OPA810 [TI]

单通道、高性能、27V、140MHz、RRIO FET 输入运算放大器;
OPA810
型号: OPA810
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

单通道、高性能、27V、140MHz、RRIO FET 输入运算放大器

放大器 运算放大器
文件: 总52页 (文件大小:3437K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA810  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
OPA810 140MHz、轨到轨输入和输出、FET 输入运算放大器  
1 特性  
3 说明  
增益带宽积70MHz  
小信号带宽140MHz  
压摆率200V/µs  
宽电源电压范围4.75V 27V  
低噪声:  
– 输入电压噪声6.3nV/Hz (f = 500kHz)  
– 输入电流噪声5fA/Hz (f = 10kHz)  
轨到轨输入和输出:  
OPA810 是一款具有偏置电流皮安 (pA) 范围内的  
单通道、场效应晶体管 (FET) 输入、电压反馈运算放  
大器。OPA810 具有 140MHz 的小信号单位增益带宽  
和单位增益稳定性并且可在每通道 3.7mA 的低静态  
电流 (I Q) 下提供出色的直流精度和动态交流性能。  
OPA810 采用德州仪器 (TI) 专有的高速 SiGe BiCMOS  
工艺制造在类似的静态功耗级别下与同等的 FET 输  
入放大器相比能得到显著提高。OPA810 有  
70MHz 的增益带宽积 (GBWP)200V/µs 的压摆率和  
6.3nV/Hz 的低噪声电压非常适合用于各种高保真  
数据采集和信号处理应用。  
FET 输入级2pA 输入偏置电流典型值)  
– 高线性输出电流75mA  
输入失调电压±500µV最大值)  
温漂±2.5µV/°C典型值)  
低功耗3.7mA/通道  
OPA810 具有轨到轨输入和输出可提供 75mA 的线  
性 输 出 电 流 适 用 于 驱 动 光 电 组 件 和 模 数 转 换 器  
(ADC) 输入或将数模转换器 (DAC) 输出缓冲至重负载  
中。  
工作温度范围:  
OPA810 额定工业工作温度范围为 –40°C 至  
+125°COPA2810 是该器件的双通道版本可采用 8  
引脚 SOICSOT-23 VSSOP 封装。  
40°C +125°C  
双通道版本OPA2810  
2 应用  
器件信息  
宽带光电二极管跨阻放大器  
器件型号(1)  
封装尺寸标称值)  
4.90mm × 3.91mm  
2.90mm × 1.60mm  
2.00mm × 1.25mm  
封装  
模拟输入和输出模块  
阻抗测量  
SOIC (8)  
OPA810  
SOT-23 (5)  
SC70 (5)  
功率分析仪和仪表  
高阻抗电压和电流测量  
数据采集  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
多通道传感器接口  
光电驱动器  
CF  
12V  
RF  
œ
1.8V  
1.8V  
OPA810  
+
RG  
12V  
RS  
VIN+  
AVDD  
DVDD  
R
C
œ
-12V  
CCB  
ADS9110  
18-bit  
VOCM  
THS4561  
+
2 MSPS  
12V  
CCB  
RG  
VREF  
œ
-0.2V  
OPA810  
+
VIN-  
RF  
R  
R
C
R‘  
-12V  
5V  
CF  
5V  
œ
12V  
œ
OPA837  
+
OPA378  
+
REF5050  
5.0 V  
RFILT  
Reference  
CFILT  
高阻抗输入数据采集前端  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS799  
 
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
Table of Contents  
8 Detailed Description......................................................22  
8.1 Overview...................................................................22  
8.2 Functional Block Diagram.........................................22  
8.3 Feature Description...................................................23  
8.4 Device Functional Modes..........................................24  
9 Application and Implementation..................................25  
9.1 Application Information............................................. 25  
9.2 Typical Applications.................................................. 30  
10 Power Supply Recommendations..............................34  
11 Layout...........................................................................34  
11.1 Layout Guidelines................................................... 34  
11.2 Layout Example...................................................... 36  
12 Device and Documentation Support..........................37  
12.1 Third-Party Products Disclaimer............................. 37  
12.2 Documentation Support.......................................... 37  
12.3 Receiving Notification of Documentation Updates..37  
12.4 Support Resources................................................. 37  
12.5 Trademarks.............................................................37  
12.6 Electrostatic Discharge Caution..............................37  
12.7 Glossary..................................................................38  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................4  
7.5 Electrical Characteristics: 10 V................................... 5  
7.6 Electrical Characteristics: 24 V................................... 7  
7.7 Electrical Characteristics: 5 V..................................... 9  
7.8 Typical Characteristics: VS = 10 V.............................11  
7.9 Typical Characteristics: VS = 24 V............................ 14  
7.10 Typical Characteristics: VS = 5 V............................ 17  
7.11 Typical Characteristics: ±2.375-V to ±12-V Split  
Supply......................................................................... 19  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (June 2020) to Revision C (July 2020)  
Page  
DCK 封装的状态从预发布 更改为量产 .......................................................................................................... 1  
Changes from Revision A (December 2019) to Revision B (June 2020)  
Page  
DBV 封装的状态从预发布 更改为量产 .......................................................................................................... 1  
Added noise corner information to 10 V, 24 V and 5 V electrical characteristics tables..................................... 5  
Changed offset voltage test conditions for 10 V, 24 V and 5 V supplies for SOIC, SOT23 and SC70 packages.  
............................................................................................................................................................................5  
Updated Figure 62. Noninverting Amplifier ......................................................................................................25  
Changes from Revision * (August 2019) to Revision A (December 2019)  
Page  
将文档状态从预告信息 更改为生产数据 .............................................................................................................1  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA810  
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
5 Device Comparison Table  
IQ  
/
SLEW RATE VOLTAGE NOISE (nV/  
GBWP  
(MHz)  
DEVICE  
VS ± (V)  
CHANNEL  
(mA)  
AMPLIFIER DESCRIPTION  
(V/μs)  
Hz)  
OPA2810  
OPA607  
±12  
3.6  
0.9  
70  
50  
192  
6
Unity-gain stable FET input  
Gain of 6, stable, low-cost CMOS  
amplifier  
±2.5  
24  
3.8  
THS4631  
OPA859  
OPA818  
±15  
±2.625  
±6.5  
13  
210  
1800  
2700  
900  
1150  
1400  
7
Unity-gain stable FET input  
Unity-gain stable FET input  
Gain of 7, stable FET input  
20.5  
27.7  
3.3  
2.2  
6 Pin Configuration and Functions  
NC  
VINœ  
VIN+  
VSœ  
1
2
3
4
8
7
6
5
NC  
VS+  
VO  
NC  
VO  
VS+  
1
2
3
5
4
VSœ  
VIN+  
VINœ  
Not to scale  
6-2. 5-Pin SOT23 (DBV) and SC70 (DCK)  
6-1. 8-Pin SOIC (D) Package  
Packages  
Pin Functions  
PIN  
SOIC  
TYPE(1)  
DESCRIPTION  
NAME  
NC  
SOT-23 and SC70  
1
2
3
4
5
6
7
8
No internal connection  
Inverting input pin  
4
I
VIN–  
VIN+  
VS–  
NC  
3
I
Noninverting input pin  
Negative power-supply pin  
No internal connection  
Output pin  
2
P
1
O
P
VO  
VS+  
NC  
5
Positive power-supply pin  
No internal connection  
(1) I = input, O = output, and P = power.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA810  
 
 
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted).(1)  
MIN  
MAX  
±14  
UNIT  
V
VS  
Supply voltage (total bipolar supplies)(4)  
Input voltage  
VIN  
VIN,Diff  
II  
VS+ + 0.5  
±7  
V
VS0.5  
Differential input voltage(2)  
Continuous input current  
V
±10  
mA  
mA  
mA  
±40  
TA = 40to +85℃  
TA = 125℃  
IO  
Continuous output current(3)  
±15  
PD  
TJ  
Continuous power dissipation  
Junction temperature  
See 7.4  
150  
125  
°C  
°C  
Tstg  
Storage temperature  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Equal to the lower of ±7 V or total supply voltage.  
(3) Long-term continuous output current for electromigration limits.  
(4) VS is the total supply voltage given by VS = VS+ VS–  
.
7.2 ESD Ratings  
VALUE  
±2500  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted).  
MIN  
4.75  
40  
NOM  
MAX  
UNIT  
VS  
TA  
Total supply voltage  
Ambient temperature  
27  
V
25  
125  
°C  
7.4 Thermal Information  
OPA810  
DBV (SOT-23)  
5 PINS  
174.3  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
134.8  
75.2  
DCK (SC70)  
5 PINS  
190.8  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
94.7  
140.1  
78.2  
45.4  
69.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
25.2  
21.6  
45.9  
77.4  
45.0  
68.8  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA810  
 
 
 
 
 
 
 
 
 
 
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
7.5 Electrical Characteristics: 10 V  
Test conditions unless otherwise noted: TA = 25°C, VS+ = 5 V, VS= 5 V, common-mode voltage (VCM) = mid-supply, RL =  
1 kΩ connected to mid-supply(5)  
.
TEST  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(3)  
AC PERFORMANCE  
135  
140  
C
C
G = 1, VO = 20 mVPP, RF = 0 Ω  
G = 1, VO = 20 mVPP, RF = 0 ,  
CL = 10 pF  
SSBW Small-signal bandwidth  
MHz  
68  
41  
70  
16  
200  
4
C
C
C
C
C
C
C
C
C
C
C
G = 1, VO = 20 mVPP  
LSBW Large-signal bandwidth  
GBWP Gain-bandwidth product  
G = 2, VO = 2 VPP  
MHz  
MHz  
MHz  
V/µs  
ns  
Bandwdith for 0.1-dB flatness G = 2, VO = 20 mVPP  
Slew rate (20%-80%)(4)  
SR  
G = 2, VO = 2-V to 2-V step  
Rise time  
Fall time  
VO = 200-mV step  
VO = 200-mV step  
4
ns  
G = 2, VO = 2-V step  
G = 2, VO = 8-V step  
G = 2, VO = 2-V step  
G = 2, VO = 8-V step  
47  
65  
330  
230  
Settling time to 0.1%  
ns  
ns  
Settling time to 0.001%  
G = 1, RF = 0 , (VS0.5 V) to (VS+  
Input overdrive recovery  
Output overdrive recovery  
55  
55  
ns  
ns  
C
C
+ 0.5 V) input  
G = 1, (VS0.5 V) to (VS+ + 0.5 V)  
input  
C
C
C
C
C
C
f = 100 kHz, RL = 1 kΩ, VO = 2 VPP  
f = 1 MHz, RL = 1 kΩ, VO = 2 VPP  
f = 100 kHz, RL = 1 kΩ, VO = 2 VPP  
f = 1 MHz, RL = 1 kΩ, VO = 2 VPP  
Flatband, 1/f corner at 1.5 kHz  
f = 10 kHz  
120  
101  
137  
101  
6.3  
Second-order harmonic  
distortion  
HD2  
HD3  
dBc  
dBc  
Third-order harmonic  
distortion  
en  
in  
Input-referred voltage noise  
Input-referred current noise  
nV/Hz  
fA/Hz  
5
Closed-loop output  
impedance  
zO  
f = 100 kHz  
0.007  
C
Ω
DC PERFORMANCE  
AOL  
Open-loop voltage gain  
f = DC, VO = ±2.5 V  
SOIC package  
108  
120  
100  
100  
2.5  
2
dB  
µV  
A
A
500  
715  
VOS  
Input offset voltage  
DBV and DCK packages  
TA = 40°C to +125°C  
Input offset voltage drift  
Input bias current  
10 µV/°C  
B
A
A
20  
20  
pA  
pA  
Input offset current  
1
f = DC, VCM = 3 V to 1 V, SOIC  
package  
80  
80  
100  
A
B
CMRR Common-mode rejection ratio  
dB  
TA = 40°C to +125°C, SOIC package  
INPUT  
Allowable input differential  
voltage  
±7  
V
C
C
See 7-54  
Common-mode input  
impedance  
In closed-loop configuration  
12 || 2  
GΩ||pF  
Differential input capacitance In open-loop configuration  
Most positive input voltage  
0.5  
pF  
V
C
A
ΔVOS < 5 mV(1)  
VS+ + 0.2  
VS+ + 0.3  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA810  
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
Test conditions unless otherwise noted: TA = 25°C, VS+ = 5 V, VS= 5 V, common-mode voltage (VCM) = mid-supply, RL =  
1 kΩ connected to mid-supply(5)  
.
TEST  
PARAMETER  
TEST CONDITIONS  
ΔVOS < 5 mV(1)  
MIN  
VS0.2 VS0.3  
S+ 2.9 S+ 2.5  
TYP  
MAX  
UNIT  
V
LEVEL(3)  
Most negative input voltage  
A
C
Most positive input voltage  
for main-JFET stage  
V
See 7-17  
V
V
OUTPUT  
VOCRH Output voltage range high  
VOCRH Output voltage range high  
V
V
A
B
RL = 667 Ω  
VS+ 0.18 VS+ 0.11  
TA = 40°C to +125°C, RL = 667 Ω  
V
S+ 0.2  
VS–  
0.15  
+
VOCRL  
VOCRL  
IO(max)  
Output voltage range low  
Output voltage range low  
VS+ 0.08  
V
V
A
B
A
RL = 667 Ω  
VS–  
+
TA = 40°C to +125°C, RL = 667 Ω  
VO = 2.65 V, RL = 51 Ω, ΔVOS < 1 mV  
0.2  
Linear output drive (sourcing  
and sinking)  
52  
75  
mA  
ISC  
CL  
Output short-circuit current  
Capacitive load drive  
100  
10  
mA  
pF  
B
C
< 3-dB peaking, RS = 0 Ω  
POWER SUPPLY  
Quiescent current per  
channel  
IQ  
3.7  
4.6  
mA  
dB  
A
ΔVS = ±2 V(2), SOIC package  
79  
79  
100  
A
B
PSRR  
Power-supply rejection ratio  
TA = 40°C to +125°C, SOIC package  
AUXILIARY CMOS INPUT STAGE  
Gain-bandwidth product  
27  
20  
MHz  
C
C
Input-referred voltage noise  
f = 1 MHz  
nV/Hz  
VCM = VS+ 1.5 V, no load, SOIC  
Package  
Input offset voltage  
Input bias current  
1.6  
20  
mV  
pA  
A
A
2
VCM = VS+ 1.5 V  
(1) Change in input offset from its value when input is biased to midsupply.  
(2) Change in supply voltage from the default test condition with only one of the positive or negative supplies changing corresponding to  
+PSRR and PSRR.  
(3) Test levels (all values set by characterization and simulation): (A) 100% tested at 25°C, overtemperature limits by characterization and  
simulation; (B) Not tested in production, limits set by characterization and simulation; (C) Typical value only for information.  
(4) Lower of the measured positive and negative slew rate.  
(5) For AC specifications, G = 2 V/V, RF = 1 kand CL = 4.7 pF (unless otherwise noted).  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA810  
 
 
 
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
7.6 Electrical Characteristics: 24 V  
Test conditions unless otherwise noted: TA = 25°C, VS+ = 12 V, VS= 12 V, common-mode voltage (VCM) = mid-supply, RL  
= 1 kΩ connected to mid-supply(5)  
.
Test  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Level(3)  
AC PERFORMANCE  
135  
140  
C
C
G = 1, Vo = 20 mVPP, RF = 0 Ω  
G = 1, Vo = 20 mVPP, RF = 0 ,  
CL= 10 pF  
SSBW Small-signal bandwidth  
MHz  
MHz  
68  
44  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
G = 1, Vo = 20 mVPP  
G = 2 Vo = 2 VPP  
LSBW Large-signal bandwidth  
GBWP Gain-bandwidth product  
G = 2 Vo = 10 VPP  
14  
70  
MHz  
MHz  
Bandwdith for 0.1-dB flatness G = 2, Vo = 20 mVPP  
G = 2, Vo = 2-V to 2-V step  
16  
237  
222  
254  
4
SR  
Slew rate (20%-80%)(4)  
V/µs  
G = 1, Vo = 2-V to 2-V step  
G = 2, Vo = 4.5-V to 3.5-V step  
Vo = 200-mV step  
Rise time  
Fall time  
ns  
ns  
Vo = 200-mV step  
4
G = 2, Vo = 2-V step  
47  
Settling time to 0.1%  
ns  
ns  
G = 2, Vo = 10-V step  
G = 2, Vo = 2-V step  
70  
320  
200  
Settling time to 0.001%  
G = 2, Vo = 10-V step  
G = 1, RF = 0 , (VS0.5 V) to (VS+  
Input overdrive recovery  
Output overdrive recovery  
35  
45  
ns  
ns  
C
C
+ 0.5 V) input  
G = 1, (VS0.5 V) to (VS+ + 0.5 V)  
input  
C
C
C
C
C
C
C
C
C
C
f = 100 kHz, RL = 1 kΩ, Vo = 2 VPP  
f = 100 kHz, RL =1 kΩ, Vo = 10 VPP  
f = 1 MHz, RL = 1 kΩ, Vo = 2 VPP  
f = 1 MHz, RL=1 kΩ, Vo = 10 VPP  
f = 100 kHz, RL = 1 kΩ, Vo = 2 VPP  
f = 100 kHz, RL =1 kΩ, Vo = 10 VPP  
f = 1 MHz, RL = 1 kΩ, Vo = 2 VPP  
f = 1 MHz, RL =1 kΩ, Vo = 10 VPP  
Flatband, 1/f corner at 1.5 kHz  
f = 10 kHz  
118  
108  
112  
91  
136  
130  
104  
91  
6.3  
Second-order harmonic  
distortion  
HD2  
HD3  
dBc  
dBc  
Third-order harmonic  
distortion  
en  
in  
Input-referred voltage noise  
Input-referred current noise  
nV/Hz  
fA/Hz  
5
Closed-loop output  
impedance  
zO  
f = 100 kHz  
0.007  
C
Ω
DC PERFORMANCE  
AOL  
Open-loop voltage gain  
f = DC, Vo = ±8 V  
108  
120  
100  
100  
2.5  
2
dB  
µV  
A
A
SOIC package  
500  
550  
VOS  
Input offset voltage  
DBV and DCK packages  
TA = 40°C to +125°C  
Input offset voltage drift  
Input bias current  
10 µV/°C  
B
A
A
20  
20  
pA  
pA  
Input offset current  
1
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA810  
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
Test conditions unless otherwise noted: TA = 25°C, VS+ = 12 V, VS= 12 V, common-mode voltage (VCM) = mid-supply, RL  
= 1 kΩ connected to mid-supply(5)  
.
Test  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Level(3)  
f = DC, VCM = ±5 V, SOIC package  
90  
90  
105  
A
B
CMRR Common-mode rejection ratio  
dB  
TA = 40°C to +125°C, SOIC package  
INPUT  
Allowable input differential  
voltage  
±7  
V
C
C
see 7-54  
Common-mode input  
impedance  
In closed-loop configuration  
12 || 2.5  
GΩ||pF  
Differential input capacitance In open-loop configuration  
0.5  
pF  
V
C
A
A
ΔVOS < 5 mV(1)  
ΔVOS < 5 mV(1)  
Most positive input voltage  
Most negative input voltage  
VS+ + 0.2  
VS+ + 0.3  
V
VS0.2 VS0.3  
S+ 2.9 S+ 2.5  
Most positive input voltage  
for main-JFET stage  
V
V
C
See 7-33  
V
V
OUTPUT  
A
B
RL = 667 Ω  
V
V
S+ 0.33 VS+ 0.22  
S+ 0.36  
VOCRH Output voltage range high  
TA = 40°C to +125°C, RL = 667 Ω  
VS–  
0.23  
+
VS+ 0.15  
A
B
A
RL = 667 Ω  
VOCRL  
Output voltage range low  
V
VS–  
0.33  
+
TA = 40°C to +125°C, RL = 667 Ω  
Vo = 7.25 V, RL = 151 Ω, ΔVOS < 1 mV  
Linear output drive (sourcing  
and sinking)  
IO(max)  
48  
64  
mA  
ISC  
CL  
Output short-circuit current  
Capacitive load drive  
108  
10  
mA  
pF  
B
C
< 3-dB peaking, RS = 0 Ω  
POWER SUPPLY  
Quiescent current per  
channel  
IQ  
3.8  
4.7  
mA  
dB  
A
ΔVS = ±2 V(2), SOIC package  
90  
90  
105  
A
B
PSRR  
Power supply rejection ratio  
TA = 40°C to +125°C, SOIC package  
AUXILIARY CMOS INPUT STAGE  
Gain-bandwidth product  
27  
20  
MHz  
C
C
Input-referred voltage noise  
f = 1 MHz  
nV/Hz  
VCM = VS+ 1.5 V, no load, SOIC  
Package  
Input offset voltage  
Input bias current  
1.6  
24  
mV  
pA  
A
A
2
VCM = VS+ 1.5 V  
(1) Change in input offset from its value when input is biased to midsupply.  
(2) Change in supply voltage from the default test condition with only one of the positive or negative supplies changing corresponding to  
+PSRR and -PSRR.  
(3) Test levels (all values set by characterization and simulation): (A) 100% tested at 25°C, overtemperature limits by characterization and  
simulation; (B) Not tested in production, limits set by characterization and simulation; (C) Typical value only for information.  
(4) Lower of the measured positive and negative slew rate.  
(5) For AC specifications, G = 2 V/V, RF = 1 kand CL = 4.7 pF (unless otherwise noted).  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA810  
 
 
 
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
7.7 Electrical Characteristics: 5 V  
Test conditions unless otherwise noted: TA = 25°C, VS+ = 5 V, VS= 0 V, common-mode voltage (VCM) = 1.25 V, RL = 1 kΩ  
connected to 1.25 V(5)  
.
Test  
PARAMETER  
AC PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Level(1)  
133  
135  
C
C
G = 1, Vo = 20 mVPP, RF = 0 Ω  
G = 1, Vo = 20 mVPP, RF= 0 ,  
CL= 10 pF  
SSBW Small-signal bandwidth  
MHz  
65  
36  
C
C
C
C
C
G = 1, Vo = 20 mVPP  
LSBW Large-signal bandwidth  
GBWP Gain-bandwidth product  
G = 2 Vo = 2 VPP  
MHz  
MHz  
MHz  
70  
Bandwdith for 0.1-dB flatness G = 2, Vo = 20 mVPP  
16  
134  
G = 2, Vo = 1-V to 1-V step  
SR  
Slew rate (20%-80%)(4)  
V/µs  
G = 2, Vo = 2-V to 2-V step,  
VS = ±2.5 V  
78  
C
Rise time  
Fall time  
Vo = 200-mV step  
Vo = 200-mV step  
4
4
ns  
ns  
C
C
G = 2, Vo = 2-V to 0-V step,  
VS = ±2.5 V  
Settling time to 0.1%  
100  
565  
76  
ns  
ns  
ns  
ns  
C
C
C
C
G = 2, Vo = 2-V to 0-V step,  
VS = ±2.5 V  
Settling time to 0.001%  
Input overdrive recovery  
Output overdrive recovery  
G = 1, (VS0.5 V) to (VS+ + 0.5 V)  
input, VS = ±2.5 V  
G = 1, (VS0.5 V) to (VS+ + 0.5 V)  
input, VS = ±2.5 V  
93  
C
C
C
C
C
C
f = 100 kHz, RL = 1 kΩ, Vo = 2 VPP  
f = 1 MHz, RL = 1 kΩ, Vo = 2 VPP  
f = 100 kHz, RL = 1 kΩ, Vo = 2 VPP  
f = 1 MHz, RL = 1 kΩ, Vo = 2 VPP  
Flatband, 1/f corner at 1.5 kHz  
f = 10 kHz  
102  
81  
114  
92  
6.3  
Second-order harmonic  
distortion  
HD2  
HD3  
dBc  
dBc  
Third-order harmonic  
distortion  
en  
in  
Input-referred voltage noise  
Input-referred current noise  
nV/Hz  
fA/Hz  
5
Closed-loop output  
impedance  
zO  
f = 100 kHz  
0.007  
C
Ω
DC PERFORMANCE  
AOL  
Open-loop voltage gain  
f = DC, Vo = 1.25 V to 3.25 V  
SOIC package  
104  
118  
100  
100  
2.5  
2
dB  
µV  
A
A
550  
760  
VOS  
Input offset voltage  
DBV and DCK packages  
TA = 40°C to +125°C  
Input offset voltage drift  
Input bias current  
10 µV/°C  
B
A
A
20  
20  
pA  
pA  
Input offset current  
1
f = DC, VCM = 0.75 V to 1.75 V, SOIC  
package  
73  
73  
92  
A
B
CMRR Common-mode rejection ratio  
dB  
TA = 40°C to +125°C, SOIC package  
INPUT  
Allowable input differential  
voltage  
±5  
V
C
C
See 7-54  
Common-mode input  
impedance  
In closed-loop configuration  
12 || 2.5  
GΩ||pF  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA810  
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
Test conditions unless otherwise noted: TA = 25°C, VS+ = 5 V, VS= 0 V, common-mode voltage (VCM) = 1.25 V, RL = 1 kΩ  
connected to 1.25 V(5)  
.
Test  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Level(1)  
Differential input capacitance In open-loop configuration  
0.5  
pF  
V
C
A
A
ΔVOS < 5 mV(2)  
ΔVOS < 5 mV(2)  
Most positive input voltage  
Most negative input voltage  
VS+ + 0.2  
VS+ + 0.3  
V
VS- 0.2  
V
S- 0.3  
Most positive input voltage  
for main-JFET stage  
V
V
C
See 7-41  
V
S+ 2.9  
VS+ 2.5  
OUTPUT  
A
B
RL = 667 Ω  
V
S+ 0.12 VS+ 0.09  
VOCRH Output voltage range high  
TA = 40°C to +125°C, RLOAD = 667 Ω VS+ 0.15  
RL = 667 Ω  
VS–  
0.11  
+
VS+ 0.06  
A
B
A
VOCRL  
Output voltage range low  
V
VS–  
0.15  
+
TA = 40°C to +125°C, RL = 667 Ω  
Linear output drive (sourcing VO = 1.4 V, RL = 27.5 Ω, ΔVOS < 1  
and sinking)  
IO(max)  
50  
64  
mA  
mV, VS+ = 3 V and VS= 2 V  
ISC  
CL  
Output short-circuit current  
Capacitive load drive  
96  
10  
mA  
pF  
B
C
< 3-dB peaking, RS = 0 Ω  
POWER SUPPLY  
Quiescent current per  
channel  
IQ  
3.15  
3.7  
4.5  
mA  
dB  
A
ΔVS = ±0.5 V(3), SOIC package  
78  
78  
100  
A
B
PSRR  
Power-supply rejection ratio  
TA = 40°C to +125°C, SOIC package  
AUXILIARY CMOS INPUT STAGE  
Gain-bandwidth product  
27  
20  
MHz  
C
C
Input-referred voltage noise  
f = 1 MHz  
nV/Hz  
VCM = VS+ 1.5 V, no load, SOIC  
Package  
Input offset voltage  
Input bias current  
1.6  
20  
mV  
pA  
A
A
2
VCM = VS+ 1.5 V  
(1) Test levels (all values set by characterization and simulation): (A) 100% tested at 25°C, overtemperature limits by characterization and  
simulation; (B) Not tested in production, limits set by characterization and simulation; (C) Typical value only for information.  
(2) Change in input offset from its value when input is biased to 0 V.  
(3) Change in supply voltage from the default test condition with only one of the positive or negative supplies changing corresponding to  
+PSRR and -PSRR.  
(4) Lower of the measured positive and negative slew rate.  
(5) For AC specifications, VS+ = 3.5 V, VS= 1.5 V, G = 2 V/V, RF = 1 k, CL = 4.7 pF, VCM = 0 V (unless otherwise noted).  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA810  
 
 
 
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
7.8 Typical Characteristics: VS = 10 V  
At VS+ = 5 V, VS= 5 V, RL = 1 kΩ, input and output are biased to midsupply, and TA 25°C. For AC  
specifications, VO = 2 VPP, G = 2 V/V, RF = 1 kΩ, and CL = 4.7 pF (unless otherwise noted).  
3
0
3
0
-3  
-3  
-6  
-9  
-6  
-12  
-15  
-18  
-21  
-9  
Gain = -1 V/V  
Gain = 1 V/V  
Gain = 2 V/V  
Gain = 5 V/V  
Gain = 10 V/V  
-12  
-15  
RL = 500 W  
RL = 1 kW  
100k  
1M  
10M  
Frequency (Hz)  
100M  
100k  
1M  
10M  
Frequency (Hz)  
100M  
D041  
D042  
See 9-1 and 9-2, VO = 20 mVPP  
See 9-1, VO = 20 mVPP, gain = 1 V/V, RF = 0 Ω  
7-1. Small-Signal Frequency Response vs Gain  
7-2. Small-Signal Frequency Response vs  
Output Load  
6
3
6
3
0
0
-3  
-6  
-9  
-3  
-6  
-9  
-12  
-12  
RS = 0 W, CL = 4.7 pF  
RS = 0 W, CL = 10 pF  
RS = 56 W, CL = 22 pF  
RS = 40 W, CL = 33 pF  
RS = 47 W, CL = 47 pF  
RS = 0 W, CL = 4.7 pF  
RS = 0 W, CL = 10 pF  
RS = 0 W, CL = 22 pF  
RS = 56 W, CL = 47 pF  
-15  
-18  
-21  
-15  
-18  
-21  
100k  
1M  
10M  
Frequency (Hz)  
100M  
100k  
1M  
10M  
Frequency (Hz)  
100M  
D044  
D045  
See 9-1 and 8-1,  
See 9-1and 8-1, VO = 20 mVPP, gain = 2 V/V  
VO = 20 mVPP, gain = 1 V/V, RF = 0 Ω  
7-4. Small-Signal Frequency Response vs CL  
7-3. Small-Signal Frequency Response vs CL  
3
3
0
0
-3  
-3  
-6  
-6  
-9  
-9  
-12  
-12  
-15  
-15  
VO = 200 mVPP  
VO = 1 VPP  
VO = 200 mVPP  
VO = 1 VPP  
-18  
-21  
-18  
-21  
VO = 2 VPP  
VO = 4 VPP  
VO = 2 VPP  
VO = 4 VPP  
100k  
1M  
10M  
Frequency (Hz)  
100M  
100k  
1M  
10M  
Frequency (Hz)  
100M  
D046  
D047  
See 9-1, gain = 1 V/V, RF = 0 Ω  
See 9-1, gain = 2 V/V  
7-5. Large-Signal Frequency Response vs  
7-6. Large-Signal Frequency Response vs  
Output Voltage  
Output Voltage  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA810  
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
1
-60  
-70  
Gain = -1 V/V  
Gain = 1 V/V  
HD2, RL = 1 kW  
HD3, RL = 1 kW  
HD2, RL = 500 W  
HD3, RL = 500 W  
0.8  
Gain = 2 V/V  
Gain = 5 V/V  
Gain = 10 V/V  
0.6  
-80  
0.4  
0.2  
0
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1k  
10k  
100k  
Frequency (Hz)  
1M  
D051  
D048  
See 9-1 and 9-2, VO = 20 mVPP  
See 9-1, gain = 2 V/V  
7-7. Small-Signal Response Flatness vs Gain  
7-8. Harmonic Distortion vs Frequency  
-60  
-60  
HD2, RL = 1 kW  
HD2, Gain = 1  
HD3, Gain = 1  
HD2, Gain = 2  
HD3, Gain = 2  
-70  
-70  
HD3, RL = 1 kW  
HD2, RL = 500 W  
HD3, RL = 500 W  
-80  
-80  
HD2, Gain = -1  
HD3, Gain = -1  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
1k  
10k  
100k  
Frequency (Hz)  
1M  
1k  
10k  
100k  
Frequency (Hz)  
1M  
D049  
D050  
See 9-2, gain = 1 V/V  
See 9-1 and 9-2, RF = 0 Ω  
7-9. Harmonic Distortion vs Frequency  
7-10. Harmonic Distortion vs Gain  
0.15  
45  
Overshoot, VO = 2 VPP  
Undershoot, VO = 2 VPP  
Overshoot, VO = 200 mVPP  
Undershoot, VO = 200 mVPP  
40  
35  
30  
25  
20  
15  
10  
5
0.1  
0.05  
0
-0.05  
-0.1  
0
Time (100 ns/div)  
5
10  
15  
20  
25  
30  
35  
Load Capacitance (pF)  
40  
45  
50  
D052  
D053  
See 9-1, gain = 1 V/V, RF = 0 Ω, CL = 10 pF  
See 9-1, gain = 1 V/V, RF = 0 Ω  
7-11. Small-Signal Transient Response  
7-12. Overshoot and Undershoot vs CL  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA810  
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
6
4
6
4
2
2
0
0
-2  
-4  
-2  
-4  
-6  
VIN  
VOUT  
VIN x -1 Gain  
VO  
-6  
0
200  
400  
600  
Time (nsec)  
800 1000 1200 1400 1600  
0
200  
400  
600 800  
Time (nsec)  
1000 1200 1400  
D054  
D055  
See 9-1, gain = 1 V/V, RF = 0 Ω  
See 9-2, gain = 1 V/V  
7-13. Input Overdrive Recovery  
7-14. Output Overdrive Recovery  
6
4
120  
90  
60  
2
30  
0
Sourcing  
Sinking  
Sourcing  
Sinking  
0
-30  
-60  
-90  
-120  
-150  
-2  
-4  
-6  
0
10  
20  
30  
40  
Output Current (mA)  
50  
60  
70  
80  
90  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (èC)  
D056  
D057  
Output saturated and then short-circuited  
7-15. Output Voltage vs Load Current  
7-16. Output Short-Circuit Current vs Ambient  
Temperature  
1200  
800  
400  
0
-400  
-800  
-1200  
-6  
-4  
-2  
0
2
Input Common-Mode Voltage (V)  
4
6
D058  
Measured for 12 units  
7-17. Input Offset Voltage vs Input Common-Mode Voltage  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA810  
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
7.9 Typical Characteristics: VS = 24 V  
At VS+ = 12 V, VS= 12 V, RL = 1 kΩ, input and output are biased to midsupply, and TA 25°C. For AC  
specifications, VO = 2 VPP, G = 2 V/V, RF = 1 kΩ, and CL = 4.7 pF (unless otherwise noted).  
3
0
3
0
-3  
-3  
-6  
-6  
-9  
-9  
-12  
-15  
-18  
-21  
-12  
-15  
-18  
-21  
Gain = -1 V/V  
Gain = 1 V/V  
Gain = 2 V/V  
Gain = 5 V/V  
VCM = 0 V  
VCM = 9 V  
VCM = 11 V  
100k  
1M  
10M  
Frequency (Hz)  
100M  
100k  
1M  
10M  
Frequency (Hz)  
100M  
D071  
D072  
See 9-1 and 9-2, VO = 20 mVPP  
See 9-1, VO = 20 mVPP, gain = 1 V/V, CL = 4.7 pF, RF = 0 Ω  
7-18. Noninverting Small-Signal Frequency  
7-19. Small-Signal Frequency Response vs  
Response vs Gain  
Output Common-Mode Voltage  
3
0
3
0
-3  
-3  
-6  
-9  
-6  
-9  
-12  
-12  
VO = 200 mVPP  
VO = 1 VPP  
VO = 2 VPP  
VO = 4 VPP  
VO = 10 VPP  
-15  
-15  
VO = 200 mVPP  
VO = 1 VPP  
VO = 2 VPP  
VO = 4 VPP  
-18  
-21  
-18  
-21  
100k  
1M  
10M  
Frequency (Hz)  
100M  
100k  
1M  
10M  
Frequency (Hz)  
100M  
D074  
D075  
See 9-1, gain = 1 V/V, RF = 0 Ω  
See 9-1, gain = 2 V/V  
7-20. Large-Signal Frequency Response vs  
7-21. Large-Signal Frequency Response vs Vo  
Output Voltage  
-20  
-40  
HD2, VO = 2 VPP  
HD3, VO = 2 VPP  
HD2, VO = 10 VPP  
HD3, VO = 10 VPP  
HD2, VO = 20 VPP  
HD3, VO = 20 VPP  
HD2, VO = 2 VPP  
HD3, VO = 2 VPP  
HD2, VO = 10 VPP  
HD3, VO = 10 VPP  
HD2, VO = 20 VPP  
HD3, VO = 20 VPP  
-40  
-60  
-80  
-60  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
1k  
10k  
100k  
Frequency (Hz)  
1M  
1k  
10k  
100k  
Frequency (Hz)  
1M  
D076  
D077  
See 9-1, gain = 2 V/V  
See 9-2, gain = 1 V/V  
7-22. Harmonic Distortion vs Frequency vs Vo  
7-23. Harmonic Distortion vs Frequency vs Vo  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA810  
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
0.15  
6
4
0.1  
0.05  
0
2
0
-2  
-4  
-6  
-0.05  
-0.1  
Time (100 ns/div)  
Time (100 ns/div)  
D078  
D079  
See 9-1, gain = 1 V/V, RF = 0 Ω, CL = 10 pF  
See 9-1, gain = 1 V/V, RF = 0 Ω  
7-24. Small-Signal Transient Response  
7-25. Large-Signal Transient Response  
12  
6
VO = 2 VPP  
VO = 10 VPP  
VO = 20 VPP  
VO = 4 VPP  
VO = 10 VPP  
8
4
4
2
0
0
-4  
-8  
-12  
-2  
-4  
-6  
Time (100 ns/div)  
Time (50 ns/div)  
D080  
D081  
See 9-1, gain = 2 V/V  
See 9-2, gain = 1 V/V  
7-26. Large-Signal Transient Response  
7-27. Large-Signal Transient Response  
25  
15  
12  
9
20  
6
15  
3
Overshoot, VO = 2 VPP  
Undershoot, VO = 2 VPP  
Overshoot, VO = 200 mVPP  
Undershoot, VO = 200 mVPP  
0
10  
5
-3  
-6  
-9  
VIN  
VOUT  
-12  
-15  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Load Capacitance (pF)  
0
200  
400  
Time (nsec)  
600  
800  
D082  
D083  
See 9-1, gain = 1 V/V, RF = 0 Ω  
See 9-1, gain = 1 V/V, RF = 0 Ω  
7-28. Overshoot and Undershoot vs CL  
7-29. Input Overdrive Recovery  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA810  
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
15  
12  
9
14  
10  
6
6
3
2
Sourcing  
Sinking  
0
-2  
-3  
-6  
-9  
-12  
-15  
-6  
-10  
-14  
VIN x -1 Gain  
VO  
0
200  
400  
600 800  
Time (nsec)  
1000 1200 1400  
0
10  
20  
30  
40  
Output Current (mA)  
50  
60  
70  
80  
90  
D084  
D085  
See 9-2, gain = 1 V/V  
7-31. Output Voltage Range vs Load Current  
7-30. Output Overdrive Recovery  
150  
1500  
120  
90  
1000  
500  
60  
30  
Sourcing  
Sinking  
0
0
-30  
-60  
-90  
-120  
-150  
-180  
-500  
-1000  
-1500  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-12.5 -10 -7.5 -5 -2.5  
0
Input Common-Mode Voltage (V)  
2.5  
5
7.5 10 12.5  
Ambient Temperature (èC)  
D086  
D087  
Output saturated and then short-circuited  
Measured for 12 units  
7-32. Output Short-Circuit Current vs Ambient  
7-33. Input Offset Voltage vs Input Common-  
Temperature  
Mode Voltage  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA810  
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
7.10 Typical Characteristics: VS = 5 V  
At VS+ = 5 V, VS= 0 V, VCM= 1.25 V, RL = 1 kΩ, output is biased to midsupply, and TA 25°C. For AC  
specifications, VS+ = 3.5 V, VS= 1.5 V, VCM= 0 V, VO = 2 VPP, G = 2 V/V, RF = 1 kΩ, and CL = 4.7 pF (unless  
otherwise noted).  
3
0
0.15  
0.1  
-3  
-6  
0.05  
0
-9  
-12  
-15  
-18  
-21  
Gain = -1 V/V  
Gain = 1 V/V  
Gain = 2 V/V  
Gain = 5 V/V  
-0.05  
-0.1  
100k  
1M  
10M  
Frequency (Hz)  
100M  
Time (100 ns/div)  
D010  
D011  
See 9-1 and 9-2, VO = 20 mVPP  
See 9-1, gain = 1 V/V, RF = 0 Ω, CL = 10 pF  
7-34. Small-Signal Response vs Gain  
7-35. Small-Signal Transient Response  
60  
3
Overshoot, VO = 2 VPP  
Undershoot, VO = 2 VPP  
Overshoot, VO = 200 mVPP  
Undershoot, VO = 200 mVPP  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
2
1
0
-1  
-2  
VIN  
VOUT  
0
-3  
5
10  
15  
20  
Load Capacitance (pF)  
25  
30  
35  
40  
45  
50  
0
200  
400  
600 800  
Time (nsec)  
1000 1200 1400  
D012  
D014  
See 9-1, gain = 1 V/V, RF = 0 Ω  
See 9-1, gain = 1 V/V, RF = 0 Ω  
7-36. Overshoot and Undershoot vs CL  
7-37. Input Overdrive Recovery  
3
3
2
2
1
1
Sourcing  
Sinking  
0
0
-1  
-1  
-2  
-3  
-2  
VIN x -1 Gain  
VO  
-3  
0
200  
400  
600 800  
Time (nsec)  
1000 1200 1400  
0
10  
20  
30  
40  
Output Current (mA)  
50  
60  
70  
80  
90  
D013  
D015  
See 9-2, gain = 1 V/V  
7-39. Output Voltage Range vs Output Current  
7-38. Output Overdrive Recovery  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA810  
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
125  
100  
75  
1000  
500  
50  
25  
0
0
-25  
-50  
-75  
-100  
-125  
-500  
-1000  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-3  
-2  
-1  
Input Common-Mode Voltage (V)  
0
1
2
3
Ambient Temperature (èC)  
D016  
D017  
Output saturated and then short-circuited  
Measured for 12 units  
7-40. Output Short-Circuit Current vs Ambient  
7-41. Input Offset Voltage vs Input Common-  
Temperature  
Mode Voltage  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA810  
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
7.11 Typical Characteristics: ±2.375-V to ±12-V Split Supply  
At VO = 2 VPP, RF = 1 kΩ, RL = 1 kΩ and TA 25°C (unless otherwise noted).  
130  
110  
90  
180  
160  
140  
120  
100  
80  
3
0
Magnitude  
Phase  
-3  
70  
-6  
50  
-9  
30  
VS = 5 V  
VS = 10 V  
VS = 24 V  
-12  
-15  
10  
60  
-10  
40  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
100M  
100k  
1M  
10M  
Frequency (Hz)  
100M  
D109  
D101  
Simulated with no output load  
See 9-1, gain = 1 V/V, RF = 0 Ω  
7-42. Open-Loop Gain and Phase vs Frequency  
7-43. Large-Signal Response vs Supply Voltage  
3
-60  
HD2, VS = 5 V  
HD3, VS = 5 V  
HD2, VS = 10 V  
HD3, VS = 10 V  
HD2, VS = 24 V  
HD3, VS = 24 V  
-70  
0
-3  
-6  
-9  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
VS= 5 V  
VS= 10 V  
VS= 24 V  
-12  
-15  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1k  
10k  
100k  
Frequency (Hz)  
1M  
D102  
D103  
See 9-1, gain = 2 V/V  
See 9-1, gain = 2 V/V  
7-44. Large-Signal Response vs Supply Voltage  
7-45. Harmonic Distortion vs Frequency vs  
Supply Voltage  
-60  
100  
10  
1
HD2, VS = 5 V  
HD3, VS = 5 V  
HD2, VS = 10 V  
HD3, VS = 10 V  
HD2, VS = 24 V  
HD3, VS = 24 V  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
D104  
D103  
Measured then fit to ideal 1/f model  
See 9-2, gain = 1 V/V  
7-47. Input Voltage Noise Density vs Frequency  
7-46. Harmonic Distortion vs Frequency vs  
Supply Voltage  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA810  
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
10000  
1000  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
100M  
D106  
D108  
Measured then fit to ideal 1/f model  
7-48. Auxiliary Input Stage Voltage Noise  
7-49. Open-Loop Output Impedance vs  
Density vs Frequency  
Frequency  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
100M  
D110  
D111  
VS = 10 V and 24 V  
VS = 5 V and 10 V  
7-50. Common-Mode Rejection Ratio vs  
7-51. Power Supply Rejection Ratio vs  
Frequency  
Frequency  
120  
20  
16  
12  
8
PSRR VS+  
PSRR VS-  
100  
80  
60  
40  
20  
0
4
0
-4  
-8  
-12  
-16  
-20  
100  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
100M  
-12.5 -10 -7.5 -5 -2.5  
0
Input Common-Mode Voltage (V)  
2.5  
5
7.5 10 12.5  
D112  
D118  
Simulated curves, VS = 24 V  
VS = ±12 V  
7-52. Power Supply Rejection Ratio vs  
7-53. Input Bias Current vs Input Common-Mode  
Frequency  
Voltage  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA810  
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
300  
200  
100  
0
4.2  
4
3.8  
3.6  
3.4  
-100  
-200  
-300  
TA = 25èC  
TA = 125èC  
-7.5 -6 -4.5 -3 -1.5  
0
1.5  
Differential Input Voltage (V)  
3
4.5  
6
7.5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature (èC)  
D115  
D117  
Abs (VIN,Diff (max)) = VS when VS < 7 V  
32 units, SOIC package, VS = ±5 V  
7-54. Input Bias Current vs Differential Input  
7-55. Quiescent Current vs Ambient  
Voltage  
Temperature  
600  
400  
200  
0
24000  
22000  
20000  
18000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
-200  
-400  
-600  
-800  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature (èC)  
D120  
D116  
Quiescent Current (mA)  
32 units, SOIC package  
27000 units, µ = 3.82 mA, σ = 17 µA, VS = 24 V  
7-56. Input Offset Voltage vs Ambient  
7-57. Quiescent Current Distribution  
Temperature  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
14  
12  
10  
8
6
4
2
0
Input Offset Voltage Drift (mV/èC)  
D113  
D114  
Input Offset Voltage (mV)  
40°C to +125°C fit, 32 units, µ = 0.15 µV/°C, σ = 2.5  
27000 units, µ = 16 µV, σ = 63 µV, VS = 24 V  
µV/°C  
7-58. Input Offset Voltage Distribution  
7-59. Input Offset Voltage Drift Distribution  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA810  
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
8 Detailed Description  
8.1 Overview  
The OPA810 is a single-channel, field-effect transistor (FET)-input, unity-gain stable, voltage-feedback  
operational amplifier with extremely low input bias current across its common-mode input voltage range. The  
OPA810, characterized to operate over a wide supply range of 4.75 V to 27 V, has a small-signal, unity-gain  
bandwidth of 140 MHz and offers both excellent DC precision and dynamic AC performance at low quiescent  
power. The OPA810 is fabricated on Texas Instrument's proprietary, high-speed SiGe BiCMOS process and  
achieves significant performance improvements over comparable FET-input amplifiers at similar levels of  
quiescent power. With a gain-bandwidth product (GBWP) of 70 MHz, extremely high slew rate (200 V/µs), and  
low noise (6.3 nV/Hz), the OPA810 is ideal in a wide range of data acquisition and signal processing  
applications. The OPA810 includes input clamps to allow maximum input differential voltage of up to 7 V, making  
the device suitable for use with multiplexers and for processing signals with fast transients. The device achieves  
these benchmark levels of performance while consuming a typical quiescent current (IQ) of 3.7 mA per channel.  
The OPA810 can source and sink large amounts of current without degradation in its linearity performance. The  
wide bandwidth of the OPA810 implies that the device has low output impedance across a wide frequency  
range, thereby allowing the amplifier to drive capacitive loads up to 10 pF without requiring output isolation. This  
device is suitable for a wide range of data acquisition, test and measurement front-end buffer, impedance  
measurement, power analyzer, wideband photodiode transimpedance, and signal processing applications.  
8.2 Functional Block Diagram  
VS+  
OPA810  
VIN+  
Aux-Stage  
+
œ
EN  
CC  
JFET-Stage  
EN  
VO  
+
œ
œ
œ
+
VS+ œ2.5 V  
VINœ  
VSœ  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA810  
 
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
8.3 Feature Description  
8.3.1 OPA810 Architecture  
The OPA810 features a true high-impedance input stage including a JFET differential-input pair main stage and  
a CMOS differential-input auxiliary (aux) stage operational within 2.5 V of the positive supply voltage. The bias  
current is limited to a maximum of 20 pA throughout the common-mode input range of the amplifier. The 8.2  
section provides a block diagram representation for the input stage of the OPA810. The amplifier exhibits  
superior performance for high-speed signals (distortion, noise, and input offset voltage) while the aux stage  
enables rail-to-rail inputs and prevents phase reversal. The device exhibits a CMRR and PSRR of 75 dB (typical)  
when the input common-mode is in aux stage.  
The OPA810 also includes input clamps that enable the maximum input differential voltage of up to 7 V (lower of  
7 V and total supply voltage). This architecture offers significantly greater differential input voltage capability as  
compared to one to two times the diode forward voltage drop maximum rating in standard amplifiers, and makes  
this device suitable for use with multiplexers and processing of signals with fast transients. The input bias  
currents are also clamped to maximum 300 µA, as 7-54 shows, which does not load the previous driver stage  
or require current-limiting resistors (except limiting current through the input ESD diodes when input common-  
mode voltages are greater than the supply voltages). This feature also enables this amplifier to be used as a  
comparator in systems that require an amplifier and a comparator for signal gain and fault detection,  
respectively. For the lowest offset, distortion, and noise performance, limit the common-mode input voltage to the  
main JFET-input stage (greater than 2.5 V away from the positive supply).  
The OPA810 is a rail-to-rail output amplifier and swings to either of the rails at the output, as shown in 7-15 for  
10-V supply operation. This is particularly useful for inputs biased near the rails or when the amplifier is  
configured in a closed-loop gain such that the output approaches the supply voltage. When the output saturates,  
it recovers with 55 ns when inputs exceed the supply voltages by 0.5 V in an G = 1 V/V inverting gain with a  
10V supply. The outputs are short-circuit protected with the limits of 7-16.  
As 8-1 shows, an amplifier phase margin reduces and becomes unstable when driving a capacitive load (CL)  
at its output. Using a series resistor (RS) between the amplifier output and load capacitance introduces a zero  
that cancels the pole formed by the amplifier output impedance and CL in the open-loop transfer function. The  
OPA810 drives capacitive loads of up to 10 pF without causing instability. It is recommended to use a series  
resistor for larger load capacitance values, as 7-3 shows for OPA810 configured as a unity-gain buffer. As 图  
7-4 shows, when used in a gain larger than 1 V/V, the OPA810 is able to drive a load capacitance larger than 10  
pF without the need for a series resistor at its output.  
RS  
VO  
+
VIN  
CL  
RL  
8-1. OPA810 Driving Capacitive Load  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA810  
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
8.3.2 ESD Protection  
As 8-2 shows, all device pins are protected with internal ESD protection diodes to the power supplies. These  
diodes provide moderate protection to input overdrive voltages above the supplies. The protection diodes can  
typically support 10-mA continuous input and output currents. The differential input clamps only limit the bias  
current when the input common-mode voltages are within the supply voltage range, whereas current-limiting  
series resistors must be added at the inputs if common-mode voltages higher than the supply voltages are  
possible. Keep these resistor values as low as possible because using high values degrades noise performance  
and frequency response.  
VS+  
Power Supply  
ESD Cell  
VIN+  
+
300 A  
ICLAMP  
œ
VO  
VINœ  
VSœ  
8-2. Internal ESD Protection  
8.4 Device Functional Modes  
8.4.1 Split-Supply Operation (±2.375 V to ±13.5 V)  
To facilitate testing with common lab equipment, the OPA810 can be configured to allow for split-supply  
operation (see the OPA2810DGK Evaluation Module user guide). This configuration eases lab testing because  
the mid-point between the power rails is ground, and most signal generators, network analyzers, oscilloscopes,  
spectrum analyzers, and other lab equipment reference the inputs and outputs to ground. 9-1 depicts the  
OPA810 configured as a noninverting amplifier and 9-2 illustrates the OPA810 configured as an inverting  
amplifier. For split-supply operation referenced to ground, the power supplies V S+ and V S- are symmetrical  
around ground and V REF is at GND. Split-supply operation is preferred in systems where the signals swing  
around ground because of the ease-of-use; however, the system requires two supply rails.  
8.4.2 Single-Supply Operation (4.75 V to 27 V)  
Many newer systems use a single power supply to improve efficiency and reduce the cost of the extra power  
supply. The OPA810 can be used with a single supply (with the negative supply set to ground) with no change in  
performance if the input and output are biased within the linear operation of the device. To change the circuit  
from split supply to a balanced, single-supply configuration, level shift all voltages by half the difference between  
the power-supply rails. An additional advantage of configuring an amplifier for single-supply operation is that the  
effects of PSRR are minimized because the low-supply rail is grounded. See the Single-Supply Op Amp Design  
Techniques application report for examples of single-supply designs.  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA810  
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Amplifier Gain Configurations  
The OPA810 is a classic voltage-feedback amplifier with each channel having two high-impedance inputs and a  
low-impedance output. Standard application circuits (as shown in 9-1 and 9-2) include the noninverting and  
inverting gain configurations. The DC operating point for each configuration is level-shifted by the reference  
voltage VREF that is typically set to midsupply in single-supply operation. VREF is often connected to ground in  
split-supply applications.  
VSIG  
VS+  
(1+RF/RG)VSIG  
VREF  
VIN  
+
VREF  
VO  
VREF  
-
RG  
VSœ  
RF  
9-1. Noninverting Amplifier  
VS+  
œ(RF/RG)VSIG  
VREF  
+
VSIG  
VO  
VREF  
VREF  
VIN  
œ
RG  
VSœ  
RF  
9-2. Inverting Amplifier  
Equation 1 shows the closed-loop gain of an amplifier in a noninverting configuration.  
÷
RF  
VO = V 1+  
+ V  
IN  
REF  
RG ◊  
«
(1)  
(2)  
Equation 2 shows the closed-loop gain of an amplifier in an inverting configuration.  
«
÷
RF  
VO = V  
-
+ V  
IN  
REF  
RG ◊  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA810  
 
 
 
 
 
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
9.1.2 Selection of Feedback Resistors  
The OPA810 is a classic voltage feedback amplifier with each channel having two high-impedance inputs and a  
low-impedance output. Standard application circuits (as shown in 9-3 and 9-4) include the noninverting and  
inverting gain configurations. The DC operating point for each configuration is level-shifted by the reference  
voltage VREF which is typically set to midsupply in single-supply operation. VREF is often connected to ground in  
split-supply applications.  
VSIG  
VS+  
(1+RF/RG)VSIG  
VREF  
VREF  
VIN  
+
VO  
œ
RG  
VS-  
RF  
VREF  
9-3. Noninverting Amplifier  
VS+  
-(RF/RG)VSIG  
VREF  
VREF  
+
VSIG  
VO  
VREF  
VIN  
œ
RG  
VS-  
RF  
9-4. Inverting Amplifier  
Equation 3 shows the closed-loop gain of an amplifier in noninverting configuration.  
÷
RF  
VO = V 1+  
+ V  
IN  
REF  
RG ◊  
«
(3)  
(4)  
Equation 4 shows the closed-loop gain of an amplifier in an inverting configuration.  
«
÷
RF  
VO = V  
-
+ V  
IN  
REF  
RG ◊  
The magnitude of the low-frequency gain is determined by the ratio of the magnitudes of the feedback resistor  
(RF) and the gain setting resistor RG. The order of magnitudes of the individual values of RF and RG offer a  
trade-off between amplifier stability, power dissipated in the feedback resistor network, and total output noise.  
The feedback network increases the loading on the amplifier output. Using large values of the feedback resistors  
reduces the power dissipated at the amplifier output. On the other hand, this increases the inherent voltage and  
amplifier current noise contribution seen at the output while lowering the frequency at which a pole occurs in the  
feedback factor (β). This pole causes a decrease in the phase margin at zero-gain crossover frequency and  
potential instability. Using small feedback resistors increases power dissipation and also degrades amplifier  
linearity due to a heavier amplifier output load. 9-5 illustrates a representative schematic of the OPA810 in an  
inverting configuration with the input capacitors shown.  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: OPA810  
 
 
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
VS+  
CCM  
-(RF/RG)VSIG  
+
VSIG  
CDIFF  
VO  
VREF  
VIN  
œ
VREF  
RG  
CPCB  
CCM  
VS-  
RF  
9-5. Inverting Amplifier with Input Capacitors  
The effective capacitance at the amplifier inverting input pin is shown in Equation 5, which forms a pole in β at a  
cut-off frequency of Equation 6.  
CIN = CCM + CDIFF + CPCB  
(5)  
where  
CCM is the amplifier common-mode input capacitance  
CDIFF is the amplifier differential input capacitance  
CPCB is the PCB parasitic capacitance  
1
FC =  
2pRFCIN  
(6)  
For low-power systems, greater the values of the feedback resistors, the earlier in frequency does the phase  
margin begin to reduce and cause instability. 9-6 and 9-7 illustrate the loop gain magnitude and phase  
plots, respectively, for the OPA810 simulation in TINA-TI configured as an inverting amplifier with values of  
feedback resistors varying by orders of magnitudes.  
120  
110  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
RF = 200 W, RG = 50 W  
RF = 10 kW, RG = 2.5 kW  
RF = 1 MW, RG = 250 kW  
80  
70  
60  
50  
40  
30  
20  
10  
RF = 200 W, RG = 50 W  
RF = 10 kW, RG = 2.5 kW  
RF = 1 MW, RG = 250 kW  
0
-10  
-20  
100  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
100M  
100  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
100M  
D802  
D801  
9-7. Loop-Gain Phase vs Frequency for Circuit  
of 9-5  
9-6. Loop-Gain vs Frequency for Circuit of 9-5  
A lower phase margin results in peaking in the frequency response and lower bandwidth as 9-8 shows, which  
is synonymous with overshoot and ringing in the pulse response results. The OPA810 offers a flat-band voltage  
noise density of 6.3 nV/Hz. TI recommends selecting an RF so the voltage noise contribution does not exceed  
that of the amplifier. 9-9 shows the voltage noise density variation with value of resistance at 25°C. A 2-kΩ  
resistor exhibits a thermal noise density of 5.75 nV/Hz which is comparable to the flatband noise of the  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: OPA810  
 
 
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
OPA810. Hence, TI recommends using an R F lower than 2 kΩ while being large enough to not dissipate  
excessive power for the output voltage swing and supply current requirements of the application. The 9.1.3  
section shows a detailed analysis of the various contributors to noise.  
30  
20  
10  
0
1000  
100  
10  
RF = 200 W, RG = 50 W  
RF = 10 kW, RG = 2.5 kW  
RF = 1 MW, RG = 250 kW  
1
0.1  
-10  
10  
100  
1k  
10k  
Resistance (W)  
100k  
1M  
10M  
10k  
100k  
1M  
Frequency (Hz)  
10M  
100M  
D803  
D806  
9-9. Thermal Noise Density vs Resistance  
9-8. Closed-Loop Gain vs. Frequency for Circuit  
of 9-5  
9.1.3 Noise Analysis and the Effect of Resistor Elements on Total Noise  
The OPA810 provides a low input-referred broadband noise voltage density of 6.3 nV/Hz while requiring a low  
3.7-mA quiescent supply current. To take full advantage of this low input noise, careful attention to the other  
possible noise contributors is required. 9-10 shows the operational amplifier noise analysis model with all the  
noise terms included. In this model, all the noise terms are taken to be noise voltage or current density terms in  
nV/Hz or pA/Hz.  
ENI  
+
EO  
RS  
IBN  
œ
ERS  
4kTR S  
RF  
4kT  
R G  
4kTRF  
IBI  
RG  
4kT = 1.6E - 20J  
at 290è K  
9-10. Operational Amplifier Noise Analysis Model  
The total output spot noise voltage is computed as the square root of the squared contributing terms to the  
output noise voltage. This computation adds all the contributing noise powers at the output by superposition,  
then calculates the square root to get back to a spot noise voltage. 9-10 shows the general form for this  
output noise voltage using the terms shown in Equation 7.  
2
2
)
2
EO  
=
ENI + IBNRS + 4kTRS NG2 + I R  
+ 4kTR NG  
F
(
(BI F )  
)
(
(7)  
Dividing this expression by the noise gain (NG = 1 + RF / RG) shows the equivalent input referred spot noise  
voltage at the noninverting input; see Equation 8.  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: OPA810  
 
 
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
ö2  
÷
ø
I R  
4kTRF  
NG  
æ
ç
è
2
2
BI  
F
EN  
=
ENI + IBNRS + 4kTRS +  
+
(
)
NG  
(8)  
Substituting large resistor values into Equation 8 can quickly dominate the total equivalent input referred noise. A  
source impedance on the noninverting input of 2-kΩ adds a Johnson voltage noise term similar to that of the  
amplifier (6.3 nV/Hz).  
9-1 compares the noise contributions from the various terms when the OPA810 is configured in a noninverting  
gain of 5 V/V as 9-11 shows. Two cases are considered where the resistor values in case 2 are 10x the  
resistor values in case 1. The total output noise in case 1 is 34 nV/Hz while the noise in case 2 is 51.5 nV/√  
Hz. The large value resistors in case 2 dilute the benefits of selecting a low noise amplifier like the OPA810. To  
minimize total system noise, reduce the size of the resistor values. This increases the amplifiers output load and  
results in a degradation of distortion performance. The increased loading increases the dynamic power  
consumption of the amplifier. The circuit designer must make the appropriate tradeoffs to maximize the overall  
performance of the amplifier to match the system requirements.  
VS+ = 5V  
+
EO  
œ
Case1: 200  
Case2: 2 kꢀ  
RS  
VS- = -5V  
RG  
RF  
Case1: 1 kꢀ  
Case2: 10 kꢀ  
Case1: 250 ꢀ  
Case2: 2.5 kꢀ  
9-11. Comparing Noise Contributors for Two Cases with the Amplifier in a Noninverting Gain of 5 V/V  
9-1. Comparing Noise Contributions for the Circuit in 9-11  
CASE 1  
CASE 2  
OUTPUT  
NOISE  
EQUATION  
VOLTAGE  
NOISE  
CONTRIBUTIO  
VOLTAGE  
NOISE  
CONTRIBUTIO  
NOISE  
NOISE  
NOISE  
SOURCE  
NOISE  
SOURCE  
VALUE  
NOISE  
SOURCE  
VALUE  
POWER  
CONTRIBUTIO  
N (nV2/Hz)  
CONTRIBUTIO  
N (%)  
POWER  
CONTRIBUTIO  
N (nV2/Hz)  
CONTRIBUTIO  
N (%)  
N (nV/Hz)  
N (nV/Hz)  
Source resistor,  
RS  
ERS (1 +  
RF /RG)  
1.82 nV/√  
5.76 nV/√  
9.1  
82.81  
66.59  
16.57  
7.15  
5.75  
1.43  
28.8  
25.76  
12.87  
829.44  
663.58  
165.64  
31.29  
25.03  
6.25  
Hz  
Hz  
2.04 nV/√  
6.44 nV/√  
Gain resistor, RG ERG (RF / RG)  
8.16  
4.07  
Hz  
Hz  
12.87 nV/  
Hz  
Feedback  
ERF  
4.07 nV/√  
resistor, RF  
Hz  
Amplifier  
voltage noise,  
ENI  
ENI (1 + RF  
RG)  
/
6.3 nV/√  
6.3 nV/√  
31.5  
992.25  
85.67  
31.5  
992.25  
37.43  
Hz  
Hz  
Inverting  
current noise, IBI  
IBI (RF || RG)  
5.0E-3  
1.0E-3  
50E-3  
10E-3  
5 fA/Hz  
5 fA/Hz  
5 fA/Hz  
5 fA/Hz  
Noninverting  
current noise, IBN  
IBNRS (1 +  
RF/ RG)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: OPA810  
 
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
9.2 Typical Applications  
9.2.1 Transimpedance Amplifier  
The high GBWP and low input voltage and current noise for the OPA810 make the device an ideal wideband  
transimpedance amplifier for moderate to high transimpedance gains.  
Supply Decoupling not  
shown  
VBIAS  
+5 V  
OPA810  
+
Oscilloscope  
with 50-Inputs  
-
CD  
20 pF  
CPCB  
0.3 pF  
-5 V  
RF  
100 kꢀ  
CF + CPCB  
1.03 pF  
9-12. Wideband, High-Sensitivity, Transimpedance Amplifier  
9.2.1.1 Design Requirements  
9-2 lists the design requirements for a high-bandwidth, high-gain transimpedance amplifier circuit.  
9-2. Design Requirements  
PARAMETER  
Target bandwidth  
DESIGN REQUIREMENT  
> 2 MHz  
100 kΩ  
20 pF  
Transimpedance gain  
Photodiode capacitance  
9.2.1.2 Detailed Design Procedure  
Designs that require high bandwidth from a large area detector with relatively high transimpedance gain benefit  
from the low input voltage noise of the OPA810. This input voltage noise is peaked up over frequency by the  
diode source capacitance, and can (in many cases) become the limiting factor to input sensitivity. The key  
elements to the design are the expected diode capacitance (CD) with the reverse bias voltage (VBIAS) applied,  
the desired transimpedance gain, R , and the GBWP for the OPA810 (70 MHz). 9-12 shows a  
F
transimpedance circuit with the parameters as described in 9-2. With these three variables set (and including  
the parasitic input capacitance for the OPA810 and the printed circuit board (PCB) added to CD), the feedback  
capacitor value (CF) can be set to control the frequency response. The Transimpedance Considerations for High-  
Speed Amplifiers application report discusses using high-speed amplifiers for transimpedance applications. Set  
the feedback pole according to Equation 9 in order to achieve a maximally-flat second-order Butterworth  
frequency response:  
1
GBWP  
RFCD  
=
2p  
RFCF  
4
p
(9)  
The input capacitance of the amplifier is the sum of the common-mode and differential capacitance (2.0 +  
0.5) pF. The parasitic capacitance from the photodiode package and the PCB is approximately 0.3 pF. Using  
Equation 5 gives a total input capacitance of CD = 22.8 pF. From Equation 9, set the feedback pole at 1.55 MHz.  
Setting the pole at 1.55 MHz requires a total feedback capacitance of 1.03 pF.  
Equation 10 shows the approximate 3-dB bandwidth of the transimpedance amplifier circuit:  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: OPA810  
 
 
 
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
f-3dB = GBWP / (2  
p
RFCD )Hz  
(10)  
Equation 10 estimates a closed-loop bandwidth of 2.19 MHz. 9-13 and 9-14 show the loop-gain magnitude  
and phase plots from the TINA-TI simulations of the transimpedance amplifier circuit of 9-12. The 1/β gain  
curve has a zero from RF and CIN at 70 kHz and a pole from RF and CF cancelling the 1/β zero at 1.5 MHz,  
resulting in a 20-dB per decade rate-of-closure at the loop-gain crossover frequency (the frequency where AOL  
equals 1/β), ensuring a stable circuit. A phase margin of 62° is obtained with a closed-loop bandwidth of 3 MHz  
and a 100-kΩ transimpedance gain.  
9.2.1.3 Application Curves  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
AOL  
1/b  
AOL  
b
AOL  
1/b  
AOLb  
-10  
100  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
100M  
100  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
100M  
D804  
D805  
9-13. Loop-Gain Magnitude vs Frequency for the  
Transimpedance Amplifier Circuit of 9-12  
9-14. Loop-Gain Phase vs Frequency for the  
Transimpedance Amplifier Circuit of 9-12  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: OPA810  
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
9.2.2 High-Z Input Data Acquisition Front-End  
An ideal data acquisition system must measure a parameter without altering the measurand. When measuring a  
voltage or current from sensors with a large output impedance, an extremely high input impedance front-end with  
a pA range bias current is needed. 9-15 shows an example circuit with the OPA810 used at the front-end. For  
systems with large input voltage attenuated with the MΩ range resistor divider, the OPA810 with its pA range  
bias currents adds negligible offset voltage and distortion because of the bias current induced resistor voltage  
drops. This circuit shows a funneling architecture with the OPA810 FET-input amplifier used as a unity-gain  
buffer, followed by attenuation to the ADS9110 5-V, full-scale input range and the ADC input drive using the  
THS4561 fully-differential amplifier (FDA). The THS4561 helps achieve better SNR and ENOB than a similar 5-V  
FDA, with a higher 12.6-V supply voltage and signal swings up to the ADC full-scale input range.  
As a result of the capacitive switching and current inrush on the ADC VREF input pin, a wide bandwidth amplifier  
such as the OPA837 is used with the OPA378 in a composite loop as a reference buffer. The OPA378, driven  
from the REF5050 5-V voltage reference, offers high precision and the OPA837 gives fast-settling performance  
for the ADC reference input drive. See the Reference Design Maximizing Signal Dynamic Range for True 10 Vpp  
Differential Input to 20 bit ADC design guide for more a detailed analysis of this high-Z front-end.  
CF  
12V  
RF  
œ
1.8V  
1.8V  
OPA810  
+
RG  
12V  
RS  
VIN+  
AVDD  
DVDD  
R
C
œ
-12V  
CCB  
ADS9110  
18-bit  
VOCM  
THS4561  
+
2 MSPS  
12V  
CCB  
RG  
VREF  
œ
-0.2V  
OPA810  
+
VIN-  
RF  
R  
R
C
R‘  
-12V  
5V  
CF  
5V  
œ
12V  
œ
OPA837  
+
OPA378  
+
REF5050  
5.0 V  
RFILT  
Reference  
CFILT  
9-15. High-Z Input Data Acquisition Front-End  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: OPA810  
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
9.2.3 Multichannel Sensor Interface  
High-Z input amplifiers are particularly useful when interfaced with sensors that have relatively high output  
impedance. Such multichannel systems usually interface these sensors with the signal chain through a  
multiplexer. 9-16 shows one such implementation using an amplifier for the interface with each sensor, and  
driving into an ADC through a multiplexer. An alternate circuit, shown in 9-17, can use a single higher GBWP  
and fast-settling amplifier at the output of the multiplexer. This architecture gives rise to large signal transients  
when switching between channels, where the settling performance of the amplifier and maximum allowed  
differential input voltage limits signal chain performance and amplifier reliability, respectively.  
+
+
MUX  
ADC  
+
9-16. Multichannel Sensor Interface Using Multiple Amplifiers  
OPA810  
-
ADC  
+
MUX  
9-17. Multichannel Sensor Interface Using a Single Higher GBWP Amplifier  
9-18 shows the output voltage and input differential voltage when a 8-V step is applied at the noninverting  
terminal of the OPA810 configured as a unity-gain buffer of 9-17.  
7.5  
5
2.5  
0
-2.5  
VIN  
VO  
VIN,Diff  
-5  
Time (10 ns/div)  
BD_M  
9-18. Large-Signal Transient Response Using the OPA810  
Because of the fast input transient, the amplifier is slew-limited and the inputs cease to track each other (a  
maximum VIN,Diff of 7 V is shown in 9-18) until the output reaches its final value and the negative feedback  
loop is closed. For standard amplifiers with a 0.7-V to 1.5-V maximum VIN,Diff rating, current-limiting resistors  
must be used in series with the input pins to protect the device from irreversible damage, which also limits the  
device frequency response. The OPA810 has built-in input clamps that allow the application of as much as 7 V of  
VIN,Diff, with no external resistors required and no damage to the device or a shift in performance specifications.  
Such an input-stage architecture, coupled with its fast settling performance, makes the OPA810 a good fit for  
multichannel sensor multiplexed systems.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: OPA810  
 
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
10 Power Supply Recommendations  
The OPA810 is intended for operation on supplies ranging from 4.75 V to 27 V. The OPA810 can be operated on  
single-sided supplies, split and balanced bipolar supplies, or unbalanced bipolar supplies. Operating from a  
single supply can have numerous advantages. With the negative supply at ground, the DC errors resulting from  
the PSRR term can be minimized. Typically, AC performance improves slightly at 10-V operation with minimal  
increase in supply current. Minimize the distance (< 0.1 in) from the power-supply pins to high-frequency, 0.01-  
µF decoupling capacitors. A larger capacitor (2.2 µF typical) is used along with a high-frequency, 0.01-µF,  
supply-decoupling capacitor at the device supply pins. For single-supply operation, only the positive supply has  
these capacitors. When a split supply is used, use these capacitors from each supply to ground. If necessary,  
place the larger capacitors further from the device and share these capacitors among several devices in the  
same area of the printed circuit board (PCB). An optional supply decoupling capacitor across the two power  
supplies (for split-supply operation) reduces second harmonic distortion.  
11 Layout  
11.1 Layout Guidelines  
Achieving optimum performance with a high-frequency amplifier such as the OPA810 requires careful attention  
to board layout parasitics and external component types. The OPA2810EVM can be used as a reference when  
designing the circuit board. Recommendations that optimize performance include:  
1. Minimize parasitic capacitance to any AC ground for all signal I/O pins. Parasitic capacitance on the output  
and inverting input pins can cause instabilityon the noninverting input, this capacitance can react with the  
source impedance to cause unintentional band-limiting. To reduce unwanted capacitance, open a window  
around the signal I/O pins in all ground and power planes around those pins. Otherwise, ground and power  
planes must be unbroken elsewhere on the board.  
2. Minimize the distance (< 0.1 in) from the power-supply pins to high-frequency, 0.01-µF decoupling  
capacitors. At the device pins, do not allow the ground and power plane layout to be in close proximity to the  
signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and the  
decoupling capacitors. The power-supply connections must always be decoupled with these capacitors.  
Larger (2.2-µF to 6.8-µF) decoupling capacitors, effective at lower frequency, must also be used on the  
supply pins. These capacitors can be placed somewhat farther from the device and shared among several  
devices in the same area of the PC board.  
3. Careful selection and placement of external components preserve the high-frequency performance of  
the OPA810. Resistors must be a low reactance type. Surface-mount resistors work best and allow a tighter  
overall layout. Metal film and carbon composition axially leaded resistors can also provide good high-  
frequency performance. Again, keep their leads and PCB trace length as short as possible. Never use  
wirewound type resistors in a high-frequency application. Because the output pin and inverting input pin are  
the most sensitive to parasitic capacitance, always position the feedback and series output resistor, if any, as  
close as possible to the output pin. Other network components, such as noninverting input termination  
resistors, must also be placed close to the package. Even with a low parasitic capacitance shunting the  
external resistors, excessively high resistor values can create significant time constants that can degrade  
performance. Good axial metal film or surface-mount resistors have approximately 0.2 pF in shunt with the  
resistor. For resistor values greater than 10 kΩ, this parasitic capacitance can add a pole or zero close to the  
GBWP of 70 MHz and subsequently affects circuit operation. Keep resistor values as low as possible and  
consistent with load driving considerations. Lowering the resistor values keeps the resistor noise terms low,  
and minimizes the effect of parasitic capacitance, however lower resistor values increase the dynamic power  
consumption because RF and RG become part of the amplifiers output load network. Transimpedance  
applications (see the 9.2.1 section) can use whatever feedback resistor is required by the application as  
long as the feedback compensation capacitor is set considering all parasitic capacitance terms on the  
inverting node.  
Copyright © 2020 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: OPA810  
 
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
4. Connections to other wideband devices on the board can be made with short direct traces or through  
onboard transmission lines. For short connections, consider the trace and the input to the next device as a  
lumped capacitive load. Relatively wide traces (50 mils to 100 mils) must be used, preferably with ground and  
power planes opened up around them. Estimate the total capacitive load and set RS for sufficient phase  
margin and stability. Low parasitic capacitive loads (< 10 pF) may not need an RS because the OPA810 is  
nominally compensated to operate with a 10-pF parasitic load. Higher parasitic capacitive loads without an  
RS are allowed with increase in signal gain (increasing the unloaded phase margin). If a long trace is  
required, and the 6-dB signal loss intrinsic to a doubly-terminated transmission line is acceptable, implement  
a matched impedance transmission line using microstrip or stripline techniques (consult an ECL design  
handbook for microstrip and stripline layout techniques). A 50-Ω environment is normally not necessary  
onboard, and a higher impedance environment improves distortion. With a characteristic board trace  
impedance defined based on board material and trace dimensions, a matching series resistor into the trace  
from the output of the OPA810 is used as well as a terminating shunt resistor at the input of the destination  
device. Remember also that the terminating impedance is the parallel combination of the shunt resistor and  
the input impedance of the destination devicethis total effective impedance must be set to match the trace  
impedance. If the 6-dB attenuation of a doubly-terminated transmission line is unacceptable, a long trace can  
be series-terminated at the source end only. Treat the trace as a capacitive load in this case and set the  
series resistor value to obtain sufficient phase margin and stability. This does not preserve signal integrity as  
well as a doubly-terminated line. If the input impedance of the destination device is low, the signal attenuates  
because of the voltage divider formed by the series output into the terminating impedance.  
5. Take care to design the PCB layout for optimal thermal dissipation. For the extreme case of 125°C  
operating ambient, using the approximate 134.8°C/W for the SOIC package, and an internal power of 24-V  
supply × 4.7-mA 125°C supply current gives a maximum internal power dissipation of 113 mW. This power  
gives a 15°C increase from ambient to junction temperature. Load power adds to this value and this  
dissipation must also be calculated to determine the worst-case safe operating point.  
6. Socketing a high-speed device such as the OPA810 is not recommended. The additional lead length  
and pin-to-pin capacitance introduced by the socket can create an extremely troublesome parasitic network  
that can almost make achieving a smooth, stable frequency response impossible. Best results are obtained  
by soldering the OPA810 onto the board.  
11.1.1 Thermal Considerations  
The OPA810 does not require heat sinking or airflow in most applications. Maximum allowed junction  
temperature sets the maximum allowed internal power dissipation. Do not allow the maximum junction  
temperature to exceed 150°C.  
Operating junction temperature (TJ) is given by TA + PD × θJA. The total internal power dissipation (PD) is the  
sum of quiescent power (PDQ) and additional power dissipated in the output stage (PDL) to deliver load power.  
Quiescent power is the specified no-load supply current times the total supply voltage across the part. P DL  
depends on the required output signal and load but would, for a grounded resistive load, be at a maximum when  
the output is fixed at a voltage equal to half of either supply voltage (for equal split-supplies). Under this  
condition PDL = VS 2 / (4 × RL) where RL includes feedback network loading.  
The power in the output stage and not into the load that determines internal power dissipation.  
As a worst-case example, compute the maximum TJ using a DCK (SC70 package) configured as a unity gain  
buffer, operating on ±12-V supplies at an ambient temperature of 25°C and driving a grounded 500-Ω load.  
PD = 24 V × 4.7 mA + 122 /(4 × 500 Ω) = 184.8 mW  
Maximum T J = 25°C + (0.185 W × 190.8°C/W) = 60°C, which is well below the maximum allowed junction  
temperature of 150oC.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: OPA810  
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
11.2 Layout Example  
VS+  
Representative schematic of a  
single channel  
CBYP  
RS  
+
œ
CBYP  
VS-  
RF  
RG  
Ground and power plane exist on  
inner layers.  
Ground and power plane removed  
from inner layers. Ground fill on  
outer layers also removed  
Remove GND and Power plane  
under output and inverting pins to  
minimize stray PCB capacitance  
1
8
7
CBYP  
RG  
Place bypass capacitors  
close to power pins  
Place input resistor close to pin 2 to  
minimize parasitic capacitance  
2
Place output resistors close to  
output pin to minimize  
parasitic capacitance  
RS  
Place feedback resistor on the  
bottom of PCB between pins 2 and 6  
3
6
5
Remove GND and Power plane  
under output and inverting pins to  
minimize stray PCB capacitance  
Place bypass capacitors  
close to power pins  
4
CBYP  
11-1. Layout Recommendation  
Copyright © 2020 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: OPA810  
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
12 Device and Documentation Support  
12.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, OPA2810 Dual-Channel, 27-V, Rail-to-Rail Input/Output FET-Input Operational Amplifier  
data sheet.  
Texas Instruments, ADS9110 18-Bit, 2-MSPS, 15-mW, SAR ADC With Enhanced Performance Features data  
sheet  
Texas Instruments, THS4561 Low-Power, High Supply Range, 70-MHz, Fully Differential Amplifier data sheet  
Texas Instruments, OPAx837 Low-Power, Precision, 105-MHz, Voltage-Feedback Op Amp data sheet  
Texas Instruments, OPAx378 Low-Noise, 900kHz, RRIO, Precision Operational Amplifier Zerø-Drift Series  
data sheet  
Texas Instruments, REF50xx Low-Noise, Very Low Drift, Precision Voltage Reference data sheet  
Texas Instruments, OPA2810DGK Evaluation Module user's guide  
Texas Instruments, Single-Supply Op Amp Design Techniques application report  
Texas Instruments, Transimpedance Considerations for High-Speed Amplifiers application report  
Texas Instruments, Blog: What you need to know about transimpedance amplifiers part 1  
Texas Instruments, Blog: What you need to know about transimpedance amplifiers part 2  
Texas Instruments, Noise Analysis for High-Speed Op Amps application report  
Texas Instruments, TINA model and simulation tool  
Texas Instruments, TIDA-01057 Reference Design Maximizing Signal Dynamic Range for True 10 Vpp  
Differential Input to 20 bit ADC  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: OPA810  
 
 
 
 
 
 
 
OPA810  
www.ti.com.cn  
ZHCSK40D AUGUST 2019 REVISED JULY 2020  
12.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: OPA810  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA810IDBVR  
OPA810IDBVT  
OPA810IDCKR  
OPA810IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
D
5
5
5
8
8
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1ZQ5  
1ZQ5  
1GG  
810  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
3000 RoHS & Green  
2500 RoHS & Green  
SOIC  
OPA810IDT  
SOIC  
D
250  
RoHS & Green  
810  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA810IDBVR  
OPA810IDBVT  
OPA810IDCKR  
OPA810IDR  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
D
5
5
5
8
8
3000  
250  
178.0  
178.0  
180.0  
330.0  
180.0  
9.0  
9.0  
3.3  
3.3  
3.2  
3.2  
2.3  
5.2  
5.2  
1.4  
1.4  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q1  
Q1  
3000  
2500  
250  
8.4  
2.47  
6.4  
1.25  
2.1  
8.0  
SOIC  
12.4  
12.4  
12.0  
12.0  
OPA810IDT  
SOIC  
D
6.4  
2.1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA810IDBVR  
OPA810IDBVT  
OPA810IDCKR  
OPA810IDR  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
D
5
5
5
8
8
3000  
250  
190.0  
190.0  
213.0  
356.0  
210.0  
190.0  
190.0  
191.0  
356.0  
185.0  
30.0  
30.0  
35.0  
35.0  
35.0  
3000  
2500  
250  
SOIC  
OPA810IDT  
SOIC  
D
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY