OPA862IDT [TI]

12.6V、低噪声、单端到差分、高输入阻抗放大器 | D | 8 | -40 to 125;
OPA862IDT
型号: OPA862IDT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12.6V、低噪声、单端到差分、高输入阻抗放大器 | D | 8 | -40 to 125

放大器 光电二极管
文件: 总39页 (文件大小:3725K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA862  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
OPA862 高输入阻抗、单端到差ADC 驱动器  
1 特性  
3 说明  
• 宽电源电压范围3V 12.6V  
• 高输入阻抗325MΩ  
• 电压噪声:  
– 输入参考噪(f 5kHz)2.3nV/Hz  
– 输出参考噪(f 10kHz)8.3nV/Hz  
• 差分输出失调电压±700µV最大值)  
• 输出温漂±1.5µV/°C典型值)  
A2 偏置电流消IB±5nA典型值)  
• 增益带宽积400MHz  
• 小信号带宽44MHz (G = 2V/V)  
• 压摆率140V/µs  
HD2HD3VOD = 10VPP50kHz):  
122dBc、–140dBc  
OPA862 是一款单端到差分模数转换器 (ADC) 驱动  
具有高输入阻抗可直接连接传感器。该器件在增  
益设置为 2V/V 的条件下仅需消耗 3.1mA 的静态电  
流即可实现 8.3nV/Hz 的输出参考噪声密度。具有  
1kΩ 电阻且增益设置为 1V/V 的全差分放大器必须低  
1nV/Hz才可实现与 OPA862 等效的输出参考  
噪声密度  
8.3nV/Hz。用户可使用外部电阻器对 OPA862 进行  
其他增益设置。该器件具有 400MHz 的高增益带宽积  
140V/µs 的压摆率。  
因此与同类的单端到差分 ADC 驱动器相比该器件  
具有出色的线性度可提供快速趋稳的 18 位性能。该  
器件包含一个用于设置输出共模电压的参考输入引脚。  
• 轨至轨输出:  
– 高线性输出电流60mA典型值)  
• 静态电流3.1mA  
• 禁用模式12µA 静态电流  
• 工作温度范围:  
OPA862 完全可3V 12.6V 的宽电源电压范围内正  
常工作并且具有轨至轨输出级。该器件使用德州仪器  
(TI) 专有的高速硅锗 (SiGe) 工艺制造18 位系统上  
实现了出色的低失真性能。在断电状态下器件禁用模  
式的静态电流仅12µA。  
40°C +125°C  
OPA862 可在宽达 –40°C +125°C 的工业温度范围  
内运行。  
2 应用  
器件信息(1)  
16 18 ADC 驱动器  
内存LCD 测试仪  
数据采(DAQ)  
封装尺寸标称值)  
器件型号  
OPA862  
封装  
SOIC (8)  
WSON (8)  
4.90mm × 3.90mm  
3.00mm × 3.00mm  
测试和测量  
跨阻放大(TIA)  
D 类音频放大器驱动器  
压电式传感器接口  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
医疗仪器  
+7 V  
-80  
HD2, VS = 10 V  
HD3, VS = 10 V  
HD2, VS = 5 V  
HD3, VS = 5 V  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
OPA862  
+5 V  
œ
64.9  
A1  
+
RINT  
700  
470 pF  
470 pF  
VIN  
ADS8881  
RINT  
700 ꢀ  
RREF  
0 ꢀ  
œ
A2  
+
64.9 ꢀ  
VREF  
2.5 V  
œ3.3 V  
单端高输入阻抗传感器接口  
10k  
100k  
Frequency (Hz)  
1M  
D017  
谐波失真与频率间的关系  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS919  
 
 
 
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
Table of Contents  
7.3 Feature Description...................................................17  
7.4 Device Functional Modes..........................................19  
8 Application and Implementation..................................20  
8.1 Application Information............................................. 20  
8.2 Typical Applications.................................................. 21  
9 Power Supply Recommendations................................26  
10 Layout...........................................................................26  
10.1 Layout Guidelines................................................... 26  
10.2 Layout Examples.................................................... 27  
11 Device and Documentation Support..........................28  
11.1 Documentation Support.......................................... 28  
11.2 Receiving Notification of Documentation Updates..28  
11.3 支持资源..................................................................28  
11.4 Trademarks............................................................. 28  
11.5 Electrostatic Discharge Caution..............................28  
11.6 术语表..................................................................... 28  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................4  
6.5 Electrical Characteristics: VS = ±2.5 V to ±5 V ...........5  
6.6 Typical Characteristics: VS = ±5 V.............................. 7  
6.7 Typical Characteristics: VS = ±2.5 V......................... 10  
6.8 Typical Characteristics: VS = 1.9 V, 1.4 V..............12  
6.9 Typical Characteristics: VS = 1.9 V, 1.4 V to ±5  
V..................................................................................13  
7 Detailed Description......................................................16  
7.1 Overview...................................................................16  
7.2 Functional Block Diagram.........................................16  
Information.................................................................... 28  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (Feburary 2020) to Revision C (August 2020)  
Page  
• 更新了整个文档的表、图和交叉参考的编号格式................................................................................................ 1  
OPA862 WSON 封装的状态从预发更改为正在供................................................................................. 1  
Changes from Revision A (September 2019) to Revision B (February 2020)  
Page  
• 将文档状态从“预告信息”更改为“生产数据”................................................................................................ 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA862  
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
5 Pin Configuration and Functions  
VFB  
VREF  
VS+  
8
7
6
5
VIN  
1
2
3
4
1
2
3
4
8
7
6
5
VIN  
VFB  
VREF  
VS+  
PD  
PD  
VS-  
VS-  
VOUT+  
VOUT-  
VOUT-  
VOUT+  
Not to scale  
Not to scale  
5-1. D Package, 8-Pin SOIC (Top View)  
5-2. DTK Package, 8-Pin WSON (Top View)  
5-1. Pin Functions  
PIN(1)  
TYPE(2)  
DESCRIPTION  
NAME  
PD  
NO.  
7
I
I
Power down (low = enable, high = disable), cannot be floated  
VFB  
1
Amplifier 1 inverting (feedback) input  
Amplifier 1 noninverting (signal) input  
Noninverting output  
VIN  
8
I
VOUT+  
VOUT–  
VREF  
VS+  
4
O
O
I
5
Inverting output  
2
Amplifier 2 noninverting (reference) input  
Positive power supply  
3
P
P
6
Negative power supply  
VS–  
(1) Solder the exposed DTK package thermal pad to a heatspreading power or ground plane. This pad is electrically isolated from the die,  
but must be connected to a power or ground plane and not floated.  
(2) I = input, O = output, and P = power.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA862  
 
 
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
13  
Supply voltage, (VS+) (VS–  
)
Supply turn-on/turn-off maximum dV/dT(2)  
Input-output voltage range  
Differential input voltage  
Continuous input current(3)  
Continuous output current(4)  
Continuous power dissipation  
Junction, TJ  
1
(VS+) + 0.5  
0.7  
V/µs  
Voltage  
(VS) 0.5  
V
±10  
Current  
mA  
±20  
See Thermal Information  
150  
Temperature  
Operating free-air, TA  
125  
150  
40  
65  
°C  
Storage, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Stay below this ± supply turn-on edge rate to make sure that the edge-triggered ESD absorption device across the supply pins remains  
off.  
(3) Continuous input current limit for both the ESD diodes to supply pins and amplifier differential input clamp diode. The differential input  
clamp diode limits the voltage across it to 0.7 V with this continuous input current flowing through it.  
(4) Long-term continuous current for electromigration limits.  
6.2 ESD Ratings  
VALUE  
±2500  
±1500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specificationJESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
10  
MAX  
12.6  
125  
UNIT  
VS+  
TA  
Single-supply positive voltage  
Ambient temperature  
V
25  
°C  
40  
6.4 Thermal Information  
OPA862  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
125.7  
65.9  
DTK (WSON)  
8 PINS  
65.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
56.7  
69.1  
34.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
18  
1.6  
ΨJT  
68.3  
34.4  
ΨJB  
RθJC(bot)  
N/A  
8.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA862  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
6.5 Electrical Characteristics: VS = ±2.5 V to ±5 V  
TA 25°C, A1 input common-mode voltage (VCM) = midsupply, VREF = midsupply, RF (connected between  
VOUT+ and VFB) = 0 Ω, RG = open, differential gain (G) = 2 V/V, RL (differential load) = 2 kΩ, RREF = 0 Ω, and  
VS = ±5 V for VOD = 10 VPP condtions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
AC PERFORMANCE  
VOD = 20 mVPP  
44  
48  
VOD = 20 mVPP, G = 4 V/V, RF = 700 Ω  
SSBW  
Differential small-signal bandwidth  
Differential large-signal bandwidth  
MHz  
VOD = 20 mVPP, G = 2 V/V, RF = 700  
Ω
48  
VOD = 1 VPP  
42  
14  
LSBW  
GBWP  
VS = ±2.5 V, VOD = 5 VPP  
VOD = 10 VPP  
MHz  
MHz  
7.5  
VOD = 40 mVPP, G = 200 V/V,  
RF = 700 Ω  
Differential gain-bandwidth product  
Bandwidth for 0.1-dB flatness  
400  
VOD = 20 mVPP, G = 2 V/V  
VOD = 5 VPP, f = 1 MHz  
VOD = 10 VPP  
6.5  
41  
MHz  
dB  
Output balance (ΔVOD / ΔVOCM  
Slew rate(1) (20% 80%)  
Overshoot, undershoot  
Rise and fall time  
)
SR  
140  
0.2%  
8.5  
V/µs  
VOD = 10-V step  
tr, tf  
VOD = 200-mV step  
ns  
ns  
To 0.0015% of final value,  
VOD = 10-V step  
Settling time  
100  
Input overdrive recovery  
Output overdrive recovery  
VIN = VS ± 0.5 V, VREF = midsupply  
G = 4 V/V, VOD = 2x overdrive  
VOD = 10 VPP, f = 15 kHz  
VOD = 10 VPP, f = 50 kHz  
VOD = 10 VPP, f = 350 kHz  
VOD = 10 VPP, f = 15 kHz  
VOD = 10 VPP, f = 50 kHz  
VOD = 10 VPP, f = 350 kHz  
f 10 kHz  
100  
120  
ns  
ns  
133  
122  
110  
148  
140  
110  
8.3  
HD2  
HD3  
Second-order harmonic distortion  
Third-order harmonic distortion  
dBc  
dBc  
Differential output noise  
en  
ei  
nV/Hz  
pA/Hz  
Input voltage noise of A1 and A2  
Input current noise of A1  
Input current noise of A2  
2.3  
f 5 kHz  
0.7  
f 100 kHz  
0.9  
f 100 kHz  
DC PERFORMANCE  
Differential output offset voltage  
±50  
±50  
±1.5  
±1.5  
±0.5  
±0.5  
1
±700  
µV  
VOS  
Input offset voltage for A1, A2  
±325  
SOIC  
±9  
TA = 0°C to 85°C,  
TA = 40°C to 125°C  
Differential output offset drift  
WSON  
SOIC  
±7  
µV/°C  
±3  
TA = 0°C to 85°C,  
TA = 40°C to 125°C  
Input offset voltage drift for A1, A2  
WSON  
±2.5  
Input bias current, A1  
Input bias current, A2  
Input bias current drift, A1  
Input bias current drift, A2  
Input offset current, A1  
3.1  
µA  
nA  
IB  
VREF pin  
±5  
±90  
13  
nA/°C  
pA/°C  
nA  
TA = 40°C to 125°C  
±65  
±4  
VREF pin, TA = 40°C to 125°C  
IOS  
±110  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA862  
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
6.5 Electrical Characteristics: VS = ±2.5 V to ±5 V (continued)  
TA 25°C, A1 input common-mode voltage (VCM) = midsupply, VREF = midsupply, RF (connected between  
VOUT+ and VFB) = 0 Ω, RG = open, differential gain (G) = 2 V/V, RL (differential load) = 2 kΩ, RREF = 0 Ω, and  
VS = ±5 V for VOD = 10 VPP condtions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Differential gain  
2
V/V  
Differnetial gain error  
Differential gain error drift  
Internal resistors  
±0.1  
±0.02  
700  
±0.25  
%
ppm/°C  
Ω
G
TA = 40°C to 125°C  
RINT  
INPUT  
Input common-mode range, A1  
VREF pin common-mode range  
VS+ 0.5  
VS+ 1.3  
VS+ 1.1  
VS+ 1.1  
CMIR  
V
VCM = VS+ 1.1 V and  
VCM = VS+ 0.5 V  
ΔVOS (2) at CMIR specification, A1  
ΔVOS (2) at CMIR specification  
Common-mode rejection ratio  
±25  
±50  
µV  
µV  
dB  
VREF = VS+ 1.1 V and  
VREF = VS+ 1.3 V  
CMRR = VOD / VIN, VIN = VREF  
VCM = ±1 V, RREF = 0 Ω  
,
CMRR  
100  
120  
Input impedance common-mode, A1  
Input impedance differential-mode, A1  
Input impedance, A2  
325 || 0.6  
35 || 1.9  
2.3 || 3.5  
MΩ|| pF  
kΩ|| pF  
GΩ|| pF  
VREF pin  
OUTPUT  
VOL  
Output voltage range low  
Output voltage range high  
Each output, single-ended  
Each output, single-ended  
VS+ 0.15 VS+ 0.25  
V
V
VS+ –  
0.25  
VS+ –  
0.15  
VOH  
VS = ±5 V, VOD = ±2.65 V, VOCM < ±10  
mV relative to no-load condition  
Linear output current  
40  
60  
mA  
POWER SUPPLY  
VS  
IQ  
Specified operating voltage  
Single-supply referred to GND  
VS = ±5 V, TA = 25°C  
3
10  
3.1  
9
12.6  
3.3  
V
mA  
Quiescent current  
2.8  
Quiescent current drift  
Power-supply rejection ratio  
µA/°C  
dB  
VS = ±5 V, TA = 40°C to 125°C  
VIN = VREF = 0 V, ΔVS = 2 V  
PSRR  
105  
115  
POWER DOWN  
Disable voltage threshold  
Disabled above specified voltage  
Enabled below specified voltage  
VS+ 1.5  
V
V
Enable voltage threshold  
Disable pin bias current  
Power-down quiescent current  
Turn-on time delay  
VS+ 1  
10  
20  
nA  
µA  
µs  
µs  
10  
12  
1.3  
2.5  
Turn-off time delay  
(1) Average of rising and falling slew rate.  
(2) ΔVOS = VOS at specified CMIR VCM VOS at midsupply VCM  
.
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA862  
 
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
6.6 Typical Characteristics: VS = ±5 V  
TA 25°C, A1 input common-mode voltage (VCM) = midsupply, VREF = midsupply, RF (connected between  
VOUT+ and VFB) = 0 Ω, RG = open, differential gain (G) = 2 V/V, RL (differential load) = 2 kΩ, and RREF = 0 Ω(unless  
otherwise noted).  
3
1
0
-1  
0
-2  
-3  
-4  
-3  
-5  
-6  
-6  
-7  
-8  
G = 2 V/V  
G = -2 V/V  
G = 4 V/V  
G = 10 V/V  
G = 2 V/V  
G = -2 V/V  
G = 4 V/V  
G = 10 V/V  
-9  
-9  
-10  
-11  
-12  
-12  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
D003  
D006  
VOD = 20 mVPP  
VOD = 10 VPP  
6-2. Large-Signal Frequency Response  
6-1. Small-Signal Frequency Response  
180  
-30  
160  
150  
140  
130  
120  
110  
100  
90  
A1, Magnitude  
A1, Phase  
A2, Magnitude  
A2, Phase  
CMRR  
PSRR+  
PSRR-  
160  
140  
120  
100  
80  
-45  
-60  
-75  
-90  
-105  
-120  
-135  
-150  
-165  
-180  
80  
60  
70  
40  
60  
50  
20  
40  
0
30  
20  
-20  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
1
10  
100  
1k  
10k 100k 1M 10M 100M  
Frequency (Hz)  
D054  
D058  
Simulation, A1 and A2  
Simulation  
6-4. CMRR and PSRR vs Frequency  
6-3. Open-Loop Gain And Phase vs Frequency  
400  
100  
A1  
A2  
10  
1
100  
0.1  
0.01  
0.001  
0.0001  
10  
4
A1  
A2  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M 100M 1G  
10k  
100k  
1M  
Frequency (Hz)  
10M  
100M  
D059  
D053  
Simulation  
Simulation  
6-5. Open-Loop Output Impedance vs Frequency  
6-6. Closed-Loop Output Impedance vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA862  
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
6.6 Typical Characteristics: VS = ±5 V (continued)  
TA 25°C, A1 input common-mode voltage (VCM) = midsupply, VREF = midsupply, RF (connected between  
VOUT+ and VFB) = 0 Ω, RG = open, differential gain (G) = 2 V/V, RL (differential load) = 2 kΩ, and RREF = 0 Ω(unless  
otherwise noted).  
625  
500  
375  
250  
125  
0
150  
125  
100  
75  
50  
25  
0
-25  
-50  
-75  
-100  
-125  
-150  
-125  
-250  
-375  
-500  
-625  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D038  
D061  
99 units  
99 units  
6-7. Differential Output Offset Voltage vs Temperature  
6-8. A1 Input Offset Voltage vs Temperature  
27  
45  
VS = 10 V  
VS = 5 V  
VS = 3.3 V  
VS = 10 V  
VS = 5 V  
VS = 3.3 V  
24  
21  
18  
15  
12  
9
40  
35  
30  
25  
20  
15  
10  
5
6
3
0
0
Differential VOS Drift (mV/°C)  
D062  
D040  
A1 Input VOS Drift (mV/°C)  
40°C to +125°C, over 115 units  
40°C to +125°C, over 115 units  
6-9. Differential Output Offset Voltage Drift Histogram  
6-10. A1 Input Offset Voltage Drift Histogram  
3.25  
3
120  
105  
90  
75  
60  
45  
30  
15  
0
2.75  
2.5  
2.25  
2
1.75  
1.5  
1.25  
1
-15  
-30  
0.75  
0.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D044  
D063  
32 units  
32 units  
6-12. A1 Input Offset Current vs Temperature  
6-11. A1 Input Bias Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA862  
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
6.6 Typical Characteristics: VS = ±5 V (continued)  
TA 25°C, A1 input common-mode voltage (VCM) = midsupply, VREF = midsupply, RF (connected between  
VOUT+ and VFB) = 0 Ω, RG = open, differential gain (G) = 2 V/V, RL (differential load) = 2 kΩ, and RREF = 0 Ω(unless  
otherwise noted).  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3
2.5  
2
90  
60  
30  
0
1.5  
1
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-30  
-60  
-90  
VIN IB  
VFB IB  
IOS  
0.5  
0
-5  
-4  
-3  
-2  
A1 Input Common-Mode Voltage (V)  
-1  
0
1
2
3
4
5
-5  
-4  
-3  
-2  
A1 Input Common-Mode Voltage (V)  
-1  
0
1
2
3
4
5
D037  
D045  
.
.
6-13. A1 Input Offset Voltage vs Input Common-Mode Voltage 6-14. A1 Input Bias Current and Input Offset Current vs Input  
Common-Mode Voltage  
30  
20  
80  
60  
40  
10  
20  
0
0
-10  
-20  
-30  
-40  
-50  
-20  
-40  
-60  
-80  
-5  
-4  
-3  
-2  
-1  
0
1
2
A2 Input Common-Mode Voltage (V)  
3
4
5
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D047  
D046  
.
32 units  
6-16. A2 Input Bias Current vs Input Common-Mode Voltage  
6-15. A2 Input Bias Current vs Temperature  
12  
20  
VIN ì 2  
VOD  
VIN ì -4  
VOD  
17.5  
15  
12.5  
10  
7.5  
5
2.5  
0
10  
8
6
4
2
0
-2.5  
-5  
-2  
-4  
-6  
-8  
-10  
-12  
-7.5  
-10  
-12.5  
-15  
-17.5  
-20  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Time (ns)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Time (ns)  
D026  
D027  
.
G = 4 V/V  
6-17. Input Overdrive Recovery  
6-18. Output Overdrive Recovery  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA862  
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
6.7 Typical Characteristics: VS = ±2.5 V  
TA 25°C, A1 input common-mode voltage (VCM) = midsupply, VREF = midsupply, RF (connected between  
VOUT+ and VFB) = 0 Ω, RG = open, differential gain (G) = 2 V/V, RL (differential load) = 2 kΩ, and RREF = 0 Ω(unless  
otherwise noted).  
3
0
1
0
-1  
-2  
-3  
-4  
-3  
-5  
-6  
-6  
-7  
-8  
G = 2 V/V  
G = -2 V/V  
G = 4 V/V  
G = 10 V/V  
G = 2 V/V  
G = -2 V/V  
G = 4 V/V  
G = 10 V/V  
-9  
-9  
-10  
-11  
-12  
-12  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
D002  
D005  
VOD = 20 mVPP  
VOD = 5 VPP  
6-20. Large-Signal Frequency Response  
6-19. Small-Signal Frequency Response  
1
1
0
-1  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
CL = 0 pF  
CL = 5 pF  
CL = 10 pF  
CL = 0 pF  
CL = 5 pF  
CL = 10 pF  
-10  
-11  
-12  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
D009  
D010  
VOD = 20 mVPP  
VOD = 5 VPP  
6-21. Small-Signal Frequency Response Over CL  
6-22. Large-Signal Frequency Response Over CL  
1
0
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
VOD = 20 mVPP  
VOD = 1 VPP  
VOD = 2 VPP  
VOD = 5 VPP  
-9  
-10  
-11  
-12  
VIN = 10 mVPP  
VIN = 1 VPP  
-60  
-65  
1M  
10M  
Frequency (Hz)  
100M  
100k  
1M  
10M  
100M  
Frequency (Hz)  
D011  
D052  
.
.
6-23. Frequency Response Over Differential Output Voltage,  
6-24. Input-to-Output Disable Mode Isolation  
VOD  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA862  
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
6.7 Typical Characteristics: VS = ±2.5 V (continued)  
TA 25°C, A1 input common-mode voltage (VCM) = midsupply, VREF = midsupply, RF (connected between  
VOUT+ and VFB) = 0 Ω, RG = open, differential gain (G) = 2 V/V, RL (differential load) = 2 kΩ, and RREF = 0 Ω(unless  
otherwise noted).  
-65  
-75  
-85  
15 kHz, HD2  
15 kHz, HD3  
100 kHz, HD2  
100 kHz, HD3  
1 MHz, HD2  
1 MHz, HD3  
HD2, G = 2 V/V  
HD3, G = 2 V/V  
HD2, G = -2 V/V  
HD3, G = -2 V/V  
HD2, G = 4 V/V  
HD3, G = 4 V/V  
-75  
-85  
-95  
-95  
-105  
-115  
-125  
-135  
-145  
-155  
-105  
-115  
-125  
-135  
-145  
-155  
200  
1k  
10k  
100k  
Frequency (Hz)  
1M  
Differential Load, RL (W)  
D014  
D018  
VOD = 5 VPP  
VOD = 5 VPP  
6-25. Harmonic Distortion vs Differential Load  
6-26. Harmonic Distortion vs Frequency and Gain  
150  
125  
100  
75  
3
2.5  
2
1.5  
1
50  
0.5  
0
25  
0
-0.5  
-1  
-25  
-50  
-75  
-100  
-125  
-150  
-1.5  
-2  
-2.5  
-3  
-3.5  
CL = 0 pF  
100 200  
CL = 5 pF  
300  
CL = 10 pF  
500  
CL = 0 pF  
CL = 5 pF  
CL = 10 pF  
-175  
-4  
0
400  
600  
700  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ns)  
Time (ns)  
D020  
D021  
VOD = 200 mVPP  
VOD = 5 VPP  
6-27. Small-Signal Step Response Over CL  
6-28. Large-Signal Step Response Over CL  
6
10  
VIN ì 2  
VOD  
VIN ì -4  
VOD  
5
7.5  
5
4
3
2
2.5  
0
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-2.5  
-5  
-7.5  
-10  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Time (ns)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Time (ns)  
D064  
D028  
.
G = 4 V/V  
6-29. Input Overdrive Recovery  
6-30. Output Overdrive Recovery  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA862  
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
6.8 Typical Characteristics: VS = 1.9 V, 1.4 V  
TA 25°C, A1 input common-mode voltage (VCM) = midsupply, VREF = midsupply, RF (connected between  
VOUT+ and VFB) = 0 Ω, RG = open, differential gain (G) = 2 V/V, RL (differential load) = 2 kΩ, and RREF = 0 Ω(unless  
otherwise noted).  
3
0
2
1
0
-1  
-2  
-3  
-3  
-4  
-5  
-6  
-6  
-7  
-8  
G = 2 V/V  
G = -2 V/V  
G = 4 V/V  
G = 10 V/V  
G = 2 V/V  
G = -2 V/V  
G = 4 V/V  
G = 10 V/V  
-9  
-9  
-10  
-11  
-12  
-12  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
D001  
D006  
VOD = 20 mVPP  
VOD = 2 VPP  
6-31. Small-Signal Frequency Response  
6-32. Large-Signal Frequency Response  
5
4
7
VIN ì 2  
VOD  
VIN ì -4  
VOD  
6
5
3
4
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-1  
-2  
-3  
-4  
-5  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Time (ns)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Time (ns)  
D065  
D029  
.
G = 4 V/V  
6-33. Input Overdrive Recovery  
6-34. Output Overdrive Recovery  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA862  
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
6.9 Typical Characteristics: VS = 1.9 V, 1.4 V to ±5 V  
TA 25°C, A1 input common-mode voltage (VCM) = midsupply, VREF = midsupply, RF (connected between  
VOUT+ and VFB) = 0 Ω, RG = open, differential gain (G) = 2 V/V, RL (differential load) = 2 kΩ, and RREF = 0 Ω(unless  
otherwise noted).  
2
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
VS = 3.3 V  
VS = 5 V  
VS = 10 V  
VS = 3.3 V  
VS = 5 V  
VS = 10 V  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
100M  
D012  
D013  
VIN = 10 mVPP, VREF = 0 V, measured at VOUT+  
VIN = 0 V, VREF = 20 mVPP, measured at VOUT–  
6-35. A1 Small-Signal Frequency Response  
6-36. VREF Small-Signal Frequency Response  
-80  
-90  
HD2, VS = 10 V  
HD2, VS = 10 V  
HD3, VS = 10 V  
HD2, VS = 5 V  
HD3, VS = 5 V  
HD2, VS = 3.3 V  
HD3, VS = 3.3 V  
-95  
HD3, VS = 10 V  
HD2, VS = 5 V  
HD3, VS = 5 V  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
10k  
100k  
Frequency (Hz)  
1M  
10k  
100k  
Frequency (Hz)  
1M  
D017  
D066  
VOD = 10 VPP for 10-V supply, VOD = 5 VPP for 5-V supply  
VOD = 2 VPP  
6-37. Harmonic Distortion vs Frequency  
6-38. Harmonic Distortion vs Frequency  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
-155  
-90  
-95  
VS = 10 V, HD2  
VS = 10 V, HD3  
VS = 5 V, HD2  
VS = 5 V, HD3  
VS = 3.3 V, HD2  
VS = 3.3 V, HD3  
VS = 10 V, HD2  
VS = 10 V, HD3  
VS = 5 V, HD2  
VS = 5 V, HD3  
VS = 3.3 V, HD2  
VS = 3.3 V, HD3  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
1
10  
Differential Output Voltage, VOD (VPP  
1
10  
Differential Output Voltage, VOD (VPP  
)
)
D016  
D015  
Frequency = 50 kHz  
Frequency = 50 kHz, G = 2 V/V  
6-39. Harmonic Distortion vs Differential Output Voltage  
6-40. Harmonic Distortion vs Differential Output Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA862  
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
6.9 Typical Characteristics: VS = 1.9 V, 1.4 V to ±5 V (continued)  
TA 25°C, A1 input common-mode voltage (VCM) = midsupply, VREF = midsupply, RF (connected between  
VOUT+ and VFB) = 0 Ω, RG = open, differential gain (G) = 2 V/V, RL (differential load) = 2 kΩ, and RREF = 0 Ω(unless  
otherwise noted).  
125  
100  
75  
6
5
4
3
50  
2
25  
1
0
0
-25  
-50  
-75  
-100  
-125  
-150  
-1  
-2  
-3  
-4  
-5  
-6  
VS = 10 V  
VS = 5 V  
VS = 3.3 V  
VS = 10 V  
VS = 5 V  
VS = 3.3 V  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ns)  
0
100 200 300 400 500 600 700 800 900  
Time (ns)  
D022  
D023  
VOD = 200 mVPP  
6-42. Large-Signal Step Response  
6-41. Small-Signal Step Response  
30  
10  
10  
7
A1, A2, Input Referred  
Total Output Referred  
A1, each input  
A2, VREF  
5
4
3
2
1
0.7  
0.5  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
D043  
D041  
1/f corner (A1) = 1.2 kHz, 1/f corner (A2) = 700 Hz  
1/f corner (A1, A2) = 30 Hz, 1/f corner (output) = 49 Hz  
6-44. Current Noise Density vs Frequency  
6-43. Voltage Noise Density vs Frequency  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
7
4
VS = 10 V  
VS = 5 V  
VS = 3.3 V  
1
-2  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
-5  
100k  
1M  
Frequency (Hz)  
10M  
1M  
10M  
Frequency (Hz)  
100M  
D055  
D007  
6-45. Output Balance vs Frequency  
VS = 5 V, VOD = 20 mVPP  
6-46. Small-Signal Frequency Response vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA862  
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
6.9 Typical Characteristics: VS = 1.9 V, 1.4 V to ±5 V (continued)  
TA 25°C, A1 input common-mode voltage (VCM) = midsupply, VREF = midsupply, RF (connected between  
VOUT+ and VFB) = 0 Ω, RG = open, differential gain (G) = 2 V/V, RL (differential load) = 2 kΩ, and RREF = 0 Ω(unless  
otherwise noted).  
6
5
3.14  
3.12  
3.10  
3.08  
3.06  
3.04  
3.02  
3.00  
2.98  
2.96  
2.94  
4
3
2
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
1
0
-1  
-2  
-3  
-4  
-5  
-6  
3
4
5
6
7
8
9
Voltage Supply, VS (V)  
10  
11  
12  
13  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Output Load Current (mA)  
D033  
D031  
6-48. Quiescent Current vs Voltage Supply  
VS = 10 V, single-ended output voltage and load current for A1  
and A2  
6-47. Output Saturation Voltage vs Output Load Current  
4.00  
20  
18  
16  
14  
12  
10  
8
VS = 12.6 V  
VS = 10 V  
VS = 5 V  
VS = 3.3 V  
VS = 3 V  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
6
4
3
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
4
5
6
7
8
9
Voltage Supply, VS (V)  
10  
11  
12  
13  
D034  
D035  
6-49. Quiescent Current vs Temperature  
6-50. Power-Down Quiescent Current vs Voltage Supply  
1.5  
3
1
0.8  
0.6  
0.4  
0.2  
0
VOD  
PD  
1
2
0.5  
0
1
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.5  
-1  
-1  
-2  
-3  
-1.5  
0
1
2
3
4
5
6
7
8
9
10  
-5  
-4  
-3  
-2  
-1  
0
1
PD Voltage (V)  
2
3
4
5
Time (ms)  
D050  
D049  
VS = 5 V  
VS = 10 V  
6-52. Turnon and Turnoff Timing  
6-51. Power-Down Bias Current vs Power-Down Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA862  
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
7 Detailed Description  
7.1 Overview  
The OPA862 is a 44-MHz, single-ended-to-differential amplifier suitable for use in high-input impedance analog  
front-ends. This device offers a gain-bandwidth product (GBWP) of 400 MHz with a low output-referred voltage  
noise of 8.3 nV/Hz while consuming only 3.1 mA of quiescent current. The OPA862 includes a REF pin for  
output common-mode voltage control using amplifier 2 and a shutdown pin for low-power mode operation that  
consumes only 12 µA of quiescent current.  
The OPA862 can be configured for a single-ended-to-differential gain of 2 V/V without using any external  
resistors. The device can be configured in gains other than 2 V/V by using only two external resistors in the  
feedback loop of amplifier 1 (A1) and requires fewer external gain-setting resistors compared to a fully  
differential amplifier (FDA). The noninverting input of A1 offers high input impedance (325 MΩ typical) for  
interfacing single-ended sensors that often have a non-zero output impedance to differential input analog-to-  
digital converters (ADCs). A combination of large 140-V/µs slew rate, 400-MHz GBWP, and nonlinearity  
cancellation in the output stages of the two amplifiers results in exceptional distortion and settling performance  
for 18-bit systems.  
The OPA862 includes an internal capacitor CFILT in the feedback circuit of amplifier 2 (A2) that limits the device  
bandwidth to approximately 44 MHz. Although the individual amplifiers have a GBWP of 200 MHz, because of  
the architecture of the OPA862, the input and output signal bandwidth must not exceed approximately 44 MHz to  
achieve good linearity. High GBWP amplifiers generally have high linearity because they can maintain high loop  
gain. The simple architecture of the OPA862 (as compared to an FDA) has an inherent delay between the  
outputs VOUT+ and VOUTthat primarily limits the linearity performance versus the high GBWP of the  
individual amplifiers. The benefit of the CFILT capacitor is that the CFILT filters and minimizes the noise at the  
output beyond the usable frequency of the OPA862.  
The VREF pin can be used to set the output common-mode to a desired value. 7.4 describes various  
configurations that the OPA862 can be used in.  
7.2 Functional Block Diagram  
VS+  
OPA862  
œ
VFB  
VIN  
A1  
VOUT+  
+
CFILT  
6 pF  
RLINT  
8.4 k  
RINT  
700 ꢀ  
RINT  
700 ꢀ  
œ
A2  
VOUTœ  
+
VREF  
PD  
VSœ  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA862  
 
 
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
7.3 Feature Description  
7.3.1 Input and ESD Protection  
The OPA862 is built using a high-speed complementary bipolar process. The internal junction breakdown  
voltages are relatively low for these very small geometry devices. These breakdowns are reflected in 6.1. As  
shown in 7-1 all device pins are protected with internal ESD protection diodes to the power supplies.  
These diodes provide moderate protection to input overdrive voltages beyond the supplies as well. The  
protection diodes can typically support 10-mA continuous current. Where higher currents are possible (for  
example, in systems with ±12-V supply parts driving into the OPA862), add current limiting series resistors in  
series with the inputs to limit the current. Keep these resistor values as low as possible because high values can  
degrade both noise performance and frequency response. The OPA862 has back-to-back ESD diodes between  
the VIN and VFB pins. As a result, the differential input voltage between the VIN and VFB pins must be limited to  
0.7 V or less to keep from forward biasing these back-to-back ESD diodes. The diodes are robust enough to  
survive transient conditions such as those common during slew conditions. In the event the differential input  
voltage exceeds 0.7 V, these back-to-back diodes forward bias and protect the amplifier but the current must be  
limited per the specifications in 6.1 to avoid permanent damage to these diodes or the amplifier.  
VS+  
OPA862  
VFB  
œ
A1  
VOUT+  
+
RINT  
700  
VIN  
Power Supply  
ESD Cell  
RINT  
700 ꢀ  
œ
A2  
VOUTœ  
VREF  
+
VSœ  
PD  
7-1. Internal ESD Protection  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA862  
 
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
7.3.2 Anti-Phase Reversal Protection  
When the input common-mode voltage approaches or exceeds VS, the base-collector junction of the input  
transistors forward biases. This condition creates an output path parallel to the normal gm path of the transistors  
that is opposite in phase to the gm path. When this parallel path starts to dominate, phase inversion occurs. To  
protect against phase inversion, the OPA862 features anti-phase reversal (APR) protection Schottky diodes on  
the input transistors. The Schottky diodes turn on at a voltage lower than the forward bias voltage of the base-  
collector junction, thus preventing the forward bias and the phase-inversion at the base-collector junction of the  
input transistors. 7-2 shows a diagram of APR protection within the OPA862.  
VS+  
VIN  
VFB  
Internal Circuitry  
7-2. Anti-Phase Reversal Protection  
7.3.3 Precision and Low Noise  
The OPA862 is laser trimmed for high DC precision. An important factor that reduces the DC precision of the  
system that uses the OPA862 is the errors introduced by the bias currents of A2 flowing through the internal  
feedback resistors, RINT; see 7.2. To minimize the error contribution from IB, the A2 amplifier of the OPA862  
features a unique IB cancellation mechanism. This IB cancellation mechanism is the reason why the IB of A2 is  
orders of magnitude lower than the IB of A1. The DC errors are negligible for most applications because of the  
nanoamperes of IB and very low IB drift of A2. However, despite being very low, if the IB errors of A2 are  
significant for an application, a 348-Ω RREF resistor can be used on the VREF input to cancel out the IB errors.  
The tradeoff of using the RREF is that this resistor introduces noise that is amplified by a factor of two at VOUT–  
because of the noise gain of two of A2. The CFILT capacitor (see 7.2) also helps filter out the flat band noise  
contribution of RREF. The 700-Ω internal resistors were carefully chosen to balance low noise while keeping the  
total power dissipation low by taking advantage of the low 3.1-mA quiescent current of the OPA862. As shown in  
7-3, to get the equivalent 8.3-nV/Hz noise of the OPA862 with a typical FDA configuration, the FDA must  
be less than 1 nV/Hz; such FDAs are often difficult to find or expensive. When RREF equals 0 Ω, the typical  
error resulting from the IB of A2 appears as an input-referred offset of 3.5 µV at the VREF input, and when RREF  
is 348 Ω, the differential output-referred noise increases from 8.3 nV/Hz to 9.6 nV/Hz.  
Fully Differential Amplifier  
<1 nV/√Hz  
OPA862  
1 k  
1 kꢀ  
1
8
œ
4
5
A1  
VOUT+  
+
RINT  
700 ꢀ  
œ
VOD  
VOCM  
VOD  
RINT  
+
700 ꢀ  
œ
A2  
VOUTœ  
2
+
1 kꢀ  
G = 1 V/V  
1 kꢀ  
G = 2 V/V  
8.3 nV/√Hz  
IB noise ignored  
7-3. Equivalent Voltage Noise FDA to OPA862  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA862  
 
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
7.4 Device Functional Modes  
7.4.1 Split-Supply Operation (±1.5 V to ±6.3 V)  
To facilitate testing with common lab equipment, the OPA862 can be configured to allow for split-supply  
operation. This configuration eases lab testing because the mid-point between the power rails is ground, and  
most signal generators, network analyzers, oscilloscopes, spectrum analyzers, and other lab equipment  
reference the inputs and outputs to ground. For split-supply operation referenced to ground, the power supplies  
VS+ and VSare symmetrical around ground and generally VREF is also set equal to ground. Split-supply  
operation is preferred in systems where the signals swing around ground because of the ease-of-use; however,  
the system requires two supply rails.  
7.4.2 Single-Supply Operation (3 V to 12.6 V)  
Many newer systems use a single power supply to improve efficiency and reduce the cost of the extra power  
supply. The OPA862 can be used with a single supply (negative supply set to ground), as shown in 7-4, with  
no change in performance if the input and output are biased within the linear operation of the device. To change  
the circuit from split supply to a single-supply configuration, level shift all the voltages by half the difference  
between the power-supply rails. In the single-supply configuration, a voltage must be set on the VREF pin,  
typically midsupply, such that VREF does not violate the common-mode input range (CMIR) specification or the  
output voltage range of A2. An additional advantage of configuring an amplifier for single-supply operation is that  
the effects of PSRR are minimized because the low-supply rail is grounded. See the Single-Supply Op Amp  
Design Techniques application report for examples of single-supply designs.  
+5 V  
OPA862  
VS+  
œ
1 k  
A1  
+
RINT  
700 ꢀ  
+
VIN  
RINT  
700 ꢀ  
œ
œ
A2  
+
1 kꢀ  
VSœ  
2.5 V  
7-4. Typical Single-Supply Configuration  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA862  
 
 
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Single-Ended-to-Differential Gain of 4 V/V  
8-1 shows the configuration that can be used for a single-ended-to-differential gain of 4 V/V. Amplifier A1  
follows all the conventional equations of a regular voltage-feedback amplifier for inverting and noninverting  
gains. With the fixed inverting gain of 1 V/V for the configuration of A2, the primary role of A2 is to invert the  
output of A1 so that a differential signal is available at the output pins, VOUT+ and VOUT. In the configuration  
shown in 8-1, VOUT+ is always in phase with VIN and equal to VIN times two. VOUThas the same swing as  
VOUT+ but 180° out of phase. The common-mode voltage at A1 is equal to VIN and the common-mode voltage at  
A2 is equal to the voltage on the VREF pin, which in the case of 8-1 is GND.  
RG  
RF  
700  
700 ꢀ  
+5 V  
0.1 µF  
3
OPA862  
1
8
œ
4
5
A1  
VOUT+  
+
RINT  
700 ꢀ  
ROP  
1 kꢀ  
+
VIN  
VOD  
RINT  
œ
RON  
1 kꢀ  
700 ꢀ  
œ
A2  
VOUTœ  
VREF  
2
+
7
6
VOUT+ and VOUTœ voltages are  
with respect to GND  
0.1 µF  
œ5 V  
8-1. Single-Ended To Differential Gain of 4 V/V Configuration  
方程式 1 through 方程式 4 can be derived from the configuration in 8-1. The output common-mode voltage,  
V
OCM, is the average of VOUT+ and VOUT, and is equal to the voltage on the VREF pin as given by 方程4.  
÷
RF  
VOUT+ = V 1+  
IN  
RG ◊  
«
(1)  
(2)  
(3)  
÷
RF  
VOUT- = -VOUT+ + 2ì VREF = -V 1+  
+ 2ì V  
IN  
REF  
RG ◊  
«
RF  
VOD = VOUT+ - VOUT- = 2ì V 1+  
- 2ì V  
÷
IN  
REF  
RG ◊  
«
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA862  
 
 
 
 
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
VOUT+ + VOUT-  
VOCM  
=
= VREF  
2
(4)  
8.2 Typical Applications  
8.2.1 Single-Ended to Differential with 2.5-V Output Common-Mode Voltage  
Most real-world signals are single ended. Often, fully differential amplifiers (FDAs) are used for single-ended-to-  
differential conversions but the low-impedance input of the FDA configuration can be a challenge for digital  
acquisition systems (DAQs). The high input impedance input of the OPA862, coupled with its ability to convert  
single-ended inputs to differential outputs, makes the device an excellent choice for DAQs.  
+7 V  
0.1 µF  
3
OPA862  
1
œ
4
5
A1  
VOUT+  
8
+
RINT  
700  
ROP  
1 kꢀ  
VIN  
VOD  
RINT  
RON  
1 kꢀ  
700 ꢀ  
œ
A2  
VOUTœ  
2
+
VREF  
2.5 V  
=
7
6
VOUT+ and VOUTœ voltages are  
with respect to GND  
0.1 µF  
œ3.3 V  
8-2. Single-Ended to Differential, G = 2 V/V With 2.5-V VOCM Configuration  
8.2.1.1 Design Requirements  
Use the design requirements shown in 8-1 to design a single-ended-to-differential output circuit block.  
8-1. Design Requirements  
DESIGN PARAMETER  
VALUE  
Input signal, VIN  
1-MHz, 0-5 V, sinusoidal signal  
Output common-mode voltage, VOCM  
Differential gain, G  
2.5 V  
2 V/V  
2 kΩ  
Differential load  
8.2.1.2 Detailed Design Procedure  
For RF = 0 Ω, with the VFB pin shorted to VOUT+, use 方程3 to determine that the OPA862 is in a differential  
gain of 2 V/V configuration. 方程式 4 describes how setting VREF equal to 2.5 V results in a VOCM of 2.5 V, as  
required per the design criteria. When designing a front-end stage with the OPA862, the input common-mode  
voltage and the output voltage range of the input and output pins, respectively, must be considered carefully.  
Choose the supplies such that none of these voltage ranges are violated and that the single-ended output  
voltages at each output do not exceed the maximum allowed voltages of the subsequent stage that the OPA862  
is driving. Simulate the transfer characteristics of this circuit to ensure the output voltages are within the desired  
operation limits. 8-3 illustrates the transfer characteristics for the OPA862 configuration in 8-2. The output  
waveforms of the circuit in 8-2 are described in 8-4 and meets the design requirements of 8-1.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA862  
 
 
 
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
8.2.1.3 Application Curves  
6
4.5  
3
5.5  
4.5  
3.5  
2.5  
1.5  
1.5  
0
0.5  
-0.5  
-1.5  
-2.5  
-3.5  
-4.5  
-5.5  
-1.5  
-3  
VOUT-  
VOUT+  
VOD  
VOUT-  
VOUT+  
VOD  
-4.5  
-6  
VIN  
0
0.5  
1
1.5  
2
2.5  
3
Input voltage, VIN (V)  
3.5  
4
4.5  
5
Time, 250 ns per division  
D100  
D100  
8-3. DC Transfer Characteristics  
8.2.2 Transimpedance Amplifier Configuration  
8-4. Transient Output Response  
With recent advancements in light-sensing technology, transimpedance (TIA) applications are becoming popular,  
ranging in signal bandwidth needs from tens of kHz to hundreds of MHz. Because the current output of the  
photodiode in these TIA applications is unipolar, a key challenge in interfacing with the fully differential input  
analog-to-digital converters (ADCs) is maximizing the differential signal to the ADC in order to maximize the  
signal-to-noise ratio (SNR).  
As illustrated in the output waveform of 8-6, only half the differential output signal swing of the FDA is  
available. On the contrary, by using the OPA862 as the TIA stage, a single-device interface to the ADC can be  
designed that also allows the full differential swing to the ADC and set the desired output common-mode as  
shown in 8-5. VREF is used to set the output common-mode voltage and VDC is used to DC shift the outputs  
such that for a zero photodiode current, VOD (equal to VOUT+ VOUT) is at one of the peaks of the desired  
differential peak-to-peak swing. Whether the VOD peak at the zero photodiode current is at a high or low peak is  
determined by the direction of current through RF in the presence of the photodiode signal current.  
VBIAS  
CF  
RF  
OPA862  
œ
VOUT+  
A1  
VOUT+  
+
RINT  
700  
VDC  
RINT  
VREF  
700 ꢀ  
œ
A2  
VOUTœ  
VOUTœ  
+
VREF  
8-5. Improved TIA Signal Chain With the OPA862  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA862  
 
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
GND  
TIA VO  
VBIAS  
TIA Stage  
RF  
Fully Differential ADC Driver  
RG  
RF  
œ
VO+  
+
œ
VOCM  
VOCM  
+
VOœ  
RF  
RG  
8-6. Conventional TIA Signal Chain  
8.2.2.1 Design Requirements  
Use the design requirements shown in 8-2 to design the TIA circuit block.  
8-2. Design Requirements  
DESIGN PARAMETER  
VALUE  
0 mA to 5 mA  
50 pF  
Photodiode current, IIN  
Photodiode Capacitance, CD  
Signal bandwidth  
9 MHz  
Output common-mode voltage, VOCM  
2.5 V  
8.2.2.2 Detailed Design Procedure  
In most TIA designs, selecting the right photodiode for the application is the most important decision because  
the photodiode determines the IIN and CD parameters that in turn determine the bandwidth required from the  
amplifier, the realizable TIA gain, and the signal bandwidth. Signal bandwidth also determines the rise time of  
the pulses. Choosing the photodiode with as low a capacitance as possible maximizes the TIA signal bandwidth  
for a given amplifier. Similarly, choosing a low TIA gain (RF) allows for higher signal bandwidth but having a RF  
as high as possible maximizes the SNR of the signal chain.  
In order to take advantage of the increased SNR by using the OPA862 as described in 8-5, the amplifier is  
already chosen. Using the design methodology explained at What You Need To Know About Transimpedance  
Amplifiers Part 1 and the design parameters in 8-2, RF can be determined to be 1 kΩ and the required  
feedback capacitor, CF, is 22 pF. Because the range of IIN is 0 mA to 5 mA and RF is 1 kΩ, the range of a single-  
ended output voltage at VOUT+ is 0 V to 5 V (IIN × RF). In the cathode bias configuration of the photodiode  
condition in 8-7, when the photodiode is excited the current flows towards VOUT+ through RF, resulting in a  
voltage pulse that goes lower from the zero current value. Thus, setting VOUT+ = 5 V and VOUT= 0 V (VOD = +5  
V) is desirable when the current is zero so that when the maximum current pulse of 5 mA occurs, VOUT+ goes to  
0 V and VOUTreaches 5 V (VOD = 5 V). The VOCM target of 2.5 V, which is a typical mid-reference voltage for  
differential input ADCs, can be set by choosing VREF = VOCM. The values of VDC and VREF can be determined by  
setting the values of VOUT+ and VOUTto appropriate values at the zero photo-current in the following equations:  
VDC = VOUT+  
VREF = (VOUT+ VDC) / 2 = VOCM  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA862  
 
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
8-8 and 8-9 show the small-signal bandwidth and large-signal step response TINA simulation results of the  
circuit in 8-7.  
VBIAS  
22 pF CF  
1 kRF  
+7 V  
0.1 µF  
3
OPA862  
1
œ
4
5
A1  
VOUT+  
8
+
RINT  
700 ꢀ  
VDC  
5 V  
VOD  
RINT  
700 ꢀ  
œ
A2  
VOUTœ  
2
+
VREF  
2.5 V  
7
6
VOUT+ and VOUTœ voltages are  
with respect to GND  
0.1 µF  
œ3.3 V  
8-7. TIA Circuit With the OPA862  
8.2.2.3 Application Curves  
6
4
6
69  
66  
63  
60  
57  
54  
51  
48  
45  
42  
39  
4
2
2
0
0
-2  
-4  
-6  
-8  
-2  
-4  
-6  
-8  
VOD  
VOUT+  
VOUT-  
VOUT-  
VOUT+  
VOD  
1.25  
IIN  
0
0.25  
0.5  
0.75  
Time (ms}  
1
1.5  
100k  
1M  
10M  
100M  
D103  
Frequency (Hz)  
D102  
8-9. Large-Signal Transient Response  
8-8. Small-Signal Bandwidth  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA862  
 
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
8.2.3 DC Level-Shifting  
Often, applications must level-shift a ground-referenced signal to a non-ground voltage. Configurations in 图  
8-10 and 8-11 show two different ways of level-shifting a signal by using the OPA862 without having to use  
external resistors, saving board cost and space. These configurations leverage the fixed noninverting gain-of-2  
configuration of A2 and the summing configuration of A1 to level-shift the signal at VOUT. The internal  
resistors of the OPA862 are extremely well-matched to maintain the gain-of-2 accuracy of A2. Similarly matched  
external resistors can add significant cost to the system and often are more expensive than the amplifier itself.  
Apart from the polarity of the VDC-shift at the output, a key difference between the configurations of 8-10 and  
8-11 is that in the case of 8-10, VDC only must be capable of driving the IB of A1 but in the case of 8-11,  
VDC must be capable of driving higher currents, as given by I = VDC / RG when a noninverting input of A1 is  
grounded.  
+7 V  
0.1 µF  
3
OPA862  
1
œ
4
5
A1  
VOUT+  
VDC  
œ2.5 V  
=
8
+
RINT  
700  
VOUTœ  
5 V  
IB  
RINT  
2 × VIN  
700 ꢀ  
VIN  
1.25 V  
œ
œVDC  
A2  
VOUTœ  
2.5 V  
0 V  
2
+
7
6
VIN  
0 V  
-1.25 V  
0.1 µF  
VOUT+ and VOUTœ voltages are  
with respect to GND  
œ2.5 V  
8-10. Level-Shifting With a DC Source of Polarity Opposite to the Desired DC Shift  
RG = RF  
RF  
VDC =  
2.5 V  
+7 V  
VDC  
I =  
RG  
0.1 µF  
3
OPA862  
1
8
œ
4
5
A1  
VOUT+  
+
RINT  
700  
VOUTœ  
5 V  
RINT  
2 × VIN  
700 ꢀ  
VIN  
1.25 V  
œ
VDC  
A2  
VOUTœ  
2.5 V  
0 V  
2
+
7
6
VIN  
0 V  
-1.25 V  
0.1 µF  
VOUT+ and VOUTœ voltages are  
with respect to GND  
œ2.5 V  
8-11. Level-Shifting With a DC Source of Polarity Same as the Desired DC Shift  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA862  
 
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
9 Power Supply Recommendations  
The OPA862 is intended to work in a supply range of 3 V to 12.6 V. The OPA862 can be used in single-supply  
operation, or in a balanced or unbalanced split-supply operation. Good power-supply bypassing is  
recommended for best AC performance and distortion in particular. Minimize the distance (less than 0.1 inch)  
from the power-supply pins to high-frequency, 0.1-µF decoupling capacitors. A larger capacitor (2.2 µF or 10 µF  
is typical) is used with a high-frequency, 0.1-µF supply decoupling capacitor at the device supply pins. For  
single-supply operation, only the positive supply has these capacitors. When a split-supply is used, use these  
capacitors for each supply to ground. If necessary, place the larger capacitors further from the device and share  
these capacitors among several devices in the same area of the printed circuit board (PCB). Avoid narrow power  
and ground traces to minimize inductance between the pins and the decoupling capacitors. An optional 0.1-µF  
supply decoupling capacitor across the two power supplies (for bipolar operation) reduces second-order  
harmonic distortion.  
10 Layout  
10.1 Layout Guidelines  
Achieving optimum AC performance with a fast amplifier such as the OPA862 requires careful attention to board  
layout parasitics and external component types. The OPA862EVM can be used as a reference when designing  
the circuit board. Recommendations that optimize performance include:  
1. Minimize parasitic capacitance to any AC ground for all of the signal I/O pins. Parasitic capacitance on the  
output and input pins can cause instability. On the noninverting input, VIN, the device can react with the  
source impedance to cause unintentional band limiting. To reduce unwanted capacitance, open a plane  
cutout around the signal I/O pins in the ground and power planes below those pins. Otherwise, ground and  
power planes must be unbroken elsewhere on the board.  
2. Minimize the distance (< 0.1") from the power-supply pins to high-frequency, 0.01-µF or 0.1-µF decoupling  
capacitors. At the device pins, do not allow the ground and power plane layout to be in close proximity to the  
signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and the  
decoupling capacitors. The power-supply connections must always be decoupled with these capacitors.  
Larger (2.2-µF to 10-µF) decoupling capacitors, effective at lower frequencies, must also be used on the  
supply pins. These capacitors can be placed somewhat farther from the device and shared among several  
devices in the same area of the PC board.  
3. Careful selection and placement of external components preserve the AC performance of the  
OPA862. Resistors must be a low reactance type. Surface-mount resistors work best and allow a tighter  
overall layout. Metal film and carbon composition axially leaded resistors can also provide good high  
frequency performance. Again, keep their leads and PCB trace length as short as possible. Because the  
VOUT+ pin and the VFB pin are the most sensitive to parasitic capacitance, always position the feedback  
and series output resistor, if any, as close as possible to the VFB and VOUT+ pins, respectively.  
4. Connections to other wideband devices on the board can be made with short direct traces or through  
onboard transmission lines. For short connections, consider the trace and the input to the next device as a  
lumped capacitive load. Relatively wide traces (50 mils to 100 mils) must be used, preferably with ground  
and power planes opened up around them.  
5. Socketing a high-speed part such as the OPA862 is not recommended. The additional lead length and  
pin-to-pin capacitance introduced by the socket can create troublesome parasitic network that can make  
achieving a smooth, stable frequency response difficult. Best results are obtained by soldering the OPA862  
to the board.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: OPA862  
 
 
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
10.2 Layout Examples  
RG  
RF  
VS+  
CBYP  
3
OPA862  
ROP  
1
8
œ
4
A1  
+
VIN  
RINT  
700  
RINT  
700 ꢀ  
RON  
œ
5
RREF  
A2  
2
+
6
7
PD  
CBYP  
VSœ  
10-1. Representative Schematic for Layout in  
Ground and power plane exist on  
inner layers.  
RG  
Ground and power plane removed  
from inner layers. Ground fill on  
outer layers also removed  
Remove GND and Power plane  
under output and inverting pins to  
minimize stray PCB capacitance  
VIN  
1
2
3
4
8
7
6
5
RF  
CBYP  
Place bypass capacitors  
close to power pins  
Vias to connect RREF and CBYP. Place  
these components on the other side  
of the PCB close to the vias.  
ROP  
RON  
RREF and CBYP not shown as they  
are on the other side of the PCB.  
Place output resistors close to output  
pins to minimize parasitic capacitance  
10-2. Layout Recommendations  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: OPA862  
 
OPA862  
www.ti.com.cn  
ZHCSK39C AUGUST 2019 REVISED AUGUST 2020  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Single-Supply Op Amp Design Techniques application report  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: OPA862  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-May-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA862IDR  
OPA862IDT  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
8
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
862  
862  
862  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
OPA862IDTKR  
WSON  
DTK  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-May-2022  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA862IDR  
OPA862IDT  
SOIC  
SOIC  
D
D
8
8
8
2500  
250  
330.0  
180.0  
330.0  
12.4  
12.4  
12.4  
6.4  
6.4  
3.3  
5.2  
5.2  
3.3  
2.1  
2.1  
1.1  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q2  
OPA862IDTKR  
WSON  
DTK  
3000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA862IDR  
OPA862IDT  
SOIC  
SOIC  
D
D
8
8
8
2500  
250  
356.0  
210.0  
367.0  
356.0  
185.0  
367.0  
35.0  
35.0  
35.0  
OPA862IDTKR  
WSON  
DTK  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
DTK0008A  
3.1  
2.9  
A
B
3.1  
2.9  
PIN 1 INDEX AREA  
0.8 MAX  
C
SEATING PLANE  
0.05  
0.00  
0.08 C  
(0.1) TYP  
1.5  
1.4  
6X 0.5  
1.75  
4
5
8
PKG  
1.84  
1.64  
9
1
0.3  
8X  
0.2  
0.1  
0.05  
C A B  
C
0.5  
0.3  
PIN 1 ID  
(OPTIONAL)  
8X  
PKG  
4224357 / A 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WSON - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
DTK0008A  
(2.8)  
(1.45)  
8X (0.25)  
6X (0.5)  
(0.475)  
1
8
(0.62)  
9
PKG  
(1.74)  
(1.5)  
(R0.05) TYP  
4
5
(Ø0.2) VIA  
(TYP)  
PKG  
8X(0.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
SOLDER MASK  
OPENING  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
NON- SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224357 / A 07/2018  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271) .  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WSON - 0.8 mm max height  
DTK0008A  
PLASTIC QUAD FLATPACK- NO LEAD  
(2.8)  
(1.34)  
8X (0.25)  
6X (0.5)  
1
8
PKG  
(1.5) (1.58)  
(R0.05) TYP  
5
4
9
8X(0.6)  
PKG  
EXPOSED METAL  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 9: 84%  
SCALE: 20X  
4224357 / A 07/2018  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY