OPA817 [TI]

800MHz、高精度、单位增益稳定、FET 输入运算放大器;
OPA817
型号: OPA817
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

800MHz、高精度、单位增益稳定、FET 输入运算放大器

放大器 运算放大器
文件: 总29页 (文件大小:2664K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA817  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
OPA817 800MHz、高精度、单位增益稳定、FET 输入运算放大器  
1 特性  
3 说明  
• 高带宽:  
OPA817 是一款单位增益稳定的电压反馈运算放大器、  
适用于高速、高精度和宽动态范围的应用。  
– 增益带宽积400MHz  
– 带(G = 1V/V)800MHz  
– 大信号带(2VPP)250MHz  
– 压摆率1000V/µs  
OPA817 具有一个低噪声结型栅场效应管 (JFET) 输入  
该输入级具有 400MHz 的宽增益带宽和 6V 至  
12.6V 的电源电压范围。当在高速数字转换器、有源探  
头及其他测试和测量应用中用作高阻抗缓冲器时,  
1000V/µs 的快速压摆率可实现大信号宽带宽和低失  
真。  
• 高精度:  
– 输入失调电压250μV最大值)  
– 输入失调电压温漂3.5μV/°C最大值)  
• 输入电压噪声4.5nV/Hz  
• 输入偏置电流2pA  
• 低失真RL = 100ΩVO = 2VPP):  
10MHz HD2HD386dBc、–100dBc  
• 电源电压范围6V 12.6V  
• 电源电流23.5mA  
OPA817 ±250μV 超低输入失调电压和  
±3.5μV/°C 的失调电压温漂。皮安级输入偏置电流和  
低输入电压噪声 (4.5nV/Hz) 相结合使得 OPA817  
十分适合在光学测试和通信设备以及医疗和科学仪器中  
用作宽带跨阻放大器。  
OPA817 采用带有裸露散热垫的 8 引脚 WSON 封装。  
此器件可在 –40°C +105°C 的工业温度范围内正常  
运行。  
• 关断电流55µA  
• 性能提升OPA656  
2 应用  
封装信息(1)(2)  
高速数据采(DAQ)  
有源探头  
示波器  
封装尺寸标称值)  
器件型号  
OPA817  
封装  
DTKWSON83.00mm × 3.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
(2) 请参阅器件比较表。  
宽带跨阻放大(TIA)  
晶圆扫描设备  
光学通信模块  
光时域反射(OTDR)  
测试和测量前端  
医学和化学分析器  
.
.
.
.
.
RF1  
+5 V  
ADS4149  
ADC  
THS4541  
+
RG1  
OPA817  
+
Input  
VCM  
5 V  
RG2  
VREF  
RF2  
高输入阻抗数字转换器前端  
大信号频率响应  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS847  
 
 
 
 
 
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
Table of Contents  
9 Application and Implementation..................................17  
9.1 Application Information............................................. 17  
9.2 Typical Applications.................................................. 18  
10 Power Supply Recommendations..............................19  
11 Layout...........................................................................19  
11.1 Layout Guidelines................................................... 19  
11.2 Layout Example...................................................... 21  
12 Device and Documentation Support..........................22  
12.1 Device Support....................................................... 22  
12.2 Documentation Support.......................................... 22  
12.3 接收文档更新通知................................................... 22  
12.4 支持资源..................................................................22  
12.5 Trademarks.............................................................22  
12.6 Electrostatic Discharge Caution..............................22  
12.7 术语表..................................................................... 22  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................4  
7.5 Electrical Characteristics: VS = ±5 V...........................5  
7.6 Typical Characteristics: VS = ±5 V.............................. 8  
8 Detailed Description......................................................14  
8.1 Overview...................................................................14  
8.2 Functional Block Diagram.........................................14  
8.3 Feature Description...................................................14  
Information.................................................................... 22  
4 Revision History  
Changes from Revision * (July 2022) to Revision A (December 2022)  
Page  
• 将数据表的状态从预告信更改为“量产数据.............................................................................................. 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA817  
 
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
5 Device Comparison Table  
VOLTAGE NOISE (nV/√  
MINIMUM STABLE  
GAIN (V/V)  
DEVICE  
OPA817  
OPA818  
OPA657  
OPA656  
OPA659  
OPA858  
THS4631  
Supply Voltage (V) BW (MHz)  
Input  
FET  
SLEW RATE (V/μs)  
Hz)  
±6.3  
±6.5  
±5  
400  
2700  
1600  
230  
1000  
1400  
700  
4.5  
2.2  
4.8  
7
1
7
7
1
1
7
1
FET  
FET  
±5  
FET  
290  
±6  
350  
FET  
2550  
2000  
1000  
8.9  
2.5  
7
±2.5  
±15  
5500  
210  
CMOS  
FET  
6 Pin Configuration and Functions  
PD  
FB  
IN  
VS+  
1
2
3
4
8
7
6
OUT  
NC  
VS  
IN+  
5
+
Not to scale  
NC - no internal connection  
6-1. DTK Package, 8-Pin WSON With Thermal Pad (Top View)  
6-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
FB  
NO.  
2
O
I
Feedback resistor connection (optional)  
Inverting input  
3
IN–  
IN+  
4
I
Noninverting input  
NC  
6
No connect (no internal connection to die)  
Output of amplifier  
OUT  
7
O
Power down (low = amplifier enabled, high = amplifier disabled); internal 2-MΩpull-up allows floating  
this pin  
PD  
1
I
5
8
P
P
Negative power supply  
Positive power supply  
VS–  
VS+  
Electrically isolated from the die substrate. The thermal pad can be connected to any potential  
between the device power-supplies, but it is recommended to connect it to a heat-spreading plane,  
typically ground.  
Thermal pad  
(1) I = input, O = output, P = power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA817  
 
 
 
 
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
VS  
13  
1
Total supply voltage (VS+ VS–  
)
Maximum dVS/dT for supply turn-on and turn-off(2)  
V/µs  
V
VI  
VID  
II  
Input voltage  
VS–  
VS+  
±VS  
±10  
±30  
Differential input voltage  
V
Continuous input current  
mA  
mA  
IO  
Continuous output current(3)  
Continuous power dissipation  
Maximum junction temperature  
Operating free-air temperature  
Storage temperature  
See Thermal Information  
150  
TJ  
°C  
°C  
°C  
TA  
105  
125  
40  
65  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Staying below this specification ensures that the edge-triggered ESD absorption devices across the supply pins remain off  
(3) Long-term continuous current for electromigration limits.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
Electrostatic  
discharge  
V(ESD)  
V
Charged-device model (CDM), per ANSI/ESDA/JEDEC  
JS-002(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
6
NOM  
10  
MAX  
12.6  
105  
UNIT  
Total supply voltage  
Ambient temperature  
V
VS+ VS–  
TA  
25  
°C  
40  
7.4 Thermal Information  
OPA817  
THERMAL METRIC(1)  
DTK (WSON)  
8 PINS  
64.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
53.0  
32.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.3  
ΨJT  
YJB  
32.8  
RθJC(bot)  
9.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA817  
 
 
 
 
 
 
 
 
 
 
 
 
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
7.5 Electrical Characteristics: VS = ±5 V  
At G = 1 V/V, RF = 0, RF = 250 Ωfor other gains, RL = 100 Ω, input and output referenced to mid-supply, and TA 25°C  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
VOUT = 200 mVPP  
800  
400  
100  
40  
VOUT = 200 mVPP, G = 2 V/V  
VOUT = 200 mVPP, G = 5 V/V  
VOUT = 200 mVPP, G = 10 V/V  
VOUT = 200 mVPP, G = 100 V/V  
VOUT = 2 VPP  
SSBW  
Small-signal bandwidth  
MHz  
GBWP  
LSBW  
Gain-bandwidth product  
Large-signal bandwidth  
400  
250  
140  
100  
1000  
750  
0.7  
MHz  
MHz  
MHz  
V/µs  
VOUT = 4 VPP  
Bandwidth for 0.1-dB flatness  
Slew rate (10% to 90%)  
Slew rate (10% to 90%)  
Rise, fall time  
VOUT = 2 VPP  
VOUT = 4V step  
SR  
VOUT = 1V step, Gain = 2 V/V  
VOUT = 200mV step  
VOUT = 2V step  
tR, tF  
ns  
ns  
%
Settling time to 0.1%,  
6
Overshoot and undershoot  
Output Overdrive recovery time  
8
VOUT = 2V step  
VOUT = VSto VS+, G = 2 V/V,  
f = 1 MHz, VOUT = 2 VPP  
f = 10 MHz, VOUT = 2 VPP  
f = 50 MHz, VOUT = 2 VPP  
15  
ns  
110  
86  
76  
97  
120  
100  
68  
102  
4.5  
HD2  
Second-order harmonic distortion  
Third-order harmonic distortion  
dBc  
dBc  
f = 10 MHz, VOUT = 2 VPP, RL = 1 kΩ  
f = 1 MHz, VOUT = 2 VPP  
f = 10 MHz, VOUT = 2 VPP  
f = 50 MHz, VOUT = 2 VPP  
f = 10 MHz, VOUT = 2 VPP, RL = 1 kΩ  
f 200 kHz  
HD3  
eN  
Input voltage noise  
nV/Hz  
kHz  
Voltage noise 1/f corner frequency  
Input current noise  
2.6  
18  
fA/Hz  
DC PERFORMANCE  
VOUT = ±1 V  
78  
72  
69  
85  
50  
AOL  
Open-loop voltage gain  
TA = 40°C to +85°C  
TA = 40°C to +105°C  
dB  
±250  
±500  
±600  
±3.5  
VOS  
Input-referred offset voltage  
Input offset voltage drift  
Input bias current  
TA = 40°C to +85°C  
TA = 40°C to +105°C  
TA = 40°C to +85°C  
TA = 40°C to +105°C  
µV  
µV/°C  
pA  
1
1
2
±3.5  
±20  
±1000  
±1500  
±20  
IB  
TA = 40°C to +85°C  
TA = 40°C to +105°C  
1
±500  
±750  
IOS  
Input offset current  
TA = 40°C to +85°C  
TA = 40°C to +105°C  
pA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA817  
 
