OPA856 [TI]

具有 1.1GHz 单位增益带宽、0.9nV/√Hz 噪声的双极输入放大器;
OPA856
型号: OPA856
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1.1GHz 单位增益带宽、0.9nV/√Hz 噪声的双极输入放大器

放大器
文件: 总33页 (文件大小:3549K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA856  
ZHCSM22 – OCTOBER 2020  
OPA856 1.1GHz 带宽增益0.9nV /√Hz, 双极 入放大器  
1 特性  
3 说明  
单位带宽增益积:1.1GHz  
OPA856 是一款具有双极输入的宽带低噪声运算放大  
器,适用于宽带跨阻和电压放大器应用。将该器件配置  
为跨阻放大器 (TIA) 时,1.1GHz 增益带宽积 (GBWP)  
能够在低电容光电二极管应用中实现高闭环带宽。  
增益带宽积:1.1GHz  
压摆率:350V/µs  
低输入电压噪声:0.9nV/√Hz  
低输入电容:  
共模:0.4pF  
差动:0.7pF  
电源电压范围:3.3V 5.25V  
封装:8 引脚 WSON  
温度范围:–40°C +125°C  
下图展示了将 OPA856 配置为 TIA 时,该放大器的  
带宽和噪声性能与光电二极管电容的函数关系。计算总  
噪声时的带宽范围为从直流到左轴上计算得出的频率  
(f )OPA856 封装具有一个反馈引脚 (FB),可简化输  
入和输出之间的反馈网络连接。  
OPA856 过优化,可在光学飞行时间 (ToF) 统  
中运行,在该系统中,OPA856 时数转换器(如  
TDC7201)配合使用。可在具有差分输出放大器(如  
THS4541 LMH5401)的高分辨率激光雷达系统中  
使用 OPA856 来驱动高速模数转换器 (ADC)。  
2 应用  
光时域反射计 (OTDR)  
3D 扫描仪  
激光测距  
固态扫描激光雷达  
光学 ToF 位置传感器  
无人机视觉  
器件信息  
器件型号(1)  
OPA856  
封装  
封装尺寸(标称值)  
WSON (8)  
2.00 mm × 2.00 mm  
工业机器人激光雷达  
扫地机器人激光雷达  
硅光电倍增器 (SiPM) 缓冲放大器  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
光电倍增管后置放大器  
CF  
450  
400  
350  
300  
250  
200  
150  
100  
50  
135  
120  
105  
90  
f-3dB, RF = 1 kW  
f-3dB, RF = 5 kW  
IRN, RF = 1 kW  
IRN, RF = 5 kW  
RF  
VBIAS  
Rx  
Lens  
5 V  
TLV3501  
+
œ
3.8 V  
+
OPA856  
Stop 2  
Start 2  
VREF  
œ
75  
CF  
RF  
60  
TDC7201  
(Time-to-  
Digital  
VBIAS  
45  
5 V  
Converter)  
TLV3501  
+
œ
30  
3.8 V  
+
OPA856  
Stop 1  
Start 1  
VREF  
œ
15  
0
0
0
2
4
6
8
10  
12  
14  
Photodiode Capacitance (pF)  
16  
18  
20  
Tx  
Lens  
MSP430  
Controller  
Pulsed Laser  
Diode  
光电二极管电容与带宽和噪声间的关系  
高速飞行时间接收器  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS623  
 
 
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings ....................................... 4  
7.2 ESD Ratings .............................................................. 4  
7.3 Recommended Operating Conditions ........................4  
7.4 Thermal Information ...................................................4  
7.5 Electrical Characteristics ............................................5  
7.6 Typical Characteristics................................................7  
7.7 Typical Characteristics (continued)........................... 11  
8 Detailed Description......................................................14  
8.1 Overview...................................................................14  
8.2 Functional Block Diagram.........................................14  
8.3 Feature Description...................................................15  
8.4 Device Functional Modes..........................................18  
9 Application and Implementation..................................19  
9.1 Application Information............................................. 19  
9.2 Typical Application.................................................... 19  
10 Power Supply Recommendations..............................23  
11 Layout...........................................................................24  
11.1 Layout Guidelines................................................... 24  
11.2 Layout Example...................................................... 24  
12 Device and Documentation Support..........................25  
12.1 Device Support....................................................... 25  
12.2 Documentation Support.......................................... 25  
12.3 Receiving Notification of Documentation Updates..25  
12.4 支持资源..................................................................25  
12.5 Trademarks.............................................................25  
12.6 Electrostatic Discharge Caution..............................25  
12.7 术语表..................................................................... 25  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 25  
4 Revision History  
DATE  
REVISION  
NOTES  
October 2020  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA856  
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
5 Device Comparison Table  
MINIMUM STABLE  
GAIN  
VOLTAGE NOISE  
(nV/√Hz)  
INPUT  
CAPACITANCE (pF)  
GAIN BANDWIDTH  
(GHz)  
DEVICE  
INPUT TYPE  
OPA856  
OPA855  
OPA858  
OPA859  
Bipolar  
Bipolar  
CMOS  
CMOS  
1 V/V  
7 V/V  
7 V/V  
1 V/V  
0.9  
0.98  
2.5  
1.1  
0.8  
0.8  
0.8  
1.1  
8
5.5  
0.9  
3.3  
6 Pin Configuration and Functions  
FB  
NC  
INœ  
IN+  
1
2
3
4
8
7
PD  
VS+  
OUT  
VSœ  
Thermal pad  
6
5
Not to scale  
6-1. DSG Package  
8-Pin WSON with Exposed Thermal Pad  
Top View  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
FB  
NO.  
1
I
I
Feedback connection to output of amplifier  
Inverting input  
IN–  
3
IN+  
4
I
Noninverting input  
NC  
2
O
I
Do not connect.  
OUT  
PD  
6
Amplifier output  
8
Power down connection. PD = logic low = power off mode; PD = logic high = normal operation.  
VS–  
5
Negative voltage supply  
VS+  
7
Positive voltage supply  
Thermal pad  
Connect the thermal pad to VS–.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA856  
 
 
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
(VS–) – 0.5  
(VS–) – 0.5  
MAX  
5.5  
UNIT  
V
VS  
Total supply voltage (VS+ – VS–  
Input voltage  
)
VIN+, VIN–  
VID  
(VS+) + 0.5  
1
V
Differential input voltage  
Output voltage  
V
VOUT  
IIN  
(VS+) + 0.5  
±10  
V
Continuous input current  
Continuous output current(2)  
Junction temperature  
Operating free-air temperature  
Storage temperature  
mA  
mA  
°C  
°C  
°C  
IOUT  
TJ  
±100  
150  
TA  
–40  
–65  
125  
Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated  
under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Long-term continuous output current for electromigration limits.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±1500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JS-002, all pins(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.3  
NOM  
MAX  
5.25  
125  
UNIT  
V
VS  
TA  
Total supply voltage (VS+ – VS–  
Operating free-air temperature  
)
5
–40  
°C  
7.4 Thermal Information  
OPA856  
THERMAL METRIC(1)  
DSG (WSON)  
8 PINS  
80.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
100  
45  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
6.8  
ΨJB  
45.2  
RθJC(bot)  
22.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA856  
 
 
 
 
 
 
 
 
 
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
7.5 Electrical Characteristics  
at VS+ = 5 V, VS– = 0 V, G = 1 V/V, RF = 0 Ω, input common-mode biased at midsupply, RL = 200 Ω, output load is referenced  
to midsupply, and TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
AC PERFORMANCE  
SSBW  
LSBW  
GBWP  
Small-signal bandwidth  
Large-signal bandwidth  
Gain-bandwidth product  
Bandwdith for 0.1-dB flatness  
Slew rate (10%-90%)  
Rise time  
VOUT = 100 mVPP  
1.1  
110  
1.08  
175  
350  
0.75  
0.75  
7
GHz  
MHz  
GHz  
MHz  
V/µs  
ns  
VOUT = 2 VPP  
VOUT = 100 mVPP  
VOUT = 2-V step  
SR  
tr  
VOUT = 100-mV step  
VOUT = 100-mV step  
VOUT = 2-V step  
tf  
Fall time  
ns  
Settling time to 0.1%  
ns  
f = 10 MHz, VOUT = 2 VPP  
f = 50 MHz, VOUT = 2 VPP  
f = 10 MHz, VOUT = 2 VPP  
f = 50 MHz, VOUT = 2 VPP  
f = 1 MHz  
85  
HD2  
HD3  
Second-order harmonic distortion  
Third-order harmonic distortion  
dBc  
dBc  
50  
95  
45  
en  
ei  
Input-referred voltage noise  
Input-referred current noise  
Closed-loop output impedance  
0.9  
2.5  
0.15  
nV/√Hz  
pA/√Hz  
Ω
f = 1 MHz  
zO  
f = 1 MHz  
DC PERFORMANCE  
AOL  
VOS  
Open-loop voltage gain  
Input offset voltage  
70  
76  
±0.2  
0.7  
dB  
TA = 25°C  
–1.5  
1.5  
–5  
1
mV  
µV/°C  
µA  
ΔVOS/ΔT Input offset voltage drift  
TA = –40°C to 125°C  
TA = 25°C  
IB  
Input bias current (1)  
Input bias current drift  
Input offset current  
–20  
–1  
–15  
-0.1  
±0.1  
0.75  
106  
ΔIB/ΔT  
IBOS  
TA = –40°C to +125°C  
TA = 25°C  
µA/°C  
µA  
ΔIBOS/ΔT Input offset current drift  
TA = –40°C to +125°C  
VCM = ±0.5 V referred to midsupply  
nA/°C  
dB  
CMRR  
INPUT  
CCM  
CDIFF  
VIH  
Common-mode rejection ratio  
90  
Common-mode input capacitance  
Differential input capacitance  
0.4  
0.7  
2.9  
1.1  
4.6  
4.3  
1.1  
1.3  
pF  
pF  
V
Common-mode input range (high)  
Common-mode input range (low)  
Common-mode input range (high)  
Common-mode input range (high)  
Common-mode input range (low)  
Common-mode input range (low)  
CMRR > 80 dB, VS+ = 3.3 V  
CMRR > 80 dB, VS+ = 3.3 V  
CMRR > 80 dB  
2.7  
4.4  
VIL  
1.3  
1.3  
V
VIH  
V
VIH  
TA = –40°C to +125 °C, CMRR > 80 dB  
CMRR > 80 dB  
V
VIL  
V
VIL  
TA = –40°C to +125°C, CMRR > 80 dB  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA856  
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
at VS+ = 5 V, VS– = 0 V, G = 1 V/V, RF = 0 Ω, input common-mode biased at midsupply, RL = 200 Ω, output load is referenced  
to midsupply, and TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
OUTPUT  
VOH  
Output voltage (high)(2)  
Output voltage (high)(2)  
Output voltage (low)(2)  
Output voltage (low)(2)  
TA = 25°C, VS+ = 3.3 V  
2.35  
3.95  
2.4  
4.1  
4
V
V
TA = 25°C  
VOH  
VOL  
VOL  
TA = –40°C to +125°C  
TA = 25°C, VS+ = 3.3 V  
TA = 25°C  
1.05  
1.05  
1.1  
80  
1.15  
1.15  
V
V
TA = –40°C to +125°C  
RL = 10 Ω, AOL > 60 dB  
TA = –40°C to +125°C, RL = 10 Ω, AOL > 60 dB  
65  
85  
IO_LIN  
Linear output drive (sink and source)  
Output short-circuit current  
mA  
mA  
65  
ISC  
POWER SUPPLY  
105  
15.4  
17.2  
15.5  
19.5  
86  
19.5  
IQ  
Quiescent current  
TA = –40°C  
TA = 125°C  
mA  
dB  
PSRR+  
PSRR–  
Positive power-supply rejection ratio  
Negative power-supply rejection ratio  
80  
70  
80  
POWER DOWN  
Disable voltage threshold  
Amplifier OFF below this voltage  
Amplifier ON above this voltage  
0.65  
1
1.5  
70  
V
V
Enable voltage threshold  
Power-down quiescent current  
PD bias current  
1.8  
85  
85  
μA  
μA  
ns  
ns  
70  
Turnon time delay  
Time to VOUT = 90% of final value  
15  
Turnoff time delay  
250  
(1) Current flowing into the input pin is considered negative.  
(2) Amplifier output saturated.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA856  
 
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
7.6 Typical Characteristics  
at VS+ = +2.5 V, VS– = –2.5 V, RF = 0 Ω, Gain = 1 V/V, input common-mode biased at midsupply, RL = 200 Ω, output load  
referenced to midsupply, and TA = 25°C (unless otherwise noted)  
3
3
0
0
-3  
-3  
-6  
-6  
G = 1 V/V  
G = -1 V/V  
G = 2 V/V  
G = 5 V/V  
G = 20 V/V  
-9  
-9  
RL = 100 W  
RL = 200 W  
RL = 400 W  
-12  
-12  
1M  
10M  
100M  
Frequency (Hz)  
1G  
1M  
10M  
100M  
Frequency (Hz)  
1G  
VOUT = 100 mVPP  
VOUT = 100 mVPP  
7-1. Small-Signal Response vs Gain  
7-2. Small-Signal Response vs Output Load  
3
0
3
0
-3  
-6  
-3  
-6  
G = 1 V/V  
G = -1 V/V  
G = 2 V/V  
G = 5 V/V  
G = 20 V/V  
-9  
-9  
VCM = 0 V  
VCM = 1 V  
VCM = -1 V  
-12  
-12  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency [Hz]  
100M  
VOUT = 2 VPP  
Gain = 20 V/V  
VOUT = 100 mVPP  
7-3. Large-Signal Response vs Gain  
7-4. Gain Bandwidth vs Common-Mode  
10  
100  
10  
1
1.1  
1.05  
1
Voltage Noise  
Current Noise  
0.95  
0.9  
1
0.85  
0.8  
0.1  
0.75  
1k  
10k  
100k 1M  
Frequency (Hz)  
10M  
100M  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (èC)  
.
Frequency = 10 MHz  
7-5. Voltage and Current Noise Density  
7-6. Voltage Noise vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA856  
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
at VS+ = +2.5 V, VS– = –2.5 V, RF = 0 Ω, Gain = 1 V/V, input common-mode biased at midsupply, RL = 200 Ω, output load  
referenced to midsupply, and TA = 25°C (unless otherwise noted)  
90  
75  
60  
45  
30  
15  
0
100  
50  
100  
10  
1
AOL Magnitude  
AOL Phase  
0
-50  
-100  
-150  
-200  
-250  
-15  
0.1  
10k  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
100k  
1M  
10M  
Frequency (Hz)  
100M  
Small-Signal Response  
Small-Signal Response  
7-7. Open-Loop Magnitude and Phase  
7-8. Closed Loop Output Impedance  
120  
120  
100  
80  
60  
40  
20  
0
PSRR+  
PSRR-  
100  
80  
60  
40  
20  
0
10k  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
10k  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
Small-Signal Response  
Small-Signal Response  
7-9. Common-Mode Rejection Ratio  
7-10. Power Supply Rejection Ratio  
0
-20  
-40  
-60  
-80  
0
-20  
HD2, VOUT = 0.5 VPP  
HD2, VOUT = 1 VPP  
HD2, VOUT = 2 VPP  
HD2, VOUT = 2.5 VPP  
HD3, VOUT = 0.5 VPP  
HD3, VOUT = 1 VPP  
HD3, VOUT = 2 VPP  
HD3, VOUT = 2.5 VPP  
-40  
-60  
-80  
-100  
-100  
-120  
-120  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
100M  
.
.
7-11. Harmonic Distortion (HD2) vs Output Swing  
7-12. Harmonic Distortion (HD3) vs Output Swing  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA856  
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
at VS+ = +2.5 V, VS– = –2.5 V, RF = 0 Ω, Gain = 1 V/V, input common-mode biased at midsupply, RL = 200 Ω, output load  
referenced to midsupply, and TA = 25°C (unless otherwise noted)  
0
0
HD2, RL = 100 W  
HD2, RL = 200 W  
HD2, RL = 400 W  
HD3, RL = 100 W  
HD3, RL = 200 W  
HD3, RL = 400 W  
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-120  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
100M  
VOUT = 2 VPP  
VOUT = 2 VPP  
7-13. Harmonic Distortion (HD2) vs Load  
7-14. Harmonic Distortion (HD3) vs Load  
0
-20  
0
-20  
HD2, Gain = 1 V/V  
HD2, Gain = -1 V/V  
HD2, Gain = 2 V/V  
HD2, Gain = 5 V/V  
HD3, Gain = 1 V/V  
HD3, Gain = -1 V/V  
HD3, Gain = 2 V/V  
HD3, Gain = 5 V/V  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-120  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
100M  
VOUT = 2 VPP  
VOUT = 2 VPP  
7-15. Harmonic Distortion (HD2) vs Gain  
7-16. Harmonic Distortion (HD3) vs Gain  
0.06  
1.25  
Input  
Output  
1
0.75  
0.5  
0.04  
0.02  
0
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-0.02  
-0.04  
-0.06  
Input  
Output  
-1.25  
Time (25 ns/div)  
Time (25 ns/div)  
Average Rise and Fall Time (10% - 90%) = 680 ps  
Slew Rate: Rising = 365 V/µs, Falling = 346 V/µs  
7-17. Small-Signal Transient Response  
7-18. Large-Signal Transient Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA856  
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
at VS+ = +2.5 V, VS– = –2.5 V, RF = 0 Ω, Gain = 1 V/V, input common-mode biased at midsupply, RL = 200 Ω, output load  
referenced to midsupply, and TA = 25°C (unless otherwise noted)  
3
3
Power Down (PD)  
Output  
2
2
1
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
Power Down (PD)  
Output  
Time (5 ns/div)  
Time (25 ns/div)  
.
.
7-19. Turnon Transient Response  
7-20. Turnoff Transient Response  
4
Ideal Output  
Measured Output  
3
2
1
0
-1  
-2  
-3  
-4  
Time (10 ns/div)  
Gain = 5 V/V, RF = 453 Ω, VIN = 1.25 VPP , 2x Output Overdrive  
7-21. Output Overload Response  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA856  
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
7.7 Typical Characteristics (continued)  
at VS+ = +2.5 V, VS– = –2.5 V, RF = 0 Ω, Gain = 1 V/V, input common-mode biased at midsupply, RL = 200 Ω, output load  
referenced to midsupply, and TA = 25°C (unless otherwise noted)  
17.6  
17.4  
17.2  
17  
19  
18.5  
18  
17.5  
17  
16.8  
16.6  
16.4  
16.2  
16  
16.5  
16  
Unit 1  
Unit 2  
Unit 3  
15.5  
15  
VS = 3.3 V  
VS = 5 V  
15.8  
3
3.25 3.5 3.75  
4
Total Supply Voltage (V)  
4.25 4.5 4.75  
5
5.25  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (èC)  
3 Typical Units  
7-22. Quiescent Current vs Supply Voltage  
7-23. Quiescent Current vs Ambient Temperature  
0.25  
0.25  
Unit 1  
Unit 2  
Unit 3  
0.2  
0.15  
0.1  
0.2  
0.15  
0.1  
0.05  
0
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-0.05  
-0.1  
-0.15  
3
3.25 3.5 3.75  
4
Total Supply Voltage (V)  
4.25 4.5 4.75  
5
5.25  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (èC)  
3 Typical Units  
σ = 0.7 µV/°C  
7-24. Offset Voltage vs Supply Voltage  
7-25. Offset Voltage vs Ambient Temperature  
3
3
2
1
2
1
0
0
-1  
-2  
-3  
-1  
Unit 1  
Unit 2  
Unit 3  
TA = -40èC  
-2  
TA = 25èC  
TA = 125èC  
-3  
-1  
-2  
-1.5  
-1  
-0.5  
Common-Mode Voltage (V)  
0
0.5  
1
1.5  
2
2.5  
-0.5  
0
Common-Mode Voltage (V)  
0.5  
1
1.5  
3 Typical Units  
7-26. Offset Voltage vs Input Common-Mode Voltage  
7-27. Offset Voltage vs Input Common-Mode Voltage vs  
Ambient Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA856  
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
7.7 Typical Characteristics (continued) (continued)  
at VS+ = +2.5 V, VS– = –2.5 V, RF = 0 Ω, Gain = 1 V/V, input common-mode biased at midsupply, RL = 200 Ω, output load  
referenced to midsupply, and TA = 25°C (unless otherwise noted)  
2
1.5  
1
3
2
1
0.5  
0
0
-0.5  
-1  
-1  
-2  
-3  
Unit 1  
Unit 2  
Unit 3  
TA = -40èC  
TA = 25èC  
TA = 125èC  
-1.5  
-2  
-2  
-1.5  
-1  
-0.5  
Output Voltage (V)  
0
0.5  
1
1.5  
2
-2  
-1.5  
-1  
-0.5  
Output Voltage (V)  
0
0.5  
1
1.5  
2
3 Typical Units  
7-28. Offset Voltage vs Output Swing  
7-29. Offset Voltage vs Output Swing vs Ambient  
Temperature  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-10  
-12.5  
-15  
Unit 1  
Unit 2  
Unit 3  
-17.5  
-20  
-22.5  
-25  
TA = -40èC  
TA = 25èC  
-27.5  
TA = 125èC  
-30  
-2 -1.5 -1 -0.5  
Common-Mode Voltage (V)  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
0.5  
1
1.5  
2
2.5  
3
Ambient Temperature (èC)  
3 Typical Units  
7-30. Input Bias Current vs Ambient Temperature  
7-31. Input Bias Current vs Input Common-Mode Voltage  
0
2.5  
TA = -40èC  
TA = 25èC  
TA = 125èC  
-0.5  
-1  
2
1.5  
1
-1.5  
-2  
0.5  
0
TA = -40èC  
TA = 25èC  
TA = 125èC  
-2.5  
-125  
-100  
-75 -50  
Output Current (mA)  
-25  
0
0
25  
50 75  
Output Current (mA)  
100  
125  
Output slammed to the negative rail  
Output slammed to the positive rail  
7-33. Output Swing vs Sourcing Current  
7-32. Output Swing vs Sinking Current  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA856  
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
7.7 Typical Characteristics (continued) (continued)  
at VS+ = +2.5 V, VS– = –2.5 V, RF = 0 Ω, Gain = 1 V/V, input common-mode biased at midsupply, RL = 200 Ω, output load  
referenced to midsupply, and TA = 25°C (unless otherwise noted)  
5000  
4000  
3000  
2000  
1000  
0
6000  
5000  
4000  
3000  
2000  
1000  
0
Quiescent Current (mA)  
Offset Voltage (mV)  
σ = 0.2 mA  
σ = 0.12 mV  
7-34. Quiescent Current Distribution  
7-35. Offset Voltage Distribution  
6000  
5000  
4000  
3000  
2000  
1000  
0
6000  
5000  
4000  
3000  
2000  
1000  
0
Noninverting Current  
Inverting Current  
Input Bias Current (mA)  
Input Offset Current (mA)  
σ = 1 µA  
σ = 0.1 µA  
7-36. Input Bias Current Distribution  
7-37. Input Offset Current Distribution  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA856  
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The ultra-wide, 1.1-GHz gain bandwidth product (GBWP) of the OPA856, combined with the broadband voltage  
noise of 0.9 nV/√Hz, produces a viable amplifier for wideband transimpedance applications, high-speed data  
acquisition systems, and applications with weak signal inputs that require low-noise and high-gain front ends.  
The OPA856 combines multiple features to optimize dynamic performance. In addition to the wide, small-signal  
bandwidth, the OPA856 has 110 MHz of large-signal bandwidth (VOUT = 2 VPP), and a slew rate of 350 V/µs.  
The OPA856 is offered in a 2-mm × 2-mm, 8-pin WSON package that features a feedback (FB) pin for a simple  
feedback network connection between the amplifiers output and inverting input. Excess capacitance on an  
amplifiers input pin can reduce phase margin causing instability. This problem is exacerbated in the case of very  
wideband amplifiers like the OPA856. To reduce the effects of stray capacitance on the input node, the OPA856  
pinout features an isolation pin (NC) between the feedback and inverting input pins that increases the physical  
spacing between them thereby reducing parasitic coupling at high frequencies. The OPA856 also features a very  
low capacitance input stage with only 1.1-pF of total input capacitance.  
8.2 Functional Block Diagram  
The OPA856 is a classic voltage feedback operational amplifier (op amp) with two high-impedance inputs and  
a low-impedance output. Standard application circuits are supported, like the two basic options shown in 8-1  
and 8-2. The resistor on the noninverting pin is used for bias current cancellation to minimize the output  
offset voltage. In a noninverting configuration the additional resistors on the noninverting pin add noise to the  
system so if SNR is critical, the resistor can be eliminated. In an inverting configuration the noninverting node is  
typically connected to a DC voltage, so the high-frequency noise contribution from the bias cancellation resistor  
can be bypassed by adding a large 1-µF capacitor in parallel to the resistor to shunt the noise. The DC operating  
point for each configuration is level-shifted by the reference voltage (VREF), which is typically set to midsupply in  
single-supply operation. VREF is typically connected to ground in split-supply applications.  
VSIG  
VS+  
RF || RG  
(1+RF/RG)×VSIG  
VREF  
VIN  
+
VOUT  
VREF  
œ
RG  
VSœ  
RF  
VREF  
8-1. Noninverting Amplifier  
VS+  
RF || RG  
œ(RF/RG)×VSIG  
VREF  
VIN  
+
VSIG  
VOUT  
VREF  
VREF  
œ
RG  
VSœ  
RF  
8-2. Inverting Amplifier  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA856  
 
 
 
 
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Input and ESD Protection  
The OPA856 is fabricated on a low-voltage, high-speed, BiCMOS process. The internal, junction breakdown  
voltages are low for these small geometry devices, and as a result, all device pins are protected with internal  
ESD protection diodes to the power supplies as 8-3 shows. There are two antiparallel diodes between the  
inputs of the amplifier that clamp the inputs during an overrange or fault condition.  
VS+  
Power Supply  
ESD Cell  
VIN+  
+
VOUT  
œ
VINÞ  
FB  
VSÞ  
8-3. Internal ESD Structure  
8.3.2 Feedback Pin  
The OPA856 pin layout is optimized to minimize parasitic inductance and capacitance, which is a critical care  
about in high-speed analog design. The FB pin (pin 1) is internally connected to the output of the amplifier. The  
FB pin is separated from the inverting input of the amplifier (pin 3) by a no connect (NC) pin (pin 2). The NC pin  
must be left floating. There are two advantages to this pin layout:  
1. A feedback resistor (RF) can connect between the FB and IN– pin on the same side of the package (see 图  
8-4) rather than going around the package.  
2. The isolation created by the NC pin minimizes the capacitive coupling between the FB and IN– pins by  
increasing the physical separation between the pins.  
FB  
NC  
INœ  
IN+  
PD  
1
2
3
4
8
7
6
5
VS+  
OUT  
VSœ  
RF  
œ
+
8-4. RF Connection Between FB and IN– Pins  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA856  
 
 
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
8.3.3 Wide Gain-Bandwidth Product  
7-7 shows the open-loop magnitude and phase response of the OPA856. Calculate the gain bandwidth  
product of any op amp by determining the frequency at which the AOL is 40 dB and multiplying that frequency by  
a factor of 100. The open-loop response shows the OPA856 to have approximately 57° of phase-margin when  
configured as a unity-gain buffer.  
8-5 shows the open-loop magnitude (AOL) of the OPA856 as a function of temperature. The results show  
minimal variation over the entire temperature range. Semiconductor process variation is the naturally occurring  
variation in the attributes of a transistor (Early-voltage, β, channel-length, and width) and other passive elements  
(resistors and capacitors) when fabricated into an integrated circuit. The process variation can occur across  
devices on a single wafer or across devices over multiple wafer lots over time. Typically the variation across  
a single wafer is tightly controlled. 8-6 shows the AOL magnitude of the OPA856 as a function of process  
variation over time. The results show the AOL curve for the nominal process corner and the variation one  
standard deviation from the nominal. The simulated results show less than 5° of phase-margin difference within  
a standard deviation of process variation when the amplifier is configured as a unity-gain bufffer.  
90  
75  
60  
45  
30  
15  
0
90  
75  
60  
45  
30  
15  
0
AOL at 125èC  
AOL at 25èC  
AOL at -40èC  
AOL (-1s)  
AOL (Typ.)  
AOL (+1s)  
-15  
-15  
10k  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
10k  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
8-5. Open-Loop Gain vs Temperature  
8-6. Open-Loop Gain vs Process Variation  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA856  
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
8.3.4 Slew Rate and Output Stage  
In addition to wide bandwidth, the OPA856 features a high slew rate of 2750 V/µs. The slew rate is a  
critical parameter in high-speed pulse applications with narrow sub-10-ns pulses, such as optical time-domain  
reflectometry (OTDR) and LIDAR. The high slew rate of the OPA856 implies that the device accurately  
reproduces a 2-V, sub-ns pulse edge, as seen in 7-18. The wide bandwidth and slew rate of the OPA856  
make it an excellent amplifier for high-speed signal-chain front ends.  
8-7 shows the open-loop output impedance of the OPA856 as a function of frequency. To achieve high slew  
rates and low output impedance across frequency, the output swing of the OPA856 is limited to approximately  
3 V. The OPA856 is typically used in conjunction with high-speed pipeline ADCs and flash ADCs that have  
limited input ranges. Therefore, the OPA856 output swing range coupled with the class-leading voltage noise  
specification maximizes the overall dynamic range of the signal chain.  
30  
25  
20  
15  
10  
5
0
10k  
100k  
1M  
10M 100M  
Frequency (Hz)  
1G  
10G  
8-7. Open-Loop Output Impedance (ZOL) vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA856  
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Split-Supply and Single-Supply Operation  
The OPA856 can be configured with single-sided supplies or split-supplies as shown in 10-1. Split-supply  
operation using balanced supplies with the input common-mode set to ground eases lab testing because most  
signal generators, network analyzers, spectrum analyzers, and other lab equipment typically reference inputs  
and outputs to ground. In split-supply operation, the thermal pad must be connected to the negative supply.  
Newer systems use a single power supply to improve efficiency and reduce the cost of the extra power  
supply. The OPA856 can be used with a single positive supply (negative supply at ground) with no change in  
performance if the input common-mode and output swing are biased within the linear operation of the device. In  
single-supply operation, level shift the DC input and output reference voltages by half the difference between the  
power supply rails. This configuration maintains the input common-mode and output load reference at midsupply.  
To eliminate gain errors, the source driving the reference input common-mode voltage must have low output  
impedance across the frequency range of interest. In this case, the thermal pad must be connected to ground.  
8.4.2 Power-Down Mode  
The OPA856 features a power-down mode to reduce the quiescent current to conserve power. 7-19 and  
7-20 show the transient response of the OPA856 as the PD pin toggles between the disabled and enabled  
states.  
The PD disable and enable threshold voltages are with reference to the negative supply. If the amplifier is  
configured with the positive supply at 3.3 V and the negative supply at ground, then the disable and enable  
threshold voltages are 0.65 V and 1.8 V, respectively. If the amplifier is configured with ±1.65 V supplies, then  
the threshold voltages are at –1 V and 0.15 V. If the amplifier is configured with ±2.5 V supplies, then the  
threshold voltages are at –1.85 V and –0.7 V.  
8-8 shows the switching behavior of a typical amplifier as the PD pin is swept down from the enabled state to  
the disabled state. Similarly, 8-9 shows the switching behavior of a typical amplifier as the PD pin is swept up  
from the disabled state to the enabled state. The small difference in the switching thresholds between the down  
sweep and the up sweep is caused by the hysteresis designed into the amplifier to increase immunity to noise  
on the PD pin.  
20  
17.5  
15  
20  
17.5  
15  
12.5  
10  
12.5  
10  
7.5  
5
7.5  
5
TA = -40èC  
TA = 25èC  
TA = 125èC  
TA = -40èC  
TA = 25èC  
TA = 125èC  
2.5  
0
2.5  
0
-2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
-2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
Power-Down Voltage (V)  
8-8. Switching Threshold  
(PD Pin Swept from High to Low)  
Power-Down Voltage (V)  
8-9. Switching Threshold  
(PD Pin Swept from Low to High)  
Connecting the PD pin low disables the amplifier and places the output in a high-impedance state. When  
the amplifier is configured as a noninverting amplifier, the feedback (RF) and gain (RG) resistor network form  
a parallel load to the output of the amplifier. To protect the input stage of the amplifier, the OPA856 uses  
internal, back-to-back protection diodes between the inverting and noninverting input pins as 8-3 shows. In  
the power-down state, if the differential voltage between the input pins of the amplifier exceeds a diode voltage  
drop, an additional low-impedance path is created between the noninverting input pin and the output pin.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA856  
 
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and  
TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The OPA856 offers over 1 GHz of bandwidth, high slew-rate, low noise, excellent linearity, and is stable for unity  
gain applications. The low noise and unity gain stability make the OPA856 a great choice for use as a front-end  
buffer in high-speed data acquisition systems. Additionally the wide bandwidth allows the amplifier to perform  
excellently in transimpedance applications or in a high-gain active filter configuration.  
9.2 Typical Application  
The high GBWP of the OPA856 makes the device an excellent choice as a transimpedance amplifier while the  
unity gain stability allows for use of feedback clamping or other unity gain circuitry that would not work for a  
decompensated amplifier. 9-1 shows the OPA856 configured as a transimpedance amplifier with an option  
feedback clamping diode connection.  
CF  
VBIAS  
RF  
œ
VOUT  
+
VOFFSET  
9-1. OPA856 Transimpedance Amplifier with Optional Diode Clamping  
9.2.1 Design Requirements  
The objective is to design a low noise, wideband optical front-end system using the OPA856  
as a transimpedance amplifier. The design requirements are:  
Amplifier supply voltage: ± 2.5 V  
1 kΩ transimpedance gain  
Transimpedance bandwidth > 100 MHz  
Total input capacitance 4 pF (1.1 pF from amplifier)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA856  
 
 
 
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
The OPA856 meets the growing demand for wideband, low-noise photodiode amplifiers. The closed-loop  
bandwidth of a transimpedance amplifier is a function of the following:  
1. The total input capacitance (CIN). This total includes the photodiode capacitance, the input capacitance of  
the amplifier (common-mode and differential capacitance) and any stray capacitance from the PCB.  
2. The op amp gain bandwidth product (GBWP).  
3. The transimpedance gain (RF).  
9-1 shows the OPA856 configured as a TIA, with the photodiode reverse biased so that the diode cathode  
is tied to a positive bias voltage. In this configuration, the diode sources current into the op amp feedback loop  
so that the output swings in a negative direction relative to the input common-mode (VOFFSET) voltage. The  
feedback resistance (RF) and the input capacitance (CIN) form a zero in the noise gain that results in instability  
if left unchecked. To counteract the effect of the zero, a pole is inserted into the noise gain transfer function by  
adding the feedback capacitor (CF).  
The Transimpedance Considerations for High-Speed Amplifiers Application Report discusses theories and  
equations that show how to compensate a transimpedance amplifier for a particular transimpedance gain and  
input capacitance. The bandwidth and compensation equations from the application report are available in a  
Microsoft Excel ™ calculator. What You Need To Know About Transimpedance Amplifiers – Part 1 provides a  
link to the calculator. Calculating the expected bandwidth with an approximate input capacitance of 4 pF and a  
feedback capacitor of 1 pF yields a bandwidth of approximately 200 MHz.  
The amplifier was tested in a transimpedance configuration by using a photodiode with an optical fiber input  
connection. A tunable laser connected through an optical modulator was used to create the modulated optical  
excitation to the photodiode. 9-2 shows the test setup configuration for the frequency response measurement.  
The network analyzer's swept frequency output drives the optical modulators electrical input which in turn drives  
the photodiode. The OPA856 output drives the network analyzer's input.  
Network Analyzer  
Tunable Laser  
-
ON  
OFF  
1330 nm  
-
-
1 pF  
5V  
1 kΩ  
200-Ω load matched  
to 50-Ω input  
Optical  
Modulator  
169  
œ
Fiber connected  
photodiode  
+
OPA856  
71.5 ꢀ  
9-2. OPA856 Transimpedance Frequency Response Test Setup  
9-4 shows the frequency response measurements for a small signal and large signal (~1 Vpp) output. The  
plot contains noticeable noise and variations because the test environment did not have complete capability  
to accurately manage the thermal drift, perform optical connection integrity analysis, and calibrate the optical  
path. A more stringently controlled optical environment could achieve more stable results, but was beyond the  
scope of these measurements. The results in 9-4 correlate well with predicted results of approximately 200  
MHz of bandwidth. It is expected that the results would not perfectly match calculated values because it is  
challenging to perfectly account for all parasitic capacitances that affect the input and feedback capacitance in  
the transimpedance calculations.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA856  
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
Many transimpedance applications can have unpredicted, large input currents that can cause the amplifier's  
output to saturate. It is often important to understand how the amplifier will behave when its output is saturated  
at various levels of overdrive. A typical linear amplifier like the OPA856 can be expected to have an output  
saturation recovery time that increases as the amount of output overdrive increases. When using a pulse based  
input signal, the output saturation recovery time effectively extends the duration of the pulse. 9-3 shows the  
test setup configuration to measure a pulsed optical input to the OPA856. The optical modulator used in the test  
setup had limited output amplitude capability to create a saturated signal. In order to prevent the modulator from  
saturating, the OPA856 output was saturated by adjusting VOFFSET close to the the amplifier's output swing  
limit on the negative rail.  
Pulse Generator  
Tunable Laser  
1V  
ON  
OFF  
1 pF  
1330 nm  
5V  
1 kΩ  
Oscilloscope  
200-Ω load matched  
to 50-Ω input  
Optical  
Modulator  
169  
œ
-
-
-
Fiber connected  
photodiode  
+
OPA856  
71.5 ꢀ  
+
VOFFSET  
œ
9-3. OPA856 Transimpedance Pulse Saturation Extention Test Setup  
9-5 shows the resulting shifted output pulses labelled by the magnitude of voltage they are overdriving the  
amplifiers output saturation voltage level (VOV). These values only serve as approximations of the overdrive level  
of the signal because of expected variances from the optical interface setup. 9-6 shows a magnified view of  
the rising edge of the measured pulse responses in order to better detail the pulse extension created by the  
signal overdrive. These plots have been scaled and normalized to be easier to read and compare. As expected,  
9-6 shows that the pulse duration is extended as the overdrive level increases. The data only captured an  
overdrive voltage maximum of 640 mV, but it can be expected that larger voltages would extend the pulse  
further.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA856  
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
9.2.3 Application Curves  
备注  
9-6 output voltages are scaled for visual comparison purposes and are not the actual measured  
values. See 9-5 for actual measured values.  
9-5. Transimpedance Pulse Response  
9-4. Transimpedance Frequency Response  
9-6. Transimpedance Pulse Response Magnified and Scaled  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA856  
 
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
The OPA856 operates on supplies from 3.3 V to 5.25 V. The OPA856 operates on single-sided supplies,  
split and balanced bipolar supplies, and unbalanced bipolar supplies. Because the OPA856 does not feature  
rail-to-rail inputs or outputs, the input common-mode and output swing ranges are limited at 3.3-V supplies.  
a) Single supply configuration  
VS+  
VS+  
+
2
0.1 F  
6.8 F  
RG  
75  
RF  
453 ꢀ  
œ
50-Ω Source  
+
VI  
200 ꢀ  
RT  
49.9 ꢀ  
VS+  
2
VS+  
2
b) Split supply configuration  
VS+  
+
0.1 F  
6.8 F  
RG  
RF  
75 ꢀ  
453 ꢀ  
œ
50-Ω Source  
+
VI  
200 ꢀ  
+
RT  
49.9 ꢀ  
0.1 F  
6.8 F  
VSœ  
10-1. Split and Single Supply Circuit Configuration  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA856  
 
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Achieving optimum performance with a high-frequency amplifier like the OPA856 requires careful attention to  
board layout parasitics and external component types. Recommendations that optimize performance include:  
Minimize parasitic capacitance from the signal I/O pins to ac ground. Parasitic capacitance on the  
output and inverting input pins can cause instability. To reduce unwanted capacitance, cut out the power and  
ground traces under the signal input and output pins. Otherwise, ground and power planes must be unbroken  
elsewhere on the board. When configuring the amplifier as a TIA, if the required feedback capacitor is less  
than 0.15 pF, consider using two series resistors, each of half the value of a single resistor in the feedback  
loop to minimize the parasitic capacitance from the resistor.  
Minimize the distance (less than 0.25-in) from the power-supply pins to high-frequency bypass  
capacitors. Use high-quality, 100-pF to 0.1-µF, C0G and NPO-type decoupling capacitors with voltage  
ratings at least three times greater than the amplifiers maximum power supplies. This configuration makes  
sure that there is a low-impedance path to the amplifiers power-supply pins across the amplifiers gain  
bandwidth specification. At the device pins, do not allow the ground and power plane layout to be in close  
proximity to the signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the  
pins and the decoupling capacitors. The power-supply connections must always be decoupled with these  
capacitors. Larger (2.2-µF to 6.8-µF) decoupling capacitors that are effective at lower frequency must be  
used on the supply pins. Place these decoupling capacitors further from the device. Share the decoupling  
capacitors among several devices in the same area of the printed circuit board (PCB).  
Careful selection and placement of external components preserves the high-frequency performance  
of the OPA856. Use low-reactance resistors. Surface-mount resistors work best and allow a tighter overall  
layout. Never use wirewound resistors in a high-frequency application. Because the output pin and inverting  
input pin are the most sensitive to parasitic capacitance, always position the feedback and series output  
resistor, if any, as close to the output pin as possible. Place other network components (such as noninverting  
input termination resistors) close to the package. Even with a low parasitic capacitance shunting the  
external resistors, high resistor values create significant time constants that can degrade performance. When  
configuring the OPA856 as a voltage amplifier, keep resistor values as low as possible and consistent  
with load driving considerations. Decreasing the resistor values keeps the resistor noise terms low and  
minimizes the effect of the parasitic capacitance. However, lower resistor values increase the dynamic power  
consumption because RF and RG become part of the output load network of the amplifier.  
11.2 Layout Example  
Representative schematic  
Connect PD to VS+ to enable the  
amplifier  
VS+  
1
2
8
7
CBYP  
RS  
+
NC (Pin 2) isolates the IN- and FB  
pins thereby reducing capacitive  
coupling  
œ
Thermal  
Pad  
CBYP  
RF  
CBYP  
Place gain and feedback resistors  
close to pins to minimize stray  
capacitance  
VS-  
RF  
3
4
6
5
RS  
RG  
RG  
CBYP  
Connect the thermal pad to the  
negative supply pin  
Ground and power plane exist on  
inner layers.  
Ground and power plane removed  
from inner layers. Ground fill on  
outer layers also removed  
Place bypass capacitor  
close to power pins  
11-1. Layout Recommendation  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA856  
 
 
 
OPA856  
ZHCSM22 – OCTOBER 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
LIDAR Pulsed Time of Flight Reference Design  
LIDAR-Pulsed Time-of-Flight Reference Design Using High-Speed Data Converters  
Wide Bandwidth Optical Front-end Reference Design  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, OPA855EVM user's guide  
Texas Instruments, Training Video: High-Speed Transimpedance Amplifier Design Flow  
Texas Instruments, Training Video: How to Design Transimpedance Amplifier Circuits  
Texas Instruments, Training Video: How to Convert a TINA-TI Model into a Generic SPICE Model  
Texas Instruments, Transimpedance Considerations for High-Speed Amplifiers application report  
Texas Instruments, What You Need To Know About Transimpedance Amplifiers – Part 1  
Texas Instruments What You Need To Know About Transimpedance Amplifiers – Part 2  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA856  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA856IDSGR  
ACTIVE  
WSON  
DSG  
8
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
856  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Oct-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA856IDSGR  
WSON  
DSG  
8
3000  
180.0  
8.4  
2.3  
2.3  
1.15  
4.0  
8.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Oct-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WSON DSG  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
OPA856IDSGR  
8
3000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA8560EDD

Infrared LED Chip
KODENSHI

OPA856IDSGR

具有 1.1GHz 单位增益带宽、0.9nV/√Hz 噪声的双极输入放大器 | DSG | 8 | -40 to 125
TI

OPA857

Ultralow-Noise, Wideband, Selectable Feedback Resistance Transimpedance Amplifier
TI

OPA857-DIE

低噪声、宽带、可选增益、跨阻放大器
TI

OPA857IRGTR

Ultralow-Noise, Wideband, Selectable Feedback Resistance Transimpedance Amplifier
TI

OPA857IRGTT

Ultralow-Noise, Wideband, Selectable Feedback Resistance Transimpedance Amplifier
TI

OPA857TD1

低噪声、宽带、可选增益、跨阻放大器 | TD | 0 | -40 to 85
TI

OPA857TD2

低噪声、宽带、可选增益、跨阻放大器 | TD | 0 | -40 to 85
TI

OPA858

具有 FET 输入的 5.5GHz 增益带宽积、解补偿跨阻放大器
TI

OPA858-Q1

OPA859-Q1 1.8-GHz Unity-Gain Bandwidth, 3.3-nV/√Hz, FET Input Amplifier
TI

OPA858-Q1_V01

OPA858-Q1 5.5-GHz Gain Bandwidth Product, Gain of 7-V/V Stable, FET Input Amplifier
TI

OPA858IDSGR

具有 FET 输入的 5.5GHz 增益带宽积、解补偿跨阻放大器 | DSG | 8 | -40 to 125
TI