D
D
MicroSIZE PACKAGES  
WIDE SUPPLY RANGE: 2.7V to 12V  
The OPA734 family includes a shutdown mode. Under  
logic control, the amplifiers can be switched from normal  
operation to a standby current that is 9µA (max) and the  
output placed in a high-impedance state.  
AD PPLICATIONS  
TRANSDUCER APPLICATIONS  
D
D
D
D
D
TEMPERATURE MEASUREMENTS  
ELECTRONIC SCALES  
MEDICAL INSTRUMENTATION  
BATTERY-POWERED INSTRUMENTS  
HANDHELD TEST EQUIPMENT  
The single version is available in the MicroSIZE SOT23-5  
(SOT23-6 for shutdown version) and the SO-8 packages.  
The dual version is available in the MSOP-8 and SO-8  
packages (MSOP-10 only for the shutdown version). All  
versions are specified for operation from −40°C to +85°C.  
VREF = 15V  
R3  
G = 1 + 2  
RG  
REF102  
10V  
R1  
1kΩ  
C1  
1nF  
1/2  
OPA2735  
R3  
10kΩ  
C4  
1nF  
C2  
10nF  
C4  
1nF  
RG  
R3  
10kΩ  
R2  
1k  
1/2  
OPA2735  
C3  
1nF  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆꢇ ꢂꢈ ꢃ ꢉꢆꢉ ꢊꢋ ꢌꢍ ꢎ ꢏꢐ ꢑꢊꢍꢋ ꢊꢒ ꢓꢔ ꢎ ꢎ ꢕꢋꢑ ꢐꢒ ꢍꢌ ꢖꢔꢗ ꢘꢊꢓ ꢐꢑꢊ ꢍꢋ ꢙꢐ ꢑꢕꢚ ꢀꢎ ꢍꢙꢔ ꢓꢑꢒ  
ꢓ ꢍꢋ ꢌꢍꢎ ꢏ ꢑꢍ ꢒ ꢖꢕ ꢓ ꢊ ꢌꢊ ꢓ ꢐ ꢑꢊ ꢍꢋꢒ ꢖ ꢕꢎ ꢑꢛꢕ ꢑꢕ ꢎ ꢏꢒ ꢍꢌ ꢆꢕꢜ ꢐꢒ ꢇꢋꢒ ꢑꢎ ꢔꢏ ꢕꢋꢑ ꢒ ꢒꢑ ꢐꢋꢙ ꢐꢎ ꢙ ꢝ ꢐꢎ ꢎ ꢐ ꢋꢑꢞꢚ  
ꢀꢎ ꢍ ꢙꢔꢓ ꢑ ꢊꢍ ꢋ ꢖꢎ ꢍ ꢓ ꢕ ꢒ ꢒ ꢊꢋ ꢟ ꢙꢍ ꢕ ꢒ ꢋꢍꢑ ꢋꢕ ꢓꢕ ꢒꢒ ꢐꢎ ꢊꢘ ꢞ ꢊꢋꢓ ꢘꢔꢙ ꢕ ꢑꢕ ꢒꢑꢊ ꢋꢟ ꢍꢌ ꢐꢘ ꢘ ꢖꢐ ꢎ ꢐꢏ ꢕꢑꢕ ꢎ ꢒꢚ  
Copyright 2003-2004, Texas Instruments Incorporated  
www.ti.com  
ꢂꢀꢉꢠ ꢡꢢ ꢣ ꢂꢀꢉ ꢤꢠꢡ ꢢ  
ꢂꢀꢉ ꢠꢡ ꢥ ꢣ ꢂꢀꢉ ꢤꢠꢡ ꢥ  
www.ti.com  
SBOS282A − DECEMBER 2003 − REVISED FEBRUARY 2004  
This integrated circuit can be damaged by ESD. Texas  
Instruments recommends that all integrated circuits be  
handledwith appropriate precautions. Failure to observe  
(1)  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +13.2V  
(2)  
Signal Input Terminals, Voltage  
Current  
. . . . . . . . . . . (V−) − 0.5V to (V+) + 0.5V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA  
proper handling and installation procedures can cause damage.  
(2)  
ESD damage can range from subtle performance degradation to  
complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could  
cause the device not to meet its published specifications.  
(3)  
Output Short Circuit  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to +150°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
Lead Temperature (soldering, 10s) . . . . . . . . . . . . . . . . . . . . . . . . . . . +300°C  
ESD Rating (Human Body Model), OPA734 . . . . . . . . . . . . . . . . . . . . 1000V  
ESD Rating (Human Body Model), OPA735, OPA2734, OPA2735 . . . . 2000V  
(1)  
Stresses above these ratings may cause permanent damage. Exposure  
to absolute maximum conditions for extended periods may degrade  
device reliability. These are stress ratings only, and functional operation of  
the device at these or any other conditions beyond those specified is not  
implied.  
(2)  
(3)  
Input terminals are diode-clamped to the power-supply rails. Input signals  
that can swing more than 0.5V beyond the supply rails should be current  
limited to 10mA or less.  
Short-circuit to ground, one amplifier per package.  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT MEDIA,  
QUANTITY  
PRODUCT  
PACKAGE-LEAD  
(1)  
Shutdown Version  
OPA734  
SOT23-6  
DBV  
−40°C to +85°C  
NSB  
OPA734AIDBVT  
OPA734AIDBVR  
OPA734AID  
Tape and Reel, 250  
Tape and Reel, 3000  
Rails, 100  
D
OPA734  
SO-8  
−40°C to +85°C  
OPA734A  
DGS  
BGO  
OPA734AIDR  
Tape and Reel, 2500  
Tape and Reel, 250  
Tape and Reel, 2500  
OPA2734  
MSOP-10  
−40°C to +85°C  
OPA2734AIDGST  
OPA2734AIDGSR  
Non-Shutdown Version  
OPA735  
SOT23-5  
DBV  
−40°C to +85°C  
NSC  
OPA735AIDBVT  
OPA735AIDBVR  
OPA735AID  
Tape and Reel, 250  
Tape and Reel, 3000  
Rails, 100  
D
OPA735  
SO-8  
−40°C to +85°C  
OPA735A  
D
OPA735AIDR  
Tape and Reel, 2500  
Rails, 100  
OPA2735  
SO-8  
−40°C to +85°C  
OPA2735A  
OPA2735AID  
DGK  
BGN  
OPA2735AIDR  
OPA2735AIDGKT  
OPA2735AIDGKR  
Tape and Reel, 2500  
Tape and Reel, 250  
Tape and Reel, 2500  
OPA2735  
MSOP-8  
−40°C to +85°C  
(1)  
For the most current specification and package information, refer to our web site at www.ti.com.  
2
ꢂ ꢀꢉꢠ ꢡ ꢢ ꢣ ꢂ ꢀꢉ ꢤꢠꢡ ꢢ  
ꢂ ꢀꢉꢠ ꢡ ꢥꢣ ꢂ ꢀꢉ ꢤꢠꢡ ꢥ  
www.ti.com  
SBOS282A − DECEMBER 2003 − REVISED FEBRUARY 2004  
ELECTRICAL CHARACTERISTICS: V = 5V (V = +10V)  
S
S
Boldface limits apply over the specified temperature range, T = −40°C to +85°C.  
A
At T = +25°C, R = 10kconnected to V /2, and V  
= V /2, unless otherwise noted.  
A
L
S
OUT  
S
OPA734, OPA2734, OPA735, OPA2735  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
Input Offset Voltage  
vs Temperature  
V
1
0.01  
0.2  
5
µV  
µV/°C  
µV/V  
OS  
dV /dT  
0.05  
1.8  
OS  
vs Power Supply  
Long-Term Stability  
Channel Separation, dc  
PSRR  
V
= 2.7V to 12V, V = 0V  
CM  
S
Note (1)  
0.1  
µV/V  
INPUT BIAS CURRENT  
Input Bias Current  
I
V
V
= V /2  
100  
200  
pA  
pA  
pA  
B
CM  
S
over Temperature  
Input Offset Current  
See Typical Characteristics  
I
= V /2  
200  
300  
OS  
CM  
S
NOISE  
Input Voltage Noise, f = 0.01Hz to 1Hz  
Input Voltage Noise, f = 0.1Hz to 10Hz  
Input Voltage Noise Density, f = 1kHz  
Input Current Noise Density, f = 1kHz  
e
e
e
i
1
3
µV  
µV  
nV/Hz  
fA/Hz  
n
n
n
n
PP  
PP  
150  
40  
INPUT VOLTAGE RANGE  
Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
V
(V−) − 0.1  
115  
(V+) − 1.5  
V
CM  
CMRR  
(V−) − 0.1V < V  
CM  
< (V+) − 1.5V  
130  
dB  
INPUT CAPACITANCE  
Differential  
2
pF  
pF  
Common-Mode  
10  
OPEN-LOOP GAIN  
Open-Loop Voltage Gain  
A
(V−) + 100mV < V < (V+) − 100mV  
O
115  
130  
dB  
OL  
FREQUENCY RESPONSE  
Gain-Bandwidth Product  
Slew Rate  
GBW  
SR  
1.6  
1.5  
MHz  
G = +1  
V/µs  
OUTPUT  
Voltage Output Swing from Rail  
Short-Circuit Current  
R
= 10kΩ  
20  
20  
50  
mV  
mA  
L
I
SC  
Open-Loop Output Impedance  
Capacitive Load Drive  
f = 1MHz, I = 0  
125  
O
C
See Typical Characteristics  
LOAD  
ENABLE/SHUTDOWN  
t
t
1.5  
µs  
µs  
V
OFF  
(2)  
ON  
150  
V
(amplifier is shutdown)  
V−  
(V−) + 0.8  
L
V
(amplifier is active)  
(V−) + 2  
V+  
9
V
H
I
(per amplifier)  
4
3
µA  
µA  
QSD  
Input Bias Current of Enable Pin  
POWER SUPPLY  
2.7 to 12  
( 1.35 to 6)  
Operating Voltage Range  
V
V
S
Quiescent Current (per amplifier)  
I
I
= 0  
0.6  
0.75  
mA  
Q
O
TEMPERATURE RANGE  
Specified Range  
−40  
−40  
−65  
+85  
+150  
+150  
°C  
°C  
°C  
Operating Range  
Storage Range  
Thermal Resistance  
SOT23-5, SOT23-6  
MSOP-8, MSOP-10, SO-8  
q
°C/W  
°C/W  
°C/W  
JA  
200  
150  
(1)  
(2)  
300-hour life test at 150°C demonstrated randomly distributed variation in the range of measurement limits—approximately 1µV.  
Device requires one complete auto-zero cycle to return to V  
accuracy.  
OS  
3
ꢂꢀꢉꢠ ꢡꢢ ꢣ ꢂꢀꢉ ꢤꢠꢡ ꢢ  
ꢂꢀꢉ ꢠꢡ ꢥ ꢣ ꢂꢀꢉ ꢤꢠꢡ ꢥ  
www.ti.com  
SBOS282A − DECEMBER 2003 − REVISED FEBRUARY 2004  
PIN CONFIGURATIONS  
OPA2735  
OPA735  
OPA735  
OUT A  
1
2
3
4
8
7
6
5
V+  
NC(1)  
V+  
NC(1)  
1
2
3
4
8
7
6
5
Out  
1
2
3
5
4
V+  
IN A  
OUT B  
IN  
V
+IN A  
IN B  
+IN B  
OUT  
NC(1)  
+IN  
+IN  
IN  
V
V
SOT235  
SO8, MSOP8  
SO8  
OPA2734  
OPA734  
OPA734  
OUT A  
1
2
3
4
5
10 V+  
NC(1)  
1
8
Enable  
V+  
Out  
1
2
3
6
5
4
V+  
IN A  
+IN A  
9
8
7
6
OUT B  
IN  
2
3
4
7
6
5
V
Enable  
IN B  
OUT  
NC(1)  
+IN  
+IN  
IN  
V
+IN B  
V
Enable A  
Enable B  
SOT236(2)  
SO8  
MSOP10  
(1)  
(2)  
NC = No Connection  
Pin 1 of the SOT23-6 is determined by orienting the package marking as shown in the diagram.  
4
ꢂ ꢀꢉꢠ ꢡ ꢢ ꢣ ꢂ ꢀꢉ ꢤꢠꢡ ꢢ  
ꢂ ꢀꢉꢠ ꢡ ꢥꢣ ꢂ ꢀꢉ ꢤꢠꢡ ꢥ  
www.ti.com  
SBOS282A − DECEMBER 2003 − REVISED FEBRUARY 2004  
TYPICAL CHARACTERISTICS  
At T = +25°C, V  
= 5V (same as +10V).  
A
S
OUTPUT VOLTAGE DRIFT PRODUCTION DISTRIBUTION  
OUTPUT VOLTAGE PRODUCTION DISTRIBUTION  
Absolute Value;  
Centered Around Zero  
µ
Offset Voltage ( V)  
µ
_
Offset Voltage Drift ( V/ C)  
OUTPUT VOLTAGE SWING TO RAIL  
vs OUTPUT CURRENT  
INPUT BIAS CURRENT vs TEMPERATURE  
6
4
2
0
1000  
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
8000  
9000  
IB  
+
IB  
_
_
+85 C  
40 C  
_
+25 C  
10 Representative Units  
2
4
6
VCM = V  
10000  
25  
0
5
10  
15  
20  
25  
30  
35  
50  
0
25  
50  
75 85 100  
125  
_
Output Current (mA)  
Temperature ( C)  
INPUT BIAS CURRENT vs TEMPERATURE  
VCM = VS/2  
SUPPLY CURRENT vs TEMPERATURE  
1000  
800  
600  
400  
200  
0
800  
600  
400  
200  
0
6V  
+
IB  
1.35V  
200  
400  
600  
800  
IB  
10 Representative Units  
1000  
25  
50  
0
25  
50  
75 85 100  
125  
25  
50  
0
25  
50  
75  
100  
125  
_
Temperature ( C)  
_
Temperature ( C)  
5
ꢂꢀꢉꢠ ꢡꢢ ꢣ ꢂꢀꢉ ꢤꢠꢡ ꢢ  
ꢂꢀꢉ ꢠꢡ ꢥ ꢣ ꢂꢀꢉ ꢤꢠꢡ ꢥ  
www.ti.com  
SBOS282A − DECEMBER 2003 − REVISED FEBRUARY 2004  
TYPICAL CHARACTERISTICS (continued)  
At T = +25°C, V  
= 5V (same as +10V).  
A
S
OPEN−LOOP GAIN AND PHASE MARGIN  
vs FREQUENCY  
LARGE−SIGNAL RESPONSE  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
20  
40  
20  
40  
µ
Time (5 s/div)  
0.1  
1
10  
100  
1k  
10k 100k  
1M  
10M  
Frequency (Hz)  
SMALL−SIGNAL RESPONSE  
POSITIVE OVERVOLTAGE RECOVERY  
Output  
10k  
+5V  
10k  
OPA735  
Input  
5V  
Time (250ns/div)  
µ
Time (2.5 s/div)  
COMMON−MODE REJECTION RATIO vs FREQUENCY  
NEGATIVE OVERVOLTAGE RECOVERY  
140  
120  
100  
80  
10k  
+5V  
10k  
OPA735  
5V  
Input  
60  
Output  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
µ
Time (2.5 s/div)  
Frequency (Hz)  
6
ꢂ ꢀꢉꢠ ꢡ ꢢ ꢣ ꢂ ꢀꢉ ꢤꢠꢡ ꢢ  
ꢂ ꢀꢉꢠ ꢡ ꢥꢣ ꢂ ꢀꢉ ꢤꢠꢡ ꢥ  
www.ti.com  
SBOS282A − DECEMBER 2003 − REVISED FEBRUARY 2004  
TYPICAL CHARACTERISTICS (continued)  
At T = +25°C, V  
= 5V (same as +10V).  
A
S
VOLTAGE NOISE vs FREQUENCY  
POWER−SUPPLY REJECTION RATIO vs FREQUENCY  
+PSRR  
1k  
100  
10  
160  
140  
120  
100  
80  
PSRR  
60  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
1M  
Frequency (Hz)  
SAMPLING FREQUENCY vs TEMPERATURE  
0.1Hz TO 10Hz NOISE  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
VS = 12V  
VS = 2.7V  
25  
50  
0
25  
50  
75  
100  
125  
150  
1s/div  
_
Temperature ( C)  
SMALL−SIGNAL OVERSHOOT vs CAPACITIVE LOAD  
50  
40  
30  
20  
10  
0
1
10  
100  
1000  
Capacitance (pF)  
7
ꢂꢀꢉꢠ ꢡꢢ ꢣ ꢂꢀꢉ ꢤꢠꢡ ꢢ  
ꢂꢀꢉ ꢠꢡ ꢥ ꢣ ꢂꢀꢉ ꢤꢠꢡ ꢥ  
www.ti.com  
SBOS282A − DECEMBER 2003 − REVISED FEBRUARY 2004  
The logic input is a CMOS input. Separate logic inputs are  
provided for each op amp on the dual version. For  
battery-operated applications, this feature can be used to  
greatly reduce the average current and extend battery life.  
APPLICATIONS INFORMATION  
The OPA734 and OPA735 series of op amps are  
unity-gain stable and free from unexpected output phase  
reversal. They use auto-zeroing techniques to provide low  
offset voltage and demonstrate very low drift over time and  
temperature.  
The enable time is 150µs, which includes one full  
auto-zero cycle required by the amplifier to return to VOS  
accuracy. Prior to returning to full accuracy, the amplifier  
may function properly, but with unspecified offset voltage.  
Good layout practice mandates the use of a 0.1µF  
capacitor placed closely across the supply pins.  
Disable time is 1.5µs. When disabled, the output assumes  
a high-impedance state. The disable state allows the  
OPA734 to be operated as a gated amplifier, or to have the  
output multiplexed onto a common analog output bus.  
For lowest offset voltage and precision performance,  
circuit layout and mechanical conditions should be  
optimized. Avoid temperature gradients that create  
thermoelectric (Seebeck) effects in thermocouple  
junctions formed from connecting dissimilar conductors.  
These thermally-generated potentials can be made to  
cancel by assuring that they are equal on both input  
terminals:  
INPUT VOLTAGE  
The input common-mode range extends from (V−) − 0.1V  
to (V+) − 1.5V. For normal operation, the inputs must be  
limited to this range. The common-mode rejection ratio is  
only valid within the specified input common-mode range.  
A lower supply voltage results in lower input common-  
mode range; therefore, attention to these values must be  
given when selecting the input bias voltage. For example,  
when operating on a single 3V power supply, common-  
mode range is from 0.1V below ground to half the  
power-supply voltage.  
1. Use low thermoelectric-coefficient connections  
(avoid dissimilar metals).  
2. Thermally isolate components from power supplies  
or other heat sources.  
3. Shield op amp and input circuitry from air currents  
such as cooling fans.  
Normally, input bias current is approximately 100pA;  
however, input voltages exceeding the power supplies can  
cause excessive current to flow in or out of the input pins.  
Momentary voltages greater than the power supply can be  
tolerated if the input current is limited to 10mA. This is  
easily accomplished with an input resistor, as shown in  
Figure 1.  
Following these guidelines will reduce the likelihood of  
junctions being at different temperatures, which can cause  
thermoelectric voltages of 0.1µV/°C or higher, depending  
on the materials used.  
OPERATING VOLTAGE  
Current−limited resistor required  
if input voltage exceeds supply  
The OPA734 and OPA735 op amp family operates with a  
power-supply range of +2.7V to +12V ( 1.35V to 6V).  
Supply voltages higher than +13.2V (absolute maximum)  
can permanently damage the amplifier. Parameters that  
vary over supply voltage or temperature are shown in the  
Typical Characteristics section of this data sheet.  
rails by 0.5V.  
+5V  
IOVERLOAD  
10mA max  
VOUT  
OPA735  
50  
VIN  
OPA734 ENABLE FUNCTION  
Figure 1. Input Current Protection  
The enable/shutdown digital input is referenced to the V−  
supply voltage of the op amp. A logic HIGH enables the op  
amp. A valid logic HIGH is defined as > (V−) + 2V. The valid  
logic HIGH signal can be up to the positive supply,  
independent of the negative power supply voltage. A valid  
logic LOW is defined as < 0.8V above the V− supply pin.  
If dual or split power supplies are used, be sure that logic  
input signals are properly referred to the negative supply  
voltage. The Enable pin is connected to internal pull-up  
circuitry and will enable the device if this pin is left open  
circuit.  
INTERNAL OFFSET CORRECTION  
The OPA734 and OPA735 series of op amps use an  
auto-zero topology with a time-continuous 1.6MHz op amp  
in the signal path. This amplifier is zero-corrected every  
100µs using a proprietary technique. Upon power-up, the  
amplifier requires one full auto-zero cycle of approximately  
100µs in addition to the start-up time for the bias circuitry  
to achieve specified VOS accuracy. Prior to this time, the  
amplifier may function properly but with unspecified offset  
voltage.  
8
ꢂ ꢀꢉꢠ ꢡ ꢢ ꢣ ꢂ ꢀꢉ ꢤꢠꢡ ꢢ  
ꢂ ꢀꢉꢠ ꢡ ꢥꢣ ꢂ ꢀꢉ ꢤꢠꢡ ꢥ  
www.ti.com  
SBOS282A − DECEMBER 2003 − REVISED FEBRUARY 2004  
Low-gain (< 20) operation demands that the auto-zero  
circuitry correct for common-mode rejection errors of the  
main amplifier. Because these errors can be larger than  
0.1% of a full-scale input step change, one calibration  
cycle (100µs) can be required to achieve full accuracy.  
1nF  
VEX  
R1  
The term clock feedthrough describes the presence of the  
clock frequency in the output spectrum. In auto-zeroed op  
amps, clock feedthrough may result from the settling of the  
internal sampling capacitor, or from the small amount of  
charge injection that occurs during the sample-and-hold of  
the op amp offset voltage. Feedthrough can be minimized  
by keeping the source impedance relatively low (< 1k)  
and matching the source impedance on both input  
terminals. If the source resistance is high (> 1k)  
feedthrough can generally be reduced with a capacitor of  
1nF or greater in parallel with the source or feedback  
resistors. See the circuit application examples.  
+10V  
R
R
R
R
VOUT  
OPA734  
R1  
VREF  
1nF  
Figure 2. Single Op Amp Bridge Amplifier Circuit  
LAYOUT GUIDELINES  
VREF = 15V  
Attention to good layout practices is always recom-  
mended. Keep traces short. When possible, use a PCB  
ground plane with surface-mount components placed as  
close to the device pins as possible. Place a 0.1µF  
capacitor closely across the supply pins. These guidelines  
should be applied throughout the analog circuit to improve  
performance and provide benefits such as reducing the  
electromagnetic-interference (EMI) susceptibility.  
2
R3  
G = 1 + 2  
REF102  
10V  
RG  
6
4
(1)  
C1  
1nF  
R1  
1k  
R
R
R
R
1/2  
OPA2735  
R3  
10k  
C4  
1nF  
(1)  
C2  
C4  
1nF  
RG  
10nF  
R3  
10k  
R2  
1/2  
1k  
OPA2735  
(1)  
C3  
1nF  
NOTE: (1) Place close to input pins.  
Figure 3. Differential Output Bridge Amplifier  
9
ꢂꢀꢉꢠ ꢡꢢ ꢣ ꢂꢀꢉ ꢤꢠꢡ ꢢ  
ꢂꢀꢉ ꢠꢡ ꢥ ꢣ ꢂꢀꢉ ꢤꢠꢡ ꢥ  
www.ti.com  
SBOS282A − DECEMBER 2003 − REVISED FEBRUARY 2004  
C2 = 1nF  
R4 = 10k  
+5V  
R1  
R2  
RF  
VIN  
300  
ADS8342  
ADS8325  
ADS1100  
OPA735  
CF  
500pF  
0.1V to 4.9V  
VREF  
C1  
1nF  
R3  
10k  
Optional filter for use  
with SARtype  
converters  
operating at  
sampling rates of  
50kHz and below.  
V
IN  
V
REF  
R
1
R
2
10V  
5V  
0V to 10V  
0V to 5V  
5V  
5V  
5V  
5V  
42.2kΩ  
20.8kΩ  
20.8kΩ  
10.5kΩ  
14.7kΩ  
19.6kΩ  
5.11kΩ  
10kΩ  
Figure 4. Driving ADC  
R4  
10k  
C4  
µ
1 F  
C3  
µ
1 F  
R9  
10k  
+5V  
1/2  
R5  
1.5M  
R2  
+5V  
1k  
R7  
V
10k  
OUT  
OPA2703  
OPA735  
C2  
100nF  
5V  
5V  
R6  
11k  
REF1112  
TPS434 Thermopile  
R3  
+5V  
6.8k  
R8  
10k  
1/2  
R1  
OPA2703  
22k  
5V  
5V  
NOTE: The TPS434, by Perkin Elmer Optoelectronics is a thermopile detector  
with integrated thermistor for coldjunction reference.  
Figure 5. Thermopile Non-Contact Surface Temperature Measurement  
10  
ꢂ ꢀꢉꢠ ꢡ ꢢ ꢣ ꢂ ꢀꢉ ꢤꢠꢡ ꢢ  
ꢂ ꢀꢉꢠ ꢡ ꢥꢣ ꢂ ꢀꢉ ꢤꢠꢡ ꢥ  
www.ti.com  
SBOS282A − DECEMBER 2003 − REVISED FEBRUARY 2004  
+5V  
R1  
536k  
R1  
536k  
VOUT  
OPA735  
C3  
10nF  
5V  
R3  
268k  
R = R1 = R2 = 2R3  
; where  
1
=
fn  
C = C1 = C2 = C3/2  
C1  
5nF  
C2  
5nF  
π
2
RC  
(fn = 60Hz for values shown)  
Figure 6. Twin-T Notch Filter  
C2  
68.0nF  
R2  
R3  
2.64k  
20.8k  
R1  
10.6k  
1/2  
OPA2735  
1/2  
VIN  
VOUT  
OPA2735  
C3  
C1  
15.0nF  
6.80nF  
Cutoff frequency = 2kHz for values shown.  
NOTE: FilterPro is a low-pass filter design program available for download at no cost from TI’s web site (www.ti.com).  
The program can be used to easily determine component values for other cutoff frequencies or filter types.  
Figure 7. High DC Accuracy, 3-Pole Low-Pass Filter  
C1  
1nF  
R2  
10 k  
R1 = 10 k  
R3  
1/2  
VOUT  
10 k  
OPA2735  
VIN  
C1  
1nF  
NOTE: Dynamic range of the circuit is not reduced by  
the diode voltage drop since the diode is not in the signal path.  
Application Bulletin Precision Absolute Value Circuits (SBOA068)  
is available at www.ti.com and provides further information about rectifier circuits.  
D1  
1/2  
OPA2735  
Figure 8. Precision Full-Wave Rectifier with Full Dynamic Range  
11  
ꢂꢀꢉꢠ ꢡꢢ ꢣ ꢂꢀꢉ ꢤꢠꢡ ꢢ  
ꢂꢀꢉ ꢠꢡ ꢥ ꢣ ꢂꢀꢉ ꢤꢠꢡ ꢥ  
www.ti.com  
SBOS282A − DECEMBER 2003 − REVISED FEBRUARY 2004  
1nF  
1k  
49k  
Enable A  
G = 50  
VIN A  
OPA734  
VOUT  
Enable B  
G = 1  
VIN B  
OPA734  
Enable inputs are CMOS logic compatible.  
Figure 9. High-Precision 2-Input MUX for Programmable Gain  
+VS  
2.7V to 12V  
Load  
VOUT = 1V/A  
(referred to ground)  
OPA735  
Shunt  
RS  
IL  
10m  
R1  
R2  
100  
10k  
C1  
1nF  
Figure 10. Low-Side Power-Supply Current Sensing  
12  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

OPA735AIDBVTG4

0.05uV/ⅹC max, SINGLE-SUPPLY CMOS OPERATIONAL AMPLIFIERS
BB

OPA735AIDBVTG4

零温漂系列、单路 0.05uV/°C(最大值)单电源 CMOS 运算放大器 | DBV | 5 | -40 to 85
TI

OPA735AIDG4

0.05uV/ⅹC max, SINGLE-SUPPLY CMOS OPERATIONAL AMPLIFIERS
BB

OPA735AIDR

SINGLE-SUPPLY CMOS OPERATIONAL AMPLIFIERS Zero-Drift Series
TI

OPA735AIDR

0.05uV/ⅹC max, SINGLE-SUPPLY CMOS OPERATIONAL AMPLIFIERS
BB

OPA735AIDRG4

0.05uV/ⅹC max, SINGLE-SUPPLY CMOS OPERATIONAL AMPLIFIERS
BB

OPA743

12V, 7MHz, CMOS, Rail-to-Rail I/O OPERATIONAL AMPLIFIERS
BB

OPA743

12V, 7MHz, CMOS, Rail-to-Rail I/O OPERATIONAL AMPLIFIERS
TI

OPA743NA/250

12V, 7MHz, CMOS, Rail-to-Rail I/O OPERATIONAL AMPLIFIERS
BB

OPA743NA/250

12V, 7MHz, CMOS, Rail-to-Rail I/O OPERATIONAL AMPLIFIERS
TI

OPA743NA/250G4

Single, 12-V, 7-MHz operational amplifier | DBV | 5 | -40 to 85
TI

OPA743NA/3K

12V, 7MHz, CMOS, Rail-to-Rail I/O OPERATIONAL AMPLIFIERS
BB