 
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
7.5 Electrical Characteristics: VS = ±5 V (continued)  
At G = 1 V/V, RF = 0, RF = 250 Ωfor other gains, RL = 100 Ω, input and output referenced to mid-supply, and TA 25°C  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Device turned OFF, OUT to FB pin  
resistance  
Internal feedback trace resistance  
0.7  
Ω
INPUT  
2.1  
2.0  
2.0  
2.7  
-3.9  
110  
Most positive input voltage(1)  
Most negative input voltage(1)  
Common-mode rejection ratio  
TA = 40°C to +85°C  
TA = 40°C to +105°C  
V
V
-3.5  
-3.4  
-3.4  
TA = 40°C to +85°C  
TA = 40°C to +105°C  
VCM = ±0.5 V  
84  
83  
82  
CMRR  
TA = 40°C to 85°C  
TA = 40°C to 105°C  
dB  
Input impedance common-mode  
Input capacitance differential mode  
60 || 2.9  
0.1  
GΩ|| pF  
pF  
OUTPUT  
no-load  
-3.9  
-3.7  
-3.6  
-3.4  
-3.3  
-3.2  
RL = 100 Ω  
VOL  
Output voltage, low  
V
TA = 40°C to +85°C  
TA = 40°C to +105°C  
no-load  
3.7  
3.4  
3.9  
3.7  
RL = 100 Ω  
VOH  
Output voltage, high  
V
3.3  
TA = 40°C to +85°C  
TA = 40°C to +105°C,  
VOUT = ±1 V, ΔVOS < 2 mV  
TA = 40 to 85°C, ΔVOS < 3 mV  
TA = 40 to 105°C, ΔVOS < 3 mV  
3.2  
±58  
±40  
±35  
80  
Linear output drive (sourcing/sinking)  
mA  
Short-circuit current  
±100  
0.04  
mA  
ZO  
Closed loop output Impedance  
f = 100 kHz  
POWER SUPPLY  
23.5  
100  
100  
24.5  
24.7  
24.9  
IQ  
Quiescent current  
TA = 40°C to +85°C  
TA = 40°C to +105°C  
ΔVS+ = ±0.5 V  
mA  
dB  
dB  
80  
77  
76  
80  
77  
76  
PSRR+ Power-supply rejection ratio  
TA = 40°C to +85°C  
TA = 40°C to +105°C  
ΔVS- = ±0.5 V,  
PSRR-  
Power-supply rejection ratio  
TA = 40°C to +85°C  
TA = 40°C to +105°C  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA817  
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
7.5 Electrical Characteristics: VS = ±5 V (continued)  
At G = 1 V/V, RF = 0, RF = 250 Ωfor other gains, RL = 100 Ω, input and output referenced to mid-supply, and TA 25°C  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER DOWN  
Enable voltage threshold  
Disable voltage threshold  
Power-down quiescent current  
4
V
V
Specified on above (VS+) 1 V  
Specified off below (VS+) 3 V  
PD (VS+) 3V  
2
55  
9
100  
12  
uA  
Power-down pin bias current in shutdown  
mode  
uA  
uA  
µs  
PD = 0 V to (VS+) 3 V  
Power-down pin bias current in active  
mode  
0.5  
0.3  
1
PD = (VS+) 1 V to (VS+  
)
Time from PD voltage exceeds threshold  
to VOUT = 90% of final value, VIN = 1V  
Turn-on time delay  
Turn-off time delay  
Time from PD voltage reduces below  
threshold to IQ = 10% of active mode  
value  
0.1  
µs  
(1) Input range for CMRR > 77-dB.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA817  
 
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
7.6 Typical Characteristics: VS = ±5 V  
At G = 1 V/V, RF = 0 Ω, RF = 250 Ωfor other gains, RL = 100 Ω, input and output referenced to mid-supply, and TA 25°C  
(unless otherwise noted).  
6
3
6
3
0
0
-3  
-3  
-6  
-6  
-9  
-9  
G = 1 V/V  
G = 2 V/V  
G = 5 V/V  
G = 10 V/V  
G = 1 V/V  
G = 2 V/V  
G = 5 V/V  
-12  
-12  
-15  
-15  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
VOUT = 200 mVPP  
VOUT = 200 mVPP  
7-1. Noninverting Small-Signal Frequency Response  
7-2. Inverting Small-Signal Frequency Response  
3
2
1.5  
1
0
-3  
-6  
0.5  
0
-0.5  
-1  
-9  
-1.5  
VOUT = 0.5 VPP  
VOUT = 1 VPP  
VOUT = 2 VPP  
VOUT = 4 VPP  
VOUT = 0.5 VPP  
-2  
VOUT = 1 VPP  
VOUT = 2 VPP  
VOUT = 4 VPP  
-12  
-2.5  
-3  
100k  
-15  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1G  
1M  
10M  
100M  
1G  
Frequency (Hz)  
.
.
7-4. Gain Flatness vs Frequency  
7-3. Noninverting Large-Signal Frequency Response  
6
3
3
0
0
-3  
-3  
-6  
-6  
-9  
G = 5 V/V  
G = 1 V/V  
G = 1 V/V  
-9  
VOUT = 0.5 VPP  
VOUT = 1 VPP  
VOUT = 2 VPP  
-12  
-12  
G = 2 V/V  
VOUT = 4 VPP  
G = 10 V/V  
-15  
100k  
-15  
100k  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
G = 1 V/V  
VOUT = 2 VPP  
7-5. Inverting Large-Signal Frequency Response  
7-6. Large-Signal Frequency Response Over Gain  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA817  
 
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
7.6 Typical Characteristics: VS = ±5 V (continued)  
At G = 1 V/V, RF = 0 Ω, RF = 250 Ωfor other gains, RL = 100 Ω, input and output referenced to mid-supply, and TA 25°C  
(unless otherwise noted).  
1.4  
1.2  
1
3
0
0.8  
0.6  
0.4  
0.2  
0
-3  
-6  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-9  
VS = 6.5 V  
VS = 8 V  
VS = 10 V  
VS = 12 V  
-12  
VOUT = 400 mV-step  
VOUT = 2 V-step  
-1.2  
-1.4  
-15  
100k  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
1M  
10M  
Frequency (Hz)  
100M  
1G  
Time (ns)  
.
VOUT = 200 mVPP  
7-8. Noninverting Large-Signal Pulse Response  
7-7. Noninverting Small-Signal Frequency Response Over  
Supply  
1.4  
1.2  
1
-60  
HD2  
HD3  
-65  
-70  
0.8  
0.6  
0.4  
0.2  
0
-75  
-80  
-85  
-0.2  
-0.4  
-0.6  
-0.8  
-90  
-95  
-100  
-105  
-110  
-1  
VOUT = 400 mV-step  
VOUT = 2 V-step  
-1.2  
-1.4  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
100  
1k  
Time (ns)  
Load Resistance ()  
G = 1 V/V  
f = 10 MHz  
VOUT = 2 VPP  
7-9. Inverting Large-Signal Pulse Response  
7-10. Harmonic Distortion vs Load Resistance  
-40  
-50  
-30  
-40  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-100  
-110  
-120  
-130  
-140  
HD2  
HD3  
HD2  
HD3  
100k  
1M  
10M  
100M  
1
5
Frequency (Hz)  
VOUT = 2 VPP  
Output Voltage (VPP  
)
f = 10 MHz  
7-12. Harmonic Distortion vs Frequency  
7-11. Harmonic Distortion vs Output Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA817  
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
7.6 Typical Characteristics: VS = ±5 V (continued)  
At G = 1 V/V, RF = 0 Ω, RF = 250 Ωfor other gains, RL = 100 Ω, input and output referenced to mid-supply, and TA 25°C  
(unless otherwise noted).  
-60  
-65  
-60  
-65  
-70  
-70  
-75  
-75  
-80  
-80  
-85  
-85  
-90  
-90  
-95  
-95  
-100  
-105  
-110  
-100  
-105  
-110  
HD2  
HD3  
HD2  
HD3  
1
10  
1
5
Noninverting Gain (V/V)  
VOUT = 2 VPP  
Inverting Gain (V/V)  
VOUT = 2 VPP  
f = 10 MHz  
f = 10 MHz  
7-13. Harmonic Distortion vs Noninverting Gain  
7-14. Harmonic Distortion vs Inverting Gain  
-60  
100  
70  
HD2  
HD3  
-70  
-80  
50  
30  
20  
-90  
10  
7
-100  
-110  
-120  
-130  
5
3
2
1
6
7
8
9
10  
11  
12  
10  
100  
1k  
10k  
100k  
1M  
Total Supply Voltage (V)  
Frequency (Hz)  
f = 10 MHz  
VOUT = 2 VPP  
.
7-15. Harmonic Distortion vs Supply Voltage  
7-16. Voltage Noise Density vs Frequency  
10k  
1k  
-50  
-60  
2 MHz  
5 MHz  
10 MHz  
17 MHz  
-70  
-80  
100  
10  
1
-90  
-100  
-110  
-120  
10k  
100k  
.
1M  
10M  
100M  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
Frequency (Hz)  
Single-Tone Load Power (dBm)  
.
7-17. Current Noise Density vs Frequency  
7-18. Intermodulation Distortion vs Load Power  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA817  
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
7.6 Typical Characteristics: VS = ±5 V (continued)  
At G = 1 V/V, RF = 0 Ω, RF = 250 Ωfor other gains, RL = 100 Ω, input and output referenced to mid-supply, and TA 25°C  
(unless otherwise noted).  
120  
110  
100  
90  
15  
AOL Magnitude (dB)  
AOL Phase ()  
0
-15  
-30  
80  
-45  
70  
-60  
60  
-75  
50  
-90  
40  
-105  
-120  
-135  
-150  
-165  
-180  
-195  
30  
20  
10  
0
-10  
-20  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
.
7-20. Open-Loop Gain Magnitude and Phase vs Frequency  
.
7-19. Common-Mode and Power-Supply Rejection Ratio vs  
Frequency  
3
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-3  
-6  
-9  
CL = 10 pF, RISO = 33  
CL = 20 pF, RISO = 22   
CL = 33 pF, RISO = 15   
CL = 100 pF, RISO = 8.6   
-12  
-15  
2
10  
100  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1G  
Load Capacitance (pF)  
.
VOUT = 200 mVPP  
7-22. Recommended Isolation Resistor vs Capacitive Load  
7-21. Frequency Response vs Capacitive Load  
25  
5
4
3
2
24.5  
24  
1
TA = 40C  
TA = 25C  
23.5  
23  
0
TA = 85C  
TA = 105C  
-1  
-2  
-3  
-4  
-5  
40C  
22.5  
22  
25C  
105C  
5
6
7
8
9
10  
11  
12  
13  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Supply Voltage (V)  
Output Current (mA)  
.
.
7-23. Quiescent Current vs Voltage Supply Over Temperature  
7-24. Output Voltage vs Output Current Over Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA817  
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
7.6 Typical Characteristics: VS = ±5 V (continued)  
At G = 1 V/V, RF = 0 Ω, RF = 250 Ωfor other gains, RL = 100 Ω, input and output referenced to mid-supply, and TA 25°C  
(unless otherwise noted).  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
-50  
-100  
-150  
-200  
-250  
-300  
0
-40  
-20  
0
20  
40  
60  
80  
100  
Ambient Temperature (C)  
Input offset voltage (V)  
40 units, delta from 25°C  
4000 units, μ= 40 μV, σ= 60 μV  
7-25. Input Offset Voltage vs Temperature  
7-26. Input Offset Voltage Histogram  
18  
16  
14  
12  
10  
8
600  
500  
400  
300  
200  
100  
0
-100  
-200  
-300  
-400  
-500  
-600  
6
4
40C  
25C  
105C  
2
0
-4 -3.2 -2.4 -1.6 -0.8  
0
0.8 1.6 2.4 3.2  
4
Common-Mode Voltage (V)  
Input offset voltage drift (V/C)  
.
40 units, μ= 1.2 μV/°C, σ= 0.5 μV/°C  
7-28. Input Offset Voltage vs Common-Mode Voltage Over  
7-27. Input Offset Voltage Drift Histogram  
Temperature  
50  
0
30  
25  
20  
15  
10  
5
-50  
0
-5  
-100  
-150  
-200  
-10  
-15  
-20  
-25  
-30  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ambient Temperature (C)  
Ambient Temperature (C)  
40 units  
40 units  
7-29. Input Bias Current vs Temperature  
7-30. Input Offset Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA817  
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
7.6 Typical Characteristics: VS = ±5 V (continued)  
At G = 1 V/V, RF = 0 Ω, RF = 250 Ωfor other gains, RL = 100 Ω, input and output referenced to mid-supply, and TA 25°C  
(unless otherwise noted).  
100  
50  
10  
8
0
6
-50  
4
-100  
-150  
-200  
-250  
-300  
-350  
-400  
-450  
-500  
2
0
-2  
-4  
-6  
-8  
-10  
40C  
25C  
85C  
Input x 2  
Output  
105C  
-4  
-3  
-2  
.
-1  
0
1
2
3
4
0
50  
100  
150  
200  
Time (ns)  
250  
300  
350  
400  
Common-Mode Voltage (V)  
G = 2 V/V  
7-31. Input Bias Current vs Common-Mode Voltage Over  
7-32. Noninverting Output Overdrive Recovery  
Temperature  
6
5
2
6
Input x 1  
Output  
5
1.5  
4
3
2
4
1
3
0.5  
0
1
0
2
-1  
-2  
-3  
-4  
-5  
-6  
1
-0.5  
-1  
0
PD  
VOUT  
-1  
-1.5  
4.5  
0
0.5  
1
1.5  
2
2.5  
Time (s)  
3
3.5  
4
0
50  
100  
150  
200  
Time (ns)  
250  
300  
350  
400  
.
G = 1 V/V  
7-34. Turn-On and Turn-Off Waveform  
7-33. Inverting Output Overdrive Recovery  
10k  
ZOL  
ZCL  
10  
1k  
100  
10  
1
0.1  
0.01  
0.001  
1
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
.
7-35. Open-Loop and Closed-Loop Output Impedance vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA817  
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
8 Detailed Description  
8.1 Overview  
The OPA817 is a high voltage, unity gain stable, 400 MHz gain-bandwidth product (GBWP), voltage feedback  
operational amplifier (op amp) featuring a 4.5 nV/Hz low noise JFET input stage. The low offset voltage (250  
μV maximum), offset voltage drift (3.5 μV/°C maximum), and unity gain bandwidth of 800 MHz makes it ideal  
for high input impedance, high-speed data acquisition front-ends. The high voltage capability combined with  
1000 V/µs slew rate enables applications needing wide output swings (9 VPP at VS = 12 V) for high-frequency  
signals such as those often found in medical instrumentation, optical front-end, test, and measurement  
applications. The low noise JFET input with pico-amperes of bias current makes the device attractive in high-  
gain TIA applications and in test and measurement front-ends. OPA817 also features a power-down mode that  
disables the core amplifier for power savings.  
The OPA817 is built using TI's proprietary high-voltage, high-speed, complementary bipolar SiGe process.  
8.2 Functional Block Diagram  
The OPA817 is a conventional voltage feedback op amp with two high-impedance inputs and a low-impedance  
output. 8-1 and 8-2 shows two standard amplifier configuration examples that are supported for this device.  
The reference voltage (VREF) level shifts the DC operating point for each configuration, which is typically set to  
mid-supply in single-supply operation. VREF is typically set to ground in split-supply applications.  
VS+  
VSIG  
œ(RF / RG) × VSIG  
VS+  
VREF  
+
VSIG  
(1 + RF / RG) × VSIG  
VREF  
VREF  
VOUT  
VREF  
VIN  
+
VREF  
VIN  
œ
VOUT  
RG  
œ
VSœ  
RF  
RG  
VSœ  
RF  
VREF  
8-2. Inverting Amplifier  
8-1. Noninverting Amplifier  
8.3 Feature Description  
8.3.1 Input and ESD Protection  
The OPA817 is built using a very high-speed complementary bipolar process. The internal junction breakdown  
voltages are relatively low for these very small geometry devices. These breakdowns are reflected in the  
Absolute Maximum Ratings. As 8-3 shows, all device pins are protected with internal ESD protection diodes  
to the power supplies.  
The diodes provide moderate protection to input overdrive voltages beyond the supplies as well. The protection  
diodes can typically support a 10-mA continuous current. Where higher currents are possible (for example, in  
systems with ±12-V supply parts driving into the OPA817), current limiting series resistors should be added in  
series with the two inputs to limit the current. Keep these resistor values as low as possible because high values  
degrade both noise performance and frequency response. There are no back-to-back ESD diodes between VIN+  
and VIN. As a result, the differential input voltage between VIN+ and VINis entirely absorbed by the VGS of the  
input JFET differential pair and must not exceed the voltage ratings shown in the Absolute Maximum Ratings.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA817  
 
 
 
 
 
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
VS+  
PD  
VIN+  
Power Supply  
ESD Cell  
Internal  
Circuitry  
VOUT  
VIN  
FB  
VS  
8-3. Internal ESD Protection  
8.3.2 Feedback Pin  
For high speed analog design, minimizing parasitic capacitances and inductances is critical to get the best  
performance from a high-speed amplifier such as the OPA817. Parasitic capacitance and inductance are  
especially detrimental in the feedback path and at the inverting input. They result in undesired poles and zeroes  
in the feedback that could result in reduced phase margin or instability. Techniques used to correct this phase  
margin reduction often result in reduced application bandwidth. To keep system engineers from making these  
tradeoff choices and to simplify the PCB layout, OPA817 features an FB pin on the same side as the inverting  
input pin (IN). 8-4 shows how this feature allows for a very short feedback resistor (RF) connection between  
the FB and the INpin, which minimizes parasitic capacitance and inductance with minimal PCB design effort.  
Internally the FB pin is connected to OUT pin through metal routing on the silicon. Due to the fixed metal sizing  
of this connection, the FB pin has limited current carrying capability. Therefore, the specifications in the Absolute  
Maximum Ratings section must be adhered to for continuous operation. For applications requiring high accuracy,  
the metal routing resistance from OUT to FB can be considered and added to RF to set the desired gain. For  
more information, see 7.5.  
PD  
FB  
VS+  
OUT  
NC  
1
2
3
4
8
7
6
5
RF  
INÞ  
Þ
VSÞ  
IN+  
+
8-4. RF Connection Between FB and INPins  
8.3.3 FET-Input Architecture with Wide Gain-Bandwidth Product  
8-5 shows the open-loop gain and phase response of the OPA817. The GBWP of an op amp is measured in  
the 20 dB/decade constant slope region of the AOL magnitude plot. The open-loop gain of 60 dB for the OPA817  
is along this 20 dB/decade slope and the corresponding frequency intercept is at 400 kHz. Converting 60 dB to  
linear units (1000 V/V) and multiplying it with the 400 kHz frequency intercept gives the GBWP of OPA817 as  
400 MHz. As can be inferred from the AOL Bode plot, the second pole in the AOL response occurs after AOL  
magnitude drops below 0 dB (1 V/V). This results in phase change of less than 180° at 0 dB AOL indicating that  
the amplifier will be stable in a gain of 1 V/V. Amplifiers like OPA817 that are JFET-input, low noise and unity-  
gain stable can be used as high input impedance buffers and gain stages with minimal degradation in SNR. It  
has 800 MHz of SSBW in gain of 1V/V configuration with approximately 55° phase margin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA817  
 
 
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
The low input offset voltage and offset voltage drift of OPA817 makes it a very suitable amplifier for high  
precision, high input impedance, wideband data acquisition system front-ends. As 9-2 shows, the system  
benefits from the low noise JFET input stage with pico-amperes of input bias current to achieve higher precision  
at 1-MΩ input impedance settings and higher SNR at 50-Ω input impedance setting simultaneously in a typical  
data acquisition front-end circuit.  
120  
110  
100  
90  
15  
120  
110  
100  
90  
AOL Magnitude (dB)  
AOL Phase ()  
0
TA = 40C  
TA = 25 C  
TA = 105 C  
-15  
-30  
80  
80  
-45  
70  
70  
-60  
60  
60  
-75  
50  
50  
-90  
40  
30  
20  
10  
40  
-105  
-120  
-135  
-150  
-165  
-180  
-195  
30  
20  
10  
0
0
-10  
-20  
-30  
-40  
-10  
-20  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
RL = 100 Ω  
Frequency (Hz)  
RL = 100 Ω  
8-5. Open-Loop Gain Magnitude and Phase Vs  
Frequency  
8-6. Open-Loop Gain Magnitude vs Temperature  
8.3.4 Device Functional Modes  
8.3.4.1 Power-Down (PD) Pin  
The OPA817 includes a power-down mode for low-power or standby operation and only consumes 55 μA  
(typical) of current when placed in power-down mode. Low-power systems that are only active for small periods  
of time benefit from this feature. The OPA817 can transition from low-power mode to active-mode in 300 ns  
(typical). For power-down pin control thresholds, refer to 7.5. An internal pull-up resistor of 2-MΩ provides a  
weak pull-up to VS+ if PD is left unconnected. An external 1-nF capacitor to VS+ may be used to avoid external  
noise coupling and false triggering. If the power-down mode is not used in an application, then connect the PD  
pin to VS+.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA817  
 
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
9.1.1 Wideband, High-Input Impedance DAQ Front-End  
The OPA817 features a unique combination of high GBWP, low-input voltage noise, and the DC precision of a  
trimmed JFET-input stage to provide a high input impedance for a voltage-feedback amplifier. 9-2 shows how  
its very high GBWP of 400 MHz and high large signal bandwidth of 250 Mhz can be used to either deliver wide  
signal bandwidths at high gains or to extend the achievable bandwidth or gain in typical high-speed, high-input  
impedance data acquisition front-end applications. To achieve the full performance of the OPA817, careful  
attention to the printed circuit board (PCB) layout and component selection is required as discussed in the  
following sections of this data sheet. OPA817 also features a wider supply range thereby enabling a wider  
common-mode input range to support higher input signal swings.  
9-1 shows the noninverting gain of +2 V/V circuit used as the basis for most of the Typical Characteristics.  
Most of the curves were characterized using signal sources with 50-Ω driving impedance, and with  
measurement equipment presenting a 50-Ω load impedance. As 9-1 shows, the 49.9-Ω shunt resistor at the  
VIN terminal matches the source impedance of the test generator, while the 49.9-Ω series resistor at the VO  
terminal provides a matching resistor for the measurement equipment load. Generally, data sheet voltage swing  
specifications are at the output pin (VO in 9-1) while output power specifications are at the matched 50-Ω  
load. As shown in 9-1, the total 100-Ω load at the output combined with the 250-Ω total feedback network  
load presents the OPA817 with an effective output load of 83.3 Ωfor the circuit.  
+5 V  
+5 V  
0.01 μF  
0.22 μF  
0.22 μF  
0.01 μF  
50 Source  
VIN  
50 Load  
OPA817  
To FDA or VGA  
+
+
VOUT  
VO  
VIN  
50  
49.9  
49.9  
1 M  
0.01 μF  
0.22 μF  
0.22 μF  
0.01 μF  
–5 V  
–5 V  
9-2. High Input Impedance DAQ Front-End  
RG  
250  
RF  
250  
9-1. Noninverting G = +2 V/V Configuration and  
Test Circuit  
Voltage-feedback operational amplifiers, unlike current feedback amplifiers, can use a wide range of resistor  
values to set their gain. As 9-1 shows, the parallel combination of RF || RG should always be kept to a lower  
value to retain a controlled frequency response for the noninverting voltage amplifier. In the noninverting  
configuration, the parallel combination of RF || RG will form a pole with the parasitic input capacitance at the  
inverting node of the OPA817 (including layout parasitic capacitance). For best performance, this pole should be  
at a frequency greater than the closed loop bandwidth for the OPA817.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA817  
 
 
 
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
9.2 Typical Applications  
9.2.1 High Input Impedance, 200 MHz, Digitizer Front-End Amplifier Design  
The OPA817 offers a wide large-signal bandwidth, high-slew rate along with high-input impedance making it  
ideal for data acquisition systems. The trimmed DC precision of the OPA817 enables its use directly as front-end  
amplifier where low offset and offset voltage drift is needed.  
+5 V  
0.01 μF  
0.22 μF  
VIN  
RS  
OPA817  
+
VOUT  
900 k  
100 k  
50  
0.01 μF  
0.22 μF  
100  
To FDA or VGA  
–5 V  
9-3. High Input Impedance, 200 MHz, Digitizer Front-End Amplifier  
9.2.2 Design Requirements  
9-1 lists the design requirements for a High Input Impedance, 200 MHz, Digitizer Front-End Amplifier.  
9-1. Design Requirements  
Specification  
Value  
Input Impedance  
1 MΩ/ 50Ω  
20 VPP / 2 VPP  
3.5 µV/°C maximum  
80 µVRMS  
Input Range (1 MΩ/ 50 Ω)  
Offset Drift  
Noise at Highest Resolution (50 ΩInput)  
9.2.3 Detailed Design Procedure  
Input Impedance: The JFET-input stage of the OPA817 offers giga ohm's of input impedance and therefore  
enables the front-end to be terminated with a 1 MΩresistor while achieving excellent precision. A 50 Ω  
resistance can also be switched in offering matched termination for high-frequency signals. The OPA817  
therefore enables the designer to use both 1 MΩand 50 Ωtermination in the same signal chain.  
Noise: The total noise of the front-end amplifier is the function of the voltage and current noise of the  
OPA817, input termination, and the resistors thermal noise. In 50 Ωmode, the dominant noise source,  
however, is contributed by the voltage noise of the OPA817 due to its presence across the complete  
bandwidth. Thus, the total RMS noise of the front-end amplifier shall be approximately equal to the voltage  
noise of OPA817 over 200 MHz.  
The specified input referred voltage noise of the OPA817 is 4.5 nV/Hz; for more information see 7.5. The  
total integrated RMS noise at the input in a bandwidth of 200 MHz is given by the following equation:  
EnRMS = 4.5 nV/Hz × (200 MHz × 1.57) = 80 µVRMS  
.
(1)  
The Brickwall correction factor of 1.57 is applied assuming the bandwidth will be limited to 200 MHz with a  
single pole RC-filter before digitizing the signal with the ADC. Detailed calculations can be found on TI  
Precision Labs Op Amps: Noise Spectral Density.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA817  
 
 
 
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
Optimizing Overshoot: The OPA817 features an internal slew-boost circuit to deliver fast rise-time in  
applications needing high slew rates such as when configured as a transimpedance amplifier. For  
applications where overshoot needs to be limited, the input slew rates can be limited with introducing a series  
resistance (RS) as shown in 9-3. The resistance RS forms a low pass filter with the input capacitance of  
approximately 2.6 pF at the noninverting pin of the OPA817 limiting the input slew rate to the amplifier. 9-4  
shows how limiting the input slew rate to the amplifier results in good overshoot performance, and 9-5  
shows how this achieves a small signal and large signal bandwidth of 200 MHz.  
9.2.4 Application Curves  
1
0.8  
0.6  
0.4  
0.2  
0
3
0
-3  
-6  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-9  
VIN = 0.5 V-step  
VOUT, RS = 0   
-12  
VOUT = 100 mVPP  
VOUT = 1 VPP  
VOUT, RS = 250   
-15  
100k  
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40  
1M  
10M  
Frequency (Hz)  
100M  
1G  
D106  
D105  
Time (ns)  
9-4. Step Response of Digitizer Front-End  
9-5. Frequency Response for RS = 250 Ω  
10 Power Supply Recommendations  
The OPA817 is intended to operate on supplies ranging from 6 V to 12.6 V. OPA817 supports single-supply, split,  
balanced, and unbalanced bipolar supplies. When operating at supplies below 8 V, consideration must be given  
to the input common-mode range of the amplifier. Under these supply conditions, the common-mode must be  
biased appropriately for linear operation. Thus, the limit to lower supply voltage operation is the usable input  
voltage range for the JFET-input stage.  
11 Layout  
11.1 Layout Guidelines  
Achieving optimum performance with a high-frequency amplifier like the OPA817 requires careful attention to  
board layout parasitics and external component types. Recommendations that will optimize performance include  
the following:  
1. Minimize parasitic capacitance to any ac ground for all of the signal I/O pins. Parasitic capacitance on  
the output and inverting input pins can cause instability. On the noninverting input, parasitic capacitance can  
react with the source impedance to cause unintentional bandlimiting. Ground and power metal planes act as  
one of the plates of a capacitor while the signal trace metal acts as the other separated by PCB dielectric. To  
reduce this unwanted capacitance, care must be taken to minimize the routing of the feedback network. A  
plane cutout around and underneath the inverting input pin on all ground and power planes is recommended.  
Otherwise, ground and power planes should be unbroken elsewhere on the board.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA817  
 
 
 
 
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
2. Minimize the distance (less than 0.25-in) from the power-supply pins to high-frequency decoupling  
capacitors. Use high quality, 100-pF to 0.1-µF, C0G and NPO-type decoupling capacitors with voltage  
ratings at least three times greater than the amplifiers maximum power supplies to ensure that there is a low-  
impedance path to the amplifiers power-supply pins across the amplifiers gain bandwidth specification. At  
the device pins, do not allow the ground and power plane layout to be in close proximity to the signal I/O  
pins. Avoid narrow power and ground traces to minimize inductance between the pins and the decoupling  
capacitors. Larger (2.2-µF to 6.8-µF) decoupling capacitors, effective at lower frequency, must be used on  
the supply pins. These can be placed further from the device and are shared among several devices in the  
same area of the PC board.  
3. Careful selection and placement of external components will preserve the high frequency  
performance of the OPA817. Use low-reactance resistors. Surface-mount resistors work best and allow a  
tighter overall layout. Never use wirewound type resistors in a high frequency application. Because the  
output pin and inverting input pin are the most sensitive to parasitic capacitance, always position the  
feedback and series output resistor, if any, as close as possible to the inverting input and the output pin,  
respectively.  
Other network components, such as noninverting input termination resistors, should also be placed close to  
the package. Even with a low parasitic capacitance at the noninverting input, high external resistor values  
can create significant time constants that can degrade performance. When OPA817 is configured as a  
conventional voltage amplifier, keep the resistor values as low as possible and consistent with the load  
driving considerations. Decreasing the resistor values keeps the resistor noise terms low and minimizes the  
effect of the parasitic capacitance. However, lower resistor values increase the dynamic power consumption  
because RF and RG become part of the output load network of the amplifier.  
4. Heat dissipation is important for a high voltage device like OPA817. For good thermal relief, the thermal  
pad should be connected to a heat spreading plane that is preferably on the same layer as OPA817 or  
connected by as many vias as possible, if the plane is on a different layer. It is recommended to have at  
least one heat spreading plane on the same layer as the OPA817 that makes a direct connection to the  
thermal pad with wide metal for good thermal conduction when operating at high ambient temperatures. If  
more than one heat spreading plane is available, then connect them by a number of vias to further improve  
the thermal conduction.  
11.1.1 Thermal Considerations  
The OPA817 will not require heatsinking or airflow in most applications. Maximum allowed junction temperature  
will set the maximum allowed internal power dissipation as described in the following paragraph. In no case  
should the maximum junction temperature be allowed to exceed 150°C.  
Operating junction temperature (TJ) is given by TA + PD × RθJA. The total internal power dissipation (PD) is the  
sum of quiescent power (PDQ) and additional power dissipated in the output stage (PDL) to deliver load power.  
Quiescent power is the specified no-load supply current times the total supply voltage across the part. PDL will  
depend on the required output signal and load, but for a grounded resistive load the PDL will be at a maximum  
when the output is fixed at a voltage equal to 1/2 of either supply voltage (for balanced bipolar supplies). Under  
this condition PDL = VS 2/(4 × RL) where RL includes feedback network loading.  
Note that it is the power in the output stage and not into the load that determines internal power dissipation.  
As a worst-case example, compute the maximum TJ using OPA817 in the circuit of 9-1 operating at the  
maximum specified ambient temperature of +105°C and driving a grounded 100-Ωload.  
PD = 10 V × 23.5 mA + 52 /(4 × (100 Ω|| 500 Ω)) 310 mW  
Maximum TJ = 105°C + (0.310 W × 64.9°C/W) = 125.1°C.  
All actual applications will be operating at lower internal power and junction temperature.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA817  
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
11.2 Layout Example  
Representative schematic  
VS+  
Connect PD to VS+ to enable the  
amplifier  
1
2
8
7
CBYP  
CBYP  
RS  
+
To  
Load  
œ
Thermal  
Pad  
RS  
RF  
CBYP  
Place gain and feedback resistors  
close to pins to minimize stray  
capacitance  
VSœ  
RF  
3
4
6
5
No Connect  
RG  
RG  
CBYP  
Connect the thermal pad to a heat  
spreading plane, generally ground  
Ground and power plane exist on  
inner layers.  
Ground and power plane removed  
from inner layers. Ground fill on  
outer layers also removed.  
Place bypass capacitor  
close to power pins  
11-1. Layout Recommendation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA817  
 
OPA817  
www.ti.com.cn  
ZHCSOI9A JULY 2022 REVISED DECEMBER 2022  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
Texas Instruments, Wide Bandwidth Optical Front-end Reference Design  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, OPA817EVM User's Guide  
Texas Instruments, Transimpedance Considerations for High-Speed Amplifiers application report  
Texas Instruments, Maximizing the Dynamic Range of Analog TIA Front-End techincal brief  
Texas Instruments, What You Need To Know About Transimpedance Amplifiers Part 1  
Texas Instruments, What You Need To Know About Transimpedance Amplifiers Part 2  
Texas Instruments, Training Video: How to Design Transimpedance Amplifier Circuits  
Texas Instruments, Training Video: High-Speed Transimpedance Amplifier Design Flow  
12.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA817  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA817DTKR  
ACTIVE  
WSON  
DTK  
8
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 105  
817  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Dec-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA817DTKR  
WSON  
DTK  
8
3000  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Dec-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WSON DTK  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
OPA817DTKR  
8
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
DTK0008A  
3.1  
2.9  
A
B
3.1  
2.9  
PIN 1 INDEX AREA  
0.8 MAX  
C
SEATING PLANE  
0.05  
0.00  
0.08 C  
(0.1) TYP  
1.5  
1.4  
6X 0.5  
1.75  
4
5
8
PKG  
1.84  
1.64  
9
1
0.3  
8X  
0.2  
0.1  
0.05  
C A B  
C
0.5  
0.3  
PIN 1 ID  
(OPTIONAL)  
8X  
PKG  
4224357 / A 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WSON - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
DTK0008A  
(2.8)  
(1.45)  
8X (0.25)  
6X (0.5)  
(0.475)  
1
8
(0.62)  
9
PKG  
(1.74)  
(1.5)  
(R0.05) TYP  
4
5
(Ø0.2) VIA  
(TYP)  
PKG  
8X(0.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
SOLDER MASK  
OPENING  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
NON- SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224357 / A 07/2018  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271) .  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WSON - 0.8 mm max height  
DTK0008A  
PLASTIC QUAD FLATPACK- NO LEAD  
(2.8)  
(1.34)  
8X (0.25)  
6X (0.5)  
1
8
PKG  
(1.5) (1.58)  
(R0.05) TYP  
5
4
9
8X(0.6)  
PKG  
EXPOSED METAL  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 9: 84%  
SCALE: 20X  
4224357 / A 07/2018  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